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Summary

Worst-case possible annual radiation fluences of energetic
charged particles in the terrestrial space environment, and the re-
sultant depth-dose distributions in aluminum, have been calculated
in order to establish absolute upper limits te the radiation expo-
sure of spacecraft in geocentric orbits. The results are a conecise
set of data intended to aid in the determination of the feasibility
of a particular mission. The data may further serve as guldelines
in the evaluation of standard spacecraft components.

Calculations were performed for each significant particle
species populating or visiting the magnetosphere, on the basis of
volume occupied by or accessible to the respective species. Thus,
magnetospheric space was divided dinto five distinct regions (see
Figure 1) using the magnetic sh2ll parameter L, which gives the
approximate geocentric distance (in earth radii) of a field line's
equatorial intersect (note that the physical relevance of L gradu-
ally deteriorates for equatorial distances greater than 5-6 earth
radii because of solar-wind-to-magnetosphere interaction-effects).

An arrangement corresponding to that of Figure 1 but in polar
B-A space is shown in Figure 2. The dipole field-line equation
(R=Lcos2A) was used to map the domains, where R is radial distance
and A is invarilant latitude,

The indicated domain houndaries, in either reference frame,
should be considered only approximate transition areas, not lines;
they are assumed for modelling purposes and, additionally, are used
here to convev a qualitative picture of the charged particle dis-
tribution. Respective "real" boundaries, if such could be found
and defined, would most likely be diffuse areas fluctuating in theilr
L positions due to several factors, such as magnetic perturbations
(storm and substorm effects), local time effects (diurnal variation),
solar cycle variatiou (minimum and maximum activity phases), indivi-
dual solar events, ete., and would furthermore vary with particle
energy.
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Energetic Van Allen belt electrons are distinguished into
"inner zone" and "outer zone" populations, occupying respectively
regions #1 and #2-3-4. The L=2.8 line is being used to separate
the inner and outer zecne domains, while the termination of the outer
zone at L=12 earth radii is intended only to delineate the maximum
outward extent of stable or pseudo electron trapping.

Energetic Van Allen belt protons are usually contained within
a dipole shell of about L=4 earth radii. The precise volume occu-
pied by these particles depends Inversely on their energy. Shown
in Figures 1 and 2 are protons with energies E>5 Mev populating
regions #1 and #2 with an approximate trapping domain boundary
placed at 1=3.8 earth radii.

Finally, the solar flare proton domain is shown in Figures 1
and 2 to extend over regions #4 and #5. It was evaluated without
rigorous rigldity considerations by assuming that particles of all
energies above 10 Mev have free access to a geomagnetic cutoff lati-
tude of 63 degrees, which corresponds to an L value of about 5 earth
radii,

The particle radiation results of our calculations are given in
Table 1 for each species. All data represent integral, omnidirec-~
tional, annual fluences in units of particles per square centimeter.
In order to obtain truly worst case estimates, the uncertainty fac-
tors assoclated with the environment models were applied to the data,
Also the outer zone electron fluxes were adjusted in the high energy
range of the spectrum (E>L Mev) by ralsing the intensities above
model predictions so as to reflect latest experimental findings.
Solar proton fluences are unattenuvated, iInterplanetary intensities
of anomalously large events at 1 AU, determined statistically as
functions of mission duration and confidence level,

The doses for electrons were obtained from Monte Carlo electron-—
photon transport calculations for aluminum targets (depsity 2.70
gm/cm3) exposed to monenergetic, isotropic fluxes. The monoenerget-
ic results were smoothed and scaled so as to facilitate interpolation
and integration for any spectrum, Although the effects of
Bremsstrahlung production were included in the results, the calcula-
tions were not made in a way suitable to obtain the depth-dose dis-
tribution in the region of deep penetration (Bremsstrahlung tail).
The present results describe the dose only up te depths about equal
to the mean range of the electrons. Separate calculations for the
Bremsstrahlung dose are presently being carried out.
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For protons, a simpler approach is sufficilent, Assuming
stralght ahead penetration and continuous energy loss, depth-dose
distributions were calculated for monoenergetic, isotrople fluxes.
As in the case of electrons, the monoenergetic proton results were
ingorporated into a procedure to rapidly perform the integration
over arbiltrary spectra.

Depth~dose distributions for the spectra of Table 1 are given
in Figure 3, Because portions of the calculations are still under-
way, the present results are somewhat tentative and must be consild-
ered preliminary,
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