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Abstract

Mixtures of N 20, Ho), 02 and trace amounts of NO and NO2 were

photolyzed at 213.9 nm at 245-328°K and about 1 atm total pressure

(mostly H2 ). H02 radicals are produced from the photolysis and they

react as follows:

HO  + NO - HO + NO 2 	 la

+ HONO 2 	 lb

HO  + NO 2 HONG + 0 2	 2a

{ HO2NO 2 	 2b,-2b

2HO 2 - H 2O2 + 02	3

Reaction lb is unimportant under all of our reaction conditions.

Reaction Is was studied in competition with reaction 3 from which it

was found that kla/k31/2 = 6.4 x 10-6 exp {-(1400+500)/RTl. If k 3 is

taken to be 3.3 x 10 -12 cm3sec-1 independent of temperature, kla

1.2 x 10 -11 exp {-(1400+500)/RT} cm 3 sec- 1 . Reaction 2a is negligible

compared co reaction 2b under all of our reaction conditions. The

ratio k„,/k, = 0.61.10.15 at 245°K. Using the Arrhenius expression for

kla given above leads to k 2 = 4.2 x 10 -13 cm3 sec -1 which is assumed to

be independent of temperature.

The intermediate HO2NO2 is unstable and induces the dark oxidation

of NO through reaction -2b, which was found to have a rate coefficient

r
k-2b = 6 x 10

+17 exp t-26000/RT } sec based on the value of kla

given above. The intermediate can also decompose via

HO2NO 2 + HONO + 0 2 (or other products)	 10b

Reaction 10b is at least partially heterogeneous.

r	 11
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The value of k_2b given above leads to the following thermal

decomposition lifetimes, T t , at atmospheric temperature conditions:

T, 0K	 Tt, S-1

7
220	 7.7 x 10

273	 8 x 102

298	 14.7	 ^.

The above values of T t indicate that pernitric acid is essentially

thermally stable in the lower and middle stratosphere and its formation

should be considered in stratospheric models of NO  chemistry.
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Introduction

In previous papers (1-3) we havr, reported on our studies of

the atmoapherically important reactions of H0 2 with NO and NO2 at
% •	 'F;t

room temperature. By studying the chain oxidation of NO to NO2

in the photolysis of N 2 0-H2-02-NO mixtures at 213.9 nm and moni-

Loring NO concentration by the chemiluminescent reaction with 0 3 ,	 1,

the room temperature rate coefficients kia = 1.0 x 10 -12 cm 3 sec
-1

and kib < 2 x 10
-1e 

cm3 sec - 1 were obtained (3).	 }

H0 2 + NO -* NO 2 + OH	 la

+ HONl2	 lb

This value for kla is in good agreement with our earlier (2) measurements

of the lower limit and is in excellent agreement with k la s 1.2 x 10-12

cm3sec 1 determined by Cox and Derwent (4). However these values of kla

are a factor of 2-3 higher than the measurements by Davis et a1 (5) and

Hack et al (6). Our upper limit for k lb is in sharp disagreement with

.'he value of 1.4 x 10 -13 cm3sec-1 determined by Cox and Derwent (4) in

a mixture of N 2 and 02 (2:1) at 1 arm pressure. No other measurements

of klb have been reported in the literature.

Earlier (2) we had observed that NO 2 inhibits the chain oxi-

dation of NO and suggested the chain terminating reaction

H0 2 + NO 2 + HONO + 0 2	2a

with k ia ik2a = 7±1. Later Cox and Derwent (4) confirmed that a

reaction between H0 2 and NO 2 occurs and assumed that reaction 2a

was the reaction, They found k 2a = 1.2 x 10 -13 cm3 sec - 1 in good

agreement with our value. In our latest saner (3) we also confirmed

cur earlier work but in addition found that the oxidation of NO

continues even after light termination. Based on this observation

N
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the formation of pernitric acid was suggested. Thus in addition

to reaction 2a the reactions

H0 2 + NO2 ^ H02NO2 ( B)	 (2b, -2b)	 i

H02NO 2 + HONO r 02	 10b

were suggested. The ratio k l /k 2 ' = 9.Stl . S at 25 00 was obtained,

where k2'	 k2 - k2bk- 2b/(k-2b + kl0b ) , in good agreement with our
i

earlier work. (The reaction numbers used are the same as in our

earlier paper ( 3) for convenience in comparing results).

