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NOMENCLATURE

a column vector of velocity components relative to aircraft axes
a direction cosine matrix

an element in the ith row, and the jth column of the direction
cosine matrix

a column vector of velocity components in a fixed reference system
unit vectors defining a ship axes system

a unit matrix

unit vectors defining an aircraft axes system

the rolling component of the ship's angular velocity vector

the rolling component of the aircraft's angular velocity vector
the pitching component of the ship's angular velocity vector

the pitching comporent of the aircraft's angular velocity vector
the yawing component of the ship's angular velocity vector

the position vector of the landing platform, relative to the
origin of the ship coordinate system

the yawing component of the aircraft's angular velocity vector

the position vector of an aircraft landing wheel, relative to
the center of gravity of the aircraft

a column vector of velocity components relative to ship axes
a transformation matrix

ship linear velocity components

aircraft linear velocity components

coordinates relative to ship axes

coordinates relative 1o aircraft axes

the perpendicular height of the aircraft center of gravity

above the landing platform
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6, 8_90 Euler angles corresponding to direction cosines
B, @, W ship Euler angles
$y, 9, ¥ alreraft Euler angles

f ship angular velocity vector

E3

aircraft angular veloecity vector

Superscript:

T denotes transpisition

Subseripts:

cegs center of gravity:

EA a transformation from fixed axes to aircraft body axes

ES - a transformation from fixed axes to ship axes

I signifies inertial compovents

ij the ith row and the jth column of the direction cosine matrix

N nose wheel

P landing platform

Pi the point on the landing platform at which the 1th landing wheel
makes contact

Peg the poirit on the landing platform beneath the alreraft center
of gravity '

Ps the poiat on the landing.platform at which:the starboard
landing wheel makes contact

p. port landing wheel

R aircraft motion relative to the landing platform

S _ - ship motion

SA a transformation . from ship.axes‘to alreraft. axes

s starboard landing wheel
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MEASURES OF PILOT PERFORMANCE DURING V/TOL AILRCRAFT
LANDINGS ON SHIPS AT SEA
James C. Howard

Ames Research Center
SUMMARY

Simulation experiments to determine the feasibility of landing V/TOL
aircraft on ships at sea, require that the motion and attitude of the aircraft
relative to the landing platform be known at the dinstant of touchdown. The
success of these experiments depends on the ability of the experimenter
to meagure the pilot's performance during the landing maneuver. To facilitate
these measurements, the equations describing the motion of the aircraft and
its attitude relative to the landing platform are presented in a form which
1s suiltable for simulation purposes. It is assumed that the pilot has
achieved a successful landing when the relative motion at each landing wheel,
at the instant of touchdown, does not exceed design values for the landing
gear, By using this criterion, the equations presented can be used to
determine the success or failure of each landing maneuver and hence establish
the feasibility of such maneuvers.

INTRODUCTION

Landing V/TOL aircraft on ships at sea is complicated by the motion
of the landing platform which moves in response to the motions of the sea.
In order to achieve a successful landing, the pilot bas to induce in his
alrcraft a state which 1s compatible with the state of the ship, at the
instant of touchdown. In the present context, the state refers specifically
to the components of linear and angular motion and the corresponding spatial
orientation. The relative states must be such that the rate at which the
aircraft approaches the landing platform does not exceed design limits for
the landing gear, Moreover, in the event that the aircraft attitude 1s not
compatible with the attitude of the ship, the total landing energy is

initially being absorbed by fewer than the total number of shock absorbers
available.

In order to determine if the relative motions and attitudes during the
landing maneuver are within prescribed limits, it is necessary to know the
motion of the aireraft relative to the landing platform. The equations
describing the relative motions during touchdown require the formulation
of a matrix that defines the attitude of the aireraft. A similar matrix
defining the attitude of the ship is also required. The elements of these
matrices are functions of the conventional Euler angles for the alreraft and
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the ship., The elements of the aircraft attitude matrix are computed in the

process of solving the mathematical model of the ailrveraft. In order to

determine the elements of the attitude matrix for the ship, the componenis '
of the ship's angular velocity vector are measured and inserted into Buler's

geometrical equations, which are then solved to obtain the Euler angles for

the ship. Subsequent to formulation, the ship's attitude matrix is transposed .
and premultiplied by the aircraft attitude mairix to obtain the required

matrix defining the transformation from shin axes to aircraft body axes. The

result is then used to tranrsform Lh= motion componeénts of the landing plat-

form from ship axes to aircra,’t hody axes.

