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FOREWORD
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1 SUMMARY

The objectives of the Combustion Effects on Film Cooling Program
were:

1. To experimentally determine the effects of a reactive
environment, and flow turning on the effectiveness of
hydrogen film cooling in a hydrogen-oxygen rocket thrust
chamber.

2. To experimentally determine the performance loss resulting
from the film coolant flow, and

3. To prepare a computer program that integrates a generalized

regenerative cooling model, the ALRC entrainment film cooling
model, and a film-cooling-performance-loss model.

These objectives were achieved by (1) conducting rocket engine firings with

a specially instrumented, thrust chamber test assembly, and (2) by combining
previously existing ALRC computer programs for gas film cooling and regenera-
tive cooling with an ALRC analytical technique for calculating film cooling per-
formance loss into one thermal analysis computer program.

The thrust chamber test assembly is shown in Figure 1. It consisted
of: (1) a core gas injector which generated 02/H2 combustion products, (2) a
water cooled mixing length, (3) a gas film coolant injector, and (4) a thin
walled stainless steel thrust chamber. The thrust chamber was instrumented
with thermocouples for determining adiabatic wall temperature distributions.
Tests without film cooling in which a copper heat sink thrust chamber replaced
the thin-walled thrust chamber were also performed. A total of 29 firings were
performed at the range of test conditions noted below.

0.78 to 8.0
Nominal Chamber Pressure = 207 n/cmé (300 psia)
Film Coolants: hydrogen, helium, nitrogen

Core Gas Mixture Ratio



I Summary (cont.)
The specific test conditions for each test are listed on Table I.

The thermal analysis computer program created is designated HOCOOL.
It was designed for the determination of coolant requirements and associated
performance penalties of advanced hydrogen/oxygen rocket thrust chambers.
This program can be utilized to perform thermal analyses of film cooled
adiabatic wall thrust chamber designs and designs which utilize both film
and regenerative cooling. The program and a detailed users manual has been
delivered to the NASA-Lewis Research Center. The analytical models contained
within the HOCOOL computer program are described in Section III of this
report.

Film cooling adiabatic wall temperature data,performance loss data,
and heat transfer coefficient data obtained in the film cooled test firings
were all correlated with the aid of the ALRC entrainment film cooling model.
This model relates film cooling effectiveness and mixture ratio at the wall
to the amount of mainstream gases entrained by the film coolant and mixed
with it in an annular mixing layer adjacent to the chamber wall. The film
cooling data were evaluated in terms of an entrainment fraction which is
defined as the ratio of entrained core gas mass flux to the axial core gas
mass flux. The entrainment fraction data are summarized in Table II. The
two stream tube flow model contained within the entrainment model was used to
correlate the performance loss data which are listed on Table III. The heat
transfer coefficient data obtained with and without film cooling are listed
on Tables IV and V. Discussions on the data reduction techniques and data
correlations are presented in Section IV.

It was found that the entrainment fractions in the rocket engine were
about twice as high as in previous tests performed with heated nitrogen core
gas. This is attributed to a higher free stream turbulence level in the
rocket engine. In addition, velocity ratio effects were somewhat different
than previously observed. Other significant effects on entrainment fraction
noted were: wake effects downstream of the slot lip, flow turning effects,
and core gas mixture ratio effects.




I Summary {cont.)

It was found that the experimental entrainment fractions were the
same for hydrogen and helium film coolants injected at identical velocity
ratio and core gas mixture ratio conditions. Since a potential for combustion
between the core gases (0/F = 8) and the hydrogen film coolant existed, this
agreement of results indicates that either the combustion did not influence
the entrainment fraction (i.e., the mixing rate) or that the potential
reaction did not occur.

The HOCOOL computer program and the data correlations given in
Section IV were used to analyze a proposed high pressure hydrogen/oxygen
rocket engine. The results indicate that injecting 107 of the hydrogen
as film coolant will reduce the maximum wall temperature 190°K (340°F)
and that the corresponding performmance loss will be approximately 1% of the
no-film-cooling performance.



I1 INTRODUCTION

The Combustion Effects on Film Cooling Program consisted of two
fundamental activities: (1) experimental investigation of film cooling
effects in a hydrogen/oxygen thrust chamber, and (2) preparation of a
comprehensive thermal analysis computer program.

The experimental portion of the program is the rocket engine equiva-
lent of the two previous experimental programs performed by ALRC using hot
nitrogen core gas and reported in References 1 and 2. The testing approach
used was similar to that followed during the previous programs except that
the hot core gas source was a rocket engine injector operating with hydrogen-
oxygen propellants at 300 psia chamber pressure. Heated nitrogen core gas was
used previously.

The test hardware assembly is shown in Figure 1. It consisted of a
premix-triplet propellant injector, an igniter, a fuel manifold, a water-
cooled cylinder, a film coolant injector, and a thin-walled film-cooled nozzle.
The propellant injector, fuel manifold and igniter were residual from previous
ALRC Contracts (Ref. 3 and 4). The water cooled cylinder, film coolant inj-
ector, and film-cooled nozzle were designed and fabricated as part of the
Combustion Effects on Film Cooling Program.

The computer program prepared has been designated HOCOOL. It was
prepared by combining the ALRC entrainment film cooling model with an ALRC
generalized regenerative cooling model, and a film-cooling performance loss
model which utilizes the results of the film cooling model analysis. A
detailed description of this computer program is given in Reference 5. The

HOCOOL computer program has been delivered to NASA for governmental use.]

During the rocket engine testing, adiabatic wall temperature distributions
in the film-cooled nozzle were determined by measuring the outer nozzle wall
temperature at appropriate points. These film cooling data were evaluated by

]The HOCOOL computer program is not to be reproduced, used, or disclosed to

anyone without the permission of the Aerojet Liquid Rocket Company, except
that the government has the right to reproduce and use, for governmental
purposes, any part of the HOCOOL computer program.