In the present paper we report on our studies of the reaction

of H0 2 with NO and NO 2 as a function of temperature. For the

former reaction the temperature dependence of k la was desired, and

for the latter system it was of interest to obtain a more detailed

understanding of the formation and reactions of pernitric acid, as

well as to obtain the absolute values and the temperature dependence

of the rate coefficients k2a , k2b , k-2b and k10b' The method

employed was the same as before ( 3). Briefly H0 2 rad . cals are

generated by the photolysis of N 20 at 213 . 9 nm in the presence of

H2 and 0 2 . In the presence of small amounts of NO and NO 2 , the

reactions of interest proceed and are monitored by measuring the

NO removal rate using chemiluminescent detection of NO.

M
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Experimental

The apparatus, experimental procedure and materials were

virtually identical to that described earlier (3). The only 	 1

changes were to enclose the photolysis vessel in an aluminum

block for precise temperature control and the volume of the

vessel was changed from 2 liters to 1 liter to reduce the nondni.-

formity of the light distribution inside the vessel. The block

could be heated with hichrome wire for temperatures above ambient

or cooled by passage of nitrogen gas cooled by liquid nitrogen

through a styrofoam box in which the aluminum block was enclosed.

Temperatures were rr-asured with a thermocouple and control of

temperature was *.L"%;. The temperature of the gas inside the

reaction mixture was checked by placing the thermocouple directly

inside the vessel and compared to the reading outside the vessel

(the normal position of the thermocouple). The two readings were

identical. The lignt distribution inside the vessel was checked

and found to be uniform within 20%.

The out-flow of the gas from the reaction vessel was always

such that the total pressure during a run did not change by more

than 5% and the rate of NO loss due to flow was always < 5% of the
x

rate of loss due to photolysis.
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Results

Low [NO]: The photolysis of N 2 0-H2 -0 ) -NO mixtures at 213.9 nm and

low [NO] was studied at 245, 271 and 296
0K. The results are

presented in Table I. At each temperature the initial quantum yield

of NO disappearance,-^i{NO,1, is nearly proportional to [NO]/Ia;1

(Figure 1). Earlier more extensive data at 296 0K (3) showed that

-Oi{NO} is proportional to [NO]/I an up to ti 14 x 10 7 cm-3/2 sec-3;

at higher values -mi{NO} is lower than predicted from this relation-

ship. The present results at 296 0K also show a fall off in -0i(NO)

at higher[NOI/la ratios, but this data is not included here. At

lower temperatures the fall-off is expected to occur at a lower

[NO]/Ian ratio (see Discussion). This is apparent in the data at

245 0K as can be seen in Figure 1. As the temperature decreases

there is a slight but statistically significant decrease in -iPi{NO}

at a given CN0I/Ia'' ratio.

High [NOI: In the presence of relatively high CNO] (> 2 mTorr)

experiments were done at 245, 295, 308.5, 319 and 328 0K. In some

of the experiments at 245 and 295 0K, NO 2 was present initially. As

found before (2,3) a) the addition of NO 2 to the photolysis of

N20-H2-02-H2 mixtures inhibits the conversion of NO to NO 2 , b) the

oxidation shows an induction period at T > 2960K when NO 2 is present

initially (see Figure 2), and a) the oxidation in the presence of

NO 2 continues even after termination of the irradiation for T >

295 oK'(note that NO 2 is always present when the dark reaction

begins, since NO2 is a product of the light reaction). Typical

curves for complete NO removal (curves b, c and d) and for a -typidal

dark oxidation (curve a) are shown in Figure 2. No induction
3

I	 1
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periods or dark oxidation were observed at 245 0K. The inhibition

of NO oxidation by NO 2 is a strong function of the temperature.

The effect is most pronounced at the lowest temperature and

becomes progressively less important as the temperature increases.

The light oxidation rates increase markedly with the temperature

as can be seen from curves b, c and d of Figure 2.

The initial experiments were done at 295 0K. For the first

few runs it was noted that the rate of light oxidation was much

slower and the dark oxidation was small. After several runs,

however, the rate became constant and the dark oxidation markedly

increased. Thus unconditioned walls inhibit the oxidation.

The initial NO removal quantum yields at 245 0K are presented

in Table II as a function of the CNO 2 111NO] ratio. The two sets

of data presented in Table II were done in vessels of 2 and 1 liter

volume, respectively, and with separately prepared mixtures of NO

and NO 2 . Also the 2 liter vessel was enclosed only in a styrofoam

box (the aluminum block was not used). From Table II it is evident

that - 4i (NO) declines as theCNO21i/[NO] i ratio increases. The

reduc%:on of -0 i {NO) is somewhat greater for the first group than

for the second. At temperatures > 295 0K quantum yields were not

computed, because the NO decay profiles were analyzed only in

terms of the analytically integrated rate law as explained in the

next section.

