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SUMMARY

The 111 kN (25K) aerospike thrust chamber project, Contract No. NAS3-20076,
was conceived as a means of carrying out an aerospike thrust chamber feasi-
bility demonstration project. A similar project had been previously funded
under Air Force auspices. The Air Force contract, No. F04611-67-C-0016,
resulted in the design, fabrication, and initial testing of a 111 kN
(25,000--pound) thrust hydrogen/oxygen aerospike thrust chamber for possible
space tug application. The Air Force contract was terminated in 1975 after
the chamber was extensively damaged in a test stand fire. The NASA retained
an interest in the possible application of the aerospike thrust chamber -
concept to space propulsion and contracted with Rocketdyne under Contract
NAS3-20076 for the purpose of repairing the existing 111 kN (25K) aero-
spike thrust chamber and conducting altitude firings to determine the
chamber's performance, cooling capability, and structural integrity.

i
i
|
4
|
i
1
!
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While the planned program included both the repair of the thrust chamber
and a hot-fire testing series, all effort actually expended on the program |
was confined to the repair of the thrust chamber components. This condi-

tion came about because a fundemental problem with the material processes

utilized in the initial fabrication of the combustors was uncovered during

the repair effort. Thus, the content of this report, and of this summary,

covers the repair and fabrication procedures developed to permit repair

of aerospike chambers.

The 111 kN (25K) aerospike thrust chamber assembly consisted of 24 regen-
eratively cooled combustor segments arranged around the periphery of a
regeneratively cooled nozzle and base closure assembly so as to discharge
their gases against the nozzle. A view of the thrust chamber assembly is
shown in Fig. 1 together with a summary of the thrust chamber design and
operating parameters.

The damage that was incurred during thrust chamber test 74-005 on the Air
Force contract was assessed by disassembly and cleaning of those components
that had been asscmbled with fasteners, i.e., the ducting and unboltable
support structure. An assessment of the damage indicated that it would

be necessary to replace five of the combustors, the inner backup support
ring, the ignition manifolding and propellant feedlines, and some of the
thrust chamber support structure. Additionally, it would be necessary to
repair the outer titanium backup ring, the thrust cone, and approximately
30% of the nozzle tubes.

The nature of the aerospike thrust chamber assembly is such that it is
possible to effect repairs by replacing damaged components with functional
components, i.e., unbolt or cut out the damaged component and replace it
with a good one. The thrust chamber combus:ors, while brazed and welded
assemblies, also were judged to be repairable in this manner. As there

were a number of combustors available that had some usable parts, a plan

was devised for combustor replacement which involved cannibalization of
portions of the existing spare combustors so as to utilize them in combi-
nation with new components to produce viable combustors suitable for welding
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in-place on the existing thrust chamber assembly. This is believed to be
the first time that dissection and reassembly of such welded combustors
was attempted. It was made possible by the unique fabrication scheme of
the 111 kN (25K) aerospike chambers which is illustrated in Fig. 2. Table
1 1lists the five rebuilt combustors from which replacements for the assem-

bly were to be obtained, and indicates the scheme for utilization of exist-
ing parts.

TABLE 1. COMBUSTOR BODY-INJECTOR USAGE

Combustor Segment

Identification Injector Inner Liner Outlet Liner
Unit No. Unit No. Unit No. Unit No.
507R 506 507 507
510R 518 510 510
S509R New New liner, coolant 509

panel, cover sheet,
and end plates

515R New 515

535(N) New New liner,
cover sheet,
and end plate i

R
N

rebuilt
new

Three of the rebuilt combus-ors, units 509R, 515R, and 535, were dependent
upon new inner liners for completion. 1he rework of the existing details
and the fabrication of the new liner assemblies for these combustors was
satisfactorily carried through, but was halted in the second quarter of

the program to concentrate efforts on completing combustor units 507R and
510R.

Combustor units 507R and 510R were planned to utilize existing inner and
outer liners, and had been partially completed under the sponsorship of
the previous Air Force contract. Both of these combustors encountered
problems with cover-sheet cracking during their final assembly operation.
A photo of a typical cover-sheet crack is shown in Fig. 3. The cracking
was at first attributed to the unusual strains associated with the assem-
bly operations, and repairs were effected by both furnace braze and tung-
sten inert gas brazing with Nioro braze alloy. These repair efforts were
generally unsuccessful in that further cracking of the material occurred,
eicher in the heat-affected zone of the TIG-brazed areas, or during the
cryogenic shock cycling employed for evaluation of repair effectiveness.
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Figure 3. Thoto of Crack in Unit 507R LOX
Cover Sheet (10X Magnification)




1t became evident after repeated attempts at repair of the cover-sheet
cracking experienced on units 507R and 510R, that a condition existed that
was not consistent with the ductility normally displayed by NARloy-A. In-
vestigations were undertaken to find the reasons fo1i the nontypical crack-
ing, and also to find some way to bring units 507R and 510R to successful
completion.

A repair concept was developed for the NARloy-A cover-sheet cracks of units
507R and 510R which involved dishing out the cracked areas and electro-
depositing copper into the groove. Both cell plating, in which a small
electroplating cell is clamped to the side of the part to be repaired rather
than submerging the whole part in plating solution, and tank plating were
successfully employed on the crack areas of the cover-sheets that were
accessible. However, on completion of the repairs, and the concuct of cry-
ogenic shock testing and hydrostatic pressure testing, it was found that
additional cracking had occurred. On the basis of this experience, it was
determined that neither 507R nor 510R was suitable for assembly to the
thrust chamber.

The KARloy-A cracking encountered on units 507R and 510R was so nontypical
that it engendered a metallurgical and historical investigation, concurrent
with the repair effort on 507R and 510R, to understand the problem and to
assess its implications for all the combustors. Methods of removing samples
from existing combustors were developed which permitted metallurgical exam-
ination of the NARloy material and, if necessary, replacement of the removed
sample so as to be able to fire the combustor. Microscopic examination of
these samples indicated that the fundamental cause of the cracking of 507R
and 510R was that the NARloy material properties had been degraded by the
reaction of hydrogen with previously dissolved oxygen. Figure 4 is a
photomicrograph of material removed from unit 510R. Tt shows the voids
along the grain boundaries that result when steam is formed. The sourge

of hydrogen was readily ascribed to the nydrogen atmosphere furnace brazing
that had been utilized during the initial fabrication of the combustors.

An investigation was conducted as to the source of oxygen and it was deter-
mined that the most probable source was oxidation of the inner surfaces of
the liners and cover-sheets during the initial fabrication (i.e., in 1974).
This inner surface oxidation had apparently occurred despite the utiliza-
tion of inert atmospheres during these operations and despite the imposi-
tion of well-developed disciplines for the maintenance of cleanliness.

The results of the metallurgical examination of all combustors sampled are
presented in Table 2, which indicates a correlation between the presence

of embrittled NARloy-A and the conduct of final brazing cycles in a hydro-
gen atmosphere. On the basis of the data displayed in Table 2, the con-
clusion appears inescapable that a large majority of the combustors nave
been affected by the hydrogen/oxygen phenomenon during their initial fabri-
cation (prior to the start of this contract), and will display substant’ally
reduced ductility under conditions of thermal strain. As it had been demon-
strated during the repair procedures on 507R and S510R that the th-rmal
strains involved in cryogenic testing did result in cracking of the embrit-
tled NARloy, and as the test program planned for the thrust chamber assembly
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TABLE 2.

AEROSPIKE THRUST CHAMBER REPAIR-SUMMARY OF FURNACE

CYCLE HISTORY COMPARED TO METALLURGICAL EXAMINATIONS

Probability of Absence
Grain Boundary | Number of Cycles | Hy on 3rd of Embrittliement
Voids Found in H Brazing Cycle or due to Hy/0, Voids at
Segment No. By Examination Atmosphere After Grain Boundaries
507 Yes 5 Yes None
508 b Yes Poor
9 2 Yes Poor
10 Yes 3 Yes Poor
fira 2 No Good
12 Yes [ Yes None
3 b Yes Poor
% 14A Yes 4 Yes None
w [1548 5 Yes Poor
< e Yes L Yes None
v 117 3 Yes Poor
518 Yes | Yes None
4 L) 2 No Good
S j20 1 No Good
w j21 2 Yes Poor
3122 No 1 No Good
zﬁ 23 No ] No Good
i PO 1 Yes Poor
Q25 No (] No Very Good
v 26 | Yes Poor
o l2n 1 Yes Poor
2128 ] Yes Poor
o129 1 Yes Poor
¢330 1 Yes Poor
g n ) Yes Poor
3 32 ] Yes Poor
33 2 Yes Poor
34 | Yes Poor

ARemoved from acsembly after fire




did involve numerous strain cycles, it was concluded that the majority of
combustors available for the assembly were not sufficiently reliable to
permit their utilization in the firing program.

During the test stand fire which terminated the Air Force program, the
nozzle had suffered localized overheating on its interior portions (i.e.,
the "cold" side), because it was sprayed with molten titanium from the
burning inner combustor support ring. Repairs to this type of tubular
nozzle had not previously been attempted on the scale represented in this
instance. Because cf a general need for developing the technology for
repairing complex lightweight tubular nozzles, a company-sponsored tech-
nology program was undertaken which utilized the 111 kN (25K) aerospike
nozzle for development purposes. Two basic methods of repair were devel-
oped, the saddle-patch repair and the inserted tube repair as defined in
Fig. 5. When properly applied, these two methods sufficed to repair

all of the damage that had been incurred by the 111 kN (25K) aerospike
nozzle.

A photograph of the repaired nozzle is shown in Fig., 6. A total of

1,053 saddle patches was applied together with 155 tube insert patches,
the tube inserts being applied in 18 different window locations. The noz-
zle repair effort was successfully concluded during the second quarter of
this program with every expectation that the repairs would have proved
adequate for the scheduled hot-firing program.

The chamber support structure of the acrospike thrust chamber includes

two titanium rings, between which the 24 combustors are sandwiched. The
rings accept the thrust generated by the combustors and nozzle and trans-
mit that thrust to a central gimbal bearing through angled struts and a
central cone. The repair and refurbishment effort of the subject contract
included the redesign of the inner titanium support ring to a more easily
fabricated configuration than the original ring, and the completion of its
fabrication. Additionally, a repair procedure was devised for the more
moderately damaged outer titanium backup ring and checked out by prepara-
tion of weld samples in the same configuration. Section examination and
tensile tests indicated that the welded-in section would be sufficiently
strong for the service, but all fabrication effort was stopped prior to
the actual repair of the outer backup ring. The thrust cone and support
struts wvere also rewvorked during the active portion of the repair effort
and had been largely completed by the time fabrication effort was
terminated.