-4-




I1 Introduction (cont.)

considering them within the context of the ALRC entrainment film cooling

model which relates film cooling effectiveness to the amount of mainstream
gases entrained by and mixed with the film coolant in a mixing layer adjacent
to the chamber wall. This entrainment flow model, described in Section III.A.,
appears to be a fundamentally sound approach to the film cooling probiem

since it has been used to correlate both heat transfer data and performance
Joss data. The entrainment approach was suggested by boundary layer model

work (Ref. 6) and has been applied to rocket engines at ALRC and to jet

engines at the NASA Lewis Research Center (Ref. 7).

There are three potential "combustion effects on film cooling" which
can be identified. These are:

1. The effect of core gas conditions on the film coolant/core gas mixing
process. This effect was evaluated by: (1) comparing data from this program
to data obtained previously using heated nitrogen core gas, and (2) docu-
menting core gas mixture ratjo effects apparent in the data (See Sections
IV.B.1.a, IV. C.1l.c, IV.C.1.d, IV.C.1.e, IV.C.4).

2. The effect of chemical reactions within the mixing layer on the film
coolant/core gas mixing process. This effect was evaluated by comparing
data obtained with hydrogen and helium film coolants at identical core gas
mixture ratio and coolant injection velocity ratio. (Sections IV.B.1.a,
Iv.C.1.b, 1v.C.4.)

3. The effect of a chemical reaction between the film coolant and the
entrained core gas on the thermodynamic properties of the mixture contained
within the mixing layer. This was evaluated by comparing analytical results
from a mgde] which considers this reaction to a model which does not. (Section
IV.B.2.b).

This report is organized in the following manner: Section I is a brief
summary of the work performed and the major findings; Section III contains des-
criptions of the pertinent analytical models; Section IV contains the experi-
mental results and data correlations; Section V contains analytical predictions
for an advanced hydrogen-oxygen thrust chamber; and specific conclusions and
recommendations are listed in Section VI. The four appendices provide:
nomenclature (Appendix A), test data (Appendix B), description of test compo-
nents (Appendix C), and distribution list (Appendix D).

-5-



IT1 DESCRIPTION OF ANALYTICAL MODELS

A. ENTRAINMENT FILM COOLING MODEL

This section contains a description of the ALRC entrainment
film cooling model for gas film cooling of rocket engine thrust chambers
operating with oxygen/hydrogen propellants. The general features of the
entrainment model are described in Section I1I.A.]1. which presents an overview
of the analytical approach. Analytical details are presented in Sections II].A.2.
and ITI.A.3. Section IIT.A.2. presents the relationships which exist between
film cooling effectiveness, enthalpy, and concentration. In Section III.A.3.,
the relationships between film cooling effectiveness, entrained flow rate
and a mixing layer profile shape factor are described.

1. General Features

The ALRC entrainment film cooling model is basically a two
stream tube mixing model as illustrated in Figure 2. Core gases or combustion
gases emanating from the main propellant injector are considered to be entrained
by and to mix with film coolant gases which have been injected onto the chamber
wall. The mixing is assumed to occur in an annular mixing layer adjacent to
the thrust chamber wall. This mixing layer comprises one of the stream tubes.
The other stream tube is the central flow region where the unmixed core gases
are located. The rate at which core gases are entrained into the mixing layer

is defined in terms of an entrainment fraction, k, as follows:

Entrained Axial Flow
Core Gas =k Core Gas Eq. (1)
Mass Flux Mass Flux

The k values are model inputs and appropriate values for design calculations
are determined from test data.

The Equation 1 approach for describing the mixing which
occurs between film coolant and main stream gases is suggested by the boundary
layer model analysis of film cooling data presented in Reference 6. This
approach has also been used by Marek at NASA-Lewis to model film cooling in
jet engine combustors (Ref. 7). Equation 1 defines a bulk mixing process




I11 Description of Analytical Models (cont.)

between the core gas and film coolant gas. The effects of enthalpy and
concentration profiles through the mixing layer are accounted for in the ALRC
entrainment model by the use of a profile shape factor which relates bulk
mixing layer conditions to adiabatic wall conditions. However, the model does
not provide a basis for actually calculating these profiles.

The general analysis approach followed in the ALRC
entrainment model is as follows: (1) the total entrained core gas flow rate
between the coolant injection point and the point of interest is calculated
by integration of Equation 1, (2) the film cooling effectiveness is calculated
using previously established correlations between the entrained flow rate
and effectiveness, (described in Section I111.A.3), (3) adiabatic wall temp-
erature and gas composition at the wall are calculated using appropriate
effectiveness definitions.

The fundamental definition of film cooling effectiveness,
n, in the ALRC entrainment film cooling model was included in the simplified
Reference 6 analysis and is shown as Equation 2.

Effectiveness = n = (Y)at the wall = Yw Eq. (2)
Equation 2 states that film cooling effectiveness is always equal to the
mass fraction of the injected film coolant gas within the gas mixture directly
adjacent to the wall.

Three optional procedures exist within the entrainment
model for calculating adiabatic wall temperature from the effectiveness: (1)
reactive option, (2) non-reactive option, and (3) core-reaction option. These
options are explained in detail in Section III.A.2.

In the reactive option, two independent effectiveness
definitions are utilized: one based on total enthalpy and the other based on
mass fraction. The mass fraction definition is used to calculate the mixture



IT1 Description of Analytical Models (cont.)

ratio directly adjacent to the wall, (O/F)w, while the enthalpy definition

is used to calculate the adiabatic wall enthalpy of this mixture, Haw' Im-
perfect kinetic energy recovery effects are accounted for with a conventional
turbulent flow recovery factor. (The (O/F)w and Haw values are then used to
determine Taw from a thermochemical table relating temperature, enthalpy,

and mixture ratio. Equilibrium chemistry is assumed. The reactive option

is recommended for analysis of 02/H2 engines which are film cooled with hydro-
gen or low mixture ratio gases.