The elemcents of the matrix de.lning the transformation from ship axes
to aircraft body axes are dircct’on cosines. Although the direction cosines
are useful for transrformatlon rurposes, they are not convenient measures of
attitude. To facllitate the determination of relative attitudes, the
equations describing a conversion from direction cosines to the Euler angles
repregenting the attitude of the alrcraft relative to the landing platform
are formulated,

The feasibility of landing a V/TOL aircraft on a moving ship is
determined by using the relative motion and attitude equations to measure
pllot performance during the landing maneuver, The performance measured will
be the pilot's ability to keep the relative motions and attitudes within
prescribed limits. A pilot will be deemed to have achieved a successful
landing if the relative motions at all landing whezls do not exceed design
values for the landing gear.

VELOCITY OF ATRCRAFT RELATIVE TO THE SHIP

For simulation experiments of this kind, it is necessary to know the
velocity of each landing wheel relative to the landing platform at the
instant of touchdown. The point at which a given landing wheel makes  _
contact with the landing platform is assumed to have a position vector Rpy
relative to the origin of the ship's coordinate system. This system originates
at a point on the water line, vertically ahove the center of gravity of the
ship. The XZ plane of the ship's coordinate system corresponds to the plane
of symmetry of the vessel and the Y axis is normal to it. It is naval
practice to have thez Y axis emanating from the port side of the ship and the
Z axis pointing upward. However, in order to simplify the determination of
relative veloeidtines, ship motlon will be referred to a coordinate system that
originates on the water line but otherwise conforms to the aircraft axes
conventilon. :

Relative to this system of coordinates the position vector ﬁPi agsumes
the form’ ' '

Ry, = (%5, 1 + 5,3 + 2,K) (1)
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where I J R are a triad of mutually orthogonal unit vectors in the direc-
tions of the ship's axes, and are the coordinates of the point
at which the ith landing wheel maﬁes contac with the landing platform. The
subscript "1i" is used to indicate which landing wheel is being considered.

Due to the ship's motion, the velocity of the landing platform at the
point at which the ith landing wheel makes contact, 1s given by the equation
(ref. 1)

Ry,
e = (T + 8 % ) 2
where
U, = (UT + VI + WK) (3)
and
§ = (PT + QJ + RK) (4)

The components U, V, W are the surging, swaying, and heaving velocities
of the ship. These are nautical terms which denote forward, lateral, and
vertical components of the ship's motion. P, Q, and R are the rolling,
pitching, and yawing components of the ship's angular velocity vector 2.

Equation (2) gives the components. of the ship's inertial velocity at
the point at which the ith landing wheel makes contact with the landing
platform. These are

Uy = (U + QZyy RYPi)
V= v + R, - PZPi) (5)
Wy = W4 PY,, - QXp4)

where the subscript I denotes inertial components.

It 1s next necessary to determine the velocity of each landing wheel in
the fully extended position., Let Tg be the position vector of the star-
board landing wheel. The components of Tg relative to a set of aircraft
body axes with origin at the center of gravity of the aircraft are

r = (xsi 4 ysj + zsk)

where i, 3, k are a triad of mutvally orthogonal unit vectors in the
directions‘of the aircraft axes.




The velocity of the starboard landing wheel is

d?s _ L
o (T v xi) ®

where V, is the linear velocity of the aireraft and w 1s f:s angular
veloclty,

In component form

¥ o= (ui+ vj + wr)
A } (7)

B= (pl + qf + rk)

u, v, w are the components of the aircraft’'s linear veloclty vector, #nd
P, g, r are the angular veloclty compenents.

Equation (6) may be used to obtain the aircraft's veloclty compenents
at the location of the starboard landing wheel. Relative to the sircraft's
hody axes, these are

up = (u+ qz - wy.) 2
vy = {v + LE st) S (8)
Wy = (w + Py - qxs)

where the subscript I again denotes inertial components.