Several positive results were obtained during the disassembly and repair
procedures:

1.  The tubular nozzle repair effort brought out that large-scale
repairs on lightweight tubular nozzles are feasible.

2. The structure repairs indicate that it is feasible to repair such
complex structures as the outer titanium backup ring.
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3. The work conducted with combustor dissection and reassembly bears
out the basic validity of the concept of the repair of such com-
plex copper channel cooling structures by the method of excis-
ing the damaged areas and brazing properly configured replacements
in rbeir place.

The basic success of these repair techniques must be considered a positive
factor in future evaluations of the aerospike thrust chamber concept.
Aerospike configurations tend to be relatively expensive and the concept
is favored by the possibility of repair as opposed to replacement of such
chambers when the almost inevitable damage which occurs during development
programs is suffered.

In assessing the overall results of the program, one must keep in mind that
the hydrogen/oxygen reaction problem encountered with the NARloy-A com-
bustor material does not have any special significance for the aerospike
thrust chamber concept. Aerospike thrust chambers are fabricated of the
same materials as bell thrust chambers. The problem was a materials pro-
cessing problem, not an aerospike problem. The program did have several
positive results for the aerospike concept although it was not possible to
carry it through to the hot-firing phase. On balance, the aerospike must
still be regarded as a contender for length-limited, space propulsion
application. The developmental programs previously conducted have demon-
strated the concept's performance and length advantages. The previous

Air Force program demonstrated that an aerospike thrust chamber roughly
20% of the length of an equivalent bell chamber could be designed and fab-
ricated to a competitive weight,and the present NASA contract demon-
strated that maintenance and repair procedures will be available for
aerospike thrust chambers that will permit cost-effective repairs to their
assemblies.

12




INTRODUCTION

The liquid fuel aerospike rocket engine corcept has been under development
for approximately 15 years. Its thrust chamber configuration consists of
a truncated annular spike nozzle (radial in-flow type), which is provided
with a number of discrete combustion chambers arranged around the peri-
phery of the nozzle so as to discharge their gases along the nozzle sur-

face. A diagram illustrating the aerospike thrust chamber concept is
presented in Fig. 7.

The aerospike thrust chamber concept has several advantages relative to
more conventional nozzles. It automatically provides "altitude compensa-
tion," and thus may increase the overall impulse supplied in a booster
application. It may be arranged to utilize a larger portion of the boat-
tail area than a multiple engine conventional installation. Development
has demonstrated that it is feasible to truncate a spike nozzle severely,
and by utilizing a small amount of secondary flow introduced into the noz-
zle base region, to retain excellent nozzle C_ efficiency. This attribute
of the aerospike rocket engine has led to its consideration for those
space propulsion applications in which engine length is especially signi-
ficant. A comparison of the thrust chamber lengths of several different
types of rocket thrust chamber is presented in Fig. 8, indicating that
the aerospike thrust chamber can be on the order of 20%Z of the length of

a bell nozzle of equivalent expansion ratio.

In 1970, a design and development project was undertaken at Rocketdyne to
design, fabricate, and test a 111 kN (25,000-pound) thrust hydrogen/
oxygen aerospike thrust chamber under Air Force Contract No. F04611-67-C-
0116. The objective of this program was to demonstrate, through the
fabrication and testing of a flightweight thrust chamber, that the aero-
spike engine concept was competitive in both weight and performance to
conventional bell nozzle-type engines. A thrust chamber with a nozzle
area ratio of 200:1, and of competitive weight, was designed, fabricated,
installed in the test stand and fired. However, during the first main-
stage test, a propellant line leaked, and caused a fire that severely
damaged’ the test hardware. A posttest examination of the hardware indi-
cated that the thrust chamber was repairable and, under Air Force instruc-
tion, the resources remaining in the contract were utilized to begin the
repairs to the thrust chamber. The Air Force contract was concluded on
31 December 1975. All residual hardware and tooling from the Air Force
program were made available to the NASA. The results of the Air Force
program are summarized in the Final Repor: (Ref. 1) and in the Materials
Research and Development Report (Ref. 2).

1. AFRPL-TR-76-05, 02/ﬂ§¥Advanced Manuevering Propulsion Technology Pro-

gram, Final Report,
Febraury 1976.

AFRPL-TR-76-06, 02/H2 Advanced Maneuvering Propulsion Technology Pro-
gram, Materials Research and Development Report, Rocketdyne DivIsion,
Rockwell International, February 1976.

ocketdyne Division, Rockwell International,
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The NASA retained an interest in the acrospike engine concept because of
its possible application to the main propulsion system of the full capa-
city space tug. The principal aerospike engine feature of interest was
its very short length which, in application to the tug,would result in a
shorter stage and provide more space for payload. The Air Force program
had shown that the application of advanced fabrication techniques and
materials to the aerospike engine made it possible to fabricate a thrust
chamber that was consistent in weight with a high-performance-type engine.
However, the program had been concluded short of demonstrating the per-
formance and the structural integrity of the complete flightweight
assembly.

Under these circumstances, the NASA contracted with Rocketdyne under
Contract No. NAS3-20076 for the purpose of repairing the existing 111 kN
(25K) aerospike thrust chamber and conducting altitude firings to deter-
mine its performance, cooling capability, and structural integrity. It
is the effort on Contract NAS3-20076 that is discussed in this report.

The planned program included three technical tasks: (1) thrust chamber
disassembly and repair of components, (2) thrust chamber reassembly, and
(3) thrust chamber hot-fire testing. All effort actually expended on the
program was confined to Task 1, i.e., disassembly of the thrust chamber
and repair of its components. This condition came about because a funda-
mental problem with the material processing utilized in the fabrication
of the combustors was uncovered during the repair cffort.

This report is thus concerned with a description of the rather unique
repair and fabrication procedures developed in connection with the aero-
spike chamber repair. The material condition which resulted in the pro-
gram's termination is also discussed.

The principal measurements and calculations of this contract were conducted
in the customarv United States system of units, as were the calculations
and measurements of the preceding \ir Force Contract wo. FO4611-67-C-0116.
The SI svstem of units is used in the text and tables of this report, and
the customarv United States units given parenthetically following the SI
nnits. However. in the interests of economv, the dimensions of those
existing drawings which are included in this report have not been converted
to S1 units,
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PROGRAM PLAN

The plan of the work that was scheduled to be accomplished under the sub-
ject contract is summarized in Fig. 9. As can be seen from the figure,
the program was divided into three time-phased, hardware-related tasks and
two review and reporting tasks. During Task 1, the thrust chamber was to
be disassembled to the extent necec:ary to effect repairs. Individual com-
ponents were to be either repaired or remanufacturcd depending on their
condition. During Task 2, the repaired and/or remanufuactured thrust cham-
ber components were to be reassembled into a completc¢ 24-combustor, 200:1
expansion ratio thrust chamber. Task 3 related to activities occurring
during the hot-fire testing, i.e., stand modifications appropriate for
receiving the thrust chamber, thrust chamber installation and instrumenta-
tion and, finally, ambient and simulated altitude hot-fire testing. Tasks 4
and 5 related to technical reviews and reporting.

The program proceeded approximately on the planned schedule until mid-June
1976. At that time, a serious problem in the rebuilding of two of the

combustors came to light. The decision was made to hait te- hnical activity
on all areas of fabrication except for the repair of thos: two combustors.
The time interval between mid-.June and 30 September 1976 w.as occupicd with

determining the nature and extent of the fabrication proolem with the com-
bustors. A briefing on the fabrication problem and program status was pre-
sented on 7 October at the Lewis Laboratorv. It resulted in the decision,
taken 12 October, to termitate all technical effort on the -ubjoect con-
tract. The status of the activities of the program plan at termination

of the effort is indicated by the darkened-in bars of Fig. 9.
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THRUST CHAMBER ASSEMBLY DESCRIPTION

A complete description of the 111 kN (25K) aerospike thrust chamber
assembly is contained in Ref. 1. For the convenience of the reader, a
description of the assembly has been condensed from Ref. 1 and is presented
below.

OVERALL

The 111 kN (25K) aerospike thrust chamber consisted of an annular combus—
tion chamber assembled from 24 regeneratively cooled combustor segments

and a regeneratively cooled nozzle/base closure assembly. Two views of the
thrust chamber assembly are shown in Fig. 10 and 11. A summary of the
thrust chamber design and operating parameters is presented in Table 3.

TABLE 3. DESIGN CONDITIONS

Propellants LOZ/LH2

Max imum Vacuum Thrust, kilonewtons (pounds) 111 (25,000)
Maximum Chamber Pressure, kPa (psia) 6 895 (1000)
Ncninal Thrust Chamber Mixture Ratio 5.5/1

Thrust Chamber Mixture Ratio Operating 5.0/1 to 6.0/1
Range

Nozzle Expansion Ratio 200/1

Target Vacuum Specific Impulse at Maximum b7

Thrust, seconds

The thrust chamber utilized a segmented combustion chamber approach in
which 24 combustor segments were clamped between a continuous inner
structural ring and a continuous outer structural ring to provide a 6.283 2
radians (360-degree) circular assembly. At each interface between com-
bustor segment assemblies, bolts were installed to connect the inner and
outer structural rings as illustrated in Fig. 12. This design approach,
also illustrated in Fig. 13, achieved an assembly of the aerospike thrust
chamber without bonding the coolant panels to the pressure and thrust
restraining structures, thereby reducing thermally induced strains in the
structure, and also avoiding the processing associated with furnace braze
joining of the segments and the structure. The resulting mechanical
assembly allowed removal and replacement of individual segments if required.
The adjoining segments were welded together at the joint which occurred at
the end of each corhustor's low expansion ratio divergent section. The
tabular nozzle was elded to the trailing end of each combustor segment
inner body, providing a 6.283 2 radians (360-degree) ring joint.

Drauvings cf the thrust chamber assr-bly (Fig. 14 and 1) present its
dimensions and configuration.

