General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NATIONAL AERONAUTITS AND SPACE ADMINISTRATION

(NASA-CR-151058) RESULTS CF PHASE CHANGE HEAT TRARSEEE TEST OHS1 USING $0.006-S C A L E ~ H C ~ A \delta 3 / M F A O I ~$ AND EABTIAL ING O.0175-SCALE HODEL 64-0 IN UnClas THE LABC 31-INCH CFHT (Chrysler Corp.) 4! FG3/16 22929

SPACE ShUTTLE

AEROTHERMODYNAMIC DATA REPORT

JOHNSON SPACE CENTER

HOUSTON, TEXAS

DATA $\triangle A N$ agement services
chersics CORPOAATION
DMS-DR-2368
NASA CR-151,058
results of phase change heat transfer test oh5l USING 0.006-SCALE SPACE SHUTTLE ORBITER MODELS 46-0 AND 90-0 AND PARTIAL WING 0.0175-SCALE MODEL 64-O IN THE LaRC 31-INCH CFHT

by
J. W. Curmings Shuttle Aero Sciences Rockwell International Space Division

Prepared under NASA Contract Number NAS9-13247

by
Data Management Services Úhrysler Corporation Michoud Defense-Space Division New Orleans, La. 70139

for
Engineering Analysis Division

Johnson Space Center
National Aeronautics and Space Administration Houston, Texas

WIND TUNNEL TEST SPECIFICS:
Test Number: LaRC CFHT 112
NASA Series Number: OH51
Model Number: $\quad 46-0,64-0,90-0$
Test Dates:
June 17 through July 3, 1974
Occupancy Hours:
40

FACILITY COORDINATOR:
B. Spencer, Jr.

Mail Stop 365
Langley Research Center
Langley Station
Hampton, Virginia 23665
Phone: (804) 827-3911

PROJECT ENGINEERS:
J. W. Cummings

Mail Code An38
Rockwell International
Space Division
12214 Lakewood Blvd.
Downey, California 90241
Phone: (213) 922-4600

AEROHEATING ANALYSIS ENGINEER:
C. W. Craig

Mail Code AC78
Rockwell International
Space Division
12214 Lakewood B7vd.
Downey, California 90241
Phone: (213) 922-1558

DATA MANAGEMENT SERVICES:
Prepared by: Liaison--D. W. Hersey Operations--Maurice Moser, Jr.

Reviewed by: G. E McDonald

Approved:

Chrysler Corporation Michoud Defense-Space Division assumes no responsibility for the data presented other than publication and distribution.

RESULTS OF PHASE CHANGE HEAT TRANSFER TEST OH51 USING 0.006-SCALE SPACE SHUTTLE ORBITER MODELS
 46-0 AND 90-0 AND PARTIAL WING 0.0175-SCALE
 MODEL 64-0 IN THE LaRC 31-INCH CFHT
 by

J. W. Curmings, Rockwell International Space Division

ABSTRACT

Test procedures and results of OH 51 are described in this report. Test 0 OH 51 was a phase change paint test conducted in the LaRC 31 -inch CFHT utilizing models $46-0,64-0$, and $90-0$. Model 46-0 represented the Space Shuttle configuration 139 Orbiter. Model 90-0 represented the configuration 140 Orbiter. Model 64-0 represented the forward 45% portion of the Orbiter wing. The partial wing was tested with a shock generator located at various positions relative to the wing. The test was conducted at Mach 10.0 , angles of attack from 27.5° through 37.5°, and Reynolds numbers of 0.5 and 1.5 million per foot.
Page
ABSTRACT iii
INDEX OF MODEL FIGURES 2
NOMENCLATURE 3
CONFIGURATIONS INVESTIGATED 4
TEST FACILITY DESCRIPTION 8
DATA REDUCTION 9
REFERENCES 10
TABLES
I. TEST CONDITIONS 11
II. TEST PROGRAM 12
III. MODEL DIMENSIONAL DATA 15
MODEL FIGURES 30