At temperatures > 295 0K two types of experiments were done.

In the first series the ph otolysis was carried out until complete

consumption of NO occurred. In the second series of experiments

irradiation was terminated before all the NO was consumed; the NO

continues to be oxidized even though the irradiation has been

.,I
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terminated until a limiting value of [NO] = [NO3,* is reached.
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Discussion

Low [NO], NO2 Abaent: The photolysis of N 2 0 -H2-02-NO mixtures

at 213.9 nm may be discussed in terms of the chain mechanism

given earlier ( 3) and using the same numbering system for the

reactions:,

N20 + hv (213.2 nm) + N 2 + OC 1D)	 Rate = la

0( 1D) +H2 -*OH+H	 5

OH+H2iH20+H	 6 >;

H + 02 + M -0 H02 + M	 7

H02. + NO -* NO2 + OH	 la

+ HONO2	 lb

H02 + H02 -* H202 + 02	 3

OH + NO ( +M) -► HONO (+M)	 4

For this system numerous other reactions are in principle possible, =j
`a

but they are all entirely negligible, because o f the constraints r

imposed by relative concentrations and rate coefficients as dis-

cussed before	 (3),
r

At sufficiently low LNO], reactions lb and 4 will become

negligible and chain termination by reaction 3 will predominate.

For this limiting case the mechanism leads to the following rate

law for NO removal:

-0i(NO) = kla[NOJ /( k3Ia)	 a
i

Plots of -^i(NO) vs [NO]/Ian at 245, 271 and 296 0K are shown in

Figure 1.	 The plots at 2710K and 296 °K are consistent with Eq. a,

Our earlier more extensive data ( 3) showed that Eq. a is well

obeyed up to CNO] / Ia'	 N 14 x 107 cm-3/2 sec -1/2 at 296 0K.	 The

data at 245 0K shows some fall off at higher CNO]/Ia n ratios
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(> 6 x 10  cm-3/2 sec-1/2 ), but this is expected, since at

lower temperatures reaction 4 becomes more important relative

to reaction 6 at lower [NO], since reaction 6 has an activation

energy ti 5 kcal/mole (7). From the slopes of the plots in Figure

1 the following values of k la/k 3 31 (cm 3/2 sec-1/2 ) are obtained:
	

i

7.2 x 10-7 (296 OK); 5.3 x 10 -7 (2710K), 4.4 x 10 -7 (2450K).

The present value of kla/k3h at 296 0K is slightly higher than

the value of 5.1 x 10 -7 cm3/2 sec- 1 obtained before (3). The small

difference is slightly greater than that estimated from the pre-

cision of the two studies and must be due to systematic errors.

However the systematic errors should not affect the value of the

activation energy difference E ia - E 3 /2, which depends on the

relative change in kla /k3 31 with temperature. From the p%asent

data Ela - E 3 /2 = 1400 cal/mole is obtained. The average value of

kla /k 3 '% obtained before and now is 6.2 x 10 -7 cm3/2 sec-1/2 at

296 0K. Using this average value of kla /k 3 '̂ l at 296 0K, the Arrhenius

expression kla/k 3 ''1 = 6.4 x 10 -6 exp{-(1400±500)/RT} is obtained.

The best value of k 3 is 3.3 x 10-12 cm3 sec -1 at 300 1K (7). Since

E 3 is expected to be near zero, then k la = 1.2 x 10 -11 exp{-(1400±

500)/RT} cm 3 sec -1 . If the activation energy for E 3 is taken as

1000 cal/mole (7), then kla = 2.7 x 10 -11 exp{-(1900±500)/RT}

cm3 sec- 1 . The only other measurement of Ela is by Hack et al (6).

They obtained a value of 2400±300 cal/mole for Ela-

High [NO], NO2 Present: In order to account for .l) the inhibition

of the oxidation by NO2 5 2) the induction period in the presence

of NO2 and 3) the dark oxidation, the following reactions were

proposed (3):
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H0 2 + NO 2 + HONO + 0 2 	2a

H02 + NO2	 H02NO2 (B)	 2b

H02NO2 ( B)	 H02 + NO 2 	-2b-

H0 2 NO 2 + HONO + 02 (or other products)	 lob

It was argued that pernitric acid is the responsible agent rather

than the possible complex A (pernitrous acid),

H02 + NO -* H0 2NO (A)

because the induction period in the absence of NO2 is very short

(< 2 sec), whereas in the presence of NO 2 the induction period and

the lifetime of NO in the dark oxidation are of the order of 40-60

sec. The relative importance of reactions 2a and lob could not be

determined at that time. However, in our earlier paper (2) indirect

evidence for HONO formation was suggested.