‘In the non-reactive model, the film coolant and core
gas specific heats are assumed constant. This leads to a direct relationship
between effectiveness, adiabatic wall temperature, and recovery factor from
which the adiabatic wall temperature is calculated. The non-reactive option
is recommended for analysis of rocket engines not operating with 02/H2 pro-
pellants which are film cooled with inert gases.

Only the film coolant specific heat is assumed constant
in the core-reactive option. The non-reactive Taw equation is modified to
include core gas enthalpy evaluated at the adiabatic wall temperature from
the reactive option thermochemical tables. An iterative solution yields Taw
for a given value of effectiveness. The core-reactive option is recommended
for 02/H2 engines which are film cooled with inert gases.

The two stream tube flow model portion of the entrainment
film cooling model has been utilized in constructing an analytical technique
for predicting the rocket'engine performance loss associated with film
cooling. A model in which this technique is applied to the case of hydrogen
film cooling in hydrogen/rocket engines is described in Section III.B. and
correlated with test data in Section IV.D.




ITI Description of Analytical Models (cont.)

The fact that both adiabatic wall temperature and gas
composition at the wall are obtained from the entrainment model is a very
advantageous feature for analyzing non-adiabatic walls such as a regeneratively
cooled thrust chamber which is also film cooled. In this case, the adiabatic
wall temperature or enthalpy is considered to be the driving potential for
heat transfer and the gas composition is used to evaluate the transport pro-
perties from which gas-side heat transfer coefficient is calculated. Heat
transfer with film cooling is discussed further in Section III.C.

The details of the ALRC entrainment model are described
in the remainder of Section III.A. Two film coolant injection cases are
mentioned in the following discussions: (1) the subsonic case where film
coolant injection is subsonic and the core gas flow is subsonic, and (2) the
supersonic case where film coolant injection is supersonic and the core gas

flow is supersonic.
2.. Effectivenéss, Enthalpy and Concentration Relationships
a. Reactive Model
(m Effectiveness Definitions

Two other effectiveness definitions, which
are derived from Equation 2, are used for the reactive version of the en-
trainment model. One is based on concentration or mass fraction as shown
in Equation 3.

n = & W Eq. (3)
. . . .1
The c in Equation 3 represents the concentration of any element or species.
However, ¢ is generally taken to be the concentration of the film coolant
gas. In this case,c differs from y in that the c mass fraction includes

any film coolant gas species present in the entrained core gas. In general,

1

The subscript ¢ indicates film coolant injection conditions. A1l nomenclature
is defined in Appendix A.

-9-



111 Description of Analytical Models (cont.)

c = ycot (1-v) Co Eq. (4A)

At the nozzle wall, this becomes:

¢ = y. c_+ (1 - yw) c Eq. (4B)

w w C e

which can be combined with Equation (2) to yield the Equation (3) definition
of effectiveness.

For thrust chamber applications, the local
mixture ratio at the wall is determined by the Equation (3) definition of
coolant effectiveness. From Equation 3 with ¢ proportional to (1 + O/F)']
i.e., considering an element in the fuel,

(0/F) L L0, Eq. (5)
= - 'I .
W 1+ (0/F)" A

h—f

1+ (0/F)

+ 1

The other effectiveness definition is the
enthalpy definition of Reference 6. It is obtained from Equation 3 by
making the following assumptions: (1) molecular diffusion is negligible
compared to turbulent diffusion, (2) the viscous sublayer at the wall is
thin relative to the mixing layer, and (3) the turbulent Lewis number is
unity (experimental evidence indicates it is close to unity). Under these
conditions the differential conservation equations for element mass and
total enthalpy are the same outside the viscous sublayer, so the effective-
ness may also be written in terms of total enthalpies:

n = e OV Eq. (6)

-10-




I11 Description of Analytical Models (cont.)
(2) High Speed Effects

In Equation (6), the subscript v denotes
the edge of the thin viscous sublayer near the wall. Since this sublayer
is assumed to be thin, no additional mixing occurs across it. Therefore,

the adiabatic wall enthalpy differs from H0 only because of the imperfect
v

recovery of kinetic energy in the viscous sublayer; this high-speed effect
is represented in terms of a conventional recovery factor as

- 1/3 — 2
H0 - Hy * (1 - Prw ) (H0 - He) (u/ue) Eq. (7)
v e
Equation 7 states that the difference
between Ho and Haw is proportional to the difference between total core

v (1)
gas enthalpy and static core gas entha]py(ﬁo - He), less the amount re-
e

1/3

covered in the sublayer. The conventional Pr recovery factor for

turbulent flow is assumed.

The proportionality factor in Equation (7) is
(U/ue)2 which accounts for the fact that the effective mixing layer velocity,
u, is not generally equal to the core gas velocity, Ug- The parameter u is
related to the velocity at the edge of the viscous sublayer in the same way
as the freestream velocity for a conventional boundary layer. At the coolant
injection point, u should equal the film coolant velocity, Uos while far down-
stream it becomes Ug since the mixing layer becomes a conventional boundary
layer.

In the subsonic case high-speed effects are
usually important only after considerable mixing occurs, due to the significant
distance between the film coolant injection point and the nozzle throat. There-
fore, for the subsonic case it is assumed that u = Ug> i.e., the mixing layer
is fully developed when the high-speed effects are of any significance, and the

(]7;0 and He are input values. The TRAN-72 computer program of Reference 8 is
e .
recommended for calculating them.

