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MODEL NUMBER 55-0 IN THE NASA EaRC 16-FOOT



TRANSONIC DYNAMICS WIND TUNNEL



by 

C. L. Berthold, Rockwell International Space Division



ABSTRACT



A 0.14-scale dynamically scaled model of the space shuttle orbiter 

vertical' tail was tested in the Langley Research Center 16-Foot Transonic 

Dynamics Wind Tunnel during August 1974 to determine flutter, buffet, and 

rudder buzz boundaries. Mach numbers between .5 and 1.11 were investiga­


ted. Rockwell shuttle model 55-0 was used for this investigation. A



description of the test procedure, hardware, and results of this test is



presented herein.



iii 



(THIS PAGE INfTENiTI ONALLY MET BLANK.) 



TABLE OF CONTENTS



Page



ABSTRACT 

INDEX OF FIGURES 2



INTRODUCTION 3



NOMENCLATURE 4



CONFIGURATIONS INVESTIGATED 7



TEST FACILITY DESCRIPTION 12



TEST PROCEDURE 13



DATA REDUCTION 19



DISCUSSION OF RESULTS 20



REFERENCES 23



TABLES 

I. TEST SUMMARY 	 24



I. 	 MODEL DIMENSIONAL DATA 	 26



III. CONFIGURATION DESCRIPTION AND FREQUENCY SUMMARY 	 30



IV. MEASURED MODEL ROOT FLEXIBILITIES 	 31



V. PANEL MASS, INERTIA, AND C.G. VALUES 

a. Vertical Tail 	 32



b. Rudders 	 33



VI. 	 MODAL ORTHOGONALITY CHECKS AND GENERALIZED MASS FOR


FIN WITH STIFF ACTUATORS 34



FIGURES 	 35





INDEX OF FIGURES 

Figures Title Page 

1. Model installation sketch. 35



2. Rib arrangement sketch. 36



3. Model photographs.



a. Vertical Tail 37



b. Fuselage Structure xith Skin Removed 38



c. Complete Model Assembly Mounted in the


IaRC 16 TDT 39



4. Model instrumentation diagram. 4o 

5. Bending flexibility. 41



6. Torsional flexibility. 42



7. Panel definition for mass and inertia measurements. 43



8. Flutter boundary for configuration No. 1. 44



9 Flutter boundary for configuration No. 2. 45



10. Flutter boundary for configuration No. 3. 46



l1. Flutter boundary for configuration No. 4. 47



12. True velocity versus density at Mach .6. 48



13. True velocity versus density at Mach .7. 49



14. True velocity versus density at Mach .8. 50



15. True velocity versus density at Mach .85. 51



16. True velocity versus density at Mach 1.3. 52



17. Damping versus Mach number. 53



18. Inverse of amplitude and frequency versus dynamic 
pressure. 54



2 



INTRODUCTION 

Flutter boundaries for the space shuttle orbiter configuration 140B 

vertical tail were investigated. This investigation was conducted in the 

NASA langley Research Center's 16 -Foot Transonic Dynamics Wind Tunnel. 

The model was a 0.14-scale dynamically scaled vertical panel mounted on 

a rigid model of a segment of the orbiter upper aft fuselage. This



investigation was called 0S7. The model was designed and fabricated by



Grumman Aerospace Corporation (GAC) under purchase order agreement



M3W3XMU483002 with Rockwell International Corporation's Space Division. 

Grumman also performed pretest measurements and calibrations of the
 


model, conducted the test, and analyzed the test results under this



same purchase order. Much of the information presented in this report 

was derived from Reference 1, which is Grumman's final document of its



work under this purchase order.
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NCMNCLATURE



SYMBOL DEFINITION 

ar ratio of flight vehicle to model speed of sound 

CG center of gravity 

EI bending stiffness, slug-ft
3/sec2 

f measured frequency of oscillation, H. 

Fn Froude number 

gr gravitational acceleration ratio-

GJ torsional stiffness, slug-ft
3/sec2 

HO freestream total pressure, psf 

I calculated moment of inertia plus tare inertia of model 
rig, lb.-in2 

IX'CG 
inertia about X' axis with origin at the center of 
gravity, lb-in2 

IYIcG inertia about Y' axis with origin at the center of 
CG gravity, lb-in 2 

IztcG inertia about Z' axis with origin at the center of 
gravity, lb-in2 

k reduced frequency 

kr ratio of flight vehicle to model reduced frequency 

K spring rotational rate, in-lb/radian 

I geometric reference length, ft 

L length dimension 

m mass, slugs 

mr ratio of flight vehicle to model mass 

M mass dimension, Mach number 
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NCMENCLATURE (Continued)



SYMBOL DEFINITION 

M freestream Mach number 

Py load in y direction 

q freestream dynamic pressure, psf 

Rn Reynolds number 

T time, see 

Tz torsion about Z - axis, ft-lb 

v air speed, ft/sec 

W weight, lb 

Xo orbiter longitudinal coordinate, in 

X 0 vertical tail coordinate perpendicular 
line, in 

X1 CG X' dimension of center of gravity, in 

Yo orbiter lateral coordinate, in 

to 50% chord 

YV vertical tail coordinate parallel to 50% chord line, in



Y1 CG Y' dimension of center of gravity, in



orbiter vertical coordinate, in
Zo 

Z? vertical tail coordinate orthogonal to vertical tail 
reference plane, in 

Z1 CG Z' of center of gravity 

5 y deflection in y direction 

0 Z angular deflection about Z axis, radians 

ratio of model to flight vehicle absolute viscosityr 
 
coefficients



Hi constant total pressure
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SYMBOL 
 

p 
 

4hinge 
 

SUBSCRIPTS



a/c 
 

model 
 

r 
 

X 
 

X, 
 

Y 
 

Y, 
 

Z 
 

Z' 
 