The velocity VR of the starboard landing wheal relative to the landing
platform is given by the equation

Vi, = [(vA +BxE ) - (V, + 8 x RPB)] (9
The components of this vector are

Ve = (u + az, - rys)i - (U + QzZ,, - RYp )7

V.= - R - -
Vo (v + rx, - pz )i - (V4 aX, - PZ, )3 (10)

il

vRS (w + Py  ~ qxs)ﬁ - (W + PYPS - QXPs)ﬁ

Since the airecraflt axes i, j, k are not, in general, aligned with the
ship's reference axes I, J, K at the instant of touchdown, 1t 1s necessary
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to transform the velocity components of the landing platform from ship axes
to aireraft body axes, '

Transformation of Motion Vector Components

A set of vector comnonents in a coordinate system that is rotationally

fixed 1is related to the components in the aireraft body axes by a transforma-
tion equation of the form

[A] = [T]g,[E] (1)

where

[A) denotes a column vec:or of motion components in the atrervaft |
reference system

[T]EA is a matrix which effects a transformation from fixed axes %o
aircraft body axes

[E] is a column vector of motion components in the fixed reference
system

Likewise, the components of a vector in the fixed reference system ara
related to the components in the moving ship reference system, by a
transformation of the same form, That is,

[] = [T1,4(E] (12)
where |

[s] danotes a column vector of motion vector components relative
to ship axes

[T]ES is a matrix that effects a transformation from fixed axes to the
moving ship axes

Similarly, a triad of ship axes components can bhe transformed to
aircraft body axes by the transformation equation '

[A] = [1]g,[8] (13)

where

[T]SA is a matrix which effects a tranformation from ship axes
to aireraft body axes

Substitution from equation (12) in equation (13) gives a transformation
from fixed axes to ship axes, followed by a transformation from ship axes to
alrcraft axes:

RIS o by
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(A] = [T)g,[T](E) (14)

SA

Finally, substitution from equation (11) in equation (14) yields the following
matrix equation:

.T]-l

(A] = [T)g, [T] g ITI5, [A)

Therefore, ITISAITIES{TIEA = [I], where [I] 418 the unit matrix,
Solving this matrix equation fo’ [TlSA vields

-1
1 = [T T 5
[ ,SA [ ]EA[ ‘ES (15)

Since only orthogonal transformations are being considered, the inverse of a
transformation matri» equals the transpose of the matrix, and equation (15)
simplifies according.y. That is

1

=% 2 T
ES

kS (16)

(T] T)

where the superscript T denotes transposition.

Substitution from equation (16) in equation (15) yields the required
transformation from ship axes to aircraft body axes. That is

T
[T}SA - [T]EAlT}ES {17)

In terms of the Euler angles 1, 8, ¢ and using the conventional
aeronautical rotation sequence, the required transformation matrices are
(ref. 2)

1 0 0 cos 8 0 -sin 6 cos ¢ sin v 0
IT'FA = 0 cos ¢ gin ¢ 0 1 0 -gin ¢y cos ¥ 0O
¥ !
0 -sin ¢ cos ¢ sin 8 0 cos 0 0 0 1
E cos OB cos W cos O sin W -gin 6 :
" sin ¢ sin 6 cos W sin¥ sin 6 sin ¢ sin ¢ cos 6O (18)
IIIHA “| - sin W cos ¢ + cos ¥ cos ¢
cos W cos ¢ sin O sin Yy cos ¢ sin 6 cos ¢ cos 6O
+ sin V¥ sin ¢ - cos ' sin ¢
L -




For the transformation from fixed axes to sh'p axes, thé Fule:r angles
will be denoted by the capital Gresk letters ¥, ®, and ®, In terms of

this notation, the transformation matrix f?]zs assumes a form identical to
equation (18).

* cos O cos WV cos O sin ¥ -gin @ )
sin ¢ sin & cos ¥ sin ¥ 8in © sin & sin & cos @
[T]ES " - 8in ¥ cos @ + cos ¥ cos ¥ (19)
cos ¥V cos P sin @ gin ¥ cos & sin O cos d cos O
+ sin ¥ sin @ - cos ¥ sin @ 3

The foliowing equation gives the transposed form of this matrix:

" cos © cos V¥ sirn ¢ sin O cos ¥ cos W cos P sin @)
- 8in ¥ cos @ + gin ¥ sin @
T cos O sin % sin ¥ sin © sin ¢ sin ¥ cos ¢ sin @
[T]ES n + cos ¥ cos & - cos ¥V gin @
K -s8in © sin @ cos O cos & cos @ 3
(20)

The computer program, which solves the equations of the mathematical
model of the aircraft, evaluates the angles ¥, ©, and ® and hence determines
the attitude of the aircraft as » function of time. The Euler angles are
then used to compute the elements of the transformation matrix [T]ga-.