The mechanism consists of reactions 1, 2 1 4 1 5, 6, 7 and 11,

which must be introduced in the presence of NO2.

OH + NO2 ( + M) -► HONO2 , (+M)	 11

The chain terminating reaction , 3 is ent .irel; n4.-.1igible compared to

reactions 2, 4 and 11, because of the relatively high concentrations

of NO and NO2 in these experiments. From the mechanism the following

rate law during irradiation is obtained if O << 1

-O{NO} _	 2ki[N0]	
C1 - k	 aTB(exp{-t/T B ) - 1)]k2CNO21 + (Okla + klb)C90]	 -2b b

where

a	 k2 bCNO21/(k2CNO23 + (Ok la + k1b)CN07)

and

O = NMI + k111N.027)/(k 61H27 + k 4CN07 + k1l[MO21)

and TB is the lifetime of B

_^ i•
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TB-1 = k 10 + k_ 2b
(1 - a)

At t = 0 when CB7 = 0 or , when k_ 2b = 0 Equation b reduces to

1	 kla0	 _ klb	
k2[NO27	 -

-^{NO}	
- 2kl	 2k1	 + 2k1LNOJ	

c	 :V

and when B is in the steady state Equation b reduces to
i

_^(NO}	 _-1	 klaa	 = klb + 
k2

' 

[NO27	
d	 I

2k1 ^ 2^J

where k2 ' = k2 = k2bk-2b/(k-2b + k10b)

Since kla/kl = 1.0 (3) a plot of -@(NO} -1 - 5/2 vs ^NO23/[NO3

should be linear after either the steady state in B is reached

(Eq. d) or under conditions such that k_ 2b = 0 (Eq. c). At 2450K

there is no induction period for the oxidation in the presence of

NO 2 and no measurable dark oxidation was observed indicating that

k_ 2b = 0. Thus E quation c should apply. A plot of 	 Oi(NO}-1 - 0/2

vs [NO2]/[NO] at 245 0K is shown in Figure 3 for the two sets of data

given in Table II. The plot is reasonably linear for each set, but

the slopes differ by about 30%. The only differencg between the reac-

tion conditions is the volume of the reaction vessel and new

mixtures of NO and NO 2 were prepared for the second set. The difference

in results is probably primarily due to the uncertainty in Ia,

which at low temperatures had an estimated error of ti 15% together

with a lesser contribution 0, 10%) from the error in [NO] and [NO2],

The average value of kl /k2 = 1.7±0.4 is obtained from the slopes in

Figure 3. The intercept of the plots in Figure 3 is O.015±0.005;

therefore klb /k1 = 0.03±0.01 at 245
0K, and since kla = 6.8 x 10-13

cm 3 sec -1 at 245oK, klb = (2±1) x 10 -14 cm 3 sec -1 at 245oK. Our

earlier work (3) showed that k lb < (2±2) x 10
-15 

cm3 sec - 1 at 2950X.

Consequently if the intercept in Figure 3 is really due to reaction
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lb, the rate coefficients imply that reaction lb is still in the

third order regime at 700 Torr H 2 since the activation energy is

negative. Reactions la and lb may be visualized as proceeding

by the following mechanism

H0 2 + NO Z.H02NO 
b 

NO2 + OH
-a

H0 2N0^ + HONO2'`
-c

HONO2 + M -	 HONO2 + M

If k-c > kd EMI at 700 Torr H 2 reaction lb will be in the third

order regime.

Equation d may be integrated directly, since S = constant [note

that k4 = kli , i.e., k4 = 6.0 x 10 -12 cm3 sec - 1 at ti 700 Torr H2 +

0, 30 Torr 02 + N20) (1,8) and k li = 8 x 10 -12 cm 3 sec -1 (7)], and if

the assumption is made that CNO] i + CNO 2 1 i = [NO] + [NO 2 ] R CNOx].

The result is

lnCN07 i/CNO] - (CP;07 i - [NO])/CNOx] = (2k1 ?a/k2 1 CNOx])f{t}	 e

where
($k	 + k )la	 CCNO]i - [NOf{t} = t _ -- lb	 ])

1 a

A plot of the left-hand side of Eq. e vs f{t} should be linear with

a slope of 2k1 Ia/k2 '[NO.]. Typical plots based on Eq. a at T	 =	 ,$

24?i°K, 2950K,	 308.5°K, 319 0K and 3280K are shown in Figure 4.	 It

is apparent that at 245°K Equation a appears to be well obeyed,

but at > 295°K the plot is nonlinear at first, but becomes linear

after some time. The reason for the non-linearity initially at

the higher temperatures is due to the fact that S has not yet

reached the steady state. Thus at temperatures > 295°K Equation

e is obeyed after some time and values of 2k 1 Ia/k 2 'CNOx] may be
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obtained from the linear portion of the graph. At 245 OK Eq. c

appears to be obeyed throughout the time scale suggesting that

k-2b = 0 and thus k2 ' = k 2 , in agreement with the facts that

there is no induction period for the oxidation and that there is

no oxidation in the dark.