NOMENCLATURE (Concluded)



DEFINITION



freestream air density, slugs/ft
3



frequency, ht



line



center line



full scale flight vehicle value



model value



ratio of model to flight vehicle



value referenced to X - axis



value referenced to V - axis



value reference to Y - axis



value referenced to Y' - axis



value referenced to Z - axis



value referenced to Z' - axis





CONFIGURATIONS INVESTIGATED



The number 55-0 fin-rudder model was a O.l1iO geometric scale repre­

sentation of 140B space shuttle orbiter components. It was dynamically 

scaled; i.e., the reduced frequency ratio and mass density ratio were 

scaled to 1.0 to properly simulate stiffness and mass properties of the 

full scale structures. The model scale factors were established to- assure
 


that estimated flutter boundaries fell within the range of the LaRC 16­


foot TDT. The model had a stressed skin design constructed of epoxy­


resin (pre-preg) fiberglass plies layed up on cellular-cellulose acetate



(CCA) foam backing; local areas such as root attachments and actuator
 


back-up structure were reinforced by steel sheet (.0 03 " thick) to assure



a smooth load transition -at the metal-fiberglass interfaces. The model



had a control surface rudder with actuator stiffnesses modeled by steel



flexural pivots. Access panels at the control surface actuator locations



facilitated changing the pivot flexures. Different flexures were tested



to simulate nominal, 75% of nominal, and 50% of nominal actuator stiff­


nesses. Fuselage fairings adjacent to the fin were size scaled to simu­


late proper local flow characteristics as well as to place the surface



outside the tunnel boundary layer; they were not dynamically scaled.



The fairings were constructed of fiberglass skin attached to aluminum



frames. The model consisted of the following components:



1. One sidewall mount to tunnel mounting plate



2. One partial non-dynamic fuselage
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CONFIGURATIONS INVESTIGATED (Continued)



3. One vertical fin assembly (including rudder)



4. One additional set of rudders (upper and lower)



5. Nine rudder flexure sets



(a) 3 Stiffness level 1



(b) 3 Stiffness level 2



(c) 3 Stiffness level 3



6. One internal model shaker



7. One control surface deflect/release mechanism per rudder



8. Eight (8)strain gage circuits (4bending, 4 torsion)



9. Two magnetic induction coil rudder position indicators



10. One accelerometer (vertical fin tip)



11. Control panel for shaker and deflector release mechanism



Note that Items 6 through 10 and one (1) set of Item 5 were included as



part of Item 3. Figure I shows the model assembly. Figure 2 shows the



rib arrangement. Figure 3 presents photographs of the model.



The following scaling parameters were used to simulate an altitude



of 30,000 feet during the test:



Scale Factors (Model/Aircraft)


Parameter Symbol Dimensions Equation Value


Length ' L *r=model/a/c .14


Air Density P ML-3
 Pr=Pmodel/Pa/c 1.07 

Air Speed v jr-1 vr=vmodel/va/c .52 


Dynamic Pressure q ML-1T"2 PrV2r .292 
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CONFIGURATIONS INVESTIGATED (Continued) 

Parameter Symbol 	Dimensions Equation Value



1Frequency Gt T- krvr/4/r 3.73 

Velocity LT- 1 krV .52r 

Acceleration 	 LT 2 kevr/2r 1.95 

Mass i M YrPr~r 2.93 x 10~3 

Mass Unbalance ML urPre 4.11 x 1O- 4 

Mass Moment of Inertia ML2 PrPrr 5.75 x 10-5 

Stiffness EI,GJ 	 ML3T - 2  k2 v 2 P 4 1.ii x 10 - 4 

MT"2  Bending Spring Constant 	 k2V2pr'r h.o9x lo - 2 

Torsional Spring Constant ML2T "2  k2v2pr 3 8.o x( 1O 4 

Force MLT-2 k2vPr2 5.72 X 3 

Moment MLgk2 q3 8.01 x 10-4 

Mass Density Ratio Pr=mr/Pr 4 1.0 

Reduced Frequency k 	 ----- kr=r +/vr 1.0



Froude Number Fn k2v/2rgr 1.93 

Reynolds Number Rn ---- Prrr/r * .087 

Mach Number M Vr/ar 1.0 

where: /r = absolute 	viscosity coefficient ratio = .90 

gr gravitational acceleration ratio = 1.0


= sonic speed ratio = .52aT 


Air speed is the aircraft flight speed; velocity is the


speed associated with vibratfons of the model. These


quantities differ only when the reduced frequency ratio


is not unity.
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ICONFIGURATIONS INVESTIGATED (Continued)



Nomenclature used to designate the model components was as follows:



B%6 Body 	 Similar to B26 lines in area of vertical 
tail above W.P. 458 and with a truncated 
forward fuselage section. 

M7 CMS Pods 	 Upper portion, both pods.



V8 Vertical Tail - 14OC/D Configuration.



R5 Rudders Upper and Lower, 140 C/D Configuration.



A complete description of model components.and dimensional data is given



in Table II. The model was referred to as Configuration 1, 2, 3 or 4



depending on which flexures were used for the rudder. Table III defines



these configurations.