INDEX OF MODEL FIGURES

Figure Title Page

1. Axis systems. 30
2. Model Sketches.
a. Orbiter Configuration 31
b. Model 64-0 Partial Wing. 32
c. Partial Wing Installation With Shock Generator 33
3. Model Photographs.
a. Orbiter Grid Model Installed in Tunnel 34
b. Partial Wing Model Installed in Tunnel 35
C. Partial Wing Model Mounting Assembly 36
d. Partial Wing Model With Shock Generator 37

NOMENCLATURE

Symbol	Definition
M	freestream Mach number
P_{0}	freestream stagnation pressure, psia
$\mathrm{Re} / \mathrm{ft}$	freestream unit Reynolds number, million per foot
T_{0}	freestream total temperature, ${ }^{\circ} \mathrm{F}$
T_{pc}	paint phase change temperature, ${ }^{\circ} \mathrm{F}$
X	longitudinal distance between shock generator leading edge and wing model reference point as defined in figure 2 c , in .
x_{0}	Orbiter longitudinal coordinate, in.
Y	lateral distance between shock generator centerline and wing model reference point as defined in figure $2 c$, in.
Y_{0}	Orbiter lateral coordinate, in.
Z	vertical distance between shock generator and wing model reference system as defined in figure 2c, in.
Z_{0}	Orbiter vertical coordinate, in.
α	angle of attack, deg.
β	angle of sideslip, deg.
$\mathrm{T}_{\mathbf{i}}$	initial model temperature before model is injected into tunnel, ${ }^{\circ} \mathrm{F}$
b/2	semi-span
C	local chord, inches
IML	inner mold line
OML	outer mold line

CONFIGURATIONS INVESTIGATED

Three different configurations were investigated. Model 64-0 was a partial model of the Orbiter wing. Model 46-0 represented the Orbiter - 139 configuration. Model 90-0 represented the Orbiter - 140 configuration. The shock generator edge model was cut from an existing 0.0175 -scale, Grumman built, Material "G", Orbiter paint model 21-0. Two identical models were fabricated: one for testing at $\alpha=30^{\circ}$ and the other for testing at $\alpha=35^{\circ}$. The model was cut from the left hand wing to have dimensions from the 35% semi-span to the wing tip and cut along a line three i:aches from the leading edge and parallel to the 45° sweep angle. The model was sting mounted directly to the tunnel support system. A removable thin metal plate was attached at the 35% semi-span. A third leading edge model was fabricated and painted with strips to be used as a grid reference system. The model was defined by Rockwell drawing SS-H-01304 and is shown in figures $2 b$ and $3 c$.

The leading edge wing model was sting mounted to the tunnel support system and positioned to be visible in the Schlieren window. The shock generator consisted of a series of sharp nose cones attached to a strut and located forward of the wing leading edge model. Six cones were provided which had half angles of $25^{\circ}, 27^{\circ}, 28^{\circ}, 29^{\circ}, 30^{\circ}$, and 32°. All cones were made from 17-4 PH stainless steel and all were removable. The shock generator was attached to the injection system floor. Shock strength and location were varied by changing cones and location of the generator. It was defined by Rockwell drawing SS-H-01305. Figures

CONFIGURATIONS INVESTIGATED (Continued)

2c and 3d show the shock generator installation with the partial wing model.
The 0.006 paint model $46-0$ was sting mounted to the tunnel support system utilizing the W - $118 S A$ bent sting adapter. The model was rolled 90° clockwise from the conventional position and located in the Schlieren window in the same general location as the leading edge wing model. The n.nn6 paint model 90-0 was stinq mounted to the tunnel support system and rolled 90° utilizing the SS-H-00386-1 bent sting adapter. A reference arid model was available for each configuration. All models were leveled in pitch and roll prior to testing. Figure 2a shows the general Orbiter configuration. Figure 3a shows an Orbiter grid model mounted in the tunnel.

