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SUMMARY

The stringent requirements for flutter testing modern-day aircraft have
led Grumman to develop new analysis techniques to be used in its Automated
Telemetry Station for on-line data reduction. The initial technique developed
by Grumman utilized a least-squares difference-equation linear-systems ident-
ification approach to extract resonant frequency and damping coefficient
information from digitally filtered input and response data. This technique
was successfully used on the F~14A flutter program starting in 1971, provid-
ing a quantum increase in capability relative to previously used techniques.
The main advantages of the approach are

(1) Multimodal (highly coupled) analysis capability
(2) Quantitive answers for highly damped modes
(3) Ability to handle fast shaker sweeps (2 to 70 Hz in 15 sec)

These advantages, coupled with the computational and data storage capacity
of the ATS, reduced test time, saved fuel, and 31gn1f1cant1y increased flight
test efficiency.

Grumman has since expanded its flutter data reduction capability to
encompass correlation, random decrement, and spectral techniques which are
used in conjunction with its least-squares difference-equation identification
approach to determine modal characteristics of response signals excited
either by deterministic or random means. Cross—correlation data precondition-—
ing techniques have exhibited superior noise rejection characteristics relative
to the digital filtering approach initially employed; however, the proper
utilization of these techniques generally requires an increase in data record
length or sweep time. This is particularly evident when response signals are
of a bimodal nature or contain low frequency modes (<10 Hz). Autocorrrelation
functions and random decrement signatures analyzed via the Grumman identifica-
tion approach show similar trends. From the standpoint of computational time,
the random decrement method is preferred over the autocorrelation approach
for the analysis of randomly excited data, while from an accuracy viewpoint
both methods are equivalent. ’

The analysis of a nonlinear resonant system via a simplified least-
squares response-error modeling technique has been successfully demonstrated.
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Crumman 1s currently evaluating the feasibility of employing more complex
versions of this identification approach to expand its flight flutter testing
capability.

INTRODUCTION

Since 1970, significant strides have been made in reducing flight test
flutter response data. These strides have resulted from the marriage of
modern digital computing capability with new analysis techniques. Grumman's
contribution has been made through the effective application of its least~
squares difference-equation (LSDE) identification approach. The successful
utilization of this analysis technique required an on-line interactive
computer system. This system was embodied in the Grumman Automated Telemetry
Station (ATS) which played an instrumental role in the timely completion of
the F-14A flutter program. Staying abreast of the rapidly changing technol-
ogy in the area of flight flutter testing has resulted in the development of
a broad range of software programs encompassing many of the latest techmniques.
The value of these new data processing techniques is enhanced when used in
conjunction with the LSDE identification approach. The section "Analysis
Software Description” outlines how these new techniques have been implemented
in application programs for use in the ATS. Appendix A contains a detailed
mathematical description of the concepts that form the basis for the software
algorithms used (all equation references in the body of this paper refer to
relationships defined in the appendixes).

The section "Software Interactive Capabilities” describes the control
the user has in interfacing with the various on-line analysis programs.
Both system and program options are discussed, with emphasis placed on the
program options that directly influence the quality of results. Verification
of the software’s technical base is discussed in the section "Test Results
From Simulated Data.” An analog computer six-degrees-—of-freedom structural
model, containing closely coupled modes, was used to generate response data
with known modal characteristics. These data provided an absolute reference
for evaluating software accuracy. The wvarious programs were used to assess
the modal characteristics of signals from clean sweeps, noisy sweeps, and
randomly ezcited response data. Numerous runs were statistically analyzed
to give an indication of the consistency of these programs.

Analysis of flight data with the various programs is discussed in the
section "Test Results From Flight Data.” The data analyzed included unimodal
and bimodal response signals excited via a swept frequency shaker and/or
random aerodynamic forces. The frequencies of the various modes analyzed
ranged from 5.0 to 60.0 Hz with damping coefficients ranging from 0.075
to 0.25.

A nonlinear response-error modeling analysis approach, currently under
investigation by Grumman, is described in the section "Current Developmental
Activity.” Some preliminary results obtained in the analysis of a hard-spring
nonlinear resonant system are also discussed. A mathematical description
of the approach used is contained in Appendix B.
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BACKGROUND

Prior to 1970 the flight flutter testing methods relied primarily upon
manual and analog analysis techniques such as log decrement, vector plotting,
and reciprocal amplitude for structural stability indications. These methods
were adequate for the classical analysis of clean signals which contained
modes that were relatively uncoupled. However, an aircraft's structural
response does not always approach this classical mold, and such phenomena as
buffet, multimodal response, high damping, and nonlinearities severely limit
the accuracy of these techniques. This resulted in a minimum of reliable and
quantified answers being obtained during a test program, putting great
pressure on the flutter test team and making experience and intuition rather
than concrete information the prime decision maker. At times, luck was not a
small part of success. Inherent in this situation was a well—-founded concern
for safety of flight, which resulted in the use of small test increments and’
numerous test altitudes. The cost of a flutter program was high in terms of
number of flights and length of calendar time. The trend toward more sophis-
ticated aircraft attaining high Mach numbers and dynamic pressures, coupled
with the change in design requirement toward more flexible light weight
structures, minimized predicted flutter margins and put additional pressures
on the flutter test team. It became obvious that experience and intuition
were not enough, the need was for better quantitative data which demanded
new analytical test tools.

In this time frame, an overall change in test requirements and philos-
ophy were sparked by time constraints set on the Grumman F~14A test program.
Not only did flight flutter testing have to be expedited but so did all
other discipline testing. Maximum results in the shortest calendar time was
the requirement; the solution was the application of a high-speed digital
computer system, new analysis techniques, telemetry of data, multidiscipline
testing, and inflight refueling. Digital computers would provide speedy
calculation of results, telemetry and multidiscipline testing would maximize
the answers obtained at a given test point, and inflight refueling would
increase flight duration. The computer system would be on-line to accept
user inputs to update analysis parameters during the actual test sequence or
in intermaneuver processing conducted during refueling. The objective was to
reduce the traditional day-to~day data turnaround time to that of the refuel-
ing duration while achieving a simultaneous improvement in accuracy and
confidence. This concept of an interactive on-line computer system become a
reality in 1968 when Grumman made a large capital investment to purchase
hardware and to dévelop system and application software to satisfy flight
test requirements. The hardware/software system developed is called the
Automated Telemetry Station.

AUTOMATED TELEMETRY STATION
The ATS consists of 3 major hardware subsystems. These are the Teleme-

try Formatter, Preprocessor, and Central Computer/Display Subsystems. A
- short description of each now follows:
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The Telemetry Formatter subsystem receives the transmission from the
aircraft, simultaneously recording and decoding the data stream for. transfer
to the Preprocessor. Additional functions such as time-code translation/
generation, filtering, and output to analog display devices are also accomp-
lished here.

The Preprocessor subsystem accepts the data from the Telemetry Formatter
and performs the following tasks:

(1) Syllabizes bit streams into appropriate word lengths

(2) Maintains synchronization between the bit streams and
the Formatter

(3) Converts data to engineering units via fifth-order
calibration polynomials and limit checks it

(4) Records converted data on magnetic tape in central
computer compatible format (optional)

(5) Buffers data into 0.1 second blocks and transfers the blocks
on demand to the central computer at a maximum word rate
of 15 000 per second

(6) Controls and monitors the Telemetry Formatter for the
central computer

The Central Computer/Display Subsystem initiates operation of the ATS,
performs analysis of selected data received from the Preprocessor and
responds to user requests from the Data Analysis Station (DAS), an inter-
active console and graphic display device. The central computer can display
data or calculated answers to the analyst at the remote DAS display. From
this location, the analyst can request the central computer to configure
the ATS, initialize real-time programs, change analysis parameters through
interactive displays, process real-time data and display results, display
test data on the display console screen or brush recorders, and record
console displays (containing answers, data, or parametric information) on
either hardcopy or microfilm.

Data flow management (figure 1) begins when the telemetry signal, con-
taining frequency modulated (FM) and pulse~code modulated (PCM) components, is
transmitted from the test aircraft. The data are received by a remote track-
ing antenna and relayed via a microwave link to the ATS. Data flows to a
radio-frequency (RF) section which demodulates the data stream into 3 tracks,
one carrying 26 500 words per second of PCM data and two carrying 14 channels
each of FM flutter response data on proportional bandwidth subcarriers. The
demodulated FM information then flows to the Analog to Digital Converter (ADC)
which samples each parameter at 500 samples per second.

The data from the ADC is then transferred to the preprocessor. The
serial PCM data flows to the Bit Synchronizer, which shapes the PCM pulse(s)
and transfers them to the preprocessor for conversion to parallel format.

The preprocessor collects, converts, and blocks the data for shipment to the
central computer. Data transferred to the central computer is directly

passed to the disk memory unit, a portion of which is allocated to the storage
of 9 million words (i.e., 10 minutes of data at Grumman's normal flutter
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test data rate of 15 000 words per second - which is ample capacity for thirty
15-second shaker sweeps). Data flows from the disk to the central processor
unit (CPU) where it is analyzed by the specified program. Results in the form
of plots and tabulations are displayed on the cathode ray tube (CRT) of the
DAS. Copies of these displays are produced by the hardcopy and/or microfilm
units. In parallel with the digital data flow, the outputs of the FM discrim-
inators are displayed on Brush Tables in proximity to the DAS console,

FLUTTER TEST PHILOSOPHY

Every aircraft manufacturer performs flutter testing in order to verify
predicted aeroelastic characteristics and comply with customer specifications.
Paramount in the flight flutter test program is the assurance of crew safety
while quantitatively identifying the structural stability of an expensive
prototype aircraft.

Flight flutter testing would be trivial if flutter analyses were able to
conclusively predict all flutter mechanisms, modal frequency and damping
trends, and flutter speeds. Realistically, the flutter analyses are used as
a baseline guide by the flutter test team as indicators of critical mechanisms
and associated flutter speeds. Although predictions that agree with test
results increase everyone's confidence, the decision for envelope expansion
must be based on actual data and the answers derived from that data.