The model was equipped with its own internal shaker and control



surface deflector/release mechanism; this device was remotely activated



in the tunnel control room by a GAC-supplied control box. The shakers



were of the rotary unbalanced force-type driven by a flexible cable



shaft and designed to produce an approximately constant force output



(1.5 to 2 lbs.) from 15 to 70 Hz. The model control surface deflector/ 

release mechanism consisted of a roller cam mounted on a pivot arm 

attached to the aft face of the main surface rear spar, which contacted 

a pawl attached to the front face of the control surface front spar. To 

deflect and release, i.e., "pluck" the control surface, the pivot anm



was rotated via an attached cable until the roller cam contacted the



pawl, forcing it aside. This action deflected the control surface until



the cam overrode the pawl, releasing the control surface.
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CONFIGURATIONS INVESTIGATED (Concluded)



The model had the following instrumentation:



Type of Measurement 
 

Uncalib. fin bending moment 
 

Uncalib. fin torsion



Uncalib. fin bending moment



Uncalib. fin torsion



Uncalib. dynamic rudder position 
 
(lower)



Uncalib. dynamic rudder position 
 
(upper)



Fin tip acceleration 
 

Lower rudder hinge moment 
 

Upper rudder hinge moment 
 

Excitation frequency 
 

Device Used



Four active arm strain gage circuits



Magnet and coil assembly



Magnet and coil assembly



Endevco 2264 accelerometer



Tension link



Tension link



Motor tachometer



Figure 4 diagrams the instrumentation hookup and arrangement.
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TEST FACILITY DESCRIPTION



Major elements of the NASA Langley Transonic Dynamics Tunnel are an



electric motor drive system, a cooling system, a gas-handling system, a



tunnel control room and observation chamber, a transonic test section,



and a model calibration laboratory.
 


Test section is 16 feet square and has a uniform flow region more 

than 10 feet in length. Throughout this region, Mach number deviation 

is less than + .005 for subsonic speeds and generally less than + .01 

above Mach 1. Maximum Mach number is 1.20. Mach number, which depends 

on compression ratio across the fan, is controlled by varying the motor 

rpm or remotely varying the angle of pre-rotation located ahead of the 

fan. 

Transonic flow is generated by three slots in both the ceiling and



floor of the test section.



Drive system consists of a two-speed range wound-rotor induction



motor directly connected to a fan which may be considered as a single­


stage compressor. Fan speed ranges are 24 to 235 rpm for operation in



Freon-12 and 15 to 470 rpm for operation in air.



Motor speed is automatically controlled by a liquid rheostat and



eddy current brake to better than + percent. At the maximum rpm in



each speed range, shaft output is 20,000 horsepower, continuous rating.



Cooling system consists of a two-row vertical tube cooler through



which water is circulated to maintain a stagnation temperature under



1500F.
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TEST PROCEDURE



Various calibrations and measurements were performed on the model



prior to the test to determine its dynamic properties. These are



described below.



Flexibility influence coefficients were measured and compared to the



scaled full scale coefficients. The influence coefficients were measured



as the deformation slopes (spanwise and chordwise) per unit load due to



force loads singly applied to the models at prescribed locations. The



slopes were measured with small mirrors attached parallel to a model



surface at prescribed locations. The mirrors reflected a projected grid



network onto a vertically oriented screen; any change in the angular



position (slope) of a mirror due to a change in loading was detected



and measured on the screen. For these measurements, the vertically



oriented models were cantilevered from their respective root attachment



fittings, which simulated fuselage flexibility, and the loads were



applied with weight and pulley arrangements. Separate measurements of



the model root attachment fitting flexibilities were made with the



respective model detached; the influence coefficients (flexibilities)



were the root attachment spring displacements per unit load at the point



of load application. Again, the loads were applied with weights, but



the linear displacements (Y and Z directions) were measured with a linear 

differential transformer. Resulting fin root flexibilities are presented 

in Table IV. Resulting bending and torsional flexibility is presented 

in Figures 2 and 3. 
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TEST PROCEDURE (Continued)



Model mass distribution was also scaled in addition to stiffness



scaling for complete model dynamic simulation. To demonstrate compliance



with the required model mass distribution, the following inertial proper­


ties of the model were measured:



1. weights of main surfaces and control surfaces



2. C.G. locations of the main and control surface structures



3. moments of inertia of the main surfaces about their C.G. 
X, Y, and Z axes 

4. hinge line inertias for the control surfaces



5. C.G. moments of inertia of complete models about the pitch (Y)


axis for the wing and yaw (Z) axis for the fin



The center of gravity of each model component (main end control surfaces)



was located by suspending the model alternately at several (at least two)
 


pivot points, scribing the plumb lines from the pivot points on the model



surface, and thereby determining the C.G. as the intersection of these
 


lines. Model moments of inertia were measured with the aid of a low



frequency vibration rig, which was essentially an oversized flexural



pivot, or a bifilar pendulum,depending on the reference axis. When using



the vibration rig, the model was cantilevered normal to one of the
 


flexural pads and caused to oscillate freely about the flexural axis.



The frequency of oscillation was measured with an accelerometer mounted



on the moving flexural pad. The moment of inertia of the model and the 

tare inertia of the rig about its flexural axis was determined from the 

following relationship:
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TEST PROCEDURE (Continued) 

Io = K/(2rf)2 , where-

K was the measured rotational spring rate of the rig about its


flexural axis (inch pounds/radian) 

f was the measured frequency of oscillation (Hz), and
 


Io was the calculated moment of inertia of the model plus the tare


inertia of the rig about its flexural axis.