19
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The cooling circuit for the thrust chamber, shown scrematically in Fig. 16,
consisted of a double-pass, combustor-first/nozzle-last type of circuit.

The hydrogen coolant first entered the combustor segment outer body wall

as a liquid, at a temperature of 43.89 K (79 R), and ccmpleted a downpass
and uppass. This was followed by a downpass through the segment end panels,
an uppass and downpass through the segment inner body wall, and completion
of the circuit by flowing single pass down through the nozzle.

The hydrogen exited the nozzle, and was designed to feed to the injector,
as a gas at a temperature of 649.44 K (1169 R). The oxidizer was used for
secondary cooling, entering <he circuit as a liquid. 97.22K (175 R), com-
pleting a single uppass through the double-paneled inner body wall, and
was then fed to the injector as a gas at a temperature of about 199.44 K
(359 R). The double-panel thrust chamber heat transfer and pressure loss
characteristics are noted in Table 4.

COMBUSTOR SEGMENT DESIGN

The design criteria for the regeneratively cooled combustor segment were
established on the basis of extensive development experience gained from
single segment test combustors. A sectional sketch of the segment design
is shown in Fig. 17.

The segment consisted of a two-piece (i.e., inner and outer liner) NARloy-A*
assembly as depicted in Fig. 18. The outer liner had a brazed-on NARloy-A
closeout sheet, but the inner liner utilized a brazed-on NARloy-A oxidizer
coolant panel closed out with a NARloy-A cover sheet. All material was
machined from forgings.

The materials selected for the regeneratively cooled double-panel segment
were as follows:

i. Segment Liner - Machined wrought forging NARloy-A material

2. Injector Face - Integral with wrought liner, NARloy-A material

3. Injector Body - Investment casting, 304L corrosion-resistant steel

4. Coolant Channel Closeout, Outer Body Liner - Furnace brazed
wrought NARloy-A sheet

5. Coolant Channel Closeout, Inner Body Liner - Furnace brazed
NARloy-A oxidizer coolant panel which is closed out with a
wrought NARloy-A shcet

6. Injector Body-to-Face Joint - Furnace braze joint

7. Manifold Shells - Minimum wall thickness, corrosion-resistant
steel

*NARloy-A is a silver-copper alloy (Rockwell International trademark)
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LH, 43.89 K (79 R)

\

SINGLE PANEL
OUTER BODY

GO, to INJECTOR
e o
199.44 K (359 R) \\\

L_J/// )
DOUBLE PANE \

INNER BODY LO \
2=/
97.22 K (175 R)

SIDE PANEL

’////-————— NOZZLE

GHy TO INJECTOR
649.44 x (1169 R)

Figure 16. Thrust Chamber Cooling Circuit
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The details of this design are described below.

Each NARloy-A liner had 74 regenerative coolant passages machined into its
exterior wall. A preformed wrought NARloy-A sheet 0.64-mm (0.025-inch)
thick was brazed into position to form the cpolant channel closeout for the
outer liner. An oxidizer coolant panel, 1.14-mm (0.045-inch) thick, with
73 machined, regenerative-coolant passages along with a closeout sheet,
0.38-mm (0.015 inch) thick, was brazed into position to form the closeout
for the inner liner. The inner and outer liner assemblies were then brazed
together. The injector face was made integral with the liner halves so

that a flat surface injector body-to-injector face joint could be furnace
brazed.

The design criteria for the segment geometry were established by development
segment testing and are presented in Table 5.

DESIGN OF THRUST CHAMBER ASSEMBLY

The comnlete thrust chamber assembly consisted of a combustor segment sub-
assembly attached to a truncated aerospike tubular nozzle as described below.

Combustor Subassembly

The combustor subassemblv consisted of 24 combustor segments, a lightweight
backup structure for positioning these combustor segments, spacers, and
assorted brackets and bolts as illustrated in Fig. 17. The outer backup
structurce ring was positioned to begin the initial build (Fig. 19).
Stacking of the combustor segments was next. LEach segment was fitted to
the ring. At each of the 24 segment junctions, a TIG weld was applied to
form a ring of the combustor trailing edges. Next, the inner backup struc-
ture along with the spacers, bolvs, nuts, and bracketry was installed.

The subassembly was then machined at the end of each combustor to form the
transition juint for hookup to the nozzle assembly.

The inner and outer backup structures were designed for minimum weight
through the use of titanium alloy ring forgings (6A1-2Sn-4Zr-2Mo) and high
section modulus with a continuous support surface in contact with segment
combustors. The backup structures were designed to provide for mounting
all the combustors together in a sandwich effect. FEasy ON/OFF situations
were also considered. These backup structure designs are piesented in
Fig. 20 and 21.

Nozzle-Base Closure Subassembly

The nozzle-base closure subassembly consisted of a nozzle extension and a
base closure assembly.

The nozzle extension was a tubular assembly regeneratively cooled by a

single downpass of hydrogen coolant introduced at the upper end nozzle-to-
combustor transition manifold ring. The nozzle extension was constructed
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of 1590 Inconel 625 tubes. These tubes had a wall thickness of 0.13 mm
(0.005 inch) and were tapered from 2.79 mm (0.110 inch) OD at the tran-
sition joint down to 1.78 mm (0.070 inch) OD at the nozzle base manifold.
The hot-gas-side transition ring was made of OFHC copper while the cold-
gas side was made of Inconel 625, as was the base manifold.

The coolant tubes were assembled on a brazing fixture, alloyed, and then
furnace brazed.

The nozzle tube dimensions are shown in Fig. 22.

Following machining, the nozzle assemoly was welded to a base closure
assembly at the welding lip of the base manifold. A design drawing of the
base closure assembly is presented in Fig. 23. The base closure assembly
was 2 thin-shell pressure vessel configuration consisting of two 0.10 mm
(0.0)4 inch) waffled 347 CRES sheets joined together by rivets to form a
double-walled dome. The small base bleed flow 0.045 kg/s (0.10 1b/sec) is
ducted into the cavity between the two walls and then discharged uniformly
into the dome base region through bleed holes.

Final Thrust Chamber Assembly

The final thrust chamter assembly consisted of the combustor subassembly,
nozzle-base closure subassembly, thrust mount assembly, manifold assembly,
and an assortment of brackets, bolts, nuts, etc. The design drawing of the
thrust chamber assembly is presented in Fig. 24 , and photographs of the
completed assemblv are shown in Fig. 10 and 11.

The nozzle-base closure subassembly was joined to the combustor subassembly
at the transition joint as shown in Fig. 24. This joint consisted of a
wrought NARloy-A-to-OFHC copper TIG braze on the hot-gas side and a 21-6-9
CRES-to-Inconel 625 TIG weld (two places) on the cold-gas side. A small
common manifold was utilized to transfer the hydrogen coolant discharge
from the 880 channeis in the combined 24 combustor segments into the 1590
nozzle tubes.
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THRUST CHAMBER DAMAGE

This section contains a description of the damage that was incurred by the
thrust chamber during test 74-005, the last test firing conducted on Air
Force contract F04611-67-C-0116, and of the repair efforts to the thrust
chamber that were conducted under the auspices of the U. S. Air Force. A
photo of the interior of the thrust chamber assembly after the fire is
shown in Fig. 25.

The damage incurred during test 74-005 may be cataloged as follows:

® Five combustors, at locations No. 16 through 20 of Fig. 26,
sustained such severe fire damage that they could not be used.

® Approximately one-quarter of the titanium inner backup ring
was burned away

® Two small areas of the outer titanium backup ring were
sufficiently burned to require metal replacement

® The ignition manifold and the propellant feedlines were
burned so as to require approximately 50% replacement

® Components of the thrust mount, i.e., some of the struts
and the central cone, suffered burn damage. Some parts
required complete replacement and others required repair
of damaged areas.

@ Approximately 307 of the 1590 nozzle tubes had small areas
burned away on the cold side, resulting in leaks in the
burned areas

® All of the instrumentation, wiring, and pressure connections
were destroyed

After a period of damage assessment, it was determined that all of the
damage was repairable. The modular nature of the combustor segments

permits the removal of damaged segments, their repair, and replacement.
The backup structure and thrust mount components are bolted on, so may
be removed for repair and/or replacement. The ignition and propellant

feed manifolding is readily accessible for repair and replacement. Finally,

a company-sponsored nozzle tube repair program had demonstrated tnat
excellent nozzle tube repairs were feasible, and could return the nozzle
to a fireable condition.
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THRUST CHAMBER DISASSEMBLY AND REPAIR

DISASSEMBLY

A photograph of the interior of the 111 kN (25K) aerospike thrust chamber
is shown in Fig. 27. It is possible to identify on the photograph many of
the elements that go to make up the thrust chamber assembly, i.e., the
nozzle, the combustors, the inner and outer backup rings, the support
structure which carries the thrust from the backup rings to the central
gimbal point; the fuel, oxygen, and ignition manifolding; and the instru-
mentation hookups. Some disassembly effort was funded under the previous
Air Force contract and it had been mostly accomplished at the start of the
subject NASA contract. The disassembly had made it clear that it would be
necessary to refurbish or replace five of the combustors, the inner and
outer backup rings, certain other components of the thrust structure, the
interior of the nozzle and many of the components of the manifclding.

COMPONENT REPAIR OR REPLACEMENT

The nature of the aerospike thrust chamber assembly is such that it is
possible to effect repairs bv replacing damaged components with functional
components, i.e., individual components are readily replaced without seri-
ously disturbing the adjacent components. However, where assembly is by
brazing or welding, it is necessary to cut the damaged component out, and
this may render it unsuitable for further use. The repair and replacement
effort is described, by component, in the material below.

COMBUSTOR REPAIR

Background

During the disassembly and inspection of the damaged thrust chamber assembly,
it was determined that 5 of the 24 combustors had been so severly damaged
that they needed complete replacement. There were no usable complete spare
combustors on haind, but there were a number of combustors that had some
usable parts. The major elements of a combustor assembly may be visualized
as consisting of the injector assembly, the inner liner (which has both a
hvdrogen and oxygen cooling circuit), and the outer liner (which has only a
hydrogen cooling circuit). These three subassemblies are joined by brazing
and welding (there are no bolted joints) into an integral combustor.