Two $35-\mathrm{mm}$ cameras were aligned and focused on the model in the tunnel, one from the top and one from the side. When taking paint data, both cameras operated together. When Schlieren coverage was required, the side camera was "cranked" down out of the way. When testing the leading edge wing model, the initial location of the shock generator was positioned at pre-determined values. Upon evaluation of the Schlieren photographs, the shock generator was adjusted as required to position shock impingement. Any movement in the shock generator was noted and recorded as given in Table II.

Before each run, the initial temperature of the model was determined by a digital contact thermometer. This thermometer was mounted on the end of a probe, which was placed against the model surface for a reading. Before and after a run, the model was in the injection chamber outside

CONFIGURATIONS INVESTIGATED (Continued)

of the test section. Only after flow was established was the model and support system injected. Continuous pictures were taken throughout the test period. At the end of the test period, the model was withdrawn. The test period was determined by the paint-melt temperature and estimated heating rates. ifter the model was removed from the injection chamber and replaced by a freshly painted model, specific areas of interest on the tested model were photographed at various angles with a Polaroid camera. After all photographs were completed, the model was washed with a solvent to remove the remaining paint. Fresh paint was then sprayed on to prepare the model for another run.

The models were denoted as follows:

Configuration Designation	Model	Component Designation
Wing	$64-0$	W_{123}
139 ORB	$46-0$	$B_{17} C_{7} F_{5} M_{4} V_{7} W_{103} E_{22}$
		R_{5}
140 ORB	$90-0$	$B_{26} C_{9} F_{8} M_{7} V_{8} W_{116} E_{22}$
		R_{5}

Where individual component designations were as follows:
Nomenclature Description
${ }^{B} 17$
Body (46-0)

Nomenclature	Description
B_{26}	Body (90-0)
C_{7}	Canopy ($46-0$)
c_{9}	Canopy (90-0)
F_{5}	Body Flap (46-0)
F_{8}	Body Flap (90-0)
M_{4}	OMS Pods ($46-0$)
M_{7}	OMS Pods (90-0)
v_{7}	Vertical Tail (46-0)
V_{8}	Vertical Tail (90-0)
W_{103}	Wing used with body $\mathrm{B}_{17},(46-0)$
W_{116}	Wing used with body $\mathrm{B}_{2} .(90-0)$
W_{123}	Partial wing fabr:cated from left wing of model 21-0, (64-9)
E_{22}	elevon
R_{5}	rudder

The Mach 10 nozzle of the Langley Continuous Flow Hypersonic Tunnel is designed to operate at stagnation pressures of 15 to 150 atmospheres at temperatures up to 1960° R. Air is preheated electrically by passing it through a multi-tube heater. The nozzle has a 31 -inch square test section which incorporates a movable second minimum. Continuous operation is achieved by passing the air through a series of compressors. Additional information on this facility is given in NASA TM X-1130 entitled, "Characteristics of Major Active Wind Tunnels at the Langley Research Center," by William T. Schaefer, Jr.

Recorded data consisted of motion picture film recorded by the cameras outside the tunnel. These data are retained by:

James C. Dunavant
Mail Stop 408
Langley Research Center
Hampton, Va. 23665
Phone: (804) 827-3984
Use of the data should be obtained through contact with the abjve person.

1. SD74-SH-0017, "Pretest Information For Tests of an 0.0175-Scale Leading Edge Wing Model (64-0) and a 0.006 Scale Paint Model (46-0 and 90-0) in the Langley Research Center, Variable Density, Mach Wind Tunnel (Test OH51)," By D. G. Walstad, March 6, 1974.
2. Jones, R. A. and Jaeger, Hunt: "Use of Temperature Indicators for Obtaining Quantitative Aerodynamic Heat Transfer Data." NASA-TRR-230 (Feb. 1966).
3. Carslaw, H. S. and Jaeger J. C.: "Conduction of Heat in Solids." Oxford Clarenden Press (1959).
4. SAS/WT0/74-407, Trip Report for Test OH51, Model 64-0, Wing and Shock Generator Including Two (2) 0.006-Scale Full Span Orbiters. By J. W. Cummings, dated July 23, 1974.