The potential destructive nature of flutter demands a cautious, system~
atic buildup in both airspeed and Mach number initiated at subceritical speeds.
Aircraft structural responses are carefully monitored during accelerations to
the planned test points. Data acquired at each point are completely analyzed,
plotted, and extrapolated to the next test point prior to continued envelope
expansion. The planned test points are continually altered based on the
existing trends - too steep a trend will decrease test increments whereas a
shallow trend will increase the increment. Inherent in this situation is the
assumption that accurate, quantitative answers are being acquired from the
analysis techniques. The objective during flight flutter testing is to
acquire the best available decision base. Every effort is made to supply high
quality response and driving function data to the analysis software. For
example, if data acquired during a shaker sweep are noisy due to buffet
response, the sweep will be repeated at a higher shaker gain setting in order
to increase the signal—-to-noise ratio. However, there will be times when
increasing the shaker gain will not significantly improve the signal-to-noise
ratio; then, techniques which precondition the data via correlation methods
will be utilized to improve answer accuracy. These superior noise rejection
techniques generally require a larger data sample and increased analysis
time, but this may be necessary to insure accurate and consistent results.

The Grumman flutter flight test engineer has several different software
programs, containing various analysis techniques, to choose from. Depending
on the type of test program, one or more of these analysis programs will be
utilized. They range from the TLEFAD program, which is used when information
relative to the aircraft modal frequencies at the given test condition are
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known, to the RESIDO program, which assumes that frequency information is not
known and first calculates a frequency response function. Provisions for
analyzing clean and noisy swept frequency responses, transients, and purely
random excitation are contained within these programs. The ability to select
different analysis techniques gives the flight test team complete flexibility
to handle the flutter testing of a new aircraft design, the modification of
an existing aircraft, or a nonscheduled evaluation requiring quick response.
In all cases, the emphasis is on the best answers with minimum test costs.

ANALYSTS SOFTWARE DESCRIPTION
Software Overview

The ATS provides the test analyst with a powerful and flexible means of
performing the on~line analysis of test data. This facility allows individual,
FORTRAN coded, application programs with specific analysis capabilities to be
quickly called upon to analyze or re~analyze telemetered test data as the need
arises. Grumman has developed a number of different application programs, to
be used in the ATS, for the purpose of reducing flutter response data to deter-—
mine its modal characteristics.

The application programs were designed to provide sufficient analytical
flexibility to handle adequately all expected test requirements. As such,
the analytical methods employed had to be capable of analyzing flutter
response data with or without a measured driving function signal and are
compatible with any one of the following means of structural excitation:

(1) Swept frequency excitation
(2) Random excitation

(3) Abrupt control surface inputs
(4) Shake and stop excitation

(5) TImpulsive input excitation

The LSDE identification algorithm provides the primary means of extract-
ing resonant frequency and damping coefficient information. This identifica-
tion technique is capable of handling complex multimodal response signals
and is well suited to the analysis of data containing those highly coupled
modes encountered as the flutter speed is approached.

The dominant assumption underlying this identification approach is that
the response data is generated by a linear dynamic system. Initially, the
technique was applied to the analysis of digitally filtered swept frequency
test data in support of the F-14A flutter program. (See references 1 and 2.)
The linearity assumption allows the identification approach to also be applied
to signals that have been preprocessed by the following methods:

(1) Cross-correlation of system input and response with
another function

(2) Autocorrelation of system response when system excita-
tion is random or has a broadband-flat spectrum
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(3) Random decrement signature of system response when
excitation is random

The mathematical theory underlying the utilization of the above methods, in
conjunction with the LSDE identification algorithm, to analytically determine
system resonant frequency and damping coefficient information is explained

in Appendix A.

Grumman currently has, at its disposal, three primary and two supporting
applications programs to assist in reducing flutter response data at its ATS
facility. The primary programs all use the LSDE identification algorithm,
in conjunction with one or more of the previously mentioned data preprocessing
techniques, to extract modal information. Program selection is predicated
on the user's knowledge of the response data being analyzed rather than the
analytical methods to be used.

If knowledge about the modal content of the test signals is available,
data reduction is usually accomplished through the utilization of the
TLEFAD program. Conversely, if little is known about the data or if it is
desired to obtain an overall view of the modal content, either the RESIDO
or ENERGY programs would be used. These programs determine the modal char-
acteristics of the data from calculated frequency response functions. The
COQUAD and APSD programs also compute frequency domain information that is
sometimes helpful in establishing the modal content of response data. These
latter two programs do not use the LSDE identification approach to establish
modal characteristics and are normally used only in a supporting role. A
utilization-oriented description of these five applications programs is
given in the following discussion.

Tracking Known Modes

The TLEFAD analysis program was specifically designed to track the
migration of modal resonant frequencies and damping coefficients as the
flight envelope of an aircraft is expanded. The application of this program
requires that the user have some knowledge of the modal composition of the
flutter response data, this information being provided from previous engi-
neering flutter analysis, ground vibration surveys, earlier test results,
etc. The ability of the TLEFAD program to handle rapid shaker sweeps, simul-
taneously analyzing data from a number of different response transducers
(up to 14 per sweep), allows this program to be particularly productive.
This program plays an important role whenever timely decisions on aircraft
flight test envelope expansion must be made since inherent speed of computa-
tion, flexibility, and noise rejection are improved by use of known modal
information. 1In addition, cross checking by analysis of data from independ-
ent response transducers enhances user confidence in the resonant frequency
and damping results obtained.

TLEFAD estimates modal characteristics wvia the LSDE identification

approach., Analysis options in the program allow the user to select the pre-
processing method to be used in the reduction of various types of response
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data. For example, if the test data consisted of forced system response and
input signals embedded in a moderate amount of noise, the data could simply

be digitally band-pass filtered to highlight the mode or modes of interest in
each frequency range. This filtered data would then be used in conjunction
with the difference-equation model defined by equation (25) to determine
resonant frequency and damping coefficient information. If, on the other hand,
similar type data were to be analyzed in a highly noisy environment, increased
noise rejection could be obtained by selecting the cross~correlation analysis
preprocessing option. Here the driving function signal (or some function
related to it such as a shaker tuning signal) would be digitally band-pass
filtered over the frequency range of interest, and cross-correlated with

the unfiltered response and driving function signals. The resulting cross-
correlation functions would then be used in the difference-equation model
defined by equation (26) for parameter identification purposes.

If the test data represents response signals driven by random excitation
or by an input signal whose spectrum is broadband-flat, the response data can
be preprocessed by autocorrelation methods. A calculated autocorrelation
function can be used in conjunction with equation (27) to establish modal
frequency and damping results. However, the difference-equation model defin-
ed by equation (28) is actually used when the autocorrelation preprocessing
option is selected. This equation uses the cross—correlation function
between digitally band-pass filtered response and unfiltered response signals,
instead of the true autocorrelation function, and yields better results
because it emphasizes the modal response in the frequency range of interest.

From this discussion, it is evident that in order to effectively use
‘the TLEFAD program the user should have some approximate knowledge of the
significant modal frequencies expected in the test data. This information
provides the basis for specifying difference-equation model order, as defined
by the constant N in equation (24), and for establishing the pass-band to be
used in the digital filtering of the raw test data. In addition, the user
selects the segment of data to be analyzed by either specifying an elapsed
time duration or a frequency range in the case of swept frequency excitation.
In this latter case, the program computes the instantaneous frequency of the
shaker signal and processes data, for the indicated transducers, over the
specified frequency range of interest using the selected preprocessing option
and difference equation model order. Generally, the critical item is the
selection of the filter pass~band and not the analysis data segment which
can have a wide frequency range.

The primary output of the program consists of a tabulation of the reson~-
ant frequency and damping coefficient results obtained for each specified
mode in every data segment. These results are augmented by diagnostic infor-
mation (denoted by numerical flags such as -1.0 or -1.5 in the damping coeffic-
ient column) if the real poles are detected or if difficulties are encounted
in extracting all the roots of the specified difference-equation model.
Auxiliary information defining aircraft altitude, airspeed, and Mach number
are also included in this tabular CRT output. Secondary CRT outputs of the
program include a tabulation of backup (validation) data used in assessing
the accuracy of results, a plot of calculated shaker frequency versus time
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when swept frequency data are analyzed, and plots of any computed correla-
tion functions. Examples of typical program outputs, in response to the
cross—correlation analysis of the noisy swept frequency response data shown
in figure 2, are set forth in figures 3 to 7.

Identifying Unknown Modes

Several different on-line programs are used to aid in the determin-
ation of the modal composition of flutter response data. These programs vary
in the complexity of their analytical manipulations but are similar in that
they all provide frequency domain information that forms the basis for ascer-
taining the modal content of the data. For example, the APSD program is often
called upon to provide a power spectral density plot of a given response
signal. The primary purpose of this program is to provide a quick look at the
overall vibrational energy distribution as a function of frequency. Although
this program is not normally used to establish modal damping coefficient in-
formation, it follows from equation (13) that this information might be deduced
from a power spectral density function, using the one~half power method, if the
input spectrum is broadband-flat. A typical power spectral demnsity plot,
obtained from the APSD program in analyzing the randomly excited response data
contained in figure 2, is shown in figure 8.

The ENERGY, RESIDO, and COQUAD programs were primarily designed to evalu~
ate swept frequency or random response data to detect whether any significant
modes of vibration have been excited. 1If modes have been excited, these pro-
grams attempt to identify their number and to establish the damped natural
frequency and damping coefficient of each detected mode. These programs are
similar in that they all use a fast Fourier transform algorithm to compute a
frequency response function. They differ in the way in which they manipulate
this function to determine modal information.

If the test data contain a system driving function measurement, these
programs can be directed to compute the cross—correlation function between
system input/response quantities and the autocorrelation function of the
system input. Transforming the resulting correlation information into the
frequency domain and dividing the resulting cross-spectrum by the auto-
spectrum results in a frequency response function representing the transfer
function characteristics of the system under test. On the other hand, if the
nature of the test data is consistent with the requirements of autocorrela-
tion or random decrement signature analysis, the programs can compute fregq-~
uency response information through the transformation of either one of these
two functions. Although the frequency response functions computed from an
autocorrelation function or a random decrement signature are somewhat differ-
ent in form, they both can be considered representative of a transfer function
characteristic possessing poles identical to the actual system under test.

System resonant frequency and damping coefficient information is deter-
mined in the COQUAD program by means of the frequency response component
analysis method. Figures 9 and 10 show the amplitude and phase characteris-
tics of a frequency response function computed by the COQUAD program in
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analyzing simulated swept frequency velocity response data containing three
modes (with damped natural frequencies of 3.0, 8.0, and 12.0 Hz and correspond-
ing damping coefficients of 0.1, 0.1, and 0.2). Figures 1l and 12 show the
in-phase and quadrature spectra of the calculated frequency response func-
tion. These figures are annotated to illustrate the component analysis
computations implemented in the COQUAD program to determine the resonant
frequency and damping coefficient information shown in the final program
output tabulation. (See figure 13.) The ability of the COQUAD program to
accurately determine system resonant frequency and damping coefficient
information generally degrades as the modal frequency separation in the
response data becomes small. For this reason, the program is primarily
used to provide a supporting or alternate form of analysis in the actual
reduction of flight test data. The COQUAD program is useful in applications
where sufficient modal frequency separation exists.