The plan devised for combustor replacement involved cannibalization of
portions of the cxisting spare combustors so as to utilize them in combina-
tion with portions of other (ombustors, or with new components, to produce
viable combustors suitible for welding in place on the existing thrust
chamber assembly. This 18 wlieved to be the first time dissection and
reassembly of such we.ded combustors was attempted. 1t was made possible
by the unique fabrication scheme of the 111 kN (25K) aerospike combustors
which is illustrated in Fig. 28.
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Work was begun on the fabrication of five combustors, so as to replace

the missing five on the thrust chamber assembly. Table 6 lists the five
rebuilt combustors from which the replacements for the assembly were to

be selected.

TABLE 6. COMBUSTOR BODY-INJECTOR USAGE

Combustor Segment

Identification Injector Inner Liner Outer Liner
Unit No. Unit No. Unit No. Unit No.
507R 506 507 507 -
510R 518 510 510
509R NEW New liner, coolant 509

panel, cover sheet
and end plates

515R NEW 515
535(N) NEW New liner, cover
sheet, and end
plate
R = rebuilt N = new

lﬂperpropellant Leakage

Experience during the initial fabrication of the combustors had shown
occasional leakage between the fuel and oxidizer circuits. On the repair
program, a gaseous pressure and leak test on the nozzle and the 19 combus-
tors that remain attached to it was conducted prior to initiating repairs.
This leak testing was undertaken to assess the extent of any leakage be-
tween the hydrogen and oxygen cooliag circuits in each of the 19 combustors.
The testing was conducted at this time so as to be able to assess the

impact of the conditions found upon the schedule and resources required

for the chamber repair and hot-fire test program.

The absence of 5 of the 24 combustors on the existing thrust chamber

assembly made it impractical to secure a completely leak-free hydrogen

cooling circuit and it was therefore not possible to apply hydrostatic

pressure by the conventional means of a high-pressure, very-low-volume

capacity positive displacement pump. The procedure followed was to plug

off the exit of each of the nozzle tubes by dipping the aft nozzle mani-

fold into a pool of melted paraffin and allowing it to solidify. The

hydrogen inlet of each combustor was then connected, in turn, to a supply

of gaseous nitrogen at approximately 6 895 kPa (1000 psi). Commercially

pure methane in an amount sufficient to provide approximately 17 of weight *
of methane in the pressurizing nitrogen was added to the pressurant just
upstream of the combustor inlet. A low-pressure, pure nitrogen purge was
also admitted into the oxygen manifold of the injector of the combustor
being tested and was exhausted from the oxygen inlet manifold of that
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combustor. This nitrogen (being purged through the oxygen circuit) was
then routed through a combustibles meter and analyzed for methane content.
In this manner, it was possible to measure the amount of nitrogen leakage,
if any, between the hydrogen and oxygen circuits of the combustor being
tested while the circuits were subjected to the same pressure differential
as would exist during firing at rated chamber pressure conditions. On the
basis of the measured nitrogen leakage, it was then possible to estimate
the amount of hydrogen leakage that would exist under firing conditions.
The test procedure was capable of measuring minute leakage in a reproducible
manner. The results indicated that none of the combustors had sufficient
leakage to cause a local concentration of hydrogen in the oxygen of as
much as 5 percent of the flammability limit concentration. It was thereby
determined that correction of interpropellant leakage in the 19 existing
combustors was unnecessary.

Combustors Using New Inner Liners

Three of the rebuilt combustors were dependent on new inner liners for
completion. The necessary new combustor liner details, i.e., hvdrogen
panels, oxygen panels, oxygen panel cover sheets, etc., to support the
combustor fabrication plan of Table 6 were requisitioned early in the
program. These detaiis were fabricated both in-~house and by outside
vendors. Deliveries of the details were completed during the second
quarter. The three new inner liner assemblies for units 509R, 515R, and
535, were put through their brazing and assembly cvcles. One new outer
liner for unit 535 was also successfully put through its brazing cycle.
The existing outer liners for units 509R and 515R were reworked to braze
in new injector face plates. By mid-June, at which point fabrication
effort on this hardware was halted, the inner and outer liners for units
509R, 515R, and 535 had been brought to the point where match machining
of the inner and outer liners preparatory to their assembly bv brazing
could be undertaken. The fabrication of these components was satisfacto-
rily accomplished.

Supporting Combustor Details

In addition to the major parts that go into the inner and outer liners

in the injector assemblies, there are a large number of supporting details
that go to make up each assembly. These too were released and satis-
factorily fabricated by mid-June.

Combustor Units 507R and 510R

These two rebuilt combustors were planned to utilize existing inner and
outer liners as indicated in Table 6. Thev had been partially completed
under the sponsorship of the previous Air Force contract. Both of these
combustors encountered problems during the first quarter with cover sheet
cracking during the final assembly operation on the manifolds of the

inner liner. 507R had cracks in the LOX panel cover sheet. 510R developed
cracks in the fuel panel closeout sheet bhotween the LOX inlet manifold and
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the fuel distribution manifold. A repair plan was devised that involved
subjecting each combustor to what was intended to be a final furnace braze
repair cycle. The metal fitting to prepare for brazing is illustrated in
Fig. 29 and 30.

he triangular insert patch of Fig. 29 was successfully brazed to the inner
liner of 507R, as illustrated in Fig. 31. However, on hydrostatic pressure
test, it was found that a new crack, approximately 50.8 mm (2 inches) long,
had occurred just aft of the oxygen outlet manifold on the inner liner LOX
cover sheet. A repair to this crack was attempted using TIG brazing with
Nioro braze alloy. The repair effort was unsuccessful in that the material -
cracked at the edge of the fillet formed between the braze alloy and the
parent material. Evaluation of this condition indicated that further
attempts at T1G braze repairs would likely result in further cracking, so

a repair procedure utilizing furnace brazing with the relatively low melt-
ing point, "BT" alloy (727 Ag, 287 Cu), was attempted. This final braze
repaiv effort was apparently successful in repairing the crack at the
forward joint. 507R was then put through the standard hvdrostatic pres-
sure test, which involves a 24 821 kPa (3600 psi) hvdrostatic pressure in
the fuel side and a 1517 kPa (220 psi) pressure in the oxvgen circuit.

507R successfully withstood the fuel side pressure testing without leakage
but during the oxvgen side pressure testing leakage in the oxvgen panel
cover sheet was encountered through what appeared to be a series of small
cracks in the cover shect. This condition is illustrated in Fig. 32.

Unit 510R, which had developed cracks in the fuel panel closcout sheet
between the LOX inlet manitfold and the fuel distribution manifold, and
also some small seepage leaks in the oxvgen panel cover shect at locations
that had been repaired during initial fabrication (Fig. 30) was also put
through a series of repair actions. Leaks between the oxygen inlet mani-
fold and intermediate fuel manifold were successtully repaired by T1G
brazing. A furnace brazce cyvele was emploved to correct successtully the
oxvgen leaks through the oxygen panel cover sheet, with results shown in
Fig. 33. Hvdrostatic pressure testing of unit 510R on cvompletion ot these
repairs resulted in detection of a4 crack in the outer liner fucl panel
cover sheet on the right hand side ot the hell-stiaped nozzle (below the
throat). Consistent with standard vepair procedures, a TG brave repair
to this crack using Nioro braze allov was attempted, but resulted in a
second crack in the material adjacent to the repaired location,

At this point in the repair procedures, it appeared that a condition
existed with units 507R and 510R that was not consistent with previou-
fabrication expericnce.  The brazing cveles being emploved for chamber
assembly and repairs were resulting in nontyvpical cover sheet cracking.
An investigation was undertaken to Find the reasons for the nontvpical
cracking and to find some wav te bring units S07R and S10R to successtul
completion.  Because of the severe scheduale and financial impact on the
program in the event it was not possible to complete units /R and HTOR
successfullyv, it was decided at this point (mid-tune 1976) that tabrication
cffort, other than on the two combustors in questici, would be halted
until the problem was resolved.




—— - ,__ 9
ot jeavd nig aredoy vy TR 06 TEda ARTPRERRR S ERLE O x
v a10-92/61/%-CcH4X1
vT||\!.. e
w
ﬁ
|
v
|
e o
|
]
— ————
|
]
]
B >
o -
N
o -
om
o]
=
a. =
-
, =
. >
/ -




A

—tn o A b

JT10-9L/61/%-CTHX1

PR RN R TR

L

tred oy

R

a4

TS

HTug

"Ut

Dand ]

60




61

poitedoy ozeig ‘¥/0G ITUQ °TE dan3Td
410-9L/S7/S-TTHAT




/
3, 2K e

Figure 32. Photo of Crack in Unit 507R LOX
Cover Sheet (10X Magnification)
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The investigation took two paths, development of techniques to repair the
cover sheet cracks, and research into the causes and significance of the
cracks.

Final Repair Efforts on Combustors 507R and 510R

A repair concept was developed for the NARloy-A cover sheet cracks of
combustor units 507R and 310R which involved ¢ishing out the cracked

area and electrodepositing copper into the groove in sufficient depth to
provide the necessary structural strength to contain the internal pressure.
The repair concept is illustrated in Fig. 34. Electrodeposited copper has
a minimum yield strength of 140 MPa (20K psi) and a minimum ultimate -
strength of 280 MPa (40K psi) at 21 C (70 F) as compared to 100 MPa (14K
psi) and 210 MPa (30K psi), respectively, for aged NARloy-A. The deposi-
tion technique used was that of cell plating, in which a small electro-
plating cell is clamped to the side of the part to be repaired rather than
submerging the whole part in the plating solution.

Several NARloy samples were fivst fabricated to permit experimentation
with various methods for activating the NARloy surface to prepare it for
copper plating and also to explore means for closing up the crack at the
base of the dished area to be plated. The NARloy used for the samples
proved to be extremely difficult to crack, indicating that it had not been
subjected to embrittlement. The activation procedures investigated included
anodic and chemical cleaning. The crack stopping methods included material
removal and overplating at the ends. Properly plated samples were achieved
with the chemical method of activation and the overplating method of crack
stopping, and the samples were found to have exceli-nt adhesion as demon-
strated by baking at 537.8 C (1000 F) without blistering.