TABLE 1.

TEST : OH51 (LaRC CFHT 112)
DATE: Po.st-test
TEST CONDITIONS

MACH MUMBER	REYNOLDS NUMBER (per foot)	DYMAMIC PRESSURE (pounds/sq. inch)	STAGNATION TEMPERATURE (degrees Fahrenheit)
10.0	1.5×10^{6}	7.788	1375
10.0	0.5×10^{6}	2.424	1350

BALANCE UTILIZED: \qquad
CAPACITY:
ACCURACY:
COEFFICIENT
TOLERANCE:

COMMENTS:

TABLE II. - TEST PROGRAM

TABLE II. - Continued.

Config.	$\begin{gathered} \alpha \\ (\operatorname{deg}) \end{gathered}$	$\begin{aligned} & \mathrm{Re} / \mathrm{ft} \\ & \text { (million/ft) } \end{aligned}$	$\stackrel{\mathrm{P}_{0}}{(\text { psia) }}$	$\begin{gathered} \left.\mathrm{T}_{\mathrm{o}}^{\mathrm{F}}\right) \end{gathered}$	$\left({ }^{T}{ }_{\left({ }^{\circ}+\right.}^{F}\right)$	$\begin{gathered} \mathrm{T} \mathrm{pc} \\ (\mathrm{O}) \end{gathered}$	Cone half angle (deg)	X	tion Y	Z	Run No.
Wing	30	0.5	375	1350	78	350					24
	37.5	.		1350	78	$0{ }^{1}$					25
	30			1350	78	250					26
	30			1355	79	011					27
	35			1360	79	350					28
	27.5			1370	80	350					29
				1370	80	250					30
	27.5			1370	80	250					31
	35			1375	80	$0 i 1$					32
	27.5			1380	80	$0 i 1$					33
	32.5	\downarrow	\downarrow	1385	80	$0 i 1$					34
		SHOCK GENER	ATOR IN	L3LED							
		T	T	1350	75	350	25				35
	I			1405 1340	75 75	250 0.1	I	I	\downarrow	J	36 37
	35	1		1330	75	350					38
	30		\downarrow	1335	77	350	I	T	I	I	39
	35	0.5	375	1360	77	250	28	5.0	2.79	1.32	40
	30			1360	77	250	T	T		T	41
	35			1375	78	$0 i 1$					42
	30			1375	78	$0 i 1$	\downarrow	\downarrow	\downarrow		43
	30			1380	78	350	29	5.0	2.93	1.34	44
	30			1385	80	250				I	45
	30			1335	80	0 il	\downarrow	1	\downarrow	\downarrow	46
	35			1320	80	350	30	5.0	3.07	1.36	47
	30			1300	80	350	T	T	T	T	48
	35			1330	80	250					49
	30	,		1350	80	250			-		50
	35 30	\downarrow	\downarrow	1345 1360	75 75	$0 i 1$ $0 i 1$	\downarrow	\downarrow	\downarrow	\downarrow	51 52

TABLE II. - Concluded.

TABLE III. - MODEL DIMENSIONAL DATA

MODEL COMPONENT: $\frac{\text { Body }\left(B_{17}\right)}{1}$
GENERAL DESCRIPTION: \quad Basic fuselage for models $46-1,-2,-3,-4$.

Model Scale $=0.00593$
DRAWING NUMBER

V170-000139

DIMENSION:
Lemath~in.
Max Width~in.
Max Depth~in.
Fineriess Ratio
Areo $\sim \mathrm{ft}^{2}$
Mux Cross-Sectional
Planform
Wetted
Bose

FULL SCALE MODEL SCALE
$\xrightarrow{1290.3} \quad 7.65148$ $267.6 \quad 1.58687$
$244.5 \quad 1.44988$

- 82175 (172175
\qquad
\qquad
—

HOLEL CO:PCHERT: BODY - B_{26}

GERERAL OESCRIPTIOR: Orbiter Fuselage Configuration $140 \mathrm{~A} / \mathrm{B}$
NOTE: B2indentimal to B2, except underside of fuselage refaired to accept N_{116}.