-11-



111 Description of Analytical Models (cont.)
. - 2 . .
quantity (u/ue) is unity.

In the supersonic case the high-speed effects are imp-,
ortant throughout the analysis, so it is necessary to define the axial variation
of the effective velocity u. This has been accomplished through the use of a
velocity mixing function V (NE/WC):

u o= ue * (ug = ug) v (We/W ) Eq. (7A)
The function V'(NE/WC) was developed at ALRC on Contract NAS 3-15844 (Ref. 2)
and is shown on Figure 16 of Reference 5. It ranges from 1.0 for NE/Nc'< 0.5
to .05 at NE/HC = 3.38.

Combining Equations (6) and (7) gives the
adiabatic wall enthalpy as
Heo= H o= olh -H ) -0 -pe Y3y (o — ) (@)’
aw ) 0 0 W 0 e e
e e C e
Eq.(8)

(3) Calculation of Taw and O/F at the Wall

When the effectiveness is known, Equation 5 gives
the mixture ratio at the nozzle wall and Equation 8 gives the adiabatic wall
enthalpy. The Prandt]l number in Equation 8 is evaluated at the wall mixture
ratio. Adiabatic wall temperature, Taw’ is obtained using both (0/F) wall and
Haw in an equilibrium chemistry model.

The specific steps followed in calculating
adiabatic wall temperature with the reactive model are:

1. The entrained flow rate, Wg, is calculated
from Equation 2/ (See Section III.A.3.e).

2. n is determined from the basic mixing layer
equation, Equation 17 (See Section IIIl.A.
3.a.).

-12-




111 Description of Analytical Models ({cont.)
3. (O/F)w is calculated from Equation 5.

4. Haw is calculated from Equation 8.

5. Taw is interpolated from a table which relates

enthalpy, temperature, pressure and mixture
ratio (equilibrium chemistry assumed).

b. Non-Reactive Model

The non-reactive model is a constant specific heat
version of the entrainment model. As indicated in Equation 2, the effective-
ness always equals the mass fraction of the injected film coolant at the wall
and consequently the enthalpy of the mixture at the wall is

n (R, * (=) (1) £q. (9)

H
aw W e’aw

=
1]

[wC +(1-n)C_ 1T Eq. (10)
Pe Po” avW

aw

High speed effects are accounted for in the same
manner as the reactive model. Using constant specific heats in Equation (8)
and combining Eqns. 8 and 10 yields

1/3 ~ 12
LS, (o, = Taw) = (P50 W, - ) (@) -
Eq. (11

T Ty ~ T ¢ (=TT

€ e c a C

Adiabatic wall temperature is determined in the
following way for the non-reactive model:

1. Wg is calculated from Equation 27. (Section
ITI.A.3.e).

2. n is determined from Equation 17 (Section
I11.A.3.a)

3. (0/F), is calculated from Equation (5) but is
used solely to evaluate Prw.

NOTE: For the inert film coolant case, W. can be
considered as a fuel in the (0/F), definition.

4. T_ is determined from Equation (11), where

Hy is input and H, is interpolated from an

e
input enthalpy vs. area ratio table.

-13-



111 Description of Analytical Models (cont.)

The core-reactive model discussed in Section III1.A.2.c. can be
simulated with the non-reactive model by using the correct core specific heat

(Equation 12) in the non-reactive model.

= = Eq. (12)
T
] aw
This equivalent specific heat is exact at any one point and provides a general

approximation when the Taw variation is fairly small relative to To .
e

C. Core-Reactive Model

This model is similar to the non-reactive model
described above, except the core is not restricted to a constant specific
heat. Therefore the enthalpy of the mixture at the wall is

H = 1 C T + (1 -n) (He)aw Eq. (13)

aw P, aw

combining this with Equation (7) to eliminate Haw gives
_ - _ _ _ _ 1/3
nC (T - To ) = (=m) M - ) 1= (- M3

w
pC a oC e

(H, - H) (G‘/ue)2 Eq. (14)

e e
in which (He)aw is evaluated at the adiabatic wall temperature and core mixture
ratio using the thermochemical table of the reactive option. Values of Taw

are calculated from Equation (14).

3. Effectiveness, Entrained Flow Rate, and Shape Factor
Relationships
a. Basic Mixing Layer Equation

The cooling effectiveness 1. is related to the
-14-




[11 Description of Analytical Models (cont.)

entrained flow W_ into the mixing_]ayer, the coolant flow injected wc, and

a shape factor 8 which relates bulk mass fraction to concentration at the
wall. The basic mixing layer equation is derived from an element mass balance
on the mixing layer,

Injected Element Element Mass Element Mass
Mass Flow from + Flow Entrained| = Flow in the
The Film Coolant From the Core Mixing Layer
or
NC c. + WE Ce = (NC + NE) ¢, Eq. (15)

The element mass fraction at the wall is related to the bulk value cb through

(1)

a mixing layer profile shape factor 8, defined as

Eq. (16)

Substituting Equations 3 and 16 into Equation 15 in order to eliminate <, and C
gives the basic mixing layer equation, Equation 17, which defines the effectiveness
n in terms of the entrainment flow ratio NE/NC, and the shape factor 8. Equation
17A is derived from Equation 16 and relates bulk mixing layer mixture ratio to the
shape factor and the mixture ratio at the wall.

1

noo= y Eq. (17)
E

e (1 + W—)

C

1+ (0/F),
(0/F)y = [57’77167?7;' ]
8 -1 +1

Eq. (17A)
1+ iO/F;w

b. Effectiveness Regimes

The present entrainment model is characterized by a
correlation among effectiveness n, entrained flow ratio NE/NC, and shape factor

(1) Integral Definition shown is for a film cooled flat plate.
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I11 Description of Analytical Models (cont.)