Combustor unit 510R was then prepared for cell plating. Because the
cracked area on 510R had been previously but unsuccessfully repaired with
Nioro TIC braze, it was necessary to grind away all the TIG brazed area
prior to celi plating. It is generally not possible to activate gold-
containing surfaces sufficiently to secure reasonable electroplating adhe-
sion. The opened-up channels on 510R were then filled with Rigidax wax
and the surface electroplated until the deposit had grown beyond the
original level. A photo showing the setup for cell plating of unit 510R
is shown in Fig. 35. TIllustrated is the cell pump, copper solution, and
power supply.

Unit 510R was then subjected to cryogenic shock testing in which liquid
nitrogen was flowed through the chamber until liquid issued from the exit
and then permitted to warm up. This procedure was repeated three times.
The unit was then subjected to a 24 821 kPa (3600 psi) hydrostatic proof
pressure test on the fuel circuit and a 10 342 kPa (1500 psi) hydrostatic
proof pressure test on the oxygen circuit. The patched area of the tuel
circuit successfully withstood the cryogenic shock testing and the proof
pressure test, but leaks were detected at the inner liner fuel and oxidizer
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Figure 34. Crack Repair Concept

65




— . . A

A

d10-9,/¢[/L-8tHAT

snjededdy a9ddo) pairrsodapoldnald

"Gt

a1n314

66




S
= v
—— -,

manifolds. Several unsuccessful attempts at "touch up" repairs were made.
The manifold shells in question were then partially removed and it was
determined that these fuel and oxidizer manifolds needed extensive repair.
Repairs to these manifolds were effected by removing the entire shells of
the manifolds, rebuilding the attachment lips on the liner and replacing
the shells. These manifold repairs were apparently successful. The
assembly was again subjected to a three-cycle cryogenic shock test by
passing liquid nitrogen through the fuel side. After the shock test, a
fuel side hydrostatic pressure test was conducted, which indicated that
another NARloy crack had developed in the outer liner, at approximately
the "opposite hand" condition from the previously repaired crack. The
area in which the crack appeared is believed to have been only minimally
affected by the thermal strains imposed by the manifold repair work, which
was conducted on the inner liner. It is believed that the new crack
resulted primarily from the additional thermal strains imposed by the cryo-
genic shock testing. On the basis of this experience, it was concluded
that 510R was unlikely to be a suitable combustor for assembly to the
thrust chamber.

The NARlov cracking problem with unit 507R involved the oxidizer panel
cover sheet on the inner liner. Repair of this area was recognized to be
more challenging than the repair of unit 510R, so its preparation and
plating was held until results with 510R had been obtained. On making a
thorough examination of unit 507R preparatory to preparation for plating,
it was found that there were relativelv large numbers of small cracks,

and that cell plating would tend to be quite tedious as many of them would
have to be plated in series. Additionally, one could not be certain that
all cracks had been identified until some of the larger detects had been
covered. For these reasons, it was decided to apply electrodeposited
copper (ED) over the entire LOX panel cover sheet of unit S07R. However,
El copper cannot be expected to adnere to the areas that had been TIG
braze repaired because of the noble metal content of the braze alloys.
These areas were maskhed of f prior to eleccrodeposition of the copper. The
surface was prepared for plating by carefully removing 0.13 mm (0.005 inch)
to 0.25 mm (0.010 inch) of the existing NARloy material by hand sanding.
Guidance as to the thickness of NARloy material removed and the thickness
of the laver of electrodeposited copper applied was obtained by taking
caliper measurements of the thickness of the combustor at a relatively
fino grid of stations. Approximately G.76 - 1.02 mm (0.030 - 0.049 inch)
thickness of ED copper was then applied by immersing the entire combustor
in an electroplating tath. The copper thickness was then hand dressed

co provide an average copper surface of 0.51 mm (0.020 inch) above the
location of the original NARley surface. This procedure is acceptable
because 0.51 mm (0.020 inch) thick shims are normally applied between the
combustor surface and the inner backup ring. A photo of the inner surface
of combustor 507R after the application of the ED copper is shown in Fig. 36.

After ED copper application to the inner liner, unit 507R was subjected

to a three-cycle cryvogenic shock test as previously descrived for unit

510R and then to a 10 342 kPa (1500 psi) hydrostatic pressure test of the
oxidizer circuft. No leaks were observed on the hvdrostatic pressure test,
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but when the unit was subsequently leak tested at 1379 kPa (200 psi) helium
pressure, it was found that there were about six .eaks around the periphery
of the ED copper piating. These leaks did not issue from under the ED
copper plating itself but, rather, from beneath the Nioro TIG weld fillet
that runs along the upper edge of the LOX cover sheet, from the lower edge
of the triangular patch previously installed at the upper left-hand corner
of the LOX cover sheet, and from a small crack in the original NARloy at
the upper left-hand edge of the ED copper cover. This small NARloy crack
had been masked during ED copper plating and, thus, not covered. A repair
of these leaks was attempted in which the leaking zones were covered with
Nioro braze alloy applied with a TIG torch. Upon pressure checking 507R
after this latest repair effort, it was found that while the six leaks
appeared to have been repaired, a very large interpropellant leak was

now present, apparently caused by the TIG torch repairs. This interpro-
pellant leak was approximately six times the size of the maximum inter-
propellant leak observed during the interpropeilant leak check reported
previously. Additionally, the fuel circuit of combustor 507R was put
through a hydrostatic pressure test. During that tes:, the intermediate
fuel manifold (located at the aft end of the inner liner) burst at hydro-
static pressure test of approximately 20 684 kPa (3000 psi). It had
previously be . through two hydrostatic pressure test cycles up to 24 821
kPa (3600 psi,. While the fuel manifold could be repaired, the large inter-
propellant leak in 507R clearly made it unacceptable for utilization on the
thrust chamber.

NARloy-A CRACKING INVESTIGATION

Beginning in July 1976, it became evident rhat the NARloy-A coversheet
cracking being experienced on combustor units S07R and 510R was not con-
sistent with the ductile behavior typical of NARloy-A. A metallurgical and
historical investigation, concurrent with the repair effort on 507R and
510R, was conducted to understand the problem and its implications .or all
of the combustors.

A sample of the coversheet and braze joint was removed from segment 510 in
the area where cracking had occurred (see Fig. 37 for a view of the crack
and Fig. 38 and 39 for photomicrographs of the cracked region). Samples
of NARloy-A were also removed from several other combustor segments as the
investigation proceeded. All of the samples from useful combustors were
taken in a manner permitting replacement of the removed material. All
samples examined are listed in Table 7. Several Rocketdyne metallurgists
experienced in NARloy-A and copper systems, and Dr. Martin Prager, a con-
sultant, reviewed the mounted sections and agreed that the chains of round
voids visible in the grain boundaries were definitely the result of a
reaction between hydrogen and oxygen, which formed steam.

The oxvgen/hvdrogen reaction in pure copper and copper allovs is well
known through experience with OFHC copper. [If the copper structure con-
tains oxides, or oxygen in solution, in a significant quantity (above

20 ppm), an H)/02 reaction will occur in H2 atmospheres above 593.3 C
(1100 F). The diffusivity of hydrogen in copper is very rapid at these
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Cover Sheet Crack in Outer Half of Segment
510 Viewed From Cover Sheet Side (20X)

Figure 37.
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TABLE 7. METALLOGRAPHIC INVESTIGATION OF SEGMENTS

Segment Test
i No. Location Remarks
% 504 B No Gasingt
? 507 B No Gasing
~ C No Gasing
D Cracked-No Micro; Probably Gasingi -
510 A Cracked - G.B.* Gasing
B No Gasing ‘
c Light G.B. Gasing ;
D No Gasing |
512 A Severe G.B. Gasing
514 A Severe G.B. Gasing f
516 C Slight G.B. Gasing ‘
518 o Slight G.B. Gasing
522 C No Gasing
523 A-C No Gasing
525 C No Gasing
“G.B. = Grain Boundary
tThe term gasing refers to voids formed by the OZ-H2 !
reaction. . J

TEST LOCATIONS
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es. Heavy sections are penetrated in a few minutes; light sec-
penetrated in seconds. When hydrogen is introduced during braz-
ers the copper matrix and reacts with any oxides or oxygen in

r in oxide form, forming bubbles of H20, steam. Table 7 reports
ce of this reaction as '"gasing"”. The steam bubbles cause spheri-
to form within the metal. The voids usually concentrate at grain
. Severe H2/02 reaction may even cause separation of grains,

ig. 53 is typical. The effect of the voids 1s to reduce the

nd ductility of the material.

on now was, how did the O) come to be present in the NARloy of
10R; was it likely to be present in other combustors; and what
gnificance to the program?

stablished several possible sources of oxygen in the NARloy-A

segments: (1) the oxygen could have been present in the virgin

rior to the fabrication of segments, (2) oxygen could have been
the braze joints during braze assembly or gold plating and

nte the NARloy-A during furnace operations, (3) NARloy-A oxidizes

n at room temperature, regardless of the cover gases used dur-

s 'ng and the cleaning operations between furnace cycles, it was

hat oxides could have accumulated on cooling channel surfaces.

e oxides could then have diffused into the NARloy at elevated

All of these possible sources

appcared a* first to be improbable, as the injurious effects of oxygen on
NARloy had been well known all along, and guarded against in material
specifications, purchasing procedures, and processing procedures. The
actual me|hanism was determined by a process of elimination.

The receiLing records on the virgin NARloy-A used in the combustors show
its oxygcp content to be within specification, 20 pgm or less. The quality
control steps required by specification on wrought NARloy-A are shown in

Table 8.! These procedures had been followed, providing considerable

confidenc
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the oxyge
quality,

sheet fro
thrust ch
metallogr
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Hy/02 rea
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pickup du
covershee
and cover
this reas
Grain bou
sheet. 1

that incoming material was oxygen-free. Conceivably, however,
en pickup during forging or rolling could have been missed in
check samples. As further confirmation of incoming material
new braze sample was made from a gold-plated NARloy-A cover-
the same lot as the material used for the 24 combustors on the
mber. The sample was brazed in Hy at 910 C (1670 F) and examined
phically. The results, shown in Fig. 40, showed no H2/02 reac-
re was also other evidence.in samples taken from combustors that
source was not the virgin material. In several cases where an
ction was presen’, it was noted that both the coversheet and its
liner were contaminated. If the source of oxygen were local
ring forging or rolling, it is unlikely that adjacent areas of
ts and liners would both contain excess oxygen, since the liners
sheets were fabricated from different forgings. A good example of
oning is seen in a section taken from segment 514 (Fig. 41).
ndary H2/07 reaction is present in both the liner and the cover-
t might be argued that the original contamination was in the liner
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Firure 40. Test Specimen From a Gold-Plated Cover Sheet Subjected to One
Braze Cycle in Hy After Thorough Surface Cleaning (Material is
the Same as Segments) (200X)
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only and diffused to the coversheet during furnace operations but, if so,
the H2/02 reaction would be continuous across the braze joint between the
liner and coversheet reaction areas, which is not the case. Hence, it was
concluded that the virgin material could be eliminated as a major source
of oxygen.