It was a simple matter to subtract the known tare inertia of the rig 

from the calculated inertia I0 and transfer the resultant model inertia



about the flexural axis to the model's C.G. axis to obtain the model 

C.G. moment of inertia. The yaw axis moment of inertia was measured 

using a bifilar pendulum to measure oscillatory frequencies instead of 

the vibration rig because of model mounting constraints.



These calculations were done on a panel by panel basis, with panels



as shown on Figure 1. Resulting calculations and measurements are given



in Table V. 

Measured model modes and frequencies were compared to calculated



full-scale modes and frequencies (assuming correct model/full scale
 


weight ratio). Ground vibration surveys were conducted on the model



cantilevered from its fuselage root attachment springs. The model was



instrumented with one fixed and one survey (movable) accelerometer



(Endevco - Model 2264-150). Vibration excitation was provided by an



electromechanical shaker with a lightweight movable element secured to



the model (Miller Model-A6466). During the vibration survey, while



15





TEST PROCEDURE (Continued)



monitoring the response of the fixed reference accelerometer on an



oscilloscope, a frequency sweep was made and the large amplitude resonant



responses were noted for the first five modes of each model. Then



returning to the first noted resonant response and dwelling there, a



survey of the structural response-was made with the portable accelero­


meter moved to prescribed locations on the model for each mode. Genera­


lized mass of the modes was determined experimentally by the procedure



outlined in Reference 2 and is presented in Table VI. Additional sets



were measured during the test period. These measurements were made



utilizing a hand held probe for data acquisition and a Goodman electro­


magnetic shaker for excitation. Results of these measurements are



documented in Reference 1.



The model was proof-loaded to ensure that it possessed adequate



strength to sustain the inertial and aerodynamic loads acting on them



during the wind tunnel testing. The proof loads were based on a load



estimate schedule prescribed by Rockwell International. The model test



loading was achieved by placing lead sheets on the model's surface to



yield equivalent shear loads and bending moments at the toots.



The model was mounted in the langley Research Center 16-Foot



Transonic Dynamics Tunnel cantilevered off the east side wall with the



fuselage fairing and root attachment fitting. Within the model fuselage



fairing was a rigid framed support structure which also acted as a



mounting butt for the model on its root attachment fitting; the structure
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TEST PROCEDURE (Continued) 

was bolted to the tunnel sidewall turntable; this turntable varied the



model angle of sideslip. The shaker flexible drive cable, control



surface deflector/release cable, strain gage, control surface coil, 

accelerometer and force link wiring were routed from the semi-span mount 

to the control room via stainless steel tubing. Figure 1 shows a sketch 

of the installed model. Figure 3 presents photographs of the installed 

model. 

The general operating procedure was to make progressively higher 

constant total pressure sweeps through the Mach range from 0.6 to 1.2 

until the ascent trajectory plus the required 32% margin of safety was 

investigated. Following this, testing continued at more extreme operating 

conditions until Tlutter was obtained or tunnel operating limits were 

reached. Pauses were made at several discrete Mach numbers during each 

sweep to stabilize tunnel conditions. At these points, the main model 

surfaces and control surfaces were-excited, respectively, by the inter­

nally mounted rotary unbalanced shaker and control surface deflect/ 

release mechanisms. During shaker excitation, the measured model ampli­

tudes and frequencies were recorded and interpreted to assist in predic­

ting the onset of flutter. After the shaker excitation, each control 

surface was deflected and released in an attempt to initiate "buzz." 

During the deklect/release operation, the control surface hinge moments 

were measured in an attempt to predict the onset of "buzz." This pro­

cedure occurred as follows;
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TEST PROCEDUE (Concluded)



1. 	 The model was installed and visually inspected in the tunnel;



2. 	 Modal frequencies were checked with the aid of an electro­

mechanical shaker and the model instrumentation;



3. 	 The desired tunnel operating path was selected;



4. 	 The wind-off data readouts were recorded;'



5. 	 The wind tunnel was started and model was trimmed to zero lift
 

during the first low q run;



6. 	 Desired Mach number and dynamic pressure were obtained;



7. When flow conditions stabilized, the model shaker was operated


at a constant sweep rate from 15-70 Hz. At the conclusion of


the sweep, a review of the data was made (plots of i/modal


amplitude and modal frequency vs. q were made and used to pre­

dict the onset of flutter);



8. If no flutter was observed during step 7, the control surfaces


were "plucked" one at a time in an attempt to initiate control


surface "buzz"; during this "plucking" operation, a record was


made of the control surface hinge moment via the force link in


the 	 actuator cable of the plucker device;



9. If no flutter was observed during step 8, a higher Mach number


and.q on the same constant total pressure path was used to


repeat steps 7 and 8;



10. 	 Steps 4 through 9 were repeated for different values of constant
 

total pressure (H) until the Orbiter ascent trajectory boundary


was cleared and/or the flutter boundary defined in the transonic


flight regime;



11. 	 Steps 2 -10 were repeated for each new control surface configu­

ration. 

Two high speed movie cameras and a T.V. monitor were used during the 

runs to record dynamic instability. The movie cameras were located to 

provide both a side view and rear view of the model.



Table I summarizes the test program and tunnel conditions.
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DATA REDUCTION
 


Freestream data were measured and reduced using standard test



facility techniques. Model data recorded were:



1. Oscillograph traces of the model strain gage circuits.



2. Oscillograph traces of tunnel parameters.



3., High speed movies.