Model Scale $=0.006$
VL70.000193
DRAWIK RU: SER:
VL70-0001401

DIMENSIOUS:

Length (Bodj; Fwd Sta $X_{0}=235$) - in.
Mix. Kidth (at $X_{0}=1520$) - in.

Max. Depth (at $X_{0}-1464$) - in.
FULL-SCALE MODEL SCALE

Fineness katio

Arca - rt^{2}

Man. Cross-Sectional	
Planform	
Ketted	
Base	

TABLE III. - Continued.

MODEL COMPONENT: Canopy (C_{7})		
GENERAL DESCRIPTION: 3 configurations per lines VL70-000139. InsufficientInformation to complete dimensional data at this time.		
Model Scale $=0.006$		
DRAWING NUMBER VL70-000139		
DIMENSION:	FULL SCALE	MODEL SCALE
Length (Sta. Fwd. Bulkhead)	432.70	3.0309
Mox Width (T.E. Bulkhead)	571.40	3.997
Max Depth (WPZ $=\ldots$ to $Z_{0}=501$)		
Fineness Ratio		
Area		
Max Cross-Sectional		
Planform		
- Wetted		
Base		

MODEL DIMENSIONAL DATA - Continued.

MODEL COMPONENT : Canopr (C9)
GENERAL DESCRIPTION : Configuration_14OB

Model Scale $=0.006$
VL70-000140B
DRAWING NUMBER: VL70-000143A

DIMENSIONS

TABLE III. - Continued.

MODEL COMPONENT: ELEVON E22

GENERAL OESCRIPTION: Design configuration 3, right wing only

Mode1 Scale: 0.006

DRAWING NUMBER:
VL70-000139

DIMENSIONS:
Area- Ft^{2}
Span (equivalent) - In.
Inb'd equivalent chord - In.
Outb'd equivalent chord - In.
Ratio movable surface chord/ total surface chord

At Inb'd equiv. chord
At Outb'd equiv. chord
Sweep Back Angles, degrees
Leading Edge
Tailing Edge
Hingeline
Area Moment (Normal to hinge line)

FULL-SCALE	
$\frac{205.52}{353.34}$	
$\frac{114.78}{55.00}$	

$\frac{0.208}{0.400} \quad \frac{0.208}{0.400}$

Leading Edge	0.00	-0.00
Tailing Edge	-10.24	-10.24
Hingeline	-0.00	
Area Moment (Normal to hinge line)		

GENERAL DESCRIPTION: Body flap located on the lower aft end of the orbiter fuselage.,

Model Scale * 0.00593

DRAWING NUMBER
V170-000139
DIMENSION:
FULL SCALE MODEL SCALE
Length.~in.
Max Width~in.

Area $\sim \mathrm{ft}^{2}$
Max Cross-Sectional
Platform

-142.5195
-0.00501

TABLE III. - Continued.

MODEL COMPONENT: Body Flap - Fs

GENERAL DESCRIPTION: Confiruration 4

Model Scale - 0.006 DRAWING NUMBER	VL70-000140B, V1.70-000200	
DIMENSION:	FULL SCALE	MODEL SCALE
Length in.	84.7	. 508
Max Width in.	262.308	1.574
Max Depth in.	23.000	. 138
Fineness Ratio		-
Areo - $\mathrm{ft}^{\mathbf{2}}$.	
Max Cross-Sectional	-	
Planform	158.85350	. 0057
Wetted		
Base	41.89642	. 00151

\angle of OUS Pod
$W P=463.9$ in. F.S.: WP $400+63.9=463.9$
$B P=80.0$ in. F.S.
Length 1214.0 to $1560.0=346.0$ in. F.S.
NOTE: M_{4} identical to M_{3} of $2 A$ configuration except intersection to body.

