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SUMMARY

A review is given of various procedures that might be used in
evaluating system response characteristics as involved in sub-
eritical flight and wind-tunnel flutter testing of aircraft.
Emphasis is given to the means for eliminating or minimizing the
contamination effects produced by an unknown noise in the input.
Results of a newly developed procedure for identifying modal fre-
quency and damping values, and a possible way for making a de-
tailed evaluation of system parameters, are also glven.

INTRODUCTION

The purpose of this report is to give a review of various
procedures that might be used in evaluating system response
characteristics as involved in subcritical flight and wind tunnel
flutter testing of aircraft. The aim in such testing is generally
to evaluate modal damping and frequencies as a function of flight
speed. In some cases, studies aim to i1dentify the system para-
meters in greater detail, such as identifying the coefficients of
a modelled differential equation of motion.

In practical subcritical flutter testing three main problems
arise: (1) there usually is an unknown noise input, such as that
due to turbulence, and this contamination makes the system response
evaluation very difficult, uncertain, or impossible; (2) time for
a test run must often be kept short, such as less than 10 seconds
(for example, to achieve a given speed the airplane may have to be
put in a shallow dive and the interval of time over which test
conditions are reasonably constant is therefore limited), short-
ness of records in turn aggravates the noise problem; and (3) an
underlying desire 1s to be able to perform rapid analyses of the
records so that the tests may proceed almost immediately to the
next test run. The procedures presented herein represent various
attempts to cope with these problems, with emphasis being given to
means for minimizing or obviating the noise problem,



Much of the material in this report is covered in
reference 1, which contains a number of references to other work;
no other reference is therefore cited. Some new findings are
included.

RELEVANT EQUATIONS

Let the general governing differential equatlion for response
for the airplane subcritical flutter sysftem be given by

Dly = D2P (1)

where Dl and D2 are differential operators, and y 1s the

response to the forcing function P . The force P may be a
prescribed force, as obtained from a shaker, or 1t may be some
unknown quantity, such as due to atmospheric turbulence, and these
forces may be acting singly or in combination.

If the input force is a Dirac function &8(0) at t =0 ,
equation (1) defines the impulse response function h as follows

D;h = D,6(0) (2)
For a unit sinusoidal input, P = elwt , and with
y = Heiwt

equation (1) yields the frequency response function
H(w) = A(w) + iB(w) (3)

according to the equation

(Al + 1A2)(A + iB) = Nl + 1N, ()
where Al’Nl and A2,N2 are the real and imaginary parts that
are associated with fthe operators Dl and D2 . The A com-

ponent of H 1s symmetrical with respect to the frequency w
the B component is antisymmetrical.
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The h and H functions are related by the Fourier trans-

form pair
H = fuhe‘l“"C at (5)

0
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h = %;- Jr He 19t 4y (6)

- 00

By the superposition theorem, the sclution of equation (1),
for any general forcing function P , is given by

[0}

vy = f P(t)h(t - t)dr (7)
The Fourier transform of this equation is
Fy(w) = H(w)FP(w) (8)
from which H follows as
F
= L
H 7, (9)

Equation (8) also leads to the well-known spectral result
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If P 1is equal to P + Q , where P is a known force, and
Q 1is an unknown "noise" force, equation (8) would appear

Fy = H(FP + FQ)

The multiplication through the complex conjugate FP leads in
turn to the spectral equation

dp, = H(bp + ¢pp) (11)

y

where ¢P is the cross spectrum between P and y , ¢P is the
spectrum of P , and ¢PQ is the cross spectrum between P and
Q . If P and Q are uncorrelated, ¢PQ = 0 , and thus

equation (11) yields the important cross-spectrum equation
H= ¥ (12)

which appears as a completely noise-free result.



Reference 1 gives some significant special solutions to
equation (1), as follows.

I:

DR =D

1Ry, = Doh(-t) (13)

where

o)

R, = f h(t)h(t + 1)dt (14)

- 00

Thus, the autocorrelation function of h 1s the response of the
system to a force input of h(-t) .