4. Tabulated data.



Figures 8 through 18 present plots of the test results.
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DISCUSSION OF RESULTS 

During model design, the full scale fin underwent a structural



design change. Since an up-to-6ate fin design would not have been



finalized sufficiently to permit a re-design and fabrication of the model



within scheduling constraints, instructions to continue modeling to the
 


existing design were received. The reasoning behind this was that al­


though differences between the model and the final fin design would exist,
 


sufficient similarities would remain to enable acquisition of valuable



trend data from the model. To investigate these trends,a total of four
 


configurations was investigated during the fin program. These config­


urations were used to study the effects on the dynamic characteristics



of the fin due to a variation in the stiffness of the flexures used to



simulate the rudder actuators. Table III outlines a description of the



various configurations tested and a summary of the frequencies measured



on those configurations with the model installed in the tunnel.



Configuration No. I was established as a base case having the nominal



actuator stiffness of the obsolete fin design. Runs 1 through 14 and 21,



29 and 30 were used to test the model in this configuration. During



these runs a region of buffet was uncovered roughly between Mach numbers



.89 and .93. In addition to this buffet region, mild flutter was



encountered during runs 5 and 7 through 14. However, this flutter was



later defined, by viewing high speed movies, as an instability of the



model rudder hinge hatch. This model problem was fixed prior to run 19



(Configuration No. 2) and the model was changed back to configuration No.
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DISCUSSION OF RESULTS (Continued)



1 for run 21. This run verified that the mild flutter was indeed due to



the model hatches (flutter was not encountered during this run) and was



not characteristic of the fin design. After completion of tests on



Configurations 2, 3 and 4, runs 29 and 30 were made to clear Configuration



1 beyond the flight envelope. A visual inspection of the model after run



30 uncovered minor structural damage in the area of the forward root



fitting. This damage was probably sustained during run 29 while passing



through the buffet region. A summary plot of test conditions may be



found in figure 8.



A reduction in the upper and lower rudder actuator stiffnesses was



tested as Configuration No. 2. Runs 15 through 20 were used to test



Configuration No. 2. During these runs a buffet region was encountered



similar to that encountered during tests on Configuration 1. Also mild



flutter was encountered which again was attributable to the model hinge



hatch. Configuration 2 results are presented on figure 9.



For Configuration No. 3 the actuator stiffnesses were again reduced



(see Table III). This reduction resulted in a clear uncoupled lower



rudder rotation mode (Configurations 2 and 3 exhibited highly coupled



rudder rotation modes). Runs 22 through 25 were made in this config­


uration and all runs exhibited lower rudder buzz as 0.8 Mach number was



approached. See figure 10 for Configuration 3 test conditions.



For Configuration No. 4 the lower rudder actuator stiffness was



increased to the same level as Configuration 2 and the upper rudder
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DISCUSSION OF RESULTS (Concluded)



actuator stiffness was reduced to a level below that tested in Config­

uration 3 (see Table III). In this configuration a clear uncoupled upper 

rudder rotation mode was observed. Runs 26, 27 and 28 were made in this 

configuration and all runs exhibited upper rudder buzz as 0.8 Mach number 

was approached. See Figure 11 for Configuration 4 test conditions. 

A summary of the maximum tunnel conditions tested with the fin in



all 	 configurations may be found in Table I. 

Results of pre-tunnel checks and wind tunnel tests performed on the
 


fin model permitted the following conclusions:
 


1. 	 The fin model was a good dynamic representation of the



design data as evidenced by pre-tunnel checks.



2. 	 Wind tunnel tests on the fin indicated that a region of fin



model buffet occurs as Mach 0.9 is approached.



3. 	 When the stiffness of the flexures simulating the rudder actu­


ators was'reduced sufficiently to produce virtually uncoupled



rudder rotation modes, rudder buzz resulted as Mach 0.8 was



approached.
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5. Drawings: 

Drawing No. Description 

SS-S-00200 General Arrangement and Assembly 
SS-S-00152 Installation LRC TDT 
SS-S-00202 Skin Definition - Fin 
SS-S-00203 (1-4) Skin Definition - Rudder 
SS-S-00204 Mount Assembly - Checkout 
SS-S-00205 Fuselage Frame Assembly 
SS-8-00206 Fuselage Shell and Frame Assembly 
SS-S-00209 (1-2) Shaker Assembly and Details 
SS-S-00210 Fin Fitting- and Flexures 
SS-S-00214 Flexures and Fittings, Zo = 661.8 and 760.1 
SS-S-00215 Flexures and Fittings, Zo = 610.1 and 697.3 
SS-8-00217 Rudder Actuator Details 
SS-S-00218 Fixture and Fittings (H.L. Inertia) 
SS-8-00220 Vertical Tail - Lines and Geometry 
SS-S-00221 Rib Arrangement 

23





TABLE I. TEST SUMMAEY 

CONFIGURATION MAX. TUNNEL CQNDITIONS* NOMINAL 

NO. RUDDlER 

NO. 