The values of kl /k 2 ' obtained from the slopes of plots such

as in Figure 4 are presented in Table III at the different

tempEratures. The average values are tabulated in Table IV. The

present value of kl /k 2 ' at 2950K differs significantly from the

previously reported values of 7 and 9.5 at 296 0K (2,3). The

principle difference between the present and previous values is

due to the fact that in the earlier analysis of our data the

assumption was made that H0 2 NO 2 was in the steady state when the

values of -(D{NO} were determined from differential rates after the

induction period. The present results analyzed in terms of the

integrated rate law show that the induction period is considerably

longer than appears from the NO decay profiles. Thus apparently

the linearity of the plot of Eq. d at 2950K in the earlier work

was fortuitous.

At 2450K the values of k l /k2 obtained from Eq. a are signifi-

cantly higher than the value of 1.96 (lower line of Figure 3)

obtained from the same runs and Eq. c. Also k l/k 2 obtained from

Eq, a appears to depend to some extent on the initial value of

CNO 2 1. This discrepancy is due to the failure of the approximation

that IH0 2 NO21 << [NO] + [NO21 assumed in the integrated Eq. e,

because at the low temperature the quantum yields for the oxidation

are small. The ratio [H0 2 NO 2 ]/[NO 2 ] is given approximately by

k 2 'CNO2I/k-la[N01;thus at 245 0K CH0 2 NO21/[NO 2 1 is not negligible

LA
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since k 2 '/k1 = 0.61.	 At > 295°K k k '/kl < 0.036; therefore the

approximation that CHO 2 NO 2 1 << CNO] + CNO23 is satisfied and

Eq, e is valid.	 The data at 295°K in Table III supports this

conclusion since kl /k 2 ' appears to be independent of [NO 21i'	 As

mentioned before it should be noted that Eq. d could not be employed

at temperatures of > 295 0K, because initially H0 2 NO 2 is not in the

steady state, i.e. there is an induction period.

The value of kl /k 2 ' is a strong function of the temperature.

At 328°K, kl /k2 '	 = 240; therefore k2a/kl < 4.2 x 10 -3 .	 Since k 2

cannot have a negative activation energy and E 1 = 1400 cal/mole,

then at 245 0K, k2a /k I < 8.7 x 10 -3 ,	 At 245°K, we have already seen

that k2b = 0,	 so that at 245 0K, k2 '/k1 = k2b /kI = 0.61±0.15.	 From

the value of kl = 6.9 x 10-13 cm3 sec-1 , we compute k 2 = 4.2 x 10-13

cm3 sec-1 , which should be independent of temperature since reaction

2b is an addition reaction of two free radicals.

Dark Oxidation:	 Based on the mechanism the rate of NO oxidation

in the dark is described by the differential equation:

k_2bk1CN0]CB]
-dCNO]/dt	 = k2 N 2	 +	 Skla + klb	 NO	 f _.

yR

If TB is constant throughout the dark period, then CB] = CB]0

exp{-t /T B }, where CB1 0 is the concentration of B at t = 0 of the ]

dark period.	 Oquation f may be integrated by noting that CNO21

CNOx] - [ NO].	 The result is

Zn(CNO1 0 /CNO1) - y(CNO] 0 - CNO])/CNOx] = CTB(1-exp{-t/TB}) g

where

Y	 (1 - (Okla + klb)/k2)

and

I	

C = k1k_2bCB]0/k2CNOx]

,



At t = m Eq, g becomes

ln(CNO7 0 /CNO] m ) - y:CNO] 0 - CNO] m)LCNOx] = CT  h

where [NO]. is the concentration of NO at the end of the dark

run. Equation g can be rearranged to

lnCl - f{CNOx ]} /(CT B )] = -t/TB	 i

where

f{CNOx ]} = ln(CNO] 0 /CNO]) - y(CNO] 0 - CNO])/CNOx7

Thus values of TB may be obtained from plots of the left-hand side

of Eq, i vs reaction time, since the quantity CTB may be computed

from Eq. h. Typical plots of Ea. i are shown in Figure 5 at

different temperatures. The plots obey Eq. i well over most of

the reaction time. Values of TB
-1 obtained from the slopes of

plots of Eq. i are presented in Table V.