II:
= - 15)
Dly D2Q (15

where Qn is white noise. For this situation, it can be shown
that Ryn = R, ; thus, the correlation function of the response

to white noise is the sgame as the autocorrelation function of the
impulse function h .

III:

D.R.. = D,R (16)

1 Py 2

Thus, 1f the autocorrelation function of an input P 1is applied
to the system as an input force, the response is the cross-corre-
lation function between P and the response y due to P .

CLASSIFICATION OF THE SWEPT SINE FUNCTION

Forcing 1lnputs are achieved by several means, such as in-
ertial shakers or agerodynamic¢c vane exciters, explosive charges,
stick raps, and the natural turbulence of the atmosphere. Of all
these means, vane exciters or shakers are most commonly used. For
the forcing function, the swept sine wave has become a popular
choice, mainly because 1t covers a sizable frequency band in a
short period of time and because the spectral content of this
function resembles white noise. The rate of sweep and total
duration are prime variables; with some tests the sweep rate is
fast, in others the rate is quite slow. For discussion and
testing purposes, it appears desirable to make a classification of
the duration of sweep. The rate of change of frequency depends of
course on the frequency range covered and the duration required to
make the sweep. For the testing of most aircraft systems, however,
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it appears that classification can be based mainly on duration
alone. The following classification is suggested:

1) Fast sweep - one made with a duration of about 5 to 10
seconds

2) Moderate sweep - duration of around 1 minute
3) Slow sweep - duration of around 5 minutes

Each of these sweeps has certain advantages and certain de-
ficiencies, depending on the application. The slow sweep is the
best for minimizing noise, but the drawback is long testing and
record analysis times. In many instances, though, test conditions
dictate the use of fast sweeps.

DAMPING AND FREQUENCY EVALUATION FOR THE IDEAL CARSE

Figure 1 indicates three basic ways for evaluating the
damping and frequency of a mode. It is assumed that a test has
been made, such as through application of a swept sine wave
forcing function, and that the response has been analyzed to ob-

tain H (equation (9)), which yields B and A , C° = |H|?

=4° + B2, and h (equation (6)). The situation depicted by this

figure is ideal; that i1s, there is no noise present in the input
and only a single mode is involved. The top sketch depicts the
transfer loci or admittance plot involving A and B . The
resonant frequency fo is identified at the point where there is
the greatest rate of change of arc length with respect to a change

in the frequency. The damping ratio B__ is given by the

Ber
equation shown. In the second scheme involving C2 = A2 + B2
plotted against f , the modal frequency is identified by the
location of the peak, the damping by the width at 1/2 power. In
the third scheme, involving damped unforced motion after some
excitation, frequency is identified by the periocd T , damping by
the log decrement equation.

Note, the offhand appearance of a peak (second sketch of
figure 1) may at first cause a misinterpretation of damping. In
figure 2, for example, the peaks on the right visually seem to
indicate more damping than the peaks on the left; all peaks on the
same line have the same damping, however, as measured in terms of
percent of critical damping. Likewise, the three peaks on the
right of the middle sketch have the same damping, even though the

shortest peak seems to suggest a larger damping than the tallest
peak.



Other means for deducing frequency and damping invelve curve-
fitting procedures, such as fitting the experimentally derived
frequency response function H , or fitting the impulse response
function h , and then deducing the roots from the fitted curves.

When modes are close together, or when noise is present in
the input, the techniques of figure 1 break down. It is towards
handling the situation of the presence of a number of modes and
the contamination due to an unknown noise source that the re-
mainder of this report 1s devoted.

THE USE OF EXCITERS AND TRANSDUCERS IN COMBINATION

It is o0dd that little in general has been done in using
transducers in pairs as a way of helping to solve the closely
spaced mode situation, particularly in separating the symmetrical.
and antisymmetrical modes which have frequencies close together.
Figure 3 serves as a reminder of what practices should be
followed in general. With one shaker, say on the right, the use
of only the signal from point 1 makes 1t very difficult to dis-
tinguish the symmetric mode from the antisymmetric mode. The
addition of the signals from point 1 and point 2, however,
identifies the symmetric mode and virtually eliminates the anti-
symmetric mode. The subtraction of the signals, on the other
hand, identifies the antisymmetric mode to the exclusion of the
symmetric mode. This subtraction scheme also provides for good
rejection of symmetric excitation due to noise.