F(INCHES)E ThICllESS 
, RUN 

MACH 
DYNAItC 

PRESS. DENSITr VELOCI 

FREESTREAM 
TOTAL 

PRESSURE 
REMAEKS 

LOWER RUDDER UPPER RUDDER NO. NO. (PSp') (s~uGs/FT3 ) (Fr-/SEC (PsF) 
I 0.245 0.261 1' .906 65.4-­ .ooo64 451.3 100 & 200 

2 ... ..--- Run Aborted-No 
Data 

3 
-

.507 

.734 
127.1 
199.9 

.00389 

.00292 
254.3 
368.5 

NA 
800 

Rudder Hatch 
4 Lifted 

5 .851 203.6 .00222 427.1 650 
6 .244 16.1 .00207 124.1 --- Calibration Run­

7 .831 147.1 .00167 419.2 500 
No Data 

8 .888 i4o.o .00139 447.3 450 
9 .948 127.2 .00112 475.8 400 

10 1.111 280.9 .00177 562.1 350 
11 .737 281.2 .00395 375.7 NA 
12 .741 200.4 .00282 375.6 850 
13 .754 169.0 .00227 384.9 700 
14 .784 150.3 .oo187 399.7 600 
21 .890 261.5 .00251 454.6 850 

_____ 

29 
30 

.956 

.868 
302.5 
338.7 

00260 
.00346 

480.7 
440.4 

900 
1100 

2 0.201 0.278 15 .851 94.0 .00099 434.2 300 
16 1.003 156.2 .00124 500.8 400 

4 
_____ 

3.7 
18 
19 
20 

.852 

.792 

.888 

.843 

179.0 
209.4 
231.4 
294.0 

.00194 

.00262 

.00231 

.00320 

428.1 
398.6 
446.6 
427.0 

6oo 
750 
700 
1000 

3 0.142 0.163 22 .801 .84.6 .00103 4o4.2 300 Buzz on Lower 
23 .792 2.20.9 .00150 400.0 450 Rudder 
24 
25 

.783 
-777 

185.3 
f 265.3 

.00230 

.00332 
4oo.4 
397.8 

700
1000 _ __ 



TABLE I. TEST SUMMARI (Concluded)



CONFIGURATION MAX. TUNNEL CONDITICNS* NMINAL 

__ _ _ _ _ _ _ _ _ __DDER FLE XURE T IIC 1 G SS " a mN _ _ nnuEc DYNMIO VE O I)RU CT REMD
TAL " AIHIMARKS 

NO. 
LOWER 

(INES)Y
RUDDER UPPER RUDDER N60. 

MACH 
No0. 

PRESS. 
(PSF) 

DENSITY VELOCITY 
(SnnGS/rr3) (Ir/sEe) 

PRESSURE 
(PSr) _______ 

4 0.201 0.130 26 .839 90.9 .00101 422.7 300 iBuzz on Lower 

27 
28 

.804 

.803 
150.8 
218.9 

.. 00181 
.00261 

407.2 
4o8.o 

550 
8o0 

j Rudder 

* NASA-supplied, based on measured tunnel parameters. 

Each rudder had 4 flexures, each flexure was 1.75 inches long by 0.5 inch wide


with a thickness as listed.





TABLE II. MODEL DIMENSIONAL DATA



MODEL CCMPONENT: BODY - B2 6 

GENERAL DESCRIPTION: Configuration 14OA/B orbiter fuselage 

NOTE: B26 is identical to E24 except underside of fuselage has refaired 

to accept Wli6. 

MODEL SCALE: O.1a0 MODEL DRAWING: SS-AOO147, Release 12 

DRAWING NUMBER: VI7O-O00143B, -000200, -000205, -006089, -000145 
VLTO-O0014OA, -ooa40B 

DIMENSIONS: FULL SCALE MODEL SCALE 

Length (cKL: Fwd Sta Xo a 235), In. 1293.3 181.062 

Length (IML: Fwd Sta Xo 238), In. 1290.3 180.642 

Max Width (@ Xo = 1528.3), In. 264.00 36.96 

Max Depth (@ X = 1464), In. 250.00 35.00 

Fineness Ratiq 0.26357 0.26357 

Ft 2 
Area -

Max. Cross-Sectional 340.88 6.68 
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TABLE II. MODEL DIMENSIONAL DATA (Continued)



MODEL CPO T: tJS/ROS PODS -

GENERAL DESCRIPTION: Configuration 140A/B Orbiter CMS/RCS pods. 

MODEL SCALE: O.14O MODEL DRAWING: SS-AO0147, Release 12 

DRAWING NUMBER: VL7O-000145 

DIMENSIONS: FULL SCALE MODEL SCALE 

Length (CMS Fwd Sta X. = 1233.0), In. 327.000 45.78 

Max Width (@ X. = 1450.0), In. 94.500 13.230 

Max Depth (@Xo = 1493.0), In. 109.000 15.25 
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TABLE II. MODEL DIMENSIONAL DATA (Continued) 

MODEL COMPONENT: RUDDER ­ 5



GENERAL DESCRIPTION: Configuration ihO C/D Orbiter rudder (identical to 

configuration lOA/B rudder) 

MODEL SCALE: 0.140 

DRAWING NUMBER: VL7O-OOOlh6B, VL70-000095 

DIMENSIONS: FULL SCALE MODEL SCALE 

Area - Ft 2 100.15 1.963 

Span (equivalent), In. 201.00 28.14 

Inb'd equivalent chord, In. 91.585 12.822 

Outb'd equivalent chord, in. 50.833 7.117 

Ratio movable surface chord/ 
total surface chord 

At Inb'd equiv. chord 0.400 0.400 

At Outb'd equiv. chord 0.400 0.400 

Sweep Back Angles, degrees _ 

Leading Edge 34.83 34.83 

Trailing Edge 26.25 26.25 

Hingeline 34.83 34.83 

Area Moment (Product of area & c), It3 610.92 1.676 

Mean Aerodynamic Chord 73.2 10.248 
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TABLE II. MODEL DIMENSIONAL DATA (Concluded) 

MODEL COMPONENT: VERTICAL - V3 

GENERAL DESCRIPTION: Configuration 140 C/D Orbiter Vertical Tail 

(Identical to configuration 140 A/B Vertical Tail). 