0, which relates Equation 17 to three effectiveness regimes: (1) the initial
free jet regime, (2) the transition regime, and (3) the fully developed or
asymptotic regime. This three-regime correlation was initially developed

for the subsonic case by correlating plane unaccelerated flow data as reported
in Reference 1 and indicated on Figure 4. The corresponding 8 vs wE/wC correla-
tion is shown on Figure 5 along with the supersonic 8 vs NE/WC correlation

from Reference 2. The n vs. NE/Nc correlation of Figure 4 is considered general
for all cases where the film coolant is injected subsonically and the core

gas flow is subsonic. The n vs. NE/Wc correlation for supersonic injection

and supersonic core flow is somewhat different as indicated by the different 6
'S wE/wC correlation on Figure 5. The supersonic case is discussed further in
Reference 2.

In the initial free jet regime, the mixing effects have

not penetrated to the wall, and as a result the effectiveness is unity. The
shape factor decreases in this regime according to Equation (18), derived
from Equation (17), for both the subsonic and supersonic cases.

W -1

D
1]
=
+
I
~

Eq. (18)

The initial free jet regime is defined as wE/wc < 0.06 for the subsonic case,
NE/NC < 0.5, and for the supersonic case (See Figure 5).

In the transition regime, both the effectiveness and

shape factor decrease with NE/NC. This regime is defined as 0.06 < NE/NC < 1.4
for the subsonic case and 0.5 i_wE/wc_i 2.2 for the supersonic case (See Figure 4),.
A curve fit of the effectiveness data in this region and Equation 18 defined the
subsonic 6 curve in Figure 5 for the transition regime. Analytical results were
used in a similar manner to generate the supersonic 8 curve.
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111 Description of Analytical Models (cont.)

In the fully developed or asymptotic regime, the shape

factor is constant and n continues to decrease as wE/wc increases. For the
subsonic case, the asymptotic regime is defined as wE/wc =Z1.4. A curve fit

of the plane unaccelerated flow data in this regime yielded the following equation.

_1.32
n = NE ‘ Eq. (19)
T

Comparison of Equations 17 and 19 indicates that this constant or asymptotic
shape factor is 1/1.32 = (0.758 for the subsonic case. For the supersonic case,

the asymptotic region 1is wE/wc > 2.2 and the asymptotic shape factor is 0.485.
C. Shape Factor Physical Significance

The magnitude of the shape factor 8 is indicative
of the mixture ratio (0/F) distribution within the mixing layer as indicated
schematically on Figure 6. As indicated by curve 1 of Figure 6, a shape factor
near 1.0 indicates a nearly constant mixing layer 0/F and the wall 0/F value
characterizes almost the entire mixing layer. This is typical of the mixing
layer very near the film coolant injection point. When 8 = 1.0, the wall mixture

ratio is about the same as the bulk mixing layer mixture ratio (See Eq. 17A).

Curve 2 of Figure 6 is typical of the O/F distribution
implied by the asymptotic & values of Figure 5. The change in O/F across the

mixing layer is quite regular.

Curve 3 of Figure 6 indicates the case where 8 becomes
small and most of the mixing layer is characterized by the core gas mixture ratio.
This case represents a very well mixed mixing layer and implies the highest en-

trainment flow rates.
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111 Description of Analytical Models (cont.)
d. Entrainment Fraction for Plane Unaccelerated Flow

The entrainment fraction for the case of plane-
unaccelerated flow is designated ko. This parameter is a convenient reference
value for experimental subsonic region entrainment fractions since it accounts
for the effects of velocity ratio, “c/”e’ density ratio, pe/pe, and coolant
slot Reynolds number, Rec which are known to exist in the plane unaccelerated

flow data.

A correlation for the entrainment fraction in plane
unaccelerated flow, ko, was derived from the Figure 4 effectiveness correlation
assuming that kO is constant with x (Ref 1.) This assumption yields Equation 20

which applies only to plane unaccelerated flow.

W kO X
C D u
G Ge)
De e

Comparison of Equations 17 and 20 to the asymptotic region data curve fit equation

Eq. (20)

on Figure 4, leads to the k0 correlation, Equation 21.

: 0.1 (u_/u))
kK = c ¢ Eq. (21)

° NECAL y 0.25
( c‘) f <:|JC :) Re
Ye e ¢

The velocity ratio function f (uc/ue) is plotted on Figure 7 along with the data

from which it was derived.
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111 Description of Analytical Models (cont.)
e. Determination of Entrained Flow Rate

As indicated in Figure 3, the entrained mass
velocity is represented as a fraction k of the axial mass velocity of the
mainstream. Thus, the total entrained flow up to any contour position is

Sk (ou) da

E ee

X
]

X
W = S 2 7w (r~scos a)k R dx Eq. (22)
0

The subsonic entrainment fraction is assumed to be of the Equation 23 form.

p. U . -m

e e’'o

k = k0 km (x) (o

The multiplier km (x) accounts for increased freestream turbulence, flow turning,
and other "real world" effects associated with rocket engines such as propellant
injector effects and discontinuous coolant slot effects. The bracketed term
accounts for subsonic flow acceleration and was suggested by the work of

Deissler relative to the effect of acceleration on transverse turbulent transport
in a homogeneous fluid. For subsonic region injection, the exponent m was found
to be 0.65 in tests performed at ALRC (Ref. 2). Entrainment fractions for super-

sonic injection into a supersonic region are discussed in References 2 and 5.