For two shakers, one on the left and one on the right, use of
yp or ¥, + Yo for in-phase excitation gives symmetric mode

isolation. If the two shakers are 180° out of phase, ¥y or
1 = Y5 gives good antisymmetric mode isolation. Again, in this

case, ‘yl - Y5 also gives good rejection of symmetric excitatilon
due to noise.

The use of two pick-ups in a different chordwise position,
such as at points 3 and 4, also should be considered as a way of
helping to isolate closely spaced modes; the idea here is that
excitation of different modes appears in a different relative
sense according to the closeness to the nodal lines.

Figure 4 depicts results obtained for a three-mode system,
with two symmetric modes of 3 Hz and 10 Hz and one antisymmetric
mode of 9.8 Hz; thus, the antisymmetric mode had a frequency only
2 percent different from one of the symmetric modes. With one
shaker, a swept sine wave excitation, and only one pick-up, the
deduced results for A , B , C2 , Bvs A, and h , indicate that
only two modes are present, one around 3 Hz and one around 10 Hz.



Figure 5 applies to one-shaker excitation of the same system, but
the signals from a right and a left transducer are subtracted.
The marked change in the results is a clear indication that two
modes are present near 10 Hz. For figure 6, the situation is the
same as for figure 5, except that a strong symmetric excitation
due to noise is also present. The results, in spite of the noise,
gives a tip-off that there are two closely spaced modes around

10 Hz. Thus, with one shaker operation, the technique of adding:
the signals from two opposite transducers and of subtracting the
signals and comparing the deduced results appears as a good way
to establish whether two modes with frequencies close together -
one symmetric, one antisymmetric - are present. Two shakers,
first used symmetrically then antisymmetrically, provide an even
better way to isolate symmetric and antisymmetric modes.

INITIAL SEQUENCE OF DATA ANALYSIS

Some of the first data analysis checks that should be made
are often overlooked in a testing sequence. A review of certailn
initial steps that should be performed is thus considered worth-
while.

It is assumed that tests are being made with a swept sine
force input. The first analysis that should be made i1s to make
an attempt to identify modal frequencies roughly, to classify the
modes as to whether they are symmetrical or antisymmetrical, and
to see if the apparent modes can be identified with ground vi-
bration modes. Suggested first steps are as follows:

1) Combine signals as indicated in the previous section.

2) Scan the combined time history signals and look for
"bursts" in the response; the object here is to obtain
a rough 1dea of the modal frequencies and to establish
whether the mode is symmetric or antisymmetric and
whether primarily bending or torsion.

3) From the signals, establish raw H wvalues (equation (9))
and in turn h values (equation (6)). Clear h ,
according to the cleared h procedure discussed sub-
sequently, transform back to first improved H , and form

¢® = ]HI2 = 42 + B? . Examine the C° function to ob-
tain a second check on the modal frequencies (verify
those established by scanning the time history signals,
pick up others that may have been missed) and to obtain
a first estimation of modal damping where possible.

L) TFrom the appearance of the 02 functions, an assessment
of the noise problem can be made, and a judgment can be



rendered as to what type procedures should be used
subsequently to minimize the noise problem.

Essentially, the idea behind these steps is to do something
quite simple at first so as to obtain a quick insight as to what
the frequencies might be and to obtain a quick appraisal of fthe
severity and nature of the noise problem.

TECHNIQUES FOR MINIMIZING OR

ELIMINATING INPUT NOISE EFFECTS

Use of Both Input and Output Information

3ix schemes for coping with the problem of having noise in
the input are presented in brief fashion in this section. (See
reference 1 for more detail.) It is assumed that one or more
shakers are used to drive the system, such as by a swept sine
wave, and that an unknown excitation noise force, such as due to
buffeting or atmospheric turbulence, 1s also present.