In most of the sections taken from both segments and experimental samples,
porosity was noted in the braze joints. This is a common situation in
braze joints due to shrinkage or entrapped gases. Where the braze porosity
was oxygen from gases trapped in the joint surfaces at braze assembly, or
oxides remaining in the gold-NARloy-A plating bond line, it might be
assumed that these oxides could diffuse into the NARloy-A parent metal
during thermal cycling and thus be the source of oxygen contamination.
Several observations on the sections disproved this assumption. If the
braze joint were the major source of oxygen, il would be expected that the
Hy/07 reaction in the NARloy would be worst near the braze joints, and this
was not generally true. Again, combustor 514 (Fig. 41) is a good example.
The worst grain boundary condition is in the liner some distance from the
braze joint and very little Hp/02 reaction occurred near the braze joint.
In a section from combustor 516 (Fig. 42 and 43), isolated 0/H2 reaction
was found in arn area remote from a braze joint. There is also evidence
that at least part of the braze joint porosity is not the result of the
02/H2 reaction. The section in Fig. 44 shows a centerline porosity and
traces of bond line porosity in the braze joint, yet this specimen was
never exposed to H2, so the porosity cannot be steam bubbles from the

02/Hy reaction. Additionally, a section from the inner half of segment
510 (Fig. 45) shows considerable bondline porosity in a braze joint with
no associated 02/H2 reaction in the NARloy. This segment was brazed in
hydrogen. The same is true of the specimen shown in Fig. 40.

Dr. Prager stated in his comments about the observed grain boundary condi-
tions that, in his experience, it is not possible to produce major amounts
of grain boundary weakening, such as seen in segment 514, from the amount
of oxygen available in a braze joint. The braze joint could contribute
some oxygen to the system, but not the quantity required for the extensive
damage observed. It was therefore concluded that the braze joints were
not a significant source of oxygen.

The third possibility, diffusion of surface oxides into the NARloy, was
found to fit the observed facts. A review of the fabrication history

of the segments brought out several significant points. The diagram in
Fig. 46 shows the fabrication sequence in regard to furnace and torch
brazing operations. GTA brazing (gas tungsten arc, with a heliarc torch
used as a heat source for brazing) with Nioro (82Au, 18Ni), an alloy which
brazes at 982.2 to 1010 C (1800 to 1850 F), was performed on all segments
as a planned operation at two points in the sequence: the joining of mani-
fold shells to coversheet strips prior to furnace brazing the segment
halves together, and a reinforcement Nioro joint over the end plates after
furnace brazing the halves together. Since the segments were small, GTA
brazing temperatures were high, and NARloy is an excellent thermal conduc-~
tor, elevated temperatures were experienced in the NARloy during GTA brazing.
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Figure 42, Section From Outer Half of Segment 516,

Showing Slight 02-H2 Reaction (100X)
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Figure 43. Section From Outer Half of Segment 516, Showing
Slight 02-112 Reaction (Blowup of Fig. 42) (400X)
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Figure 44, Test Specimen From NARloy-A Cover Sheet, Furnaced Brazed
in Argon (No 02—H2 Reaction Present; Centerline Porosity
in Braze Joint) (l00X)
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Figure 45. Section From Inner Half of Segment 510

(No 02-H2 Reaction Present) (100X)
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External surface oxides formed during GTA brazing were vemoved by abrasive
cleaning prior to furnace brazing operations. The internal surfaces, i.e.,
cooling channels, were carefully flushed with inert gas during GTA brazing
to minimize oxidation. Use of inert cover gases is normally adequate pro-
tection against oxidation and was considered a reasonable precaution in
this case. In retrospect, however, scavenging of oxygen was probably
incomplete. The geometry, with square-ended channels and many leak paths
during manifol. attachments, is difficult to purge completely.

All NARloy-A was chemically cleaned prior to the first braze cycle. On
subsequent cycles, early in the program, cleaning between braze cycles

was accomplished by degreasing. These cleaning steps had precedent in
other programs involving the brazing of copper alloys, such as brazing

of OFHC copper on F-1 injectors. During aerospike combustor fabrication,
however, channel contamination problems were experienced, specifically on
segments 512, 514, 516, and 518. Starting with segment 520, therefore,
chemical cleaning operations were added between braze cycles. The segments
with the added cleaning may have had less oxidation and correspondingly
less H2/02 reaction, but this point cannot be verified nondestructively.

There were several possible sources of surface oxidation in addition to
GTA brazing. After furnace operations, assemblies were still warm when
removed from the inert furnace atmosphere. Rocketdyne process controls
required that NARloy assemblies remain in an inert atmosphere on cooling
until the temperature was below 121 C (250 F). However, a NARloy-A sur-
face oxidizes to some degree at ambient temperature and at a more rapid
rate abova 121 C (250 F), though the oxide layer is a thin, not a heavy
scale. Thus, the repeated furnace operations characteristic of the aero-
spike fabrication history may have contributed significant amounts of
oxygen. Perchloroethylene degreasing was used extensively to remove waxes
from combustor assemblies after machining operations, and the temperature
on removal from the degreaser was above 93 C (200 F). Hydraulic pressure
testing required vacuum oven drying to remove water from the segments,

and assemblies were normally above 93 C (200 F) when removed from the oven.

It is a fact that channel surface oxidation did occur, because channel
discoloration was observed in the specimens removed from segments 514 and
518, which contained complete sections of channels.

Experiments were then run to demonstrate that oxygen diffusion from an
oxide-coated surface can occur in normal furnace operations. Figures 47
and 48 show the results. The section in Fig. 47 and 48 was taken from a
specimen which was furnace brazed in argon for 30 minutes at 910 C (1670 F)
and then held in argon for two hours at 871 C (1600 F). It was removed
from the furnace and the surtaces were oxidized by heating in air with an
oxyacetylene torch until the surfaces were black and slightly scaled.

The specimen was then returned to the furnace, and held at 871 C (1600 F)
in argon for 120 minutes followed by 30 minutes in hydrogen at 871 C
(1600 F). The long held time in argon approximated the multiple furnace
cycles on combustors which were furnace repaired several times. Severe
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Figure 47. Test Specimen From NARloy~A Cover Sheet, Furnace Brazed
~ ) in Argon, Surface Oxidized With Torch, Reheated in Argon
Furnace to 871 C (1600 F), Then Hp at 871 C (1600 F)
(Shows Severe 0-Hy Reaction) (100X)
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Figure 48.
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Test Specimen From NARloy-A Cover Sheet Furnace Brazed in
Argon, Surface Oxidized With Torch, Reheated in Argon Furnace
to 871 C (1600 F). Then H; at 871 C (1600 F) (Shows Severe
0,-H; Reaction) (200X)
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H2/02 reaction occurred, clearly indicating that surface oxides can be the
source of oxygen which diffuses into NARloy and then reacts with H, when it
is later introduced.

A second specimen was run without the long exposure to high temperature

in argon prior to hydrogen exposure. As oxygen diffusion rates are
relatively slow, there was some question about the capability to move
oxygen into the NARloy in one hydrogen furnace operation. Safety require-
ments at Rocketdyne dictate that all hydrogen furnace operations employ an
argon atmosphere during heating. Hydrogen is introduced only abdve 760 C
(1400 F) furnace temperature. Because the braze tooling used for the com-
bustor segments was massive, the heating rates were slow; a typical brazing
cycle required 2-1/2 hours in argon from ambient temperature to 760 C

(1400 F) and another 1-1/2 hours in hydrogen to the brazing temperature of
871 to 910 C (1600 to 1670 F). The heating interval in argon might provide
the time necessary for oxygen diffusion, while the H2/0; reaction could
take place in the subsequent H) portion of the cycle. The test specimen
was first brazed in hydrogen at 910 C (1670 F) in the normal manner. It
was then surface oxidized in air with an oxyacetlene torch until it was
discolored but not scaled. The furnace cycle following oxidation was a
typical hydrogen braze cycle, duplicating the times in the preceding text. ]
The H9/02 reaction occurred, proving that there is sufficient 02 diffusion
during heating in argon up to 760 C (1400 F) to provide the damaging oxygen
in one hydrogen furnace cycle. The results*are shown in Fig. 49.

With the mechanism established, it was now possible to reconstruct the
fabrication situations whith caused the NARloy cracking. Looking at the
sequence in Fig. 46, it can be seen that there was no source of surface
oxidation in the first two braze cycles, as all NARloy parts were chemi-
cally cleaned before the first braze cycle, and the operations between

the first and second braze cycle consisted only of mechanical assembly

in a clean area. There were no elevated temperature operations and thus

uwo foreign materials introduced at that time. The first opportunity for
surface oxidation and diffusion of ..:ygen into the NARloy-A was the GTA
brazing of manifold covers, followed by a stress relief in vacuum or argon,
which occurred immediately before the third braze cycle (the joining of

the two combustor halves). The stress relief at 885 C (1625 F) provided ]
ample opportunity to drive oxygen into the NARloy.

Either hydrogen or vacuum brazing was used for the third and fourth cycle

depending on equipment availability. Subsequent repair cyclesalso used

various atmospheres (hydrogen, argon, or vacuum) so the sequence of atmos-

pheres was not the same for all segments. Regardless of the exact sequence;

however, exposure to hydrogen on the third braze cycle rr any cycle there-

after appears likely to have caused an H3/0, reaction in the NARloy-A. A

review of the furnace records showed that azl combustors except six were

brazed in hydrogen at some time after the second braze cycle. Table 9

lists the furnace information by combustor segment number, together with 1
an estimate of the probability of the presence of the Hp/0; reaction.
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TABLE 9. AEROSPIKE THRUST CHAMBER REPAIR SUMMARY
OF FURNACE CYCLE HISTORY ON SEGMENTS

H, on 3rd Likely to be

2
Number of Cycles | Cycle or Free of HZ

Segment No. in H2 After Embrittlement?