In order to determine the attitude of the ship, the components of the
ship's angular velocity vector are measured and used to foruulate the
equations (ref. 3)

p=t-Wgin®
Q-écos¢+‘vcosﬂain¢ (21)

R = & cos O cos P - 6 sin ®

Solving these equations for &, é, and @, we obtain

5T i A AALED SR 15 o i



P =P 4+ ) sin® + R cos P)tan O

@ =Qcos®-Rsin® (22)

¥ = (Q sin ® 4+ R cos P)sec O

The solution of these equations ylelds the required Euler angles
¢, &, and ¥, which are then used to determine the elements of the transforma=-
tion matrix [T)gg. Subsequent to the formulation and transposition of this
matrix, the product of l‘l‘lFA and IT];S is formed.

This product matrix yields the required ship-to-aircraft transformation
in accordance with equation (17). The result may be used to obtain the
velocity of the starboard landing wheel relative to the landing platform,
The relative velocities are

va u + qz_ - ry' U+ QZP: - RYP.
vRy . v+ rx, - P2, -[T]SA vV + RXP. - ?ZP‘ (23)
VR: s P PYg = 9%, e PYPs - pr.

For experiments of this type, the most important components of ship
motion are: heaving, pitching, and r>1ling. Hence, by assuming that

U=Ve=R=0

the amount of compu:ation is reduced, and equation (23) assumes the simpler
form

\Rx u + qz! - ry. QZPn
= - - - 9
VRy v + rx, = Pz, [T]SA PZP’ (24)
sz E wil PYg = g sl PYPs ¥ pr'
where

va

VRy

VRz

s

are the velocity components of the starboard landing wheel relative to the
landing platform, and [T]qA is defined in equation (17).



Similarly, the relative velocity components of the port landing wheel

are
v u+t+qs - Z
Rx ¥ = Ty Ql’p
Vl’ of v+ rup - p:F -['l']SA -PZPP (25)
Vl' : W+ pyp - qxp W+ PYPP - QxPp

In this case, the subscript p denotes the port landing wheel. This
is not to be confused with the cubscript, P, which refers to the landing
platform,

Finally, the relative velocity components of the nosewheel are

/ le\ u+ qzy - ryy 0Zpy
ka | v+ orx, - pzy -[T]SA -PZPN (26)
sz 1 w+ PYy = A%y W+ PYPN - pru

where the subxcy pr N denotes nosewheel.

Attitude of Aircraft Relative to the Ship

The transformation of vector components fram ship axes to aircraft
body axes is given by equation (17)
: T
[Tlgy = [T)g,[Tlgg

In terms of the direction cosines dij- relating aircraft body axes to
ship axes, this matri. equation assumes the form

dll‘il2dl3
[Tlg, =] 49;19,,9,5 | = [P
d3ld32d33
The direction cosines d have the following values:

i)
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d,, = (cos 8 cos Y cos © cos ¥+ cos 6 sin ¥ cos © sin W + sin 9 sin @)

L

: d12 [cos 8 cos Y(sin ¢ sin @ cos ¥ ~ sin W cos 9

+ cos 6 sin Y(sin ¥ 8in @ sin P + cos Veos ) - sin 0 sin P cos 0]

|
dyy = [cos 0 cos P (cos ¥ cos @ sin © + sin W sin O) J

+ cos 0 sin P(sin ¥ cos b sin © - cos ¥ gin ) - sin 6 cos ¢ cos O]

|(sin ¢ 8in B cos ¢ - sin Y cos $)cas @ cous W

o,
a

21
+ (sin ¢ 8in 6 sin ¢ + cos ¢ cos ¢)cos @ sin W - sin ¢ cos 6 ain O]

[=%
0

22 [(sin ¢ sin 6 cos § - sin ¥ cos ¢)(sin & sin @ cos W ~ sin ¥ cos )
+ (sin ¢ sin 8 sin ¢ + cos Y cos ¢)(sin W sin @ sin & + cos W cog B)

+ 8in ¢ cos 6 sin P cos O]

o
It

23 [(sin ¢ sin & cos ¥ - sin ¢ cos $)(cos W cos ¢ sin @ + sin W sin )
+ (sin § sin 0 sin ¢ + cos Y cos ¢)(sin ¥ cos ¢ sin © - cos W sin M)

4+ sin ¢ cos O cos @t cos @] -

d31 = [{cos y cos ¢ sin 8 + s8in P sin ¢)(cos © cos W) |
+ (sin ¢ cos ¢ sin 6 -~ cos ¢ sin ¢)cos © sin W - cos ¢ cos 6 sin @) j

i

d32 = [(cos ¢ cos ¢ sin 8 + sin ¢ sin ¢)(sin & sin @ cos ¥ - sin W cos 1) |

+ (sin Y cos ¢ sin 6 - cos ¥ sin ¢)(sin ¥ sin © sin P + cos W cos B)