Clearing h .- Figure 7 is typical of the results that are
obtained for H and h , by means of equations (9) and (6),
when a large input noise 1s present along with the swept sine wave
excitation. One way to eliminate much of the noise contamination
is simply to clear or erase the results for h beyond a point
where useful information no longer seems to appear, such as
point a in figure 7, and then to transform this truncated h
back to H (eq. (5)). Example results are given in figure 8.
The remarkable improvement that is obtained for the A and B
values by doing this simple expedient 1s seen.

Weighting h .- Another technigque is shown in figure 9. Here
the raw h 1s weighted by an exponential function; the weighted
result is then transformed back to give refined A and B values.
This technique, as with figure 8, reduces noise effects greatly.
With this weighting technique, a correction to the deduced values
of damping must be made to correct for the apparent damping that
is added by the weighting function used.

Use of cross correlation between input and output.-
Figure 10(a) applies to the raw results as obtained by use of
eqguation (9). By contrast, the results shown in figure 10(b) were
obtained by use of equation (12), which involves the cross
spectrum between the measured output and the known shaker force
input. This cross-correlation technique is seen to give a marked
improvement in the deduced A and B values. In general, the
longer the record, the better is the noise minimization by this
technique.
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Peak shifting.- Figure 11 is used to describe the peak
shifting technique for eliminating noise effects. The top sketch
depicts the swept sine wave input force, the bottom sketch the
noise-contaminated response. First, select a peak such as a
Then select peak b and shift the entire record so as to make
peak b fall on peak a . Next, take peak c¢ and shift the
record to make peak ¢ fall on a . Do this for a number of
peaks in succession, and then add all the results to form a
composite input force designated by

PT = 2 Pn

The output response is handled in the same way, but using the same
shifts as used for the input; the composite response is designated

as
::zyn

Now deduce H from P; and y; , using equation (9). The

concept in this technique is that a single short record may be
used and that the shifting and adding coperations cause the
meaningful or intelligent part of the record to be enhanced,
amplified, or reinforced, while the noise level remains the same
(or the signal-to-noise ratio increases). Figure 12 gives re-
sults obtained in a particular case where only 19 shifts were
made. In the main frequency range of interest, arocund 10 Hz, it
is: seen that practically noise=free results are obtained. A
feature of the peak shifting scheme is that it is possible to
concentrate on various frequency ranges even with the use of a
single record. For example, in figure 11, two "bursts" in the
output response are noted, suggesting two frequencies of possible
concern. To concentrate on the lower frequency; .peaks in the
vicinity of peak a are shifted to fall at peak a ; to concen-
trate on the higher frequency,. peaks in the v101n1ty of peak p
are shlfted.

Ensemble averaging.- In ensemble averaging, the c¢oncept is to
deduce, by repeat runs, a number of raw estimates for the function
h , and then to add all the raw functions together. The idea is
that this averaging-type operation will "average ocut" noise
effects and leave only the meaningful signal. Example results,
involving an ensemble average of 20 raw functions, are shown in
figure 13. It is seen that virtually noise~free results are ob-
tained. This is one of the best schemes for eliminating noise,
but the main drawback is that it requires making a number of
repeat runs.

Sweep over limited frequency band.- Figure 14 is given as a
help to describe a limited sweep approach. Suppose that test
sweeps are made to cover the range of 3 Hz to 25 Hz in 10 seconds,
and consider that the analysis of the results indicate some.modal




information in the range of 10 Hz but that the results are too
noisy to be interpreted with confidence. A good way to improve
the situation is to sweep over only the frequency range of con-
cern, say, in this case, from 8 Hz to 12 Hz in the 10 seconds

of sweep time. Generally, a vast improvement in the deduced re-
sults will be noted. The disadvantage, of course, is the problem
of resetting the sweep range and of having to make another run.