The ENERGY and RESIDO programs provide the primary means of reducing
frequency response information to determine the overall modal characteristics
of the data. The modal identification process used by these two programs is
similar. They both rectangularly window the calculated frequency response
function and invert the windowed frequency domain information into the time
domain. The windowed frequency response information reflects the response
of a system having the calculated frequency response characteristic to an
input signal having a rectangular frequency domain amplitude function with
zero phase angle. The time domain form of this artifically created input
signal is analytically computed and used along with the inverted response
gignal to determine system resonant frequencies and damping coefficients for
those modes within the windowed frequency range using the LSDE algorithm.
Digital band-pass filtering of the raw time domain signals is employed to
minimize the effects of neighboring modes whose resonant frequencies are close
to the windowed frequency range.

The differences between the ENERGY and RESIDO programs lie in the manner
in which frequency response information is windowed and in the way the number
of modes in a given window is established. The ENERGY program essentially
scribes one or more lines across the calculated frequency response function
at appropriate level(s) specified by the user. Generally, the intersection
of the calculated frequency response function with these lines establishes
the frequency windows to be used. The number of modes in each windowed
section can be either automatically calculated or manually inserted after an
examination of the frequency response function or its in-phase and quadrature
spectrum. The number of modes in each window establishes the difference-
equation model order to be used in the identification process. Conversely,
the RESIDO program allows the user to segment the frequency response function
into slightly overlapping windows spanning the entire frequency range of
interest. These segments are individually inverted into the time domain where
one or more user—~specified models are used to determine the difference-equation
coefficients corresponding to each window.

In both programs, the analytically determined difference-equation models
essentially define Z-transfer function models (see equation (21)) pertaining
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to various sections of the overall system frequency response function. These
transfer function models are used to compute the energy of each mode calcu~-
lated in each frequency window via a residue computation. Those modes whose
resonant frequencies are within the windowed frequency range of "the model

and which, in addition, exceed some user selected level of significance are
displayed on the primary output tabulation of the program. All computed
modes, some of which can be mathematical fictions due to over~specified
difference-equation model order, are output on a secondary program output
tabulation. The final computation carried out by these programs is that of
reconstructing the frequency response information from the mathematically
determined Z-transfer functions. This reconstructed function can be compared
to that previously calculated from the test data in order to ascertain the
quality of the analytical fit. Examples of the excellent results, obtained
in applying the ENERGY program to analysis of the clean swept frequency re-
sponse data shown in figure 2, are set forth in figures 14 to 17. Results
for the 42 Hz mode do not appear on the primary output tabulation because the
energy of this mode was below the user selected level of significance for the
test run. It should be noted that the correct answers were obtained for this
mode, as indicated on the annotated secondary output tabulation in figure 16.

SOFTWARE INTERACTIVE CAPABILITIES

The on-line applications software used in the ATS is executed under con-
trol of the real-time TeleSCOPE 340 operating system. This system collects
and stores data on a disk recall file over a total interval of time defined
as a maneuver. Data analysis is implemented over maneuver sub-intervals called
events. The flutter analysis programs selected by the user process event
data from the disk. The operating system transfers data to the central
computer on the request of the application program. In this manmer, the
analysis program is able to process data at a rate that is consistent with
the requirements of its algorithm. Data can be processed in near-real-time,
with the duration of analysis being a function of the complexity of the
analysis technique.

At maneuver "initialization'", the user has the ability to change or
correct previously stored initialization information from the DAS console
through the use of option displays which have been built into the various
programs. The on~line flutter analysis programs require this interactive
initialization capability in order to optimize analysis algorithms to suit
the course of events occurring in a given flight. Before the flight, the
analysis options are set to values which are considered adequate. In the
case of the TLEFAD program this information is based on prior knowledge of
the vehicle under test. Some analysis parameters are redefined after each
maneuver, with less and less changes occurring as the flight progresses.
For the RESIDO, ENERGY, and COQUAD programs, analysis options are initially
set to much wider tolerances because of the broad overview analysis that is
performed by these programs.

The most significant interactive capabilities associated with the use of
the various flutter analysis programs are set forth in tables 1 and 2. Table
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1 defines the system command options controlling the overall execution and
displaying of program outputs from the DAS. An overview of the analysis

options under the interactive control of the analyst are contained in table 2,
Through the manipulation of these options, the analyst can generate a large
volume of results. This can be a pitfall if not used prudently. For example,
within the structure of the TLEFAD program a single frequency sweep can be
analyzed for 14 different transducers using 2nd, 4th, and 6th ordered analysis,
yielding a total of 84 separate frequency and damping answers to be evaluated.
This is where experience is important, requiring judicious utilization of
programs and options to avoid a deluge of results. However, from an overall
flutter analysis point of view, the built-in ability to select different analy-
sis program options enables the analyst to establish a high degree of confidence
in the results obtained and increases the probability of a safe flutter buildup.

TEST RESULTS FROM SIMULATED DATA

The software on~line ability to accurately analyze flutter response
data is best assessed by considering the results obtained in analyzing known
test data simulating actual flight response characteristics. The results
discussed herein were obtained by analyzing data from a highly coupled analog
computer six-degree~of-freedom structural model. Clean and noisy swept
frequency, as well as randomly excited response data generated by this model,
was analyzed by the software in a normal flight-test configuration. This
essentially consisted of feeding the analog test signals through the ATS
facility where they were digitized and subsequently analyzed by various on-
line programs. The results of this analysis were displayed on a CRT, at the
Data Analysis Station, where they could be either copied to microfilm or
hardcopy for record purposes. Analyzing the data in this manner reflects the
normal processing errors associated with digitizing the data as well as the
operational constraints of processing the data in a near-real-time environ-
ment. :

Representative samples of the test data are shown in figure 2. The
actual damped natural frequencies and structural damping coefficients of the
six modes contained in these data are defined on figure 2. The random excita-
tion used to drive the simulated system dynamics was generated by passing a
broadband-flat noise source through a 3-Hz low-pass filter having a 6~dB
per octave roll-off, In the noisy swept frequency configuration, the rms
value of the model response to the noise input was approximately 6 volts.

The rms value of the clean swept frequency response signal varied from 15

to 35 volts in the vicinity of the various resonances of the model. TFor the
randomly excited test runs, the model was configured to achieve a reasonable
contribution from all modes as indicated by the representative power spectral
density plot of these data shown in figure 8.

Test results obtained by analyzing the clean and noisy swept frequency
response data with the TLEFAD program, using the various preprocessing options
available, are shown in table 3. These preprocessing options are denoted as
direct analysis, cross-correlation analysis, and autocorrelation analysis and
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reflect the respective utilization of the difference-equation models defined

by equations (25), (26) and (28) for identification of modal resonant frequen-~
cies and damping coefficients. Data analysis for the various modes was initi~-
ated and terminated as a function of the frequency of the excitation signal. The
frequency range over which data were analyzed for each mode or pair of modes is
indicated in table 3 along with the filtering characteristics and difference-
equation model order used in extracting the results. Overspecified difference~
equation model orders were used to accommodate the presence of neighboring ‘
modes. The results quoted reflect the answers obtained for the known mode or
modes within the pass—band of the digital filter used.

The results shown for the clean swept frequency are nearly perfect and
reflect the answers obtained in a single run since there was little variability
in the answers from run to run. Results quoted from the analysis of noisy data
consist of the mean value plus and minus the one sigma standard deviation for
system damped natural frequencies and damping coefficients that were obtained
in analyzing data from ten independent shaker sweeps. These results indicate
the superior noise rejection characteristics of the correlation methods, which
tended to obtain results whose mean values were closer to the true modal values
and which had less dispersion than those obtained via the direct analysis
method, if a sufficient amount of data was available for averaging. The effect
is seen in the test results by noting that the accuracy of the correlation
results generally improved as modal frequency increased. This is a consequence
of the exponential sweep function which increases the density of response data
cycles as the frequency of the mode(s) increases. A confirmation of this was
obtained by increasing the duration of the sweep and contrasting the signif-
icant improvement in the quality of the correlation results in the low fre-
quency range with the minor changes in the upper frequency range where the
amount of data previously analyzed was already sufficient for good results.

The randomly excited response data were analyzed via the RESIDO and TLEFAD
programs. The TLEFAD program was set up to analyze the data via the auto-
correlation preprocessing option, using the same filtering'and modeling selec~
tions previously defined in the analysis of the swept frequency data. The only
exception was that the data were analyzed over a specific time duration rather
than a frequency range. These random data were also analyzed by the RESIDO
program, using both the autocorrelation and random decrement signature methods
over a frequency range of 1.6 to 57.0 Hz. The overall frequency range was
uniformly segmented into four frequency intervals covering the approximate
frequency ranges of 1.6 to 3.9, 3.9 to 9.5, 9.5 to 23.3, and 23.3 to 57.0 Hz.
Fourth and sixth ordered difference-equation models were used to fit the
overall frequency response function in each frequency segment. The results
quoted herein reflect the utilization of the fourth ordered model in the
lower two frequency ranges and the sixth ordered model in the upper two
frequency ranges since the mathematically reconstructed frequency response
information generally indicated that these models had achieved the best fit
to the data.

Table 4 contains a summary of the results obtained in analyzing the

randomly excited response data. Here again, a statistical summary of the
results is presented, representing the mean value plus and minus the one
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sigma standard deviation, for each set of runs. The number and duration of
the runs for each set of resulis is appropriately indicated. In general, runs
of equal duration were made over identical data sets, the only exception
being that two less runs were made with the TLEFAD programs. Although only
slightly evident in this set of rums, the results obtained by the TLEFAD
program are generally better or equivalent to those obtained from the RESIDO
program., This general trend is attributed to the fact that in operating the
TLEFAD program the user takes advantage of his knowledge of the data modal
composition to establish a more optimum selection of digital filtering
characteristics and difference-equation model order. It should be noted that
the 90-second duration results obtained from RESIDO indicate little difference
between the autocorrelation and the random decrement signature methods and
that the 180-second random decrement results shew an improvement in overall
accuracy due to increased time averaging. The random decrement signature
level in all runs was set to the rms value of the first 4 seconds of data
collected in each run.