+ cos ¢ cos 8 sin P cos O] |

dgg = [(cos ¢ cos ¢ sin 8 + sin ¢ sin §)(cos W cos & sin © + sin ¥ sin B)

+ (8in Y cos ¢ sin € - cos Y sin ¢)(sin W cos P sin © - cos W sin )

+ cos ¢ cos @ cos P cos O]

Although the direction cosines are useful for transformation purposes,
they are not convenient measures of aircraft attitude. A conversion from '
direction cosines to a set of Euler angles that represents the attitude of the

10



aircraft relative to the ship can be effected by the method described in

reference 4.

For the conventional aeronautical rotation gequence, a direction cosine
matrix can be generated as the product of three rotation matrices as follows:

where

(D) = (T (8 )1IT,(8,)](T,(0,)] 27)
1 0 0
[TI(OI)] ={ 0 cos 4, sin 0,
v -5in 61 cos 91
cos 62 0 -sin 62
[Tz(ez)] = 0 1 0
sin 92 0 cos 82
cos 93 sin 93 0
[Ta(aa)] =1 -gin 93 cos 63 0
0 0 1

The product matrix, equation (27) yields

dll

= cos O, cos 0

= gin 93 cos 0

= co8 62 cos 33

= C08 62 sin 83

= -gin 92
= gin 61 sin 92 cos 83 - sin 83
= gin 93 sin 82 sin 91 + cos 63

= gin Bl cos 82

sin 92 + s8in 0

sin 02 - cos 0

= cos O, cos 6

11

the following direction cosines:

cos 81

con 01

sin 6

sin el




The following combinations of these equations are required to convert
the direction cosines dij to the Euler angles 61. 02. 03.

d]l sin 6, - d12 cos 63 =0 (28)
d3| sin 0, - 632 cos 03 = gin 61 (29)
d2l sin 83 - d22 cos 63 = -Ccos 6l (30)
dta = -sin 0, (31)
d23 sin 6l + d33 cos 61 = cos 02 (32)
From equation (28):
d
tan 6, = a-ll (33)
11
Equations (29) and (30) give:
d31 sin 8j - d , cos 0
tan 6 = s : (34)
;dZ? cos 63 - d‘,‘_‘l sin 91
or I
d tan 6, - d
tan 0l - d31 - d 3tan ;2 (33)
22 21 3
From equations (31) and (32):
d
13
tan 8 = =~ (36)
2 d23 sin 61 R d33 cos 61

Given the nine direction cosines and the rotational sequence, the three
Euler angles 91. 6,, and 6, can bc computed. For the present application,
6. corresponds to the aircraft yaw angle relative to the landing platform.
Tﬁe angles 6, and 6, are pitch and roll angles, respectively, relative to
the landing platform. It should be noted that the computed values of ei
are not unique, since tan 6 is a many valued function. That is,

tan 6 = tan(nn + 8)
where n 1is a positive or negative integer. However, for the case being

considered, and the angles anticipated, only those solutions corresponding
to n=0 will be required.

12
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Performance Measures at Touchdown

In terms of a known c¢.g., height above the landing platform, and the
direction cosines relating aircraft axes to ship axes, the relative velocities
required for performance measures are those prevailing when

Z = (d +d + d 37
Ccg ( 13‘PW 23yP" 33sz) 37
at the port landing wheel;

zcg - (dlaxnw ¥ d23ylw s daa’-w) (38)
at the starboard landing wheel; and

zcg by (d13xnw * cI'..’Syt'u.i' * daaznw (39)

at the nosewheel. (See diagram.)

13
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Equations (24) through (26) give the components of aircraft velocity
relative to the landing platform. These are referred to aircraft body axes.
In order to determine the corresponding components in ship axes, the aircraft
velocity components must be transformed to ship axes. Subsequent to trans-
formation, equation (24) assumes the form

Vex " Wp g
T T
T > . -
[ ISA VRy [‘l']sA v Pzpcs
5 w WP, - QX
where
dll dZI d31
(1)*, « [ 4 d d
SA 12 22 32
d13 d23 d33

and chg. Ypegs and Zpo, are the coordinates of points or the aircraft

trajectory projected onto the plane (Z + Zp.,) = 0. Moreover, a perpendicular
from the point Zp.g on the landing platform will always pass tl.ough the
center of gravity o% the aircraft. Therefore, the velocity components of

the aircraft's center of gravity relative to the landing platform are

chg = (d]lu + d21v + d3]w - Qchg) (40)