A momentum balance on the total nozzle flow should
be used to account for the effect of the mixing layer on the freestream mass
velocity Pela- However, for the sake of simplicity the model assumes the main-

stream accelerates as if there were no film cooling,
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111 Description of Analytical Models (cont.)
2

r
bele = (0gug) ( % )% Eq. (24)

r o
in which subscript 0 refers to the injection point. (The factor @ is used

to account for 2-dimensional flow effects). A nozzle mass balance (integral
continuity equation) then gives the mixing layer thickness from

s 2 W

(1 - %- cos a)2 =(1--=2) (- —;T%%WT“) Eq. (25}
c

Substituting equations 23, 24 and 25 in Equation 22 gives
1-2m  1-m

p r
NE = 2 (ro - so) kg (peue)o g (1 - __WE___W;)(rO (%) k dx Eq. (26)
0

Solving this integral equation and relation (peu )0 to so and the flow rates

e
yields 2
e M kB X [ko p, 0. (o7
W - wc w/wc-1 s " So L s " 5o
in which
1-2m 1-m
X =

X

S "o ) k_ dx Eq. (28)
r ﬂo m

0

Thus Equation 27 gives the entrained flow ratio, wE/wC, and Equation 17
then determines the film cooling effectiveness. Note that x is an equivalent

cylindrical section length for use with the reference entrainment fraction ko'
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111 Description of Analytical Models (cont.)
B. FILM COOLING PERFORMANCE LOSS MODEL

The two stream tube entrainment flow model described in
the previous section provided the analytical basis for development of a film-
cooling performance loss model. This performance loss model was correlated
with test data (See Section IV.D.) and subsequently combined with the entrain-
ment film cooling model, and a generalized regenerative cooling model to form
the computer program designated HOCOOL which is described in the Section III.C.

and in Reference 5.

The specific film-cooling performance loss model incorporated
within HOCOOL is applicable only to thrust chambers which are film cooled
with either gaseous hydrogen or hydfogen-oxygen combustion products. How-
ever; the fundamental approach followed appears to be applicable to any com-
bination of propellant systems provided that the film coolant is a gas by
the time it reaches the nozzle throat. The HOCOOL performance loss model
calculates the vacuum specific impulse loss associated with cooling a GOZ/GH2
combustion chamber with a GH2 fuel film or low mixture ratio barrier gas.

The model formulation is based on the entrainment flow model format
and the empirical observation that the film coolant loss is best correlated

as a function of the engine overall mixture ratio.

The film cooling loss is defined as the difference between un-
cooled and cooled engine delivered vacuum specific impulse (with both im-
pulse values defined at the same overall mixture ratio, chamber pressure, and

nozzle area ratio).
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111 Description of Analytical Models (cont.)

AISP ) ISP uncooled Isp cooled Eq. (29)

FCL @ O/F overall ® 0/F overall

Uncooled engine performance is reduced from the theoretical
one dimensional equilibrium (ODE) maximum by several real engine performance

losses as indicated by Equation 30.

Isp uncooled N Isp ODE ':E Isp Losses Eq. (30)
@ 0/F overall @ O/F overall

The losses that should be considered for a GOZ/GH2 engine are reaction kinetics,
boundary layer friction and heat transfer, nozzle throat and exit two dimensional
flow, and thrust chamber core mixture ratio maldistribution. For simplicity

an uncooled engine efficiency factor was defingd to account for the real engine

losses,

Vlsp = 1 -lep losses /Isp 0DE Eq. (31)

@ 0/F overall @ O/F overall ! @ Q/F overall

If follows that engine uncooled vacuum specific impulse can be defined as shown

in Equation 32.

I .
SPuncooled - 7flsp X Isp ODE Eq. (32)
@ O/F overall @ 0/F overall @ 0/F overall

Cooled engine delivered vacuum performance is defined as the
mass weighted average of the engine core and mixing layer streamtubes at the

thrust chamber throat plane. This is stated mathematically in Equation 33.
Isp cooled =(w—c—°-'"-‘?—”) 'sp core + (_“ML) Lsp M Eq. (33)
@ 0/F overall W @ O/F core W /e o/F M

~22-




111 Description of Analytical Models (cont.)

The core stream tube flow rate, wco , and the mixing layer flow rate, W

re ML’

at the throat plane are calculated by the entrainment film cooling model.

Specific impulse of the core is evaluated at the core mixture

ratio in the same manner as overall specific impulse for the uncooled engine.

Isp core = 7{1 x 1

sp sp ODE
@ O/F core o o/F core @ 0/F core

Eq. (34)

The specific impulse of the mixing layer is determined using the
mixing layer throat plane mixture ratio which is also calculated by the

entrainment film cooling model.

ISp ML
@ O/F ML

%Sp x 15, ope Eq. (35)
ML @ 0/F ML |

Correlation of hot test data during the Combustion Effects Program (See Section
IV.E.) has shown that the Equation 36 definition of the mixing layer performance
efficiency factor yields the most accurate model predictions. The Equation 36

definition assumes an isentropic one-dimensional expansion of the film coolant
gases (i.e., ﬁ/lsp = 1.0 for the film coolant gases).
W W
- E c
%sp = 71 X gt Eq. (36)

Sp
ML @ O/F core

From Equations 33, 34, and 35 the film cooled engine vacuum

specific impulse is defined as:

Isp cooled - 7/Isp core X Isp ope * wcore
@ O/F overall @ O/F core @ O/F core W
+ 4hsp M. X ISp ooE X W Eq. (37)
@ 0/F ML W
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111 Description of Analytical Models (cont.)

Substituting Equations 32 and 37 into Equation 29 yields the

equation for the predicted film coolant performance loss.