507
508
9
rIO
114
12
13
1ha
154
16
17
184
19
20
21
22
23
2,
25
26
274
28
29
30
31
32
33
3k

Yes No

Yes No

Yes No

Yes No

No Probably Good
Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

No Probably Good
No Probably Good
Yes No

No Probably Good
No Probably Good
Yes No

No Definitely Good
Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No
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It was important for program reasons to determine how many of the segments
exposed to hydrogen were affected by the hydrogen/oxygen reaction. A
metallographic sampling plan was devised for this purpose. Segments 507
and 510, with known cracks, were sampled in multiple locations, and several
other segments were sampled in one location each from the outer coversheet
and liner. The results are listed in Table 7 and photomicrographs not
already displayed are presented in Fig. 50 through 59. Segment 507 had
extensive cracking on the inner liner's oxidizer coversheet, yet samples
from the outer liner showed no 02/H2 reaction. The reverse was true of
segment 510; cracks were found near both aft end edges of the outer cover-
sheet, but a sample from the inner coversheet and liner showed no H2/02
reaction. This evidence indicated that the varying fabrication histories
of individual segments resulted in unpredictable local H2/02 reaction

areas which cannot be detected by any simple sampling technique. However,
the sampling results of Table 7 agree fairly well with the furnace records
of Table 9, i.e., the segments exposed to a hydrogen brazing atmosphere
after the second cycle all showed some evidence of H2/09 reaction (segment
518 may be an exception), and the segments not exposed to hydrogen had no
reaction. The overall conclusion with regard to usability of segments

was that no reliable metallographic sampling plan is possible to prove that
no H2/02 reaction has occurred. All segments exposed to hydrogen after

the second braze cycle must be assumed to have some areas of reduced
ductility due to the Hp/02 reaction.

The NAK.oy-A cracking investigation resulted in the termination of the pro-
gram. Of the 19 remaining combustors on the thrust chamber assembly, only
5 could be counted upon to be free of the reduced strength and ductility
caused by the presence of :the H2/02 reaction. Of the five combustors in
work for replacements, only one was sure to be free of the reaction.
Experience during the repair effort on 507R and 510R had demonstrated

that the presence of the chains of voids caused by the 02/H reaction
could result in cracking during cryogenic cycling. Such cycling was an
inescapable part of the planned test program, so the risk of cracks and
test stand fires if the existing combustors were used was too great

to permit program continuation.




Section From outer Half of Segment 504
(No OZ-H2 Reaction Present) (200X)

Figure 50.
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Figure 51. Section From Quter Half of Segment. 507 (No O-R»
Reaction Present) (100X)




SECTION
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Figure 52. Section From Center of Outer Half of Segment

(No O0,-H, Reaction Present) (200X)
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SRAZE JOINT

Figure 53.

SECTION
LOCATION

LINER LAND -

Section From Outer Half of Segment 512,

Showing Severe 02—H2 Reaction (100X)
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HOT-GAS WALL

Figure 55. Section From Outer Half of Segment 514
Showing Severe 02-H2 Reaction (200X)




Figure 56. Section From Outer Half of Segment 518 (100X)




Figure 57.

Section From Outer Half of Segment 522 [No 0,-Hy Reaction
Present; Same Location on Combustor as Fig. 42 (100X). The
Large Section to the Right of the Braze Joint is From the
Liner Land.]
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Figure 59. Section From Outer Half of Segment 525
(No OZ-HZ Reaction Present; Section
Shown is Part of a Liner Land) (100X)
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NOZZLE REPAIR
BACKGROUND

The aerospike thrust chamber assembly is furnished with a tubular truncated
spike nozzle which serves to expand the gases leaving the 24 combustor
segments. The nozzle is described in the Thrust Chamber Assembly Descrip-
tion section of this report.

During the test stand incident, the nozzle suffered localized heating on

its interior portions (i.e., the 'cold side"), because it was sprayed with
molten titanium from the burning inner combustor support ring. Repairs

to this type of tubular nozzle represent a technical challenge, in that

the tubes are only 0.13-mm (0.005 inches) wall thickness and have a constant

taper from 1.78 to 2.7%9-mm (0.080 to 0.110 inches) in diameter.

Because of the general need for developing the technology for effecting
repairs to complex lightweight tubular nozzles, a company-sponsored tech-
nology program was undertaken during CFY 75. Repair techniques were
developed first by evaluating candidate methods on sample tubes. When the
techniques had been brought to the stage that they appeared reasonably
reliable, they were applied to the aerospike thrust chamber nozzle. By the
time the current contract began, the major portion of the work of physically
repairing the nozzle tubes of the aerospike chamber had been completed.

The nozzle repairs continued to be conducted under company sponsorship
during the present contract. The activities and results on nozzle repair
are reported here for information purposes.

An illustration of the general damage suffered by the thrust chamber during
this incident is shown in Fig. 25 and a closeup of the typical tube damage
suffered by the nozzle tubes is shown in Fig. 60. The pattern of tube
damage is cataloguedand shown in Fig. 61. Basic tube repair techniques
were partially developed during CFY 75. Two methods of repair were applied,
the saddle-patch repair and the inserted tube repair. Figure 62 describes
the twe methods in sketch form. For the saddle-patch approach, a nickel
sheet of 0.2 to 0.25-mm (0.008 to 0.010 inch) thickness is used. Each
saddle-patch is formed to the contour of the tube and is brazed to the tube
with an oxyacetlylene minitorch, using EASY-FLO No. 3 braze alloy. The
tube insertion repair method requires grit blasting to clear the oxides
from the inner surface of the tubes and also to clear the zirconium oxide
from the outer hot gas surface of the tubes. The damaged area is then

cut out (like a window), and the tube ends are cleaned and deburred. New
tapered tubes are inserted in place with a 1.02 to 1.52-mm (0.040 to

0.060 inch) overlap at each end. Nickel shims are wedged between each

tube to fill the gaps, then flux is applied and the tubes are brazed in
place, again using the oxyacetyline minitorch and the EASY-FLO No. 3 braze
alloy.

Experience early in the repair development activities brought out one of
the 1imits of the saddle-patch repair technique. From this series of tests,
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it was concluded that the size of the saddle-patch should be limited to
12.70 mm (1/2 inch) in length, and that each patch must fit so as to be
accessible to the flow of braze alloy on all the four edges, i.e., to avoid
the overlap indicated in Fig. 63.

TOO MUCH
OVERLAP

Figure 63. Improper Saddle Patch Condition

During the current contract, repairs to all tubes in which leaks could be
identified were completed. A total of 1053 saddle-patches were applied

along with 155 tube inserts. The tube inserts were applied in 18 different
window locations. Repairs were also made to the burned-out section of the
Inconel 718 hatbands.

As a finish to the repair, and to pick up minute leaks and reinforce areas
that had been thinned but not actually holed through, the repaired nozzle
surface was grit blasted to prepare it for adhesion and then plasma sprayed
with an approximately 0.10-mm (0.004-inch) thick layer of nickel/chromium
alloy. A photo of the repaired nozzle is shown in Fig. 64.

Several techniques were developed to assess the quality of the repairs and
their suitability for withstanding the severe conditions encountered during
hot firing. Each of these quality assessment techniques is described
separately below.

Leak testing appeared to be most practically conducted with relatively low
pressure shop air, on the order of 689 kPa (100 psig), and leak detect
solution. Higher pneumatic pressures were considered unsafe for close
access and, while higher hydrostatic pressures were available, leaks were
very difficult to pin-point under hydrostatic pressure alone.

Hydrostatic pressure testing was utilized to determine the ultimate struc-
tural capability of the repairs. All of the tube repairs on the nozzle
were subjected to 6 895 kPa (1000 psi) hydrostatic proof test. Addition-
ally, a test segment was isolated and subjected to a 20 684 kPa (3000 psig)
hydrostatic test. It had been intended that the entire assembly received

a 24 821 kPa (3600 psi) hydrostatic test, but the accompanying aerospike
thrust chamber repair and firing program was terminated before the assembly
was brought to the condition where the 24 821 kPa (3600 psi) pressure test
could be conducted.

When a nozzle is fired as a portion of a cryogenic thrust chamber assembly,
it is subjected to some rather severe temperature excursions. The liquid
hydrogen fuel lead will first subject the nozzle tubes to cryogenic tem-
peratures and, after this condition is sustained for a few seconds, the
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Completed Nozzle Repair

Figure 64.




oxygen will be admitted to the combustor and will rapidly bring the hydrogen
coolant to well above ambient temperature. During cutoff, there will be a
fuel lag which will again subject the nozzle to cryogenic temperatures.

This duty cycle raises a question as to whether the type of nozzle repairs
being developed here would be degraded by rapid temperature excursionms.
Checkout tests were therefore conducted to evaluate this effect. Liquid
nitrogen was flowed through the nozzle inlet manifold for sufficient time

so that liquid nitrogen was seen to leave the nozzle aft collection
manifold. When liquid flow had been established, the feed was cut off and
the nozzle permitted to warm up to ambient temperature. This procedure was
repeated three times. Leak testing was then conducted after the cryogenic
shock excursion and indicated that all repairs had come through the procedure
without damage, except for one of the locations where the tube insert type
of repair had been utilized. For this tube insert patched area, there had
apparently been insufficient braze penetration between the inserted tube

and the parent tube so that the inserted tubes pulled loose, and small leaks
ensued. Additional braze was applied to this area and the defect corrected.
Cryogenic shock testing is thus established as a useful technique for
evaluation of tubular nozzle repairs.