TABLE III. - Continued.

MODEL COMCNENT: ONS POD.MT
CENERAL DESCRIYIION: Configuration 140B Orbiter ONS Pod

MODEL SCALE: 0.006

DRP:IIHG NUMBER: $\quad 170000140 \mathrm{Na}$		
DIENSIONS:	FULL SCALE	MODEL ECRLE
Length (ONS Fwd Sta $X_{0}=1233.0$) - IN.	327.000	1.962
Max Whdth (@ $\mathrm{X}_{0}=1450.0$) - IN.	94.5	. 567
Max. Depth ($\mathrm{K}_{0}=1493.0$) - In.	109.000	. 654

Area
Max Max Cross-Sectional
Planforn
Wetted
Base

MODEL COMPONENT: \quad RUDDER R_{5}

GENERAL DESCRIPTION: Design configurations 2A, 3 and 3A

MODEL SCALE: 0.006

DRAWING NUMBER: VL70-0001.46A -000095 -000139

DIMENSIONS:	FULL-SCALE	MODEL SCALE
Area - Ft^{2}	100.15	0.036
Span (equivalent)-In.	201.00	1.206
Inb'd equivalent chord - In.	91.585	0.5495
Outb'd equivalent chord - In.	50.833	0.305
Ratio movable surface chord/ total surface chord		

At Inb'd equiv. chord
At Outb'd equiv. chord

$-\frac{0.400}{0.400} \quad \underline{0.400}$

Sweep Back Angles, degrees
Leading Edge
3:.83
34.83

Tailing Edge
Hingeline 3433 26.25
\qquad
34.83

Area Moment (Normal to hinge line)
Mean aerodynamic chord - In.

$$
73.2
$$

MODEL COMPONENT:
Vertical (V_{7})-Lightweight orbiter configuration.
GENERAL DESCRIPTION: Centerline vertical tail, double-wedgeairfoil with

Model Scale $=0.00593$

| DRAWING NUMBER: | VL70-0000139
 VL70-000095 | |
| :--- | :--- | :--- | :--- |
| DIMENSIONS: | | FULL-SCALE |

TOTAL DATA
Area, (Theo.) ft^{2}
Planform
Span. (Theo.) in.
Aspect Ratio
Rate of Taper
Taper Ratio
Sweepback Angles, degrees
Leading Edge
Trailing Edge
0.25 Element Line

Chords:
Root, (Theo.) WP
Tip, (Theo.) WP
MAC
Fus. Sta. of 0.25 MAC
W.P. of 0.25 MAC
B.L. of 0.25 MAC

Airfoil Section
Leading Wedge Angle, degrees
Trailing Wesdge Angle, degrees
Leading Edge Radius ~in.
Void Area
Blanketed Area

425.92	$0.01498{ }^{\circ}$
315.72	1.87222
1.675	1.675
0.507	0.507
0.404	0.404
45.000	45.000
26.249	26.249
41.130	41.130
268.50	1.59220
108.47	0.64323
199.81	1.18487
1463.50	8.67856
635.522	3.76864
0.00	0.00
10.000	10.000
14.920	14.920
2.00	0.01186
13.17	0.00046

table III. - Continued.
MODEL COAPONENT: VERTICAL - VB
GENERAL DESCRIPTION: Conflpuration 14OB Orbitor Vertical Tail
NOTE: Similar to V5 with ridius of T.E. upper corner and L.E. corner
where vertical moats fuselage.
MODEL SCALE $=0.006$
DRAWING NUPBER:
DIMENSIONS:
FULL -SCALE
MODEL SCALE
TOTAL DATA