TEST RESULTS FROM FLIGHT DATA

Typical time histories of the actual flight data analyzed are shown in
figure 18. These data are grouped into the following frequency ranges and
data types:

PE Clean Noisy Random Bimodal
RANGE
Less than Figure 18(a) Figure 18(c) | Figure 18(d) Figure 18(h)
10 Hz (low) Figure 18(b) Figure 18(d)
10 Hz to 25 Hz Figure 18(e) - -
(mid)

Greater than
25 Hz (high)

Figure 18(f) - Figure 18(g) -

A summary of the results is shown in table 5. The results shown are from

the analysis of clean and noisy exponential sweeps (from 2 Hz to 70 Hz in 24
seconds) and from 90~ to 180-second random excitations. The modes analyzed
are characterized by the notation

(1) AW1B - antisymmetric wing first bending
(2) SW1B - symmetric wing first bending

(3) SW2B ~ symmetric wing second bending

(4) TFLAPR - flap rotation

(5) W1B/STRP - wing first bending/store pitch

Before a detailed discussion of these results is presented, a few
general comments are in order. The concept used in determining a tabulated
number was the same as that used in the F-14A flutter program and is a
result of the large capacity of the computer system and the program options
available to the analyst. Specifically, these numbers are an average of
the modal information obtained when the following program options (when
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appropriate for the analysis method) were employed:

(1) Overspecification of analysis order
(2) Data apalysis window wvariation
(3) Correlation lag range variation

In most cases 2nd, 4th and 6th ordered analysis was performed. If the
number of results for a particular mode are less than six (which is consid-
ered a minimum for a statistical analysis), only the average result (without
indication of the standard deviation) is tabulated.

Included are results from the TLEFAD program using the direct option
which (see references 1 and 2 for additional discussion of results obtained
using this analysis method) was the technique used during the F~14A flutter
program. It is therefore considered to be the reference against which all
other techniques are compared,

Considerable effort was spent on the analysis of the low frequency
range, because realistic noise inputs such as buffet or gusts exhibit their
highest spectral content in this range making it the most difficult frequency
range to analyze.

Sweeps that are classified as clean do possess a certain minimal noise
level but this 1s considered negligible compared to the other sweeps analyzed.
The AW1B, SW1B, and FLAPR clean sweep, noisy sweep, and random noise data were
obtained in level 1lg flight at .85 Mach/25000 ft (1 ft = 0.3048 m). The
noisy sweep and random data were obtained by holding the aircraft at 10° angle
of attack at the given test condition, causing partial airflow separation and
random excitation. Random flap excitation resulted from vorticies of the
F-14A overwing fairing impinging on the flap. The SW2B sweep was obtained at
.70 Mach/15000 ft, with the W1B/STRP sweep obtained at 1.05 Mach/6000 ft.

AW1B/SW1B Results

Analysis of the clean sweep AW1B results shows excellent agreement
between the various techniques. The smallest standard deviation is with the
TLEFAD cross-correlation option. The RESIDO cross—correlation scatter is
higher because, in normal use, tight analysis control is not utilized with
this program. As expected, all corresponding noisy sweep results had more
scatter as exhibited by the greater standard deviations. However, the
TLEFAD cross—correlation mean result is excellent, and the smaller scatter
indicates the greater consistency that is achieved by utilizing the TLEFAD
windowing philosophy in presence of noise relative to the wide windowing
(overview) philosophy of RESIDO.

During random excitation both the AW1B and SW1B modes are excited,
requiring TLEFAD direct results from both modes for reference purposes. The
complete set of results shown for the AW1B mode reflects the consistency
obtained using the different analysis techniques in the low frequency range.
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Analysis of the SW1B mode was limited to clean sweep reference runs (using
the direct and cross—correlation options in TLEFAD) for comparison with re-
sults obtained from randomly excited response data.

Because of the multimodal nature of the random response data only 4th
and 6th ordered analysis results were considered. The TLEFAD autocorrelation
90- and 180-second results for the SW1B mode are good with slight improvement
in results shown for the longer duration time slice. The AW1B results are not
as good. However the trend again is favorable, the absolute error decreasing
from 267 to 197 when the data duration time is doubled. The RESIDO auto-
correlation and random decrement results are considered good for both modes
with the exception of the SW1B frequency results.

SW2B Results

Data for the SW2B mode, which were acquired during 1lg level flight, are
classified as clean, but the response level is very low and it does possess
a noise level which is greater than that of other clean sweeps. This is due
to the location of the wing shaker near a SW2B node line which results in a
low excitation level. Therefore it is felt that the true classification of
this sweep lies between clean and noisy. Results for all the techniques
utilizing the LSDE identification algorithm are consistent, establishing
confidence in the utilization of all these techniques for flight data of
such a low response level. The discrepancy between these results and those
obtained from COQUAD is attributed to the decreased signal-to-noise ratio
which had an adverse effect on this program.

FLAPR Results

The FLAPR results are sectioned into three distinct blocks each one as-
sociated with the clean sweep, noisy sweep, and random noise input. On the
surface, it would appear that the programs are not capable of analyzing this
mode because the frequency and damping results of each block are completely
different. However examination of transfer function plots from the clean
and noisy sweeps and power spectial density plots from the random excitation
showed that the flap frequency and damping does change. It -is believed that
the different flap modal characteristics result because angle of attack
changes increase static loading causing an increase in hinge moment. How-
ever, each block's results are consistent and it can be concluded that
accurate identification for highly damped modes is a reality. This cannot be
overlooked when explosive flutter mechanisms are being considered.

W1B/STRP Results
The final flight data discussed is a highly coupled bimodal response
involving a classical W1B/STRP. Even though the data were acquired

in a highly transonic region, the highly swept wing and sleek F-~14A fuselage
minimized transonic buffet effect, enabling it to be classified as clean.

334



These bimodal response data were analyzed with the TLEFAD program via the
direct and cross—correlation methods and the RESIDO program using the cross—
correlation method. The results for the three analysis techniques used are
very consistent and varied little with changes in program options. WNo attempt
was made to use COQUAD due to the inaccurate results normally obtained by the
use of this program on bimodal response data. In all cases results for 6th
ordered analysis models are presented because in this frequency range there

is a 7-Hz fuselage vertical bending mode that is lightly reflected in the
response. data.

Experience gained in the analysis of simulated data indicates that
accurate results are usually obtained when there is consistency between the
different analysis methods. Extrapolating this trend to the results obtained
here further confirms the fact that the LSDE identification algorithm is capa-
ble of successfully analyzing bimodal flight test data.

CURRENT DEVELOPMENTAL ACTIVITY

The Grumman LSDE identification approach is implemented in a manner
that is predicated on linear systems theory. Occasionally, situations
are encounted (most often due to mechanical effects) where response data
manifest nonlinear behavior. The reduction of these data by linear tech-
niques is difficult, if not impossible. Thus, it was decided to review
existing analytical techniques that could provide a "nonlinear" analysis
capability.

In recent years, various organizations have expended a considerable
amount of effort in evaluating response-error modeling techniques for the
purposes of extracting information on aircraft stability derivatives. (See
references 3 and 4.) These techniques presume knowledge of the form for
system dynamics, which is also a basic assumption of the LSDE identification
approach used in reducing flutter response data. Grumman's current technique
establishes system parameters by minimizing the mean-square equation-error
resulting from the substitution of preprocessed data into an assumed dif-
ference~equation model. Response-error modeling techniques differ in that
they determine system parameters by matching the response signal generated
by an assumed dynamic model to actual response signal measurements so as
to either minimize the error between them or increase the probability of
obtaining good parameter estimates.

Since response-error modeling techniques can be implemented to analyze
data from either linear or nonlinear systems, it was decided to direct an
initial evaluation of the approach toward the more general problem of non-
linear system identification. In particular, the investigation was direct-
ed toward the evaluation of data from a nonlinear (hard-spring) resonant
system. A detailed discussion of the technique, from the perspective of the
example problem under investigation, is contained in Appendix B.

, The basic approach consisted of implementing the technique so as to
minimize the mean-square error between the actual and modeled systems. The
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actual system was considered to have a nonlinear spring effect proportional
o the square of displacement amplitude; the coefficient of the nonlinear
spring was set atb one-tenth of the value of the linear spring coefficient.
Swept frequency runs were made for several different values of system damping
coefficient. A discussion of the convergence problems encountered and how
they were circumvented, by using algorithm constraints and initialization
information inherent in the test data, is also contained in Appendix B.

The fundamental conclusions reached in this investigation indicated that
the approach could be effectively used in the analysis of nonlinear response
data. Plots showing the convergence of model parameters from their initially
assumed values towards their true values are shown in figure 19. In general,
it should be noted that the number of runs required to achieve convergence
increased as the damping of the system decreased. This undesirable character-
istic of the approach can probably be minimized through the utilization of
second-order sensitivity coefficient terms and this will be pursued in sub~
sequent investigations.
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APPENDIX A

BASTIC LINEAR SYSTEM CONCEPTS

This appendix contains a mathematical summary of the linear system
concepts that form the basis for the algorithms used in the reduction of
flight test flutter response data. The material is broken down into four
sections., The first two deal with the underlying dynamic assumptions and
linear system relationships that characterize system behavior, A derivation
of the dynamic difference-equation modeling approximation that forms the
basis for determining system resonant frequency and damping coefficient
information is contained in the third section. The fourth section describes
the least-squares identification algorithm used to determine difference-
equation model coefficients and how these coefficients are processed to
establish system resonant frequency and damping information.