Use of Output Information Only

There are at least two ways to derive system response
characteristics by consideration of the output response alone.
The procedures apply in general whether the response is due to a
forced swept excitation with an unknown noise input or whether
the response 1s due to noise excitation alone.

One procedure involves the establishment of the auto-
correlation function R of the output response. Each side or

half of this symmetric Tunetion has characteristics of the h
function. The Fourier transform of Ry is the spectrum ¢ of

the response. Examination of this spectrum gives an indication
of the frequency and damping of the system modes. Ensemble
averaging of the R functions is found to be a powerful way to

minimize noise by this approach, reference 1. Other ways to use
the Ry function and minimize noise will be indicated in the sub-

sequent section.

A second procedure for deriving system response character-
istics using response information alone is the formation of the
"randomdec" signature. The essentials of one type of construction
for this approach are shown in figure 15. It can be reasoned that
the sum of all the individual signals should form a pure signal
which resembles or has characteristics of the h function.
Damping and frequency follow from the resulting summed signal. A
main difficulty of the approach is that the summation must often
involve hundreds of functions before converged values of the sum
are achieved. Another difficulty is in identifying closely
spaced modes.

SUCCESSIVE CORRELATIONS OF CORRELATION RESULTS -

A PROMISING SOLUTION TO THE NOISE PROBLEM

Under a contract effort for AFFTC/AFSC, Edwards AFB, the
author has developed additional techniques for treating the
noise problem ~ techniques which appear remarkable and in a way
unbelievable. This section summarizes some of the results
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obtained. The procedures involved are quite versatile and repre-
sent subsequent manipulations for improving the quality of the re-
sults that are obtained by most all the procedures described
earlier in this report. Two figures are presented first as a way
to describe the procedures involved. In figure 16, the top

sketch refers to autocorrelation of the raw h function (see

eq. (14)) that has been deduced by any of the procedures discussed
previously, or it refers to the autocorrelation R_ , obtained by

considering only the response (due to noise alone, due to a swept
sine wave alone, or due to these forcing functions acting in
combination). Note, the raw h should always be cleared as dis-
cussed in connection with figures 7 and 8. Likewise, if the
autocorrelation function is used, the "noisy" tails (the tail
portions on either side which appear to be due to noise only)
should be erased. Then the following steps are performed:

1) Make R; one-sided; call it ry

2) Form R2 , the autocorrelation of ry

3) * Form ¢2 , the Fourier transform of R2 ; look at this

function for improvement (reduction in noise content)
and for mode identification

4) Go back to R2

5) Make R, one-sided; call it r,
6) Repeat these steps as often as necessary until the
spectrum ¢n appears without distortion due to noise,

In the application of these steps, the following will occur:

1) The modes which show up with low power will first
disappear (means for recovering these modes will be
discussed subsequently).

2) The mode with the next lowest power (actually a combi-
nation of power and damping) will then disappear, and
so on, until finally only one mode remains,

3) With each iteration, the results become more and more
noise-~free.

) Sometimes, depending on modal power and damping and on
mode closeness, noise-free results will occur with
perhaps two or three modes still remaining.

5) The reading of the frequency and damping of these re-
maining modes, by the second scheme of figure 1, will be
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an accurate indication of the frequency and damping of
these modes.

Figure 17 illustrates a companion type manipulation. 1In
this case, the correlation functions are kept in their two—51ded
form; thus, a correlation function of a correlation function is
found, in succession. In this case, the following should be
cbserved.

1) The modes with the lowest power lose more and more power
with each iteration and finally disappear.

2) The peaks become more and more spiked; damping is lost,
but frequency is more and more sharply pinpointed.

Although the theory is not given here, it should be noted
that the consequences of the two types of manipulation described
can be explained on a theoretical basis.,

Means for recovering any lost mode are as follows.. Go back
to the original spectrum type function ¢1 . In figure 16,

peak a would probably have remained to the end. But, suppose
it was desired to identify the mode inicated by b~ more pre-
cisely. In this case, simply erase the ¢l function above fre-

quency w, and below wq (in this case, erasing above Wo is

all that is required); application of the steps described earlier
will then bring out mode b 1in a pure form.