From the definition of k 2 ', and since k 2 << k 2 ', we find that

k1k2b
k-2b /k10b - k2Tf 1	 1	 0

The quantities kl /k2 ', k2b , and kl have already been evaluated,

so that values of k_2b/k10b can be computed at each temperature

and they are presented in Table IV. An Arrhenius plot of k_2b/k10b

is shown in Figure 6. From the plot we find the least squares

Arrhenius expression

k-2h /k10b = 3 x 10 9 exp{-11500/RT}

Furthermore from the definition for T B -1 , we find that

k 10 = TB
-1 /Cl + (k_2b/k10b)(1 - a)]
	

k

Values of k 10 can be evaluated for each run and they are listed

in Table V. The average values of CNO] and CNO21 were used to compute

a and it was assumed that k 2 is temperature independent. From
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Table V it is apparent that at 295 oK TB -1 ti k10b' thus the

assumption that TB is constant throughout the dark period in

the integration is valid at 295 OK. However at the higher

temperatures the term k_ 2b (1 - a) is of the order of k 10 and

since a ti 1, k_ 2b (1 - a) is proportional to CN0]/CNO 2 ]- The ratio

CNO]/CNO 2 ] varies by a factor of about 2-4 from the beginning to the

end of the dark period, therefore T B will vary by a factor of about

1.5-2. The plots of Figure 5 show very little if any curvature;

therefore it would appear that the assumption TB = constant is

justified even at T > 2950K. As a further test of this assumption

values of k 10 were also computed by using the initial values of [NO]

and CNO 2 1 to compute a. The difference in the computed values of

k 10 using the initial and average values of CNO] and CNO
2 3 was

generally < 10%. Finally the Arrhenius parameters for k_ 2b and k 10

obtained from values of T B and the ratio k_2b/k10b as shown below

lead to A_ 2b /A10b = 6 x 10 9 and E- 2b - E 10 = 11500 kcal/mole in

excellent agreement with the values obtained from the direct plot

of k2b/k10b which supports the assumption that T B = constant does

not lead to significant error in the Arrhenius expressions for

k_ 2b and k10b'

In spite of these consistency tests, there still can be

considerable error in k- 2b and k10b' Equation d, from which k_ 2b

k 10 was obtained contains certain simplifications which become

less and less accurate as k-2b/k10b becomes larger and larger,

i.e. at high temperatures. Thus the values of k -2b and k 10 at

the highest tempera •cure each could be in error by a factor of two.

The average values of k10b at each temperature and the values

of k- 2b computed from it and k_2b/k10b are listed in Table 1V.
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Arrhenius plots of k-2b and k
lOb are presented in Figure 7. The

least squares Arrhenius expressions for klOb and k- 2b are

k 10 = 1 x 10 
(8±1) exp {-14000=1500/RT} sec-1

k_ 2b = 6 x 10
(171 ' 5) 

exp {-26000/RT} sec-1

In the above calculations we have assumed that reaction 2b is

temperature independent since it is a radical-radical reaction.

However in case there is a small temperature effect on reaction 2b

we have also calculated values of k 10 and k- 2b assuming that

E 2 = 2.5 kcal/mole. These values of klOb and k- 2b are shown in

Figure 6 for comparison with the values obtained for : 2b = 0. The

Arrhenius expression for k_ 2b assuming that E 2b = 2.5 kcal/mole is

k- 2b = 2.5 x 10 17 exp{-25000/RT} sec-1

Thus k_ 2bI A_ 2b and E_ 2b are not very sensitive to the value of E2b.

k 10 decreases by about a factor of 2 (scmewhat less at 2950K)

for a change in E 2 from zero to 2.5 kcal/mole. Clearly, unless

E 2 is unusually large there is very little uncertainty introduced

in the values of k- 2b and k 10 by assuming that E 2 = 0.

The value of A 10 = 1 x 10 
(8±1) 

sec-1 is too low for a homo-

geneous unimolecular reaction, even one proceeding through a 5

membered ring transition state such as

0 2 + HONO

which would require A ti 10 10 - 10 11 sec-1 . This suggests that

reaction 10b is at least partially heterogeneous, particularly at

the lower temperatures. A clear, indication that H0 2 NO 2 can decompose

^x
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on the surface to give non-chain propagating products at 2950K

is the observation that the reaction vessel had to be conditioned

to give a reproducible rate of o:idation (oxidation rates for the

unconditioned vessel were lower). The preexponential factors

Alb = 4.2 x 10 -13 cm3 sec - 1 and A- 2b = 6 x 10 17 sec-1 and the

activation energies E 2b = 0 and E_ 2b = 26 kcal/mole gives &S o =

-49.6±10 e.0 and AHo = 26 kcal/mole for reaction 2 at 2980K.