L1 B
?FC)L - 7{Isp X Isp ODE B Vlsp core * Isp ODE
@ 0/F overall @ 0/F overall @ O/F core @ O/F core
v Y
X core + ISp e X ISp opE X wML Eq. (38)
W @O/FML "W

In Equation 38 the performance loss is based on one dimensional
equilibrium specific impulse for the two flow field stream tubes. Theoretically,
one dimensional kinetic specific impulse is more correct but is impractical
in the general case because kinetic impulse depends on many engine design
variab ks such as noéz]e length, nozzle shape, throat inlet and outlet radius,
area ratio, chamber pressure and thrust level. These effects are more easily
handled in the 17 Isp term which includes the effects of all real engine

performance losses.
C. NON-ADIABATIC WALL HEAT TRANSFER MODEL

The ALRC approach for calculating heat transfer rates to film-
cooled non-adiabatic walls is to utilize conventional heat transfer correlations
but with the gas-side boundary conditions specified by the entrainment film
cooling model. Two general heat transfer models can be considered: (1) a reactive
model, based on enthalpy driving potential; and (2) a non-reactive model, based
on temperature driving potential. In both of these models, the following corre-
lation is used to predict heat transfer coefficient.

-0.2 -0.6
St = .026 Cg(x) ReD Pr et Eq. (39)
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111 Description of Analytical Models (cont.)

St = Stanton Number
= hg/G (pref/pe), for the reactive heat transfer
model
= hg/G (pref/pe) Cpref for the non-reactive heat

transfer model.

Cg(x) = Position dependent correlation coefficient (Eq. 40)

ReD = Reynolds number based on G and chamber diameter =
oref OD/Vref

G = Axial mass velocity based on the total gas-side

flow rate and flow area.

During previous work (Reference 1), it was found that injection
velocity effects influence the Cg parameter. Equation 40 is designed to account
for these effects.

0.8
(cg) o T s <1 (urg) a0

uc/ue i .0

where:
u = local film coolant velocity

The u/ue ratio was correlated in terms of a g parameter defined by Eq. 41.

u -u 1 - u/ue

g = - = Ty o Eq. 41
u u 1 uC/ue

The g parameter is analogous to an effectiveness and correlates with wE/NC

in a manner similar to effectiveness as shown in Figure 8.

Equation 39 is a convenient analytical tool for analyzing non-
adiabatic film cooled walls because it allows the calculation of hg values with
film cooling if the Cg value without film cooling is known. This is a case
encountered very often in the rocket engine industry. In evaluating Equation
39, the physical properties are determined using the hot-gas mixture ratio at
the wall predicted by the entrainment model. The reference temperatures usually
considered are: (1) the average "film" or arithmetic mean temperature, defined
as the average between Taw and qu; and (2) the adiabatic wall temperature, Taw'
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111 Description of Analytical Models (cont.)

Heat flux on the gas-side is defined by Equations 42 and 43 respectively for
the reactive and non-reactive heat transfer models.

h (H
g ' aw

Q/A - Hw)’ (reactive) Eq. 42

Q/A

I
=
—_—
]
—‘

g Taw wg), (non-reactive) Eq. 43

D. HOCOOL COMPUTER PROGRAM

The HOCOOL computer program is an analytical tool for
determining coolant requirements and performance penalties for advanced
rocket thrust chambers using various combinations of gas film cooling, and
hydrogen or oxygen regenerative (convective) cooling. The program is designed
for the thermal analysis of regeneratively-cooled thrust chambers, film-
cooled adiabatic wall chambers, and chambers in which film cooling supple-
ments regenerative cooling. This section contains a discussion of the HOCOOL
computer program features. A detailed description of the program including
explanation of the input and output is given in Reference 5. The program was
delivered to the NASA Lewis Research Center during July of 1975.

There are three basic analytical models in the HOCOOL
program: (1) a generalized regenerative cooling model, (2) the ALRC entrain-
ment film cooling model, and (3) a two stream tube model for predicting per-
formance loss due to the use of hydrogen film coolant in a hydrogen-oxygen
engine. The entrainment film cooling model and the film cooling performance
loss model are described in Section III.A and III.B. The generalized re-
generative cooling model has resulted from numerous regenerative studies
conducted at ALRC during the past 15 years on government and company sponsored
R and D programs. This model provides several options for describing gas-side
and coolant-side heat transfer, and a variety of coolant passage geometries
can be considered. The coolant flow path is completely flexible. Either
hydrogen or oxygen may be considered as regenerative coolants in the HOCOOL
version of this regenerative cooling model.
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IT1 Description of Analytica1 Models (cont.)

The HOCOOL computer program was designed to provide a
heat transfer analysis of the thrust chamber design concepts indicated on
Figure 9. As shown on this Figure, 3 basic cooling options can be analyzed:
(1) the film or regenerative cooling options, for analyzing chambers which
are either all film cooled (adiabatic wall) or all regeneratively cooled;
(2) the complemental cooling option, whereby film and regenerative cooling
are operated in parallel down the axial length of the chamber; and (3) the
segmented cooling option, whereby film or regenerative or both types of
cooling are used.in a given section of the chamber and a different individual
or combination is used in the remaining section. The diagrams on Figure 9
indicate the specific configurations which can be analyzed with HOCOOL.

Five regenerative coolant channel geometries may be considered: rectangular
channels, truncated tube, round or flattened tube, u-tube, or convoluted
tube. These geometries are illustrated on Figure 10.

The HOCOOL program provides two options for the 7(Isp
parameter of Equation 38. One option provides for the use of factors
which are built into the program and the other allows for internal calculation
of'qlsp based on input no-film-cooling performance data. The built-in values
are listed on Table VII. They were derived from the test data generated on
this program and are recommended for estimating the performance loss due to
film cooling. If the no-film-cooling performance characteristics of an injector-
chamber combination are known, a better estimate of the film-cooling performance
loss will probably be obtained using the option in which the no-film-cooling
performance data is input as a function of mixture ratio. A table of 771Sp
vs mixture ratio is generated internally using the input data and Equation 31.
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Iv EXPERIMENTAL RESULTS AND DATA CORRELATION

A.  TESTING
1. Test Apparatus

The film cooling test assembly is shown mounted on the test
stand on Figure 11. The film cooled chamber was wrapped with aluminum foil
insulation prior to testing to create a nearly adiabatic wall for the combustor.
A schematic diagram of the test system prepared especially for this program,
is shown on Figure 12. Details of the film cooling test assembly are provided
on Figure 1 and in Appendix C. Five of the no-film-cooling performance tests
were conducted using a copper heat sink thrust chamber in place of the film
cooled chamber shown on Figure 1 (copper chamber described in Appendix C).