Figure 18 shows results as obtalned by the one-sided proce-
dure, using h as established from a raw or contaminated H .
The experiment involved use of an analog simuldtion of a system;
excitation was by means of a linear swept sine wave, and an un-
known random noise. In part (a), we see frequencies around 3 Hz
and 10 Hz, but the precise location and damping cannot be es-
tablished. In part (b), which represents the first iteration,
mode 1 has Jjust about disappeared, and the rest of the function
is much more noise-free. By 5 iterations, mode 2 has become very
pure; damping and frequency are nearly precisely the values set

in the analog set up (in this case, fo = 10 Hz , %—— = 0.05).
‘ ‘ er

Figure 19 gives results using the response only, and its
autocorrelation, for the same run of figure 18. The raw spectrum
indicates the two modes in the vicinity of 3 Hz and 10 Hz. By
three iterations, the 10 Hz mode 1s identified purely.

In figure 20, end results are shown for convergence to the
mode near 3 Hz. In this case, strain response rather than
acceleration response was used, and convergence went automatically
to the lowest mode (no spectrum erasing had to be performed).
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Note, displacement or strain emphasizes the lower modes, while

acceleration response, due to the w welighting, emphasizes the
higher modes.

Figure 21 serves to show the remarkable power of the proce-~
dure to regenerate correct frequency and damping information
when severe truncations in the frequency plane are made.

Figure 21(a) is the original spectrum of h obtained for a one-
mode system and without noise in the input. The shaded areas were
then erased; after several iterations, starting with this trun-
cated spectrum, the spectrum as indicated by figure 21(b) was
found. Frequency and damping of the mode is still intact. The
experiment was repeated, truncating figure 21(a) to the severe
form shown by figure 21(c); here truncation is within the half-
power limits. After several iterations, the results shown in
figure 21(d) were obtained. Damping and frequency are still the
same as the original, even though the only information used was
that given by figure 21(c).

Figure 22 shows results that were obtained with a systenm

having frequencies of 9 and 10 Hz, both with B - 0.05 .

Ber
Figure 22(a) represents the raw or contaminated spectrum of h .
After several iterations by the one-~sided approach, the result
shown in figure 22(b) was obtained; the frequency and damping are
in excellent agreement with the model values. Figure 22(c) repre-
sents the spectrum as obtained by considering the response only.
Figure 22(d) is the result obtained by the one-sided approach
after information beyond f, wvwas erased; this erasing was done to
bring out the lower mode. The damping and freguency indicated by
figure 22(d) for this mode is in good agreement with the correct
values, even though the information contained in peak 1 was all
that was used. Figure 22(e) is the result obtained by applying
the two-sided approach to the Ry function; the tendency to form

sharp spikes is shown by this sketch.

Figure 23 applies to a system having modes fairly close
together as follows:

Mode f,Hz B/B

cr
1 8 0.05
2 9 0.05
3 10 0.02

Figure 23(a) is the raw spectrum of h . If no erasing is made,

application of the sequence of steps would result in the 10 Hz
mode coming out in pure form. Clearing beyond fa yielded the

result shown by figure 23(b) by the one-sided approach; clearing
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before fa and beyond fb

figure 23(c). Damping and frequencies for both modes are very
good. Thus, both lower modes were extracted, in spite of the
closeness of another mode having a much lower value of damping.

yielded the result shown by

SYSTEM PARAMETER IDENTIFICATION -

POSSIBILITIES OF A NEW APPROACH

A number of different schemes have been studied as means for
obtaining a more detailed identification of system parameters.
These schemes generally fall under three categories:

1) Curve fitting of the frequency response function

2) Fitting of time plane information, such as the h
function

3) Difference-equation approaches in which the coefficients

of a difference-equation model are evaluated, from which
system roots may In fturn be extracted

Collocation procedures are sometimes used for the curve-fitting
operations but, more generally, the approaches are based on the
use of least-squares concepts. Some of the system identification
approaches are reviewed and developed in reference 1 and the
references contained therein. Thus, they will not be discussed
further herein. Instead, the notions of a possible new approach
will be outlined.