Fundamental Stability Criteria

The ultimate objective of flutter test analysis is to measure or
establish the relative margin of stability for the aeroelastic dynamics of
an aircraft over its specified flight envelope. A basic assumption under-
lying Grumman's current on-line software analytics is that aircraft flutter
dynamics are governed by a linear ordinary differential equation of the
following form:

Y L O N 1O
b3 dn = I c ¢D)
n=0 dt m=0 at™

where

y(t) = displacement response (at some structural location)
x(t) = structural driving function

dn,tm = constant coefficients (with dy = 1.0)

N, M = positive integer constants (M<N)

If Y(s) and X(s) are used to denote the Laplace transforms of y(t) and x(t)
it follows from equation (1), assuming the dynamic system is initially at
rest, that

337



c_s ey I (S—zm)
Y(s) =H(s) = m=0 - m=1 2)
X(s) N n N
z dns i (s—pn)
n=0 =1
where
H(s) = dynamic system transfer function
z, = zeros of H(s), roots of numerator polynomial
p, = poles of H(s), roots of denominator polynomial

From the theory of linear systems, it is known that the dynamics
equivalently defined by equation (1) or (2) are inherently stable if the
characteristic roots of equation (1) or the poles of equation (2) 1lie in
the left half of the complex plane. The aeroelastic dynamics of an air-
craft structure represent a multi-degree-of-freedom system having resonant
modes that can generally be related to those poles of H(s) which appear in
complex conjugate pairs, such as

P = 0 18 (3a)
Pok-1 = 7o 1B (3b)

An aircraft encounters "flutter" or aeroelastic instability when oy in
equations (3a) and (3b) becomes negative. In practice it is common to
refer to the damped natural frequency and structural damping coefficient
of a given resonant mode. These particular variables are related to

corresponding poles of H(s) by

20,

_ Structural damping _ k %)
8k T coefficient of kth mode 2 2 \1/2
(o, +B8,)
k k
£ = Damped natural frequency _,Eg (5)
dk = of the kth mode in Hz T 27
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As shown in equation (4), the structural damping coefficient of a mode is
directly related to the real part of the modal pole and thus represents a
measure of the stability of the corresponding mode under a given flight
condition.

Underlying Background Relationships

Any analytical formulation of the solution to the problem of determin-
ing the natural frequencies and associated damping coefficient information
from a response record implies a system model of the form defined in equation
(1). Mathematical relationships used for the extraction of frequency and
damping information can be implemented in a variety of ways. The actual
method to be selected for a given application is strongly dependent on the
nature of the test data to be analyzed. Several basic relationships
pertaining to the system defined by equation (1) play an important role
in either the implementation or understanding of analytical reduction
algorithms applicable to different types of test data. Fundamentally the
output of the linear system defined by equation (1) is uniquely determined
from the knowledge of its impulse response function h(t) in accordance
with the following time domain convolution integral:

oo
y(t) = f =x(t-o)h(o)do (6)

-—00

where

h(t) = the inverse Laplace transform of H(s), defined in
equation (2)

If desired, the lower limit of integration in equation (6) can be changed
from —» to 0,since the subject system is causal (i.e., h(t) = 0 for t<0).
This equation is possibly the most fundamental (least constrained) relation-
ship characterizing linear system behavior. If x(t) and h(t) belong to the
class of functions that are transformable, a useful frequency domain ‘
relationship can be obtained from equation (6) by taking its Fourier trans-
form. The resulting equation is

Y(iw) = H(iw)X(iw) )

where

Y(iw), X(iw) = Fourier transforms of y(t) and x(t)
H(iw) System transfer function = H(s)
s = iw

(]
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Equations (1), (2), (6),and (7) are all fundamental relationships that in
themselves completely define system dynamic behavior.

Some interesting insights into test data analysis can be obtained by
manipulation of equations (6) and (7). First if one filters the system
response signal with a linear filter having a transfer function F(iw) it
follows that the filtered response signal is defined by

Yf(im) = Y(iw)F(iw)
which from equation (7) is seen to equal
Yf(iw) = HEWX(HEw)F{Hw) = H(iw)Xf(iw) (8)

where

Y,.(iw), X_.(iw) = Fourier transforms of filtered signals
£ £
yv(t) and x(t)

Equation (8) states that the filtered response and driving function signals
are dynamically related to each other through the same system transfer
function as the unfiltered signals. Thus, in the analysis of system response
to a known driving function, identically filtered measurements of system
input and output data can be used without masking dynamic behavior. This
filtering plays an important role in minimizing noise effects.

Certain well-known cross~correlation and cross-spectral relationships
can be easily established along classical lines starting with either equation
(6) or (7). The development here will emphasize those items considered
significant in the computation of these functions for systems identification
purposes, First consider the calculation of the cross—correlation of some
arbitrary signal w(t) with y(t) and x(t) over the finite interval of time
ranging from tl to t2 seconds as denoted by

t
d’wy('f) = = it fz w(t)y(t + 1)dt 9)
27t ¢
1
)
bx™ = 1 7 Go)x(t + Dt (10)
t.~t
2 71 tl
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Substituting y(t) from equation (6) into equation (9) results in the following
cross—correlation convolution integral:

t &

¢WY(T) = E—%E*' f2 w(t) | S x(t+t-0)h(o)do | dt
2 1 tl —c0
o 1 B2
= [ h{o) el w(t)x(t+t-0)dt ] do
~00 2 71t
1
4o
= [ h(0)¢wx(r-o)dc (11)

If the system is assumed to be initially at rest,it follows that both ¢Wy(r)
and ¢WX(T) are zero for T<—t2 and that the upper limit of integration in
equation (11) can be changed from +« to t2+T. Because the lower limit of

integration can be set to zero, due to system causality, the resultant com-
putation is finite. The majority of test situations involve the analysis
of data from a stable system excited by a finite duration input signal.
Under such conditions the correlation functions computed via equations (9)
and (10) will tend to zero as T increases in magnitude and thus represent
functions whose Fourier transforms exist. Taking the Fourier transform of
equation (11) results in the following cross—spectral relationship:

@Wy(im) = H(iw)@wx(iw) ' (12)

where

@Wy(lw), @Wx(lw) = Fourier transforms of ¢Wy(T) and ¢WX(T)

Comparing equation (11) with (6) and equation (12) with (7) reveals that
the cross—correlation and spectral functions involved are mathematically
related in the same manner as actual system input and output variables. Thus,
an algorithm attempting to identify system resonant frequencies and damping
coefficients from measured response and driving function signals can use
cross—correlation or cross-spectral techniques to reduce the data without
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disguising system characteristics. It should be noted that the above

mentioned relationships hold regardless of the interval between ty and t2°

Obviously as this time interval increases, noise rejection improves and
the calculated functions @WX(T) and @Wy(T) become better approximations to

their classical cross—correlation functioms. Although cross-correlation and
spectral techniques are slower from a computational point of view, they are
more powerful in suppressing noise effects than simple filtering.

Autocorrelation and autospectral calculations, requiring only response
signal measurements, can prove of value in analyzing flutter response data
obtained from an aircraft excited by a driving function possessing an impul-
sive autocorrelation function. Random excitation having either a spectrum
which is broadband-flat or one which can be considered as the output of a
linear system which is driven by a broadband-flat random input satisfy this
requirement. This random excitation can be obtained either naturally from a
source such as atmospheric turbulence or artifically via random shakers.
Deterministic signals such as a broadband sine wave sweep, a narrow spike,
or function such as sine (wt)/(wt), where w is somewhat larger than the high-
est significant frequency in the response data, also satisfy the impulsive
autocorrelation function requirements.

The mathematical significance underlying the autocorrelation approach
can be evolved from either equation (6) or (7). Starting from equation (7),
multiplying both sides of this equation by its complex conjugate results in

Yin)YEw) = HE10)HEO)X (-in)XEw)

or (13)

8, (10 = |G | 2, (i)

1f @xx(iw) is broadband-flat then .
. . 12 i ,
o () = [H(iw) |© = H(-iw)H(iw) 14)

Taking the inverse Fourier transform of equation (14) results in
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4o

@yy(t) = [ h(t)h(t + 1)dt (15)

00

oo
= [ h(-t)h(t - 1)dr

Equation (15) indicates that the function ¢yy(t), which is essentially equiv-

alent to the autocorrelation function of y(t), is equal to a similar relation-~
ship representative of the autocorrelation function of h(t). This equation
also indicates that ¢yy(t) is equivalent to the system output response re-

sulting from the input driving function equal to the impulse response function
folded about the t=0 axis. For values of t>0 it follows that ¢yy(t) is

actually the free decay of the system to the aforementioned input.

Another method for analyzing randomly excited response data, that has
emerged in recent years, is the random decrement signature method. (See
reference 5.) This method essentially averages fixed-duration segments of
a random response record to obtain what is termed a random decrement signa-
ture. The particular segments to be selected and averaged from a given
random response record are determined on the basis of signal level. Essent-
ially, a predetermined level is established. Every time the amplitude of the
response signal rises past or sinks below this level a fixed-duration segment
of data, starting at the time the level is crossed, is averaged with previous-
ly accumulated segments. It can be reasoned that as the number of averaged
segments increase the resultant random decrement signature will approach
the free decay of the system from an initial displacement equal to the pre-
determined signature level. TIn some respects the random decrement signature
is similar to an autocorrelation function in that both relationships
represent free decay information. However these relationships are not
equivalent since they represent different free decay problems.

Difference-Equation/Z-Transform Modeling Approximation

Grumman flutter analysis software uses what has been termed a model-
matching method as a primary means of extracting resonant frequency and
damping coefficient information from test data. Actually, the process is
a least-squares equation-error parameter identification technique. 1In
essence, coefficients or parameters of a dynamic model are analytically
manipulated to obtain the best fit, in a least-squares sense, to the test
data. The dynamic model used in the identification process takes the form
of a finite~difference equation. This difference~equation model is a
discrete version of equation (1) which is well suited for use in a digital
computer where sampled values of test data must be dealt with. A detailed
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derivation of this difference-equation model, accomplished through the use
of Z~-transform mathematics and sample—data system theory, is contained in

reference 1. A somewhat abbreviated derivation is set forth below for the
convenience of the reader.