Using the following thermodynamic quantities: S o {NO 2 } = 57 e.u,

So {HO 2 } = 54.5 e.u, &H fo {NO2} = 8.1 kcal/moles AH fo {HO,;} = 4.9

kcal/mole (9), we find So {HO 2NO2) = 62±10 e.0 and OHfo{H02NO2}

-13 kcal/mole. Reasonably accurate values of S o and AHfo for

H0 2NO2 can be estimated with the use of the partial bond method

(10). Using this method we find S o {HO 2NO2} = 75±2 and AHfo{H02NO2}

-8.5 kcal/mole. Clearly the value of A_ 2b = 6 x 10 17 sec-1 is too

large to be consistent with the value of A lb = 4.2 x 10
-13 cm3 sec -1 .

Agreement between the entropy and enthalpy determined in this work

and that calculated by the partial bond method would be obtained

if A_ 2b ti 1 x 10 15 sec-1 . Although su;h a low value for A_ 2b is

somewhat outside our estimated error limits, it is not impossible.

In fact a reduction in Ea of 4 kcal/mole would accommodate the

required factor of 600 reduction in A_ 2b* However a high value for

A_ 2b of 
ti 10 17 - 10 18 sec-1 , or a low So and high AHfo for H02NO2

are possible if in ground state B there is considerable restriction

to internal rotation due to internal H-bond formation as represented

by a structure such as
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The transition state for reaction 2 can be represented by the

linear structure HOO--•NO2. Thus there may be considerable entropy

of activation in going from the ground to the transition state

structure leading to an abnormally high A factor for reaction -2b.

On the other hand if reaction 2b really has an activation energy

of 2.5 kcal/mole, then A 2 is 170 times larger than if E 2 = 0,

and A- 2b should be = 2 x 10 17 sec-1 in agreement with the calcu-

lation.



19

Table I

Photolysis of N 2 01 Mixt;:res at 213.9 nm (Low [NO])a

10 -7 1110 ] / Ia' , 	 10-13 [NO], 	 10-10 I a +

cT
-3/2

sec
-1/2	

cm-3	 cm-3sec 
A.	 -Oi{NO}

T = '^45°K

1.37 0.270 3.90 6.1

2.29 0.475 4.30 10.4

2.44 0.464 3.62 13.3

4.00 0.766 3.68 18.3

5.55 1.03 3.45 22.3

11.3 2.60 5.31 32.0

11.5 1.23 1.14 39.1

12.8 2.70 4.45 49.1

T =	 271	 K

2.23 0.314 i.99 16.6

5.00 0.700 1.96 22.5

8.88 1.56 3.09 43.8

12.5 1.07 0.779 70.5

-3.5 1.18 0.768 71.6

T =	 2960K

3.24 0.551 2.89 31.9

4.19 C.6C4 2.07 33.3

6.46 0.898 1.92 43.7

10.4 0.890 0.738 71.7

15.8 1.73 1.20 79.1

a)	 1H 2 1 =	 700t30	 Torr,	 1021	 = 20- 4 0 Torr,	 1N 2 01 =	 6-20 Torr.



Photolys=

CNO	 J	 /INO12	 i
4....,,15 &.....1JI? iU - tea,

-4	 {NG}i mTorr. mTorr. mTorr/sec

Reaction Volume =	 2 liters

0 5.31 0.00 1.01 24.4

0 8.91 0.00 0.70 17.0

0.0887 4.97 0.440 1.22 13.3

0.167 5.06 0.846 1.06 11.2

0.171 4.97 0.85 1.03 9.7E

0.321 5.81 1.86 0.95 5.74

Reaction Volume = 1 liter

0 4.87 0.00 2.74 29.2

0.0912 5.65 0.515 3.03 20.5

0.205 4.20 0.860 3.13 11.8

0.559 2.88 1.62. 2.97 5.44

0.580 4.39 2.55 2.87 5.40

a)	 CH 2 1 = 700t30 Torr; 1:4201 = 8-14 Torr; 10 2 1 = 30=5 Torr.
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Table III

Values of kl/k2'