Y = (dlzu + dzzv + d32w + PZ

Peg ) (41)

Peg
where z?cg is the distance of the landing platform from the XY plane of
the ship's coordinate system. Since this is a known constant, Xp., and ?ch
can be integrated to yield the coordinates of the aircraft's center of

gravity in the plane (Z + Zpgg) = 0, which is the landing platfcrm. Therefore,
the required coordinates are

= X 2
xch xo - focg dt (42)

chg .Y +fvpcg de (43)
where Xo and Yo are initial conditions.

The velocity of the aircraft's center of gravity normal to the landing
platform is given by the equatiocn

14



zcs a ((dl3u + dza" + daa"’ - (W + PYPcs - QxPcs)l (44)

Because Xpeg and Ypeg are known from equations (42) and (43), equation (44)
can be integrated to yield

ch - Zo - ZPCB +fz°B dt (45)

where Z, 1is the initial distance from the XY plane of the ship's coordinate
system.

The initial values X,, Y,, and Z, are ship axes components. When the
initial conditions are given in earth-fixed axes, a transformation from these
axes to ship axes is required.

Given that io. ?o. and 20 are initial components in earth-fixed axes,
the corresponding ship axes components are

=<

X

0 0
Y, | = [Tlgl ¥,
2 Z

0 (8]

When equations (42) through (45) are modified in accordance with this
transformation, we obtain

xch xo xch

Ych = [T]Es Yo + chg dt

S Z j \._c8

The landing platform is assumed to be rectangular and bounded by the
lines

(X = mY - n) =0 h

(X - my - nz) = L (46)
(m.X+EY-n3,"0

(mX + ¢Y = n ) =0 J

where £, m, and n; are constants: i=1, 2, 3, 4. (See diagrem.)
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For this and all other geometrical shapes, Z_. should be computed
continuously from the initiation of each run, but the informaticn generated

is only required when appropriate geometrical conditions are met. For the
configuration assumed, these are

(?vau - mYch) > nI
(2X -mY, ) <n,
Pcg Pcg 2 47)
Q >
(mecg 4 YPrg) =%y
) <
(”xp(.g + Yp(.g) - I

When these conditions are satisfied, the aircraft is over the landing
platform.

For a rectangular placform, with sides parallel to the ship's XY

coordinate axes, the coefficient m wvanishes and equations (46) assume the
simpler form:
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(2

(v

X -

V -

(Ly -

(2

Given that the placform has leng
be interpreted as follows:

Y -

th

(x -

(Y -

(X=X, -L)=0

(Y=-Y, -

P

P

n,) =0 k.
n,) =20
: > (48)
n3) =0
n“) =0 J

L. and breadth B, these equations can

Kp) = 0 :

Y,) =0

B) =0 J

and YP are platform boundary lines, and

%p

Yp

= nlll

- /e
n3;

KP + L = n2/l

YP + B = nuln

A x

[

X'{XP*’L]

-

..-—-—-'—Y‘Yp*B)

i
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In this case, the adrcraft will be over the landing platform when the
following geometrical conditions are met:?

Xp £ Kpo € (X, + 1) (50
Y <Y (¥, + B)

A

ia

P Pep
When either these conditions or the conditions in (47), as appropriate,
are gatisfied, the computed value of zcg 18 used to determine when equa-
tions (37) through (39) are satisfied. At this juncture, xPi and YPi are
evaluated from the equations

Xpy = ¥pog + (d +d

PL +dg,2

1% " 9 1

Yo = Ypoo T (4% +dyoy, + dazzi)

where x4, yi, and z4 are the coordinates of the ith landing wheel referred
to aircraft body axes. The relative velocities required for performance
measures are then obtained from equatilons (24) through (26), as appropriate.

Peg

CONCLUSIONS

Simulation experiments to determine the feasibility of landing V/TOL
ajireraft on ships at sea, require that the motilon amd the attitude of the
aireraft relative to the landing platform be known., The equations describing
the relative motions and attitudes have been derived in a form that is
suitable for simulatdon purposes and the measurement of pilot performance
during the landing maneuver. The performance measures can be used to deter~
mine a pilot's ability to keep the relative motions and attitudes within
limits prescribed by the landing gear design. By using this criterien,
the equations presented can be used to determine the success or faillure of
each landing and hence establish the feasibility of such landings.

*
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