The essence of the derivational approach is to model the continuous.
system with an open-loop sample-data system so that the synchronously
sampled input and output signals of the modeled system approximately agree
with their corresponding continuous system counterparts at the sampling
instants. This is accomplished by assuming a sampled system model contain-
ing the continuous system transfer function H(s), as defined in equation
(2), preceeded by a data reconstruction element possessing a polygonal hold
characteristic.(See chapter 11, reference 6.) 1In the operational "s"
notation of the Laplace transform, the transfer function for a polygonal
hold reconstruction element is defined by

Ts
D(s) = 9——2— a - e'TS)2 (16)

Ts

where

T = time increment between sampled data points

This data reconstruction element converts the sampled input to the model
into a continuous signal constructed by connecting the sampled input points
with straight lines. Driving the continuous system dynamics with this
approximation to the actual input signal generally results in an output
signal that agrees well with the actual system response signal, provided

the sampling frequency is at least 5 times the upper pass-band limit of

the continuous system and of a sufficient rate to insure a relatively smooth
reconstructed input signal. The resultant transfer function for the model-
ed plant dynamics is

P(s) = D(s)H(s) @a7)
~Ts, 2
. (d-e )
)y L:-Ts'" iy ()
where
B (s) = —15 H(s)
Ts
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The analysis of sample-data systems is generally accomplished through
the use of the Z-transform in much the same manner as continuous systems
analysis is tied together through the use of either the Laplace or Fourier
transforms. The Z-transform represents a convenient means for handling
sampled time functions. The Z-transfer function of a sample data system
relates the Z~transforms of sampled system output to sampled system input
and is simply converted to a time domain difference equation between
sampled system input and output quantities. The Z-transfer function
relationship for the modeled sample-data system is defined by

7y = £(2) (18)

where

R(Z) = Z-transform of sampled model output

X(Z) = Z-transform of sampled input signal
P(Z) = Z-transfer function of sampled data model
Ts
Z =e

Using the time shifting theorem,it follows from equation (17) that

-1.2
a-27)"
5 5 (@) (19)

YA

P(2Z) =

Now since Hl(s) is expressible as a finite ratio of polynomials in s, whose

denominator polynomial is of higher order than that of its numerator, it is
possible to compute Hl(z) from Hl(s) in accordance with the following

integral definition of the Z-transform:

1
H,(2Z) = Z Res. (s) ~—r—r (20)
1 poles of Hl 1—eTSz'1

H, (s)

Equation (20) expresses Hl(Z) in terms of a sum of residues for the bracketed
expression over the poles of Hl(s). The result is that Hl(Z) is expressible

as a finite ratio of polynomials in Z. Substituting equation (20) into (19)
and carrying out the indicated analytical manipulations, for the given form
of Hl(s)’ results in the following expression for P(Z):
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% bnz'n 5 bnz"“
=0 o=
p(z) = %5 - NO (21)
A T L S anz"n
n=1 =0

Equation (21) shows that the Z-transfer function of the modeled sampled-
data system is a finite ratio of polynomials in Z. The order of the
numerator and denominator are both equal to N, which corresponds to the
order of the denominator polynomial of H(s)., This is a consequence of the
data reconstruction device used and the assumed form of H(s). From equation
(18) and (21) it follows that

N N
R(Z) = -% anz‘nR(Z) + I bnz_nX(Z) 22)
n=1 n=0

Taking the inverse Z-transform of equation (22) results in the following
difference equation relationship:

N N
r(t) = =L anr(t—nT) + I bnx(t—nT) (23)
n=1 n=0

where

r(t) = the inverse Z-transform of R(Z)

Equation (23) represents the dynamic difference-equation relationship
between the modeled sample-data systems response r(t) and sampled values

of the actual system input =x(t). Since it is assumed that the modeled
system response is approximately equal to the actual response of the
continuous system at discrete sampling increments, this difference equation
relationship is more appropriately written as

N N
y(kT) = ~-& any(kT-nT) + X bnx(kT—nT) 24)
n=1 n=0
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where

k = a positive integer constant

y(kT), x(kT) = values of y(t) and x(t) at t=kT

a s bn = constant difference equation coefficients corresponding
to demonimator and numerator Z-~transfer function
polynomial coefficients

The a difference—equation coefficients in equation (24) are related to the
poles P, of the system transfer function H(s) as indicated in equation

(21). System resonant frequencies and damping coefficients are determined
from the poles of H(s) through the relationships defined in equations
(3a) and (3Db).

It follows from equation (8) that filtered system response and driving
function data, yf(t) and xf(t), are related by the same general difference-

equaition relationship. Thus,

N N .
yf(kT) =~ 3 anyf(kT -nT) + I bnxf(kT - nT) (25)
n=1 n=0

From equations (9) to (12), it obviously follows that the cross-correlation
functions ¢wy(t) and ¢Wx(t) are related in a similar fashion, resulting in

N N

$ (kT) =~Z% a ¢ (kT - nT) + I
wy n=1 &% n=0

b_¢ (kT - nT) (26)

If the system is excited by an input signal having a broadband-flat
spectrum, the autocorrelation function of system response ¢ (t) will be
yy

representative of the free decay of the system for values of t greater than
zero. In this case,the following difference-equation relationship is
implied:

N

¢ (KT) = -L
yy =

. anq;yy(k']? ~ aT) 27)
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When dealing with response signals representing the free decay of the system,
it follows from equation (24) that

N
y(kT) = -I any(kT - nT)
n=1

It also follows that

N
w(@{HT)y(GT + kT) = -I anw(jT)y(jT + kT - nT)
n=1

where

j = a positive integer constant
w(t) = an arbitrary function of time

and,therefore,

J N
w(iT)y (kT + jT) = ~% I aw(@ET)y(T + kT - nT)
0 j=0 n=1

I ™

3

or that, for the free decay problem,the following cross-correlation difference
equation applies:

, N
by (KT) = ;21 a 6, (KT = nT) (28)

Equations (25) to (28) represent those fundamental difference-equation
relationships utilized by Grumman's on-line software for the purpose of
identifying system resonant frequency and damping coefficient information.

Resonant Frequency/Damping Coefficient Identification

Equation (24) defines the basic difference-equation relationship used
by Grumman's least-squares equation-error parameter identification algo-
rithm. This equation will be used in the following analytical description
of the technique although it should be understood that any of the differ-
ence equations represented by equations (25) to (28) could be used, as
dictated by the manner in which the measured test data are initially processed.
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Analytically, the least-squares equation-error identification technique
minimizes the value of the function J shown below:

k
2 — 2
I= I (3 -7%) (29)
=k
1
where
kl’ k2 = integer constants defining the data set over which J

is to be minimized

Yy = v(kT) = the system response quantity at time kT

;k ='§(kT) = the system response quantity estimated by the
difference equation at time kT

In particular
Tk —E 2nY%-n + E bnxk~n (30)
n=1 n=0
where
E;, E; = estimates of the a and bn coefficients contained in

equation (24) which minimize the function J
x(kT) = X, = the system input quantity at time kT

If the system response signal is the only quantity required in data analysis,
the second summation on the right-hand side of equation (30) is dropped.

The procedure for minimizing J consists of substituting equation (30)
into equation (29) and taking the partial derivatives of the resulting
expression with respect to the 55 and Bﬁ coefficients, setting the express-

ions thus obtained to zero. This results in 2N+l equations in 2N+l unknowns
which are to be solved for the desired coefficient information over the
entire data set. The solution of these simultaneous linear equations, to
obtain the desired estimates for difference-equation coefficients, can be
expressed in the following matrix form:

® = (81 31 L pe1Tey (1)
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where

X = N (32)

Vo g v e o« Voo o_ X AR
y.kl 1 ykl N kl kl N
ky ky+1-N B R S

[B] = . . (34)

v, _ Y, _ X _
e ka e e . Pk =N

Equation (31) mathematically defines the identification process used in
determining difference~equation coefficients. 1In this equation the super—~

scripts T and -1 denote the respective matrix transpose and inverse oper—
ations.

Once the identification algorithm determines the 5; coefficients, as

elements of the K vector, the roots of the denominator polynomial of the
estimated Z-transfer function P (2) are computed. Tt follows from equation

(21) that the roots of this polynomial are related to the estimated poles of
H(s) by
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(35)

Yy = the nth root of the estimated Z-transfer function denominator
__ polynomial
P = the estimated nth pole of H(s)

It can be seen from equation (35) that estimates for the real poles of H(s)
are defined by

P o=1ln G (36)

From equations (3) and (35) it follows that estimates for the complex
conjugate poles of H(s) are defined by

= _ (-0, T+ ip T) _ )
Yor = © k k u + ivy (37a)

Yore1 = Y T iV (37b)

and it follows that

~ _ 1 / 2 2
-0 T 1n Uy + Vi (38)

k
v
Bk = %-[arc tan €~GE) ] (39)

The real and imaginary parts of the complex conjugate poles of H(s) are
computed in accordance with equations (38) and (39). The real poles of

H(s) are computed from (36). System damped natural frequencies and damping
coefficients are calculated from the real and imaginary parts of the complex
conjugate poles of H(s) using the relationships shown in equations (4) and

(5).
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APPENDIX B
EXAMPLE NONLINEAR RESONANT

SYSTEM IDENTIFICATION PROBLEM

The example problem described in this appendix depicts the application
of the response-error modeling technique to the identification of a simplified
nonlinear resondnt system problem. The technique can be applied to the
analysis of linear as well as nonlinear systems although it generally
requires more computation time than the difference equation—error technique
currently used by Grumman in the analysis of linear data. The utilization
of response-error modeling techniques to linear and nonlinear system identi-
fication problems is currently undergoing extensive investigation, covering
a broad range of scientific and engineering applications. Specific algorithms
vary in complexity, generally depending on the manner in which model parameters
are determined from response error,

The intent of the example described herein is to apply the concept, in
its simplest form, to the analysis of resonant system phenomena typical of
that which might be encountered in the analysis of flutter response data.
The discussion set forth below is broken down into three sections. These
sections respectively cover a statement of the example problem, a descrip-
tion of the analytical approach to be used in its solution and a discussion
of some preliminary results obtained.

Problem Statement

The problem addressed here concerns itself with the identification of
a nonlinear (hard-—spring) resonant system defined by the following different-
ial equation:

' x] »

Y(£)+C_Y (£)+K Y (£)+K sgnl[¥(e) Y2 () = F(t) (40)

where
Co’Kb’Kl
Y(t) = system displacement response
F(t) system forcing function

sgn[Y(t)] = +1 if Y(t) is positive or
-1 if Y(t) is negative

= constant parameters

The constant parameters Co’ Ko’ and Kl determine the dynamic behavior of

the system. Therefore, the identification process consists of defining the
value of these parameters from measured data. It is assumed that relatively
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clean measurements of system velocity response and forcing function are
available. It is further assumed that the system is initially at rest and
that the forcing function is a swept frequency sine wave whose frequency
is varied from some point below to some other point above the apparent
resonant frequency of the system.

The least-squares response—error modeling technique is to be used as
the method for achieving system identification. This technique essentially
assumes that the form of the dynamics are known, thus allowing the establish~
ment of a dynamic system model. The identification process is implemented
by varying the coefficients in the model so as to minimize the mean-square~—
error between the measured velocity response of the actual system and the
corresponding velocity response of the assumed model.