Area (Theo) Ft^{2}	413.253	. 0148
Planform		
Span (Theo) In	315.72	1.894
Aspect Ratio	1.675	2.675
Rate of Taper	0.507	0.507
Taper Ratio	0.404	0.404
Sweep Back Angles, degrees		
Leading Edge	45.00	45.00
Trailing Edge	25.947	25.947
0.25 Element Line	41.130	42.130
Chords:		
Root (Theo) WP	268.500	1.621
Tip (Theo) WP	108.470	0.651
	199.807	1.198
Fus. Sta. of . 25 MAC	$\underline{14.63 .50}$	8.781
W. P. of . 25 MAC	635.52	3.813
B. L. of . 25 MAC	0.00	0,00
Alrfoll Section		
Leading Wedge Angle Deg	10.00	10.00
Trailing Wedge Angle Deg	-14.920	24.92
Ledding Edge Radius	2.00	2.00
Void Área	13.17	13.17
Blanketed Area	0.0	0.00

GENERAL DESCRIPTION: Configuration 3 Orbiter per lines VL.70-000139

NOTE: Same planform as W87, except dihedral at TE

Scale Model $=0.006$

DRAWING NUMBER: VL70-000139

```
DIMENSIONS:
FULL-SCALE
MODEL SCALE
```

TOTAL DATA

$\begin{aligned} & \text { Area (Theo.) - } \mathrm{Ft}^{2} \\ & \text { Planform } \\ & \text { Wetted } \end{aligned}$	2690.00	0.09684
Span (Theo In.)	936.68	5.62
Aspect Ratio	2.265	2.265
Rate of Taper	1.177	1.177
Taper Ratio	0.200	0.200
Dihedral Angle, degrees ($¢$ TE of Elevon)	3.500	3.500
Incidence Angle, degrees	3.000	3.000
Aerodynamic Twist, degrees	+3.600	+3.000
Toe-In Angle		
Cant Angle		
Sweep Back Angles, degrees		
Leading Edge	45,000	45.000
Trailing Edge	-10.24	-10.24
0.25 Element Line	35,209	35,209
Chords: (Theo)		
Root (Theo) B.P.0.0.	689.24	4.135
Tip, (Theo) B.P.	137.85	0.8271
MAC	474.81	2.849
Fus. Sta. of . 25 MAC	1136.89	6.8213
W.P. of . 25 MAC	299.20	1.7952
B.L. of . 25 MAC	182.13	1.09278
Airfoil Section		
Root		
Tip		
EXPOSED DATA		
Area (Theo) Ft^{2}	1752.29	0.06211
Span, (Theo) In. BP 108	720.68	4.32408
Aspect Ratio	2.058	
Taper Ratio	0.2451	
Chords		
Root BP108	562.40	3.3744
Tip 1.00 b	137.85	. 8271
MAC 2	393.03	2.35818
Fus. Sta. of . 25 MAC	1185.31	7.11186
W.P. of . 25 MAC	300.20	1.8012
B.L. of . 25 MAC	251.75	1.57056

MODEL COAPONENT: WING-W 16
GENERAL DESCRIPTiAN.: Configuration 4
NOTE: Identical to : except airfoil thickness. Dihedral angle is along trailing edge of wing.

Model Scale $=0.006$
IEST NO.

TOTAL DATA
Area (Theo.)
Planform
Span (Theo In.
Aspect Ratio
Rate of Taper
Taper Ratio
Dihedral Angle, degrees(at $X_{0}=1506.623, Y_{0}=$
Incidence Angle, degrees $105, \mathrm{z}_{\mathrm{O}}=282.75$)
Aerodynamic Twist, degrees
Sweep Back Angles, degrees
Leading Edge
$F t^{2}$

Trailing Edge
0.25 Element Line

Chords:
Root (Theo) B.P.0.0.
Tip, (Theo) B.P.
MAC
Fus. Sta, of . 25 MAC
W.P. of . 25 : 1 AC
B.L. of . 25 :1AC

$\frac{2690.00}{936.6816}$
$\frac{2.265}{2.1 .177}$
$\frac{0.200}{3.500}$
0.500
+3.000
45.00
10.056
35.209

.09684
$\frac{5.620}{2.265}$
1.177 0.200 3.500 0.500 +3.000 45.00 -10.056 35.209
4.135
.8 .827
6.760
6.746