A commonly used concept in subecritical flutter testing of an
aircraft is to make a plot of damping g versus V , figure 24,
The basic idea is to establish the trend of the damping curves and
to extrapolate forward to estimate the flight speed at which the
damping vanishes (or reduces to some stipulated lower level).

This procedure is reasonably satisfactory for a mild approach to
the critical flutter speed, curve a, but 1s quite treacherous
when an explosive flutter situation is encountered, curve b, for
in this situation the damping can deteriorate very quickly with
only a small increase in speed. A way to obviate this problem 1s
sought. Reference 1 suggests one possible procedures The idea
is to derive the coefficients of the assumed governing differ-
ential equation model and to watch how these coefficients vary
with air speed. Figure 25, taken from reference 1, depicts re-
sults for the situation of a mild approach to flutter. The
nature of the extrapolation is known by analytical considerations;
for example, the coefficients a3 5 8y , 2y, and a, are known

to vary in a quadratic manner. Extrapolation to higher speeds
seems straightforward. With the extrapolated coefficilents, system
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roots for higher speeds may be evaluated, from which an estimate
of the critical flutter speed may be made. Figure 26 shows the
behavior of the coefficients for a system which has explosive
flutter characteristics. In figure 25 the variation of the coef-
ficients appears gradual, while in figure 26 two of the coef-

ficients, specifically a5 and a3 , are changing gquite markedly

with V . This rapid, but not abrupt, change in the coefficients
with speed appears as a tip-off that the situation may be of the
explosive flutter variety.

We now combine the thoughts associated with figures 25 and 26
with the procedures discussed in the previous section. Suppose that
the procedures outlined in the previous section stand the test of
more extensive study and that the procedures indeed are reliable
in establishing the frequencies and damping of the various modes
of the system under study. With the frequencies and damping
established, the governing differential equation can then be
formed. As an example, consider that three modes are identified;
roots may then be written as

Py = <§i * i)“l
Py = (gl"i)wl
Py = (;& * i>“2
by = (gg B i)wz
Py = <'§j + 1)ug
P3 = ('f‘i - 1)oy
where g, = Q(SEE)H . From these roots, the governing differ-

ential equation follows as
(p = P) = PP - p) (P =Dy)(0 - p3)(p - p3) =0
Expansion of this equation yields the characteristic equation
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6 5 4 3 2 =
p + aSp + aup + a3p + a2p + alp + ao = 0

which in turn defines the coefficilents a, of the governing

differential equation. In accordance with figures 25 and 26, we
watch how these coefficients vary with air speed. ’

We note that curve fitting in the frequency plane or time
plane, or any other evaluation of coefficients through use of
least-squares procedures, is precluded in this suggested approach.
The success depends simply on the reliable estimation of the mode
frequency and damping values.

CONCLUDING REMARKS

Which one of the procedures outlined herein for minimizing
noise effects is the best? No specific cheice can really be made.
A systematic study is needed to try each procedure in a number of
different applications and circumstances. The choice of which is
best will undoubtedly depend on the situation encountered. Never-
theless, some comment about certain features or drawbacks of the
procedures can be made.

The procedure of clearing the impulse response function h
(rectangular truncation) should always be used, no matter how h
has been derived. The exponential weighting of the raw h 1is not
suggested in general, since the cleared h process serves just
about as well. The use of the cross-spectrum approach is consid-
ered one of the best but generally 1s more applicable for the
longer sweep times. The peak shifting technique is very attractive
but of course requires the intermediate step of shiffing and sum-
ming the record portions. Ensemble averaging is perhaps the best
but is probably precluded 1n most instances because of the neces-
sity for making a number of repeat runs. Randomdec is not advo-
cated unless a swept sine wave forming function is used (with a
noise input alone, too many terms are required in the summation
in general). Where response information only is available, the
autocorrelation approach (or equivalently, the spectrum of the
response) should, of course, be used. In t