CNO3i, CN2030 ENO23_, 103 ia 
1

k /k	 '
1	 2

mTorr Torr mTcrr mTorr s'1

T =	 2450K

2.88 15.6 +.61 2.97 2.36

3.92 16.3 0 3.10 3.29

4.20 15.9 0.51 3.03 2.84

4.39 15.1 2.55 2.87 2.84

4.87 14.4 0 2.73 3.72

T = 2950K

2.60 9.73 0 1.48 16.7

4.74 8.79 0 1.37 31.1

5.21 9.10 0 1.42 31.2

5.58 8.25 2.79 1.30 32.8

6.05 8.56 0 1.36 29.9

6.32 13.0 0 2.02 16.8

6.98 8.30 1.09 1.33 24.5

7.25 7.50 4.70 1.21 20.6

7.48 7.70 4.20 1.24 33.9

T	 =	 308.50K

4.74 10.6 0 3.31 61.4

8.28 10.3 0 3.33 79.6

9.58 9.2b 0 3.04 69.0

9.67 11.5 0 3.76 60.9

9.86 9.26 0 3.04 79.6

11.3 11.1 0 3.64 86.9

19.7 11.2 0 3.91 93.6

22.1 15.6 0 5.30 ll"1
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Table III (Contin.:ed)

CNC]i, [N2O7, LNO21;, 103	 Ia, a k^/;c2'
mTorr Torr m:orr` mTcrr x--

T 3i9cK
3.82 6.22 0 2.54 78.3

7.44 9.65 0 4.04 88.5

8.60 6.77 0 2.95 119

8.98 4.05 0 1.89 136

9.26 5.29 0 2.39 123

9.26 4.16 0 1.95 121

9.96 9.02 0 3.85 112

10.0 9.1 0 3.90 171

T = 328oK

2.01 3.27 0 1.00 179

2.21 5.76 0 1.72 220

4.64 3.28 0 0.98 243

5.25 3.46 0 1.1 228

5.92 3.38 0 1.01 266

10.7 3.35 0 1.30 292

11.6 4.28 0 1.57 279

11.3 12.8 0 4.11 214

a) la corrected f 	 NO2 photolysis (< 15$) with t::e assumption

4(0( 1D)} = 1.0 at 213.9 nm.

b) k2' = k 2 at 2450K.

^164
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Table IV

e-pe: a.--. a de;endence of k l /k 2 ' , k103 and k_2b

T,°K k1/k2
/klob 103k10b's-1 -1

k-
2b'S-2b

245 1.65:0.4 -- -- --

295 27.6	 t6.2 9.27 5.33'1.1 0.045

308.5 80	 t17 26.0 11.9	 =2.0 0.309

319 129	 t31 39.5 29.0	 t4.0 1.15

328 240	 t38 70 57.6	 t9.3 4.C3
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Table V

Va: ,,:es	 of TB and k lob a

CNO] i CNO]Ob^ CNO21i, ENO210bIs 1031B'1, 103k10bc^
mTorr mTorr mTorr mTorr s- s'II

T = 2950K

6.23 3.86 -- 2.37 9.20 7.25

6.51 4.12 6.79 9.18 5.87 4.88

6.51 4.55 7.56 9.52 6.30 5.04

7.63 3.81 -- 3.82 5.87 4.84

10.8 7.5w -- 3.26 9.40 4.E3

T = 308.50K

3.25 2.12 -- 1.14 15.0 13.0

8.65 5.81 -- 2.84 16.1 9.46

8.93 5.45 -- 3.48 24.0 12.7

9.49 5.59 -- 3.90 15.7 10.2

19.2	 12.3 -- 6.90 43.3 14.2

T = 3190K

8.02 5.07 -- 2.95 69.-4 32.9

8.79 5.94 -- 2.85 65.6 27.1

9.26 5.46 -- 3.80 48.8 25.6

9.36 6.37 -- 2.99 9E.5 32.9

9.36 5.45 -- 3.91 63.6 32.5

9.55 5.55 -- 4.00 57.1 29.3

9.74 6.19 -- 3.55 50.0 22.9

T = 328°K

2.01 1.33 -- 0.68 114 89.1

4.58 2.42 -- 2.16 89 52.9

5.06 2.85 -- 2.21 80 47.1

5.60 2.83 -- 2.77 120 67.8

11.4 6.77 -- 4.63 233 62.5

a)	 CH 2 ] =	 700±30 Torr;	 CC 23	 = 35:t5	 Torr;	 CN201 =	 3.3	 -	 9.3 7srr.

b)	 [NO]0 and	 CNO21 at the beginning of the dark pericd.

c)	 Assumed T 2b	 = 0 in calculating klOb.

J
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