Underlying Analytical Approach

Since knowledge of the actual system's form is assumed, the following
equation defines the system model:

¥ (t)+e 7 (£)He_y (€)+e sgnly(£)1y” (&) = F(e) (41)

The lower-case nomenclature used in equation (41) distinguishes modeled
system quantities from those of the actual system, as defined by equation
(40). Starting with initial estimates for c,o ko,and k., along with

measured values of system driving function, equation (41) is solved to
obtain its velocity response over some interval of interest. Model para-
meters are incremented, from run to run, so as to minimize the following
mean square error function:

i=r B dt (42)

owH

where
T = time duration of analysis
E(t) = Y(t)-y(t)
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In order to analytically compute the parameter changes required to
minimize J it is necessary to express y(t) as a function of these quantities.
For a given forcing function, §(t) can be considered to be a function of
its current parameter values (i.e., Cys ko,and kl) and time. The form of

y(t) for some other set of parameter values (i.e., <, + Aco, ko + Ako and
k, + Akl) can be simply approximated from the first order terms of the

1
Taylor series expansion for y(t) as indicated in the following equation:

. o 83}o 3§0 8570
Yy %Y, +~§E;-Aco + SE;-Akb + SEI Akl (43)

= Ylegakyokyst)
= y(co+Ac0,ko+Ako,kl+Akl,t)

b
>
I

The partial derivatives of the right-hand side of equation (43) are time
varying sensitivity coefficients which are solutions to sensitivity
differential equations. These differential equations are easily derived
from equation (41) by taking the partial derivative of this latter
equation with respect to each parameter as indicated below:

oo

oy 2 oy

o _d o_ 0 A _ 2
ac 2 3¢ ac [ coyo koyo klsgn(yo)Yb HF(t)]

o dt o o

) 0
3y 3y 3y
- d o _ o _ o  JF#A) -
co dt 3c ko ¢ 2klsgn(yo)yo 3c + c yo
o o o 0
which can be written as

s1 + cosl + [ko + 2klsgn(yo)yo]sl = -y, (44)
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where

In a like manner the sensitivity equations for ko and kl are defined by

S, + ¢S, + [k, + 2k sgn(y )y 1S, = -y

. 5)
.o . _ 9
3 + c083 + [ko + Zklsgn(yo)yO]S3 = —sgn(yo)yo (46)
where
¢ 2
2 ok
(o)
¢ oY
3 Bkl

Equations (44), (45),and (46) are linear, second-order,differential equations
with time varying stiffness coefficients that are a function of the modeled
system's displacement signal. The excitation signals driving the sensitivity
differential equations are a function of the velocity or displacemernt response
of the modeled system. The time varying semnsitivity coefficients required

in equation (43) are obtained by solving equations (44) to (46) along with
equation (41).

Now that all the elements in equation (43) are defined, it can be
substituted into equation (42) resulting in

. o . ° - 2
[Y -y, - SjAc_ - S,Ak = S8k ]°dt (47)

<y
!
O

2

The function J is minimized by taking its partial derivative with respect
to each of the incremental parameter changes and setting the resulting
expressions to zero. The solution of the three simultaneous linear equatioms,
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to obtain the three incremental parameter changes, can be expressed in the
following matrix form: ) ‘

P =181y (48)
where
Ac i
(o]
= |k (49)
Ny
S; (Y-y,)
T | 1,00
V= |5,0-ye)| at (50)
O L] ® L]
2 o L 3 ° ]
. 5, 5,5, 5,5,
_ - £ ] o 2 o 2
[s] = g s, S, 5,55| dt (51)
- ° - . r'Y 2
5351 535 53

The elements of the P vector, computed by multiplying the inverse S matrix
by the V vector, express the parameter changes resulting from a given pass
through the data. The process is generally repeated until the parameter
changes become small or the calculated value of J falls below some pre-
scribed level.

Example Problem Results
A digital-computer algorithm using the defined analytical approach was

designed for the purposes of making a preliminary evaluation of the
technique. In this evaluation the KO and Kl system parameters were set

at numerical values of 3948 and 394.8, with the value of Co being varied
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between 3.142 and 12.57. A linear system with these values for Co and K.o

would have a resonant natural frequency of 10 Hz and structural damping
coefficients ranging from 0.05 to 0.2. The apparent resonant frequency

of the actual nonlinear (hard-spring) system is generally higher than 10 Hz
increasing with the magnitude of system displacement. This, in turn, is a
function of the system's inherent damping and the magnitude of the driving
function. The assumed form of the driving function was an exponential

swept frequency sine wave covering the 6 to 20 Hz frequency range in approx-
imately 6 seconds. The amplitude of the driving function was held at a
constant amplitude which was numerically equivalent to Kb@

Initial runs indicated that convergence of the algorithm was dependent
on having reasonable initial estimates for system parameters. In practice
good estimates are not always available. Rather than increasing the analyt-
ical complexity of the coefficient updating technique, which was considered
outside the scope of this preliminary investigation, it was decided to adopt
a strategy that could be applied in practice, with suitable constraints, to
generally insure convergence. The strategy adopted was based on the inherent
information contained in the test data and the user‘'s presumed knowledge for
the form of the system's dynamics. In accordance with this strategy, the

initial value of kl was set to zero, with the initial value of ko taken as

the squared value of the apparent resonant frequency of the response data.
This frequency is simply determined by measuring the period of the response
signal in the vicinity of its peak value. The initial value for c, was

selected at a tenth of the square root of ko. This would correspond to a

nominal structural damping coefficient of 0.1 if the system were linear.

Algorithm parameter updating was constrained so that kl would be set

back to zero if its value went negative or became greater than the current
value of kb' The value of k.o was prevented from falling below a tenth of

its initial value. Finally, the parameter changes from run to run were
constrained so that the change in ko could not exceed the initial value of

ko and that the change in kl could not exceed a tenth of the initial value

of ko. If either or both of these parameter changes exceed their corres-—

ponding limits all parameter changes were uniformly attenuated by a factor
(not to be less than a tenth) in an attempt to prevent any parameter change
from exceeding its limit. For the problem at hand, the above constraints
are considered loose and were determined empirically with no attempt being
‘made to refine them in an optimal sense.

Using this strategy, results were obtained in analyzing data from
systems having C0 damping terms of 12.57, 6.283, and 3.141. The stiffness
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coefficients Ko and Kl were held at constant values of 3948 and 394.8.

The results listed below reflect the ability of the approach to converge
on the true coefficient values with the inherent characteristic of
requiring more iterations as damping decreases.

Analysis Model Parameter

Pass c k k

0 o] 1

For C = 12.57 0 6.911 4777. 0.0
© 1 11.70 4724, 35.56
2 14.32 4411, 217 .4
3 12.87 3843. 439.6
4 12.67 3977. 386.2
5 12.57 3947. 395.2
6 12.57 3948. 394.8

For Co = 6.283 0 7.540 5685. 0.0
1 10.51 4644, 323.6
2 6.423 4618, 391.0
3 8.113 4914, 387.5
4 8.337 5136. 262.5
5 6.139 4151. 394.0
6 6.832 4482, 343.3
7 6.458 4157. 368.3
8 6.294 3943, 397.5
9 6.282 3948. 394.7
10 6.283 3948. 394.8

For Co = 3,141 0 8.796 7738. 0.0
1 5.727 5803. 474.2
2 5.960 4981. 605.8
3 4.738 6064 . 260.7
4 2.967 5557. 235.6
5 3.244 5630. 234.8
6 3.280 5359. 263.3
7 3.284 5066. 293.7
8 3.306 4745. 328.0
9 3.281 4300. 372.9
10 3.171 3979. 396.1
11 3.137 3954, 394.1
12 3.140 3949. 394.6
13 3.141 3948. 394.8
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Table 1.~ System command options

Item Input* Function

Maneuver mode KB Application program selection
Plot menu LK, LP Selects plots and/or tabs for display
Start maneuver LK Initiates real time data transfer to disk
Start event LK Initiates processing and tagging of data
Stop event LK Tagé end of data slice to be processed
Stop maneuver X Ends disk recording and processing
Recall mode KB, LK Allows intermaneuver disk data processing
Plot recall KB, LP Allows display of previous analysis results
Utility option KB, LP Enables access to files for purposes of

' changing plot scales, data scaling and

certain program analysis variables

* TInput types: KB - Keybdard type-ins
LK - Latchkey push button selection
LP - Display light pen selection

Table 2.- Overview of major analysis program options

Item

Analysis options

Model analysis order

Multiple analysis order

Data preprocessing

Filtering control

Correlation lag range

Transform size
Data window

Transducer selection

Data sample rate

Model order can be varied from 2 up to 14 for each
response transducer

Multiple ordered analysis models can be specified
for use on response data yielding separate results

Recusive digital filtering, cross—correlation
analysis, autocorrelation analysis, or random
decrement signature processing

Specification of pass~band and roll-off character-
istics (up to 36 dB per octave)

Selection of correlation function positive and
negative lag range

Fast Fourier transform size up to 2048 points
Specification of time duration or frequency range

Analysis of 1 to 28 measurements at 500 samples
per second

500, 250,0r 100 samples per second
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Table 3. ~ Summary of TLEFAD results on simulated

swept frequency response data

TLEFAD pre- Analysis results * Data Filter Model
processing Clean Noisy analysis pass— order
option fd g fd + lo g + lo window band
Direct 2.00¢ .1001 2.01%+.026 | .092+.018 1.6 to 1.5 to 6
3.00] .050 3.06£.050 | .038+.013 3.6 Hz 3.9 Hz
7.0 to 6.0 to
8.01}{ .075} 7.95+.055 | .078+.022 9.0 Hz | 10.5 Hz 4
14.0 to 12.0 to
16.0{ .031| 16.0+.032 | .033%.007 18.0 Hz | 19.0 Hz 4
42.6 1 .189| 37.4+1.10 | .100+.023 33.6 to 33.0 to k6 '
52.2}1 .053{ 51.6%.404 | .083%+.007 54.6 Hz 67.0 Hz
Cross~ 2,00 .100| 2.00+.023 | .093+.019 1.5 to 0.0 to 6
correlation | 3.00 | .050 3.01+.018 | .048+.011 4.5 Hz 3.9 Hz
6.0 to 6.0 to
8.01L ) .0751 7.99+.043 | .073%.012 10.0 Hz 10.5 Hz 4
12.0 to | 12.0 to
16.0{ .030 ( 16.0+.000 | .030+.002 20.0 Hz | 19.0 Hz 4
41.81 .198 | 41.0+.468 |.220+.024 35.0 to |- 33.0 to 6
52.01 .050 ] 52.0+.052 |.050+.001 59.0 Hz | 67.0 Hz
Auto~ 1.99 ] .104 |} 2.00%£.025 | .077+.024 1.5 to 1.5 to 6
correlation | 3.00 | .050}| 3.01+.023 |.037+.008 12.0 Hz 3.9 Hz
) 4.0 to 6.0 to
8.001{ .075] 8§.01+.139 |.072£:,030 12.0 Hz | 10.5 Hz 6
10.0 to 10.0 to
16.0 ] .031}{ 16.0+.032 {.028+.003 22.0 Hz 19.0 Hz 4
41.8 1 .198{ 41.5%.239 |.203+.011 26.0 to 33.0 to 6
52.1} .0501 52.1%£.048 |.050%.002 62.0 Hz | 67.0 Hz
*fd = damped natural frequency of mode

standard deviation

structural damping coefficient of mode

361



Table 4. — Summary of results on simulated randomly

excited response data

Time Number |True results Analysis results
Program Option duration of fd g fd + 1o g + lo
(seconds)| runs