MODEL SCALE: 0.140 

DRAWING NUMBER: VLTO-o00140c, vnyo-ooo146B 

DIMENSIONSi FULL SCALE MODEL SCALE 

TOTAL DATA 

Area (Theo) - Ft 2 

Planform 413.253 8.10o 
Span (Theo) - In. 315.72 44.201 
Aspect Ratio 1.675 1.675 
Rate of Taper 0.507 0.507 
Taper Ratio o.4o4 O.404 
Sweep-Back Angles, Degrees 

'LeadingEdge 45.000 45.000 
Trailing Edge 26.25 26.25 
0.25 Element Line 41.13 41.13 

Chords: 
Root (Theo) WP 268.50 37.590 
Tip (Theo) WP 108.47 15.186 
MAC 199.81 27.973 
Fus. Sta. of .25 MAC '1463.25 204.869 
W.P. of .25 MAC 635.52 88.973 
B.L. of .25 MAC 0.00 0.00 

Airfoil Section 
Leading Wedge Angle - Deg. 10.00 10.00 
Trailing Wedge Angle - Deg. 14.92 14.92 
Leading Edge Radius 2.00 0.28 

Void Area 13.17 0.258 
Blanketed Area 0.00 0.00 
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TABLE III. CONFIGURATION DESCRIPTION AND FREQUENCY SUMMARY



NEASUMEASFREQUENCIES (HZ) 

NO. _ _ _ _ _ _ 
CONFIGURATION DESCRIPTION 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
1 2 3 4 5 -6 7 

1 2 sets of 2 upper flexures - thickness=.261, width=.50 10.2 24.5 42.3 44.8 77.0 101.0 107.0 
2 sets of 2 lower flexures - thickness=.245, width=.50 

2 2 sets of 2 upper flexures - thickness=.218, width=.50 10.0 24.5 41.o 44.o 64.5 97.2 102.8 

2 sets of 2 lower flexures - thickness=.201, width=.50 

C) 3 2 sets of 2 upper flexures 

2 sets of 2 lower flexures 

- thickness=.163, width=.50 

- thickness=.142, width=.50 

110.0 24.5 35.2 42.2 55.0 -

I 
4 2 sets of 2 upper flexures - thickness=.130, width=.50 9.8 24.5 37.6 41.51 55.5 103.2 

2 sets of 2 lower flexures - thickness=.201, width=.50 

NOTE: Flexures are made of steel and are configured as 900 cross flexures. 



TABLE IV. MEASURED MODEL ROOT FLEXIBILITIES 

Forward Root Fitting Flexibilities



DESIGN MEASURED 
AXIS VALUE VALUE(IN/LB) (IN/LB) 

I0- 5  Y 0.33 x 0.33 x jo- 5 

Z 1.99 x 1o-5 1.85 x 10-5 

Aft Root Fitting Flexibilities*



DESIGN MEASURED


AXIS VALUE VALUE 

(IN/LB) (IN/IL) 

Y 11.74 x 10- 5 12.3 x 1a-5 

z 1.96 x 1o5 1.92 x 1o-5 

One side only (fitting symmetrical)
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TABLE V. PANEL MASS, INERTIA, AND C.G. VALUES 

a. Vertical Tail 

FIN WTH RUDDERS. 
PANEL WEIGHT ZCG XCG IZ'cG IX'CG ICG 

NO. (LBS) (IN) (IN) (LB-IN2 ) (LB-IN2 ) (LB-IN2 ) 
1 3.05 4--50 -4.60 79.98 NA NA


2 2.13 14.83 -0.70 46.12


3 3.21 20.63 1.70 64.52


4 1.90 25.59 i.44 50.12


5 2.75 30.59 1.70 40.53


6 2.29 36.07 1.50 30.13 
7 0.96 40.48 1.4 14.13 
8 0.85 44.18 1.50 10.93 
9 1.44 47.18 1.30 10.13 

10 .63 50.18 1.70 5.87


11 .18 55.18 3.40 1.07



TOTAL CALCULATED


VALUE 19.38 26.44 0.36 453.0 3835.0 4234


1U VAIUE* 20.85 25.10 -0.10 487.8 45o6.o 5193 

*Actual measured values included. x' (IN) Z' (IN) 
fuselage root fittings and external ITEM W (LBS) CG CG 
strain gage wire. Items at right Fitting 0.33 -10.0 -7.5 
were mathematically removed from the Fitting 0.21 0.0 2.5 
measured values to obtain "corrected" Wire 0.20 0.0 2.5 
values. 

CALCUIATED VAlJES FOR flN WITHOUT RUDDERS 

PANEL WEIGHT Z'CG X'CG IZ' 0CG IX'CG 
NO. (LBS) (IN) (IN) 12B-IN 2 ) (LB-IN2)


1 3.05 4.50 -4.60 79.98 144.48


2 2.13 14.83 -0.70 46.12 47.17 
3 2.52 20.57 0.75 51.07 52.50


4 1.35 25.59 -0.76 23.87 24.66


5 1.98 30.61 0.28 20.99 21.15


6 1.64 36.25 o.o4 14.43 14.43 
7 o.67 40.51 -0.36 6.12 6.12 
8 I.56 44.18 -0.22 4.88 4.91 
9 1.09 47.17 0.43 5.53 5.73 

10 0.40 49.96 0.04 2.31 2.31 
11 0.18 55.18 3.40 1.07 3.13



TOTALS 15.58 24.73 -0.85 315.3 ---

Refer to Figure 7 for definition of panels.
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TABLE V. PANEL MASS, INERTIA, AND C.G. VALUES (Concluded)



PANEL 
 

NO. 
 