EXPOSED DATA
Area (Tneo) Ft^{2}
Span, (heo) In. EP 108
Aspect Ratio
Taper Ratio
Chords
Rodt BP 108
Tip $1.00 \frac{b}{2}$
Fus. Sta. of . 25 MAC
W.P. of . 25 :1AC
B.L. of . 25 HAC

Airfoil Section (rockrell fod IIASA) XXXXX-64
Root $\frac{b}{2}=0.425$
$\operatorname{Tip} \frac{b}{2}=1.00$
$\frac{0.113}{0.12} \quad \frac{0.113}{0.12}$

Data for (1) of (2) Sides
Leading Edge Cuff
Planform Area ${ }^{2}$
Leading Edge Intersects Fus M. L. © Sta Leading Edge Intersects Wing e Sta
$\frac{718.33}{\frac{505.0}{1003.5}} \frac{-00426}{3.030}$

MDDEL *2vporict

and parallel to the $45 x^{\prime}$ element line.
NOTE: Dihedral anple is defined at the lower surface of the nin at the
75.33\% element line profected into a plane 1 to the FRL.
-

Model Scale $=0.0175$

DIMENS:ONS:

?lanform
Span! Theo In.
Aspec: Qatio
Rate of Taper
Taper Ratio
Dinedral Anc̣ie, degrees
Incidence Argie, degrees
Ae rodynamic Twist, degrees
Sweep Eack Angies, decrees Leading Edge Trailing Edge 0.25 Element Line

Chords:
Root (Theo) 3.P.0.0.
Tio, (Theo) B.P.
MAC
Fus. Sta. of . 25 MAC
W.P. of . 25 MAC
B.L. of .25 MAC

EXPOSED DATA
Area (Tneo) Ft^{2}
Span, (Theo) In. BP 108
Aspect Ratio
Taper Ratic
Chords
Root BP108
Tip $1.00 \frac{b}{2}$
MAC
Fus. Sta. of . 25 MAC
W.P. of . 25 MAC
B.L. of . 25 MAC

Airfoil Section (Rociwell Mod NASA) XXXX-64
Root $\frac{b}{2}=$
TiD $\frac{b}{2}{ }^{=}$

$\frac{.10}{.12}$

Jata for (!) of (2) Sides

DWG. NO. VL7O-COD3O

Full-Scale
Model Scale

689.24
137.85
474.81
1136.89
299.20
182.13

$\frac{0.82381}{16.39190}$
$\frac{2.265}{1.177}$
$\frac{.200}{3.507}$
$\frac{3.000}{+3.000}$
45.000
-71.24
$\frac{35.209}{12.0617}$
$\frac{2.41238}{8.30918}$
19.39558
$\frac{5.2360}{3.18728}$

$\frac{1752.29}{\frac{720.68}{2.05 \%}}$
$\frac{0.2451}{562.40}$
$\frac{137.85}{393.03}$
$\frac{1185.31}{360.2 \pi}$
$\frac{143.76}{12.6119}$

.10

$$
\begin{aligned}
& \text { Leading Edge Cuft } \\
& \text { Lanform aqea rt } \\
& \text { Leading Edge intersects Fus M. L. © Sto } \\
& \text { Leading Edge Intersects whnc e Sto }
\end{aligned}
$$

$$
\quad 12 n .33
$$

550.0
1035.0
$\frac{0.03685}{\frac{9.8}{13.1125}}$

Figure 1. Axis Systems.

a. Orbiter Configuration

Figure 2. - Model Sketches.

b. Model 64-0 Partial Wing

Figure 2. - Continued.

Figure 2. - Concluded.

a. Orbiter Grid Model Installed in Tunnel

Figure 3. - Model Photographs.

b. Partial Wing Model Installed in Tunnel

Figure 3. - Continued.

C. Partial Wing Model Mounting Assembly

Figure 3. - Continued.

d. Partial Wing Model With Shock Generator

Figure 3. - Concluded.