Both of the repair techniques under development involved the application of
braze alloy to the tube and patch and, therefore, they present some risk
that "dropthrough' of the alloy will significantly increase the resistance
of the tube to the cooling hydrogen flow. Because of this possible hazard,
each of the repaired tubes was flow checked utilizing the technique
illustrated in Fig. 65. Additionally, a representative sample of tubes
that had not required repair were flow checked to establish a base condi-
tion. 1In utilizing this technique, one relies upon the condition that the
static pressure at each tube exit is very close to atmospheric, and that
all the tube exit areas are nearly equal. The square root of the total
pressure measurement detected by the impact tube is therefore an indicator
of the relative weight rate flow of air through the tube being probed. The
air pressures throughout the nozzle system are all low, on the order of

14 kPa (2 psig), so that there is no possibility of choking in any location.
In this respect, the flow conditions are consistent with those existing in
a hydrogen-cooled nozzle, and the flow distribution in the test setup will
closely simulate the firing condition. By the method described, it was
possible to estimate the average flow through all the tubes in the nozzle
and then, by comparison, to evaluate the reduction in the flow of those
repaired tubes whose resistance had been affected by the repair activity.
The results of this air flow check indicated that the tube repair techni-
ques did not result generally in a gross reduction of flow in the repaired
tubes as compared to the unrepaired tubes. This can be seen in the plot

of Fig. 66 for the nozzle tubes in line with one of the 24 aerospike com-
bustors. The unrepaired tubes are identified with a black dot. However, a
number of repaired tubes did show a significant flow reduction so that it
was necessary to establish a criterion for acceptability and to rework
those tubes whose flow fell below this criterion. For this particular
nozzle, it was possible to establish the criterion that no tube would be
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accepted whose flow was less than 65% of the average flow in all the tubes.
The acceptable flowrate was based on the calculated heat transfer condi-

tions and stresses projected for operation. Twelve of the repaired tubes
were reworked to meet the criterion.

Quality evaluation via X-ray was also found to provide useful information.
The braze alloy placement is readily determined in that the braze alloy is
seen on the X-rays as a light area. X-rays permit evaluation of the
adhesion of saddle-patches and the degree of overlap, and braze penetration
into the joints of tube insert repairs.
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CHAMBER SUFPORT STRUCTURE

BACYUP RINGS

The 24 combustors, and the aerospike nozzle to which they are attached,
are supported by being sandwiched between titanium rings that serve to
position the combustors correctly on the nozzle. The rings accept the
thrust generated by the combustors and the nozzle and transmit that thrust
to a central gimbal bearing. The inner ring of this two-ring assembly

was so seriously damaged during the fire that had terminated the previous
test program that the ring had to be replaced rather than repaired. It
had already been demonstrated on the previous contract that a sufficiently
lightweight construction for this ring could be designed and fabricated,
so it was decided on this contract that the replacement ring would not
exactly duplicate the previous design. It omitted some of the intricate
but weight-saving machining that tends to add materially to cost and sched-
ule time. A new design, No. RS003737X, was made to define the configura-
tion of the new inner backup ring. A copy of the drawing is incorporated
in Fig. 67 of this report. A titanium forging from which this ring could
be machined was available from the previous program. A five-axis, numeri-
cally controlled milling machine was utilized for machining the lightening
Foles, and a VTL tracer lathe was used for the external contour. A photo
of the completed ring is shown in Fig. 68.

The outer backup ring was to be repaired by weld buildup of the location
showing minor burn damage and by welding in a segment to replace the one
area that suffered major burn damage. Photos of the outer backup ring
showing the areas that sustained damage during the test stand fire are pre-
sented in Fig. 69 and 70. A fabrication experiment was conducted in which
samples of titanium backup rings obtained from existing ring segments were
welded in a controlled atmosphere box (argon), under conditions duplicating
as closely as possible the physical conditions that would exist when repairs
were made to the actual backup ring. The weld samples were then sectioned
and subjected to tensile testing. Se.tion examination and tensile tests
showed that the weld properties were well above the minimums required for
adequate strength in the locations to be welded on the actual backup ring.
Drawing RS005833X, which is presented in this report as Fig. 71, was then
released to define the backup ring repair procedure. Repair effort on the
actual outer backup ring was never carried out because fabrication effort
was stopped by the combustor problem.

THRUST CONE AND SUPPORT STRUTS

The structure that carries the thrust from the inner backup ring to the
gimbal bearing is illustrated in Fig. 27. As can be seen, a number of
titanium struts carry the load in tension from the backup ring to the base
of the thrust cone, and the cone carries the thrust in compression up to
the gimbal bearing. All of these parts were somewhat affected by the fire
that had occurred on the previous test. All parts were carefully cleaned
and examined. Decisions were made on which parts could be refurbished and
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which needed replacement. Refurbishment of this structure was partially
completed. The titanium thrust cone and its base were let to a vendor for
remanufacture of the base, and its assembly by E-B welding to the existing
cone. Work was completed on the thrust cone and it was accepted through
inspection at Rocketdyne.

Several of the struts that carry the load from the inner backup ring to
the base of the thrust cone were damaged sufficiently in the fire so as to
require replacement. The tooling required for jigging during assembly by
welding and during the subsequent heat treatment for stress reljef was
completed. Additionally, the detail parts, i.e., titanium clevises and
titanium tubing, were completed. This material was ready for assembly by
welding and heat treating when fabrication effort was halted in mid-June.

INTERCONNECT COMPONENTS

The major interconnect components, i.e., fuel and oxygen distribution mani-
folds, are illustrated in Fig. 27. These parts were severely damaged dur-
ing the fire and required substantial replacement. Additionally, a design
modification was made to provide better access than previously existed for
completion of the assembly welds, there being a substantial probability
that it was one of the assembly welds whose failure triggered the test
stand fire incident of 19 November 1975. The redesign of the fuel and
oxidizer interconnecting components was completed and drawings RS005835X
and RS005836X, presented here as Fig. 72 and 73, were released to support
fabrication and assembly effort. The usable portions of the previous man-
ifolding were cleaned and refurbished and necessary replacement parts
identified. Fabrication of new parts was never initiated.
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DISCUSSION OF RESULTS

This program set out on a challenging task--the repair and refurbishment
of a seriously damaged thrust chamber assembly, and its hot-firing evalua-
tion for both performance and structural integrity. It was recognized at
the start that there were some risks inherent in the objectives, i.e., it
might prove to be impossible to effect the repairs satisfactorily, or
apparently successful repairs might fail prematurely in service. The
risks were justified by the possible gains. The previous Air Force pro-
gram had successfully demonstrated that an aerospike chamber could be
designed and fabricated to provide a very substantial reduction in engine
length while attaining a competitive engine weight. The damaged chamber
remaining on termination of the Air Force program presented an opportunity
to obtain and hot-fire evaluate an aerospike thrust chamber of flight con-
figuration for very much less than would be required to design, fabricate,
and test such a chamber from the beginning.

Several positive results were obtained during the disassembly and repair
procedures:

1. The tubular nozzle repair effort brought out that large-scale
repairs on lightweight tubular nozzles are feasible, returning
the nozzle to a fireable condition at a cost very much less than
that required for complete replacement. The saddle-patch method
developed is applicable in areas where heat fluxes are relatively
modest, and has the advantage of low cost. The tube insert
method is applicable where extensive damage has been done to the
tube, or the heat flux conditions are too high to permit reliance
on saddle-patches.

Both of the tube repair techniques are very dependent for their
success on the skill of the metal fitter and brazer. Before
applying these techniques to an actual nozzle, the technique of
the metal fitter and brazer should be checked by making a number
of sample repairs.

Quality assessment techniques have been developed to permit deter-
mination of the quality of the repaired nozzle areas short of
actually firing the assembly and replacement of defective repairs.
Cryogenic shock testing, air flow checking, pneumostatic testing,
and hydrostatic pressure checking are recommended in each instance.

The aerospike structure repairs indicate that it is feasible to
repair such complex stcructures as the outer titanium backup ring.

The work conducted with combustor dissection and reassembly bears
out the basic validity of the concept of the repair of such com-
plex copper channel cooling structures by the method of excising
the damaged areas and brazing properly configured replacements in
their place.

The basic success of these repair techniques must be considered a positive
factor in future evaluations of the acrospike thrust chamber concept.
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It is ironic that the NARloy-A material condition, which resulted in con-
clusion of the program, was present in the material immediately after the
initial fabrication of the combustors, and was in no way caused by either
the fire which terminated the previous Air Force program or by the repair
efforts conducted under the NASA program. It is now also recognized that
the test stand fire that terminated the Air Force program may have origi-
nated with coversheet cracking.

Rocketdyne had recognized during all of its procedures with NARloy-A that
oxygen contamination of the NARloy and subsequent embrittlement by exposure
to high temperature hydrogen represented a threat to the integrity of the
NARloy-A. The embrittlement that did occur was the result of the failure
of the precautions taken to cope adequately with the conditions of exposure.
As is typical c¢n any program, a sample combustor, No. 504, was first fabri-
cated and extensively test fired as a precursor to the 24 combustors of

the complete assembly. No. 504 performed admirably, suffered no cracking

in service and, on examination of samples during the current investigation,
displayed no evidence of hydrogen embrittlement. However, No. 504 was
assembled entirely by the Materials and Processes laboratory personnel and
it is presently realized that their procedures resulted in much less oxi-
dation than subsequent operations in the manufacturing shop. Tt was further
unfortunate that the constraints of time and money prevented the manufac-
ture and dissection of one or more combustors expressly for the purpose of
the evaluation of the soundness of the manufacturing techniques. That
discipline is frequently given lip service but seldom observed.

It is believed that much more satisfactory results would have been obtained
in the initial fabrication program had the NARloy-Z composition been uti-
lized instead of NARloy-A. NARloy-Z contains 0.5% zirconium, which acts

as a getter for oxygen, permitting a higher degree of oxygen exposure dur-
ing fabrication than the NARloy-A composition.

In assessing the overall results of the program, one must keep in mind that
the material cracking problem with the NARloy-A combustor material does

not have any special significance for the aerospike thrust chamber concept.
Aerospike thrust chambers are fabricated of the same materials as bell
thrust chambers. The problem was a materials processing problem and not an
aerospike problem.

The program did have several positive results for the aerospike concept,
even though it was not possible to carry it through to the hot-firing
phase. The aerospike must still be regarded as a contender for length-
limited space propulsion application. The developmental programs pre-
viously conducted have demonstrated the concept's performance and length
advantages. The previous Air Force program demonstrated that an aerospike
thrust chamber roughly 20% of the length of an equivalent bell chamber
could be designed and fabricated to a competitive weight. And the present
NASA contract demonstrated that maintenance and repair procedures will be
available for aerospike thrust chambers that will permit cost-effective
repairs to their assemblies.