TLEFAD | Auto- 90 11 2.00| .100 2.00+.042 | .084%.019
correlation 3.001 .050 3.00+.024 | .041%+,011

8.00| .075 8.01+.055 | .063+.017

16.0| .030 16.0+.060 | .031£.006

42.0| .200 41.6+£1.03 | .182+.029

52.0} .050 52.1+,149 | .051%,004

RESIDO | Auto- 90 13 2,00 .100 2.01+.034 | .068+.015
correlation 3.00{ .050 3.01%+.017 | .041+,012

8.00 | .075 8.01+.052 | .067£.016

16.0| .030 16.0+£.055 | .025+.004

42.01} .200 42.1+.380 | .186+.024

52.0] .050 52.2+.168 | .052+.006

Random 90 13 2.00] .100 2.00+£.037 | .068£.023
decrement 3.00| .050 3.00%£.029 | .041+.015

8.00 | .075 8.02+£.060 | .059+.017

16.01 .030 16.0+.073 | .027+.005

42.01 .200 42.6£.526 | .194%.044

52.0} .050 53.4+.307 | .055+.007

180 6 2.00| .100 2.00+.021 | .076%.009

3.00} .050 3.01+.018 | .045£.010

8§.00}f .075 8.03+.051 | .058+.011

16.01} .030 16.0+.049 | .027£.002

42.0] .200 42.5+.407 | .185%.026

52.0} .050 52.3+.157 | .053+.006
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Table 5. — Summary of flight test data results

FLAPR

\\\\\\fiii\ AW1B SW1B SW2B W1B/STRP
f g f g f g f g | £, WIB WIB
Analysis cd o od o od o od g fg STRP STRP
TLEFAD 6.15] .089| 5.26| .134)15.2| .097] 48.1| .251% 6.46 .107
direct .097 | .011| -080f .022| .197| .008} 2,441 .028} 7.74 .080
o.| TLEFAD 6.15! .095{ 5.24| .139{15.2| .103} 49.3| .252}) 6.44 101
§ cross-corr|.035 | .007| -055| .014| .155| .009{ .652| .007} 7.76 | .o079
10}

g | RESIDO 6.14 | .086| - - 15.1| .082} 49.8| .238} 6.45 104
o | cross—corr|.143 | .036 | - - {.358] - |u1.84| .028} 7.67 | .071
COQUAD 6.10| .117| - - 14.8 1 .124 {1 49.5| .227 - -
TLEFAD 5.91| .100| - - - - - - - -

o direct .308 | .035 - - - - - - - -~

8 .
:‘%’ TLEFAD 6.12 | .103| - - - - §s4.2].063] - -
Z’ cross—corr| .230 | .027 - - - - - - - -
o4
& | RESTDO 6.17 | .093| - - - - Bs4.41.073] - -
cross—corr| - 3201 .040 - - - - - - - -
TLEFAD 6.04 | .066|5.20] .117{ - - - - - -
é autocorr - - - - - - - - - -
2| rESTDO 6.02 | .109 | 5.76 | .107] - -~ Is59.5] .215] - -
é autocorr - = - - - - - - - =
o | RESIDO 6.031.102]5.69| .094 | - - 58.7 | .197 - -
_ random-dec] - - - - - - - - - -
12| TLEFAD 6.15{ .106 | 5.19 | .124 | - - - - - -
©
ﬁ autocorr - - - - - - - - = -
9
» | RESIDO 6.07 | .076 | 5.67 | .161} - - - - - -
§ autocorr - - - - - - - - - -
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Figure 1. - Block diagram of Automated Telemetry Station.
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Figure 2.~ Simulated flutter response data.
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PRI®ARY XDUCER SECONDARY XDUCER EVEWY

HODE ~ IDENTITY £o! 61 -2 6-2 KEAS e HPT 1%
w0 e T/ % eods
1 .97 ——— §. 058 i . .
:ﬁ; v 1 -8 -1.50 Resonant frequency - damping 14“
2 s 9. 06 =160 fod { 9. 6045
o807 § 3 Qe 1 %4 coeff1C}¢nt resul?s o?talned g
0oy o2 0.00 — 0.070 —i from noisy sweep in figure 2. 15,172
L 8 3 12.2 5.561 20.0%
HEW i3 15.9 —— 0. 029 —l : 20.038
M2 P 4 0.02 -1.00 9. 008 599.5 2.9% 151§.2 27.900
5205 8 ¢ 9.00 190 8.366 590.5 [ 1] 15132 27.998
wo1é 4 80,8 —— 0,180 —0| £.00% 59¢.5 g.93 1518.2 27.908
7 1 4 51,9 — 0, 052 ed 3.08¢0 590.5 5.9 1513.2 27.900

Figure 3. — Annotated primary output tabulation from TLEFAD program.

PR] SEC PRI ERROR SEC ERROR acTuaL ACTUAL ACTUML
MODE -- ID CHAN CHAR FACTOR FACTOR DATA--L0AD Fi (1]
Ho2t¢ ! I ] 95 1.888-4 88050 [T11] 1.49 4,50
neo? 5 2 15 10 2.566-4 1.639-6 9082 5. 99 10.9
6oy 08 18 19 1,650-6 5. §17-0 912 11.9 20.4
“20 8 4 18 99 1 108-6 88080 206 54.9 $9.9

Figure 4. — Validation output tabulation from TLEFAD program.
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Figure 5. - Shaker frequency plot from TLEFAD program.

366



Figure 6.
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Figure 7. - Response signal cross-correlation function from TLEFAD program.
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Figure 9. — Frequency response function amplitude from COQUAD program.
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Figure 11. - Annotated in-phase spectrum from COQUAD program.
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(FREQ2/FREQL)? -
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XDUCER-CHNL RES. FREO. DAMPING COEF. FREQ!

B 3. 027 .09 2.0%2

[ 8.007 097 7.617

B 12.0 L1848 10.93

COQUAD program.

rreee 143
3.125
8.3%
13.18

Figure 13. - Annotated output tabulation from COQUAD program.
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amplitude from ENERGY program.

ANALYSIS OQUTPUT  RESOMANT DARPING MODAL VINDOWING ODEGREES OF XFORM FREQ ACTUAL FREQ wiNDOW
PASS  CMAMMEL  FREQUENCY  COEFFICIENT ENERGY LEVEL FREEOOM INCREMENT  LOWER VPPER
o 1) 16.02 .9%64 1.685740 023 ! L2481 15.2 20.5
o 1] s2.11 0525 4.319-1 020 0 L2441 55.1 87.0
® 1 16.00 .pes2 1.57%0 A1 02 .2481 12.4 2.9
® 0 52.04 L0498 4.557-1 A0 03 2441 31.7 §7.0
o 0 1.97¢ L1043 2.681-1 r 01 L0406 1. 58 2.2
L] L5 3. 001 L8501 9. 505- 1 e 03 L0406 .8 468
o " 1.958 4180 1.308-1 . .20 01 04806 6.64 9.66
® 69 1,999 0975 2. 9951 4N 03 L0406 1.98 S.%
® (1 . 00! .49 9. 818-1 L6109 1} L0406 1.58 5.9
® 0 7.998 L0782 1.476-1 o0 02 L0406 6.3 10.9

Figure 15. - Primary output tabulation from ENERGY program.
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AMALYSIS  OUTPUT  RESOMANT DARPIRG HIDAL ¥INDOWING DEGREES OF POINTS ACTUAL FRED wINDOW

PASS  CHMAMNEL FREQUENCY COEFFICIENT  EMERGY LEVEL  FREEDOM  LOADED LOVER VPPER
o 09 16.02 03504 1.657+0 620 0 00155 13.2 2.8
o 0 43,15 ——p 1920 1.791-2 .02 02 90107 35,1 57.0
o 09 52.11 .0525 4.519-1 020 02 89107 5.1 57,9
® 09 17.56 1414 2.741-4 10 02 00154 12.4 22.9
] 09 16.06 .9282 1.579¢0 .010 02 90154 12.4 22.9
® 59 41,78 i 2027 1.763-2 019 03 00105 31,7 57.0
® 09 52.04 -0498 4. 871 .018 0 00105 3.7 87.0
® 09 - 47— 1,00 00080 018 2 00105 3.7 57.0
® 08 0028 |—-1.00 00000 L0190 0 00105 51,7 $7.0
o 09 1.978 L1048 2.681-1 .020 1 00113 .58 2.2
o 08 5.001 .05t 9.545-1 .020 43 00273 .28 4.60
o 09 2,153 L1686 3.354-2 020 T 90273 .25 460
o 05 5.5 | 4008 1.255-3 .020 o 00273 2.28 .60
o 09 7.998 L9789 1.580-1 .028 o 20195 6.64 9.66
@ 09 6.215 .7%3 .082-2 019 03 00254 .58 5.5
® 09 1.999 0975 2.995-1 010 03 00254 1.58 5.56
@ 09 5.001 .0488 99181 019 03 00254 1.50 5,56
® 09 7,999 L0752 1. 476-1 019 02 90098 6.30 10.9
® 0 0446 f—-1.00 00000 010 02 10058 6. 30 0.6

~——+= Diagnostic for real difference equation root.

Figure 16. - Annotated secondary output tabulation from ENERGY program.
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Figure 17. ~ Reconstructed frequency response function
amplitude from ENERGY program.
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Figure 18.- Flight test flutter response
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Figure 18. - Concluded.
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Figure 19. - Parameter convergence for nonlinear model.
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