6R 
 

7R 
 

8R 
 
9R 
 

1OR 
 

TOTAL CALCULATED


VALUE 
 

MEASURED VALUE 

PANEL 
 

NO. 
 

3R 
4R 
 

5R 
 

TOTAL CAMULATED 
VALUE 
 

MEASUBED VALUE 

WEIGHT 
 

(LBS) 
 

0.65 
 

0.29 
 

0.29 
 
0.35 
 

0.22 
 

1.80 
 

1.81 
 

WEIGHT 
 

(LBS) 
 

o.68 
 

0.55 
 

0:73 
 

1.96 
 

2.02 

b. Rudders



UPPER RUDDER


Z'CG XCG 
 

(IN) (IN) 
 

35.59 5.20 
 

40.42 5.40 
 

44.18 4.90 
 
47.22 4.0O 
 

50.58 4.68 

141.871 4.89 
 

41.70 
 

LOWER 

CG 
 

(IN) 

20.87 
 

25.59 
 

30.53 
 

25.86 
 

25.80 
 

5.05 
 

BUDDER 

XCG 
 
(IN) 

5.20 
 

6.84 
 

5.40 
 

5.73 
 

5.25 

IZCG I 

(LB-IN2 ) I 

3.33 

1.23 

1.07 I 
1.23 

0.4 I 

.... 
 

53.3 
 

(-n 2 ) 

2.80 
 

3.60 
 

5.07 
 

..... 
 

37.50 
 

ICG II 

N2 ) (B-IN 2 ) 

20.84 

9.81 

79 
6.83 

f 

NA 

24.0



9.4 22.2



IGZCG'I 
(LB-IN 2 ) (LB-IN2 ) 

21.31 NA



29 41



27.32



I


33.50 

14.70 34.40 

Refer to Figure 7 for definition of panels.
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TABLE VI. MODAL OmMOGONALITr CHECKS AND GENERALIZED MASS FOR FIN WITH STIFF ACTUATORS 

MODE 1 2 3 4 5 6 7 

1 1.000 .0027 .0237 .0019 .0031 .oo6 .0003 

2 1.000 .0107 .0209 .0042 .0256 .0092 

3 1.000 .0002 .0108 .0003 .000007 

4 1.000 .oo88 .oo18 .0082 

5 -­ 1.000 .1706 .oo48 

6 1.000 .1269 

7 --­ 1.000 

FREQ. (HZ) 10.15 42.30 44.80 71.00 101.00 107.00 135.00 

CALCULATED 
GENERALIZED 3.367 2.457 1.934 0.8626 .6085 0.9804 0.3698 
MASS (LBS.) 



X. 13.447



83.929 -

Eo% 

* ALL DIMENSIONS IN INCHES 
FUL RXLEKCEPT I4HERE 

NOTED OTHERWISE 

/ z0 
Zo 

- 815.72 

77 

x : 9 5.05 
" .* 

6.0 "(xODLSCALE) 

Z., (MODEL SCALE) 

• / - ... .. 

-z 578 

[ -.!---­ zo =500 

Tnjf'IEL SIDEWALL
F.Xo = 1551.316 

o = 1506.293



Figure 1. Model installation sketch.





,,  A. "'it 

to. 

,4v 4; 
-795 

Cnn 

Xo 1277.876/, 4 @ 

Xo 157.376 

Figure 2. Rib arrangement sketch. 



a. Vertical T 

Figure 3. Moel photographa. 
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b. Fumelage Struature with Sin Rmoved 
Figure 3. Continued.
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1ur,e 3. Consed. 
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TAPE
TAPER 

TV CAMERA 

TUNEL TEST SECTION 

DIFOM RTING 

DSCILL4I0RAP 

MG E DMOVIE CAMEA TIP . MODEL INSTALL. 

MODEL CONTROL 

_____1, 

S9,1 

CIRCUIT NO.2, 5, 6 
3, 4, 7, 8 

0 
11 

12, 13 

PANEL14 

MEASUREMENT 
- BDI MG4ENTSma 

TORSION 

RUDDER POSITION 
TIP ACCELERATION 

- HINGE MOMF2ITS 

- EXCITATION FREQ.P...INB'D (LOWER) DEFLECT. 

-­

..... 

_ _ 

..... 

--­ -
OUTB'D 

-SHAKER. 
(UPPER) DEFLECT. 

Figure 4. Model instrumentation diagram. 
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Figure 11. Flutter bundary for configuration No. 4. 

47 

1 



76 

2o 

/00 

C.3 IL 412 

Figure 12. True velocity versus density at Mach .6.



48





\ 

700 

\ 
*j 

OO 

Figure 13. True velocity versus density at Mach.
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Figure 14. True velocity versus density at Mach .8.



50





ul 

Figure 15. True velocity versus density at Mach .85.
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Figure 16. True velocity versus density at Mach 1.3.
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Figure 1T. Dlamping versus Mach number. 
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Figure 18. Inverse of amplitude and frequency versus dynamic pressure. 
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