The following measurements were made during all of the
test firings; thrust, core injector flow rates, chamber pressure, water
flow rate and outlet temperature, fuel and oxidizer manifold pressures,
miscellaneous test system temperatures and pressures. Additional measure-
ments recorded during the film cooling tests were: film coolant flow rate,
film coolant injection temperature, and film cooled chamber wall temperature.
Thermocouple locations for the film cooled chamber are indicated on Figure:
13. Film coolant injection temperature was measured with thermocouples
installed in the injection slot between thermocouple rows.

2. Test Conditions

A total of 29 rocket engine test firings were performed.
Film coolant was injected onto the thrust chamber walls in 23 of these tests,
and 6 tests were performed without any film cooling. The overall range of
test conditions is summarized below.

Propellants: hydrogen/oxygen

Mixture Ratio: 0.78 to 8.0

Chamber Pressure: 207 N/cm2 (300 psia) nominal
Film Coolants: hydrogen, helium, nitrogen

-28-




v Experimental Results and Data Correlation (cont.)

An overview of the test program approach is obtained by
examination of Table I. which shows the nominal conditions for each of the
29 test firings. The 16 hydrogen film cooling tests were performed over
the ranges of core mixture ratio and film coolant velocity ratio, uc/ue,
which can be expected to occur in a hydrogen film cooled oxygen/hydrogen
thrust chamber. The nominal core mixture ratio values tested were 2, 4, 6
and 8. The velocity ratio range was 1.25 to 0.8 for each of these mixture
ratios and additional data were obtained at uc/ue = 1.5 and a core mixture
ratio of 8.

Five helium film cooled tests were performed at approximately
the same velocity ratio range. The purpose of these tests was to allow an
evaluation of"combustion effects”, i.e., the effect of film coolant/core gas
reactions on entrainment fraction. Such an evaluation was obtained by comparing
experimental entrainment fractions with the reactive hydrogen and inert helium
film coolants. A core mixture ratio of 8 was chosen for the helium cooled tests
because, for the range of core 0/F tested, this is where the oxidizer mole frac-
tion is a maximum (see Figure 14).

The purpose of the nitrogen film cooling tests was to obtain
additional data on flow turning effects with a relatively heavy film coolant.
The lower mixture ratio, 2, was necessary for the nitrogen cooling tests be-
cause of film-coolant-injector cooling limits. Previous data relative to flow
turning effects on film cooling were published in References 1 and 2.

The specific test conditions for each test firing are listed
on Table II. The entrainment fraction test results are summarized in Table III.
Specific impulse performance data for each test are given in Table IV. Heat
transfer coefficient data are tabulated in Tables V and VI. Steady state wall
temperatures measured during the film cooling tests are plotted on Figures 15
through 20, and the experimental entrainment fractions are plotted on Figures
21A through 26. Cold flow test data for the core gas injector and the film
coolant injector are presented in Appendix C.
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Iv Experimental Results and Data Correlation (cont.)
3. Test Summaries
(a) Hydrogen Film Cooling Tests with Core O/F = 4

In the initial series of tests, three tests were
conducted with a nominal core gas mixture ratio of 4: Tests: 2K-B6-12-102,
103, and 104. The film-coolant-to-core-gas velocity ratio ranged from 1.21
to 0.77.

The measured steady state wall températures are
shown on Figure 15. These data indicate that the core gases were not
completely uniform in fhe film cooled chamber since the wall temperatures
recorded along thermocouple row B (directly in line with a core gas in-
jector element) were consistently higher than those along row D (centered
between 2 core gas injector elements). This slight “streaking" behavior
did not impede the study of combustion effects and turning effects on film
cooling and is probably representative of the circumferential variation

which can be expected in actual rocket engines.

Test 117 was conducted as a repeat of test 104.
The data repeatability is considered acceptable even though the throat region
wall temperatures were somewhat higher in test 117. These higher temperatures
appear to be due to a higher core mixture ratio, and slightly lower H2 film
cooling flow rate in Test 117.
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IV Experimental Results and Data Correlation (cont.)

The data from Tests 102, 103 and 117 were used in
subsequent data correlation work (one test at each velocity ratio).

(b) Hydrogen Film Cooling Tests with Core 0/F = 6

Three film cooling tests were also conducted with a
core mixture ratio of 6 in the initial series of tests: Tests 105, 106, and
107. The velocity ratios were 1.25, 1.0, and 0.75.

Steady state wall temperature measurements from
these tests are plotted on Figure 16. The data obtained during Tests 105 and
106 are similar to the mixture ratio = 4 data discussed previously. Severe
streaking is evident in the test 107 data where throat temperatures range
from 617 to 1033°K (650 to 1400°F). -

During subsequent film cooling tests at core O/F =
8, it was found that a mis-alignment between the film coolant injector and
the film cooled chamber caused the test 107 streaking. The mis-alignment
occurred during reassembly of the test hardware after an inspection per-
formed between Tests 106 and 107. The Test 107 conditions were retested
during Test 114 and the severe streaking was eliminated as shown by the data
plotted on Figure 16. The conditions of test 106 were repeated in Test 115
and good repeatability was obtained. This indicates that no significant
mis-alignment existed prior to Test 107.

Data from the following tests were used for deter-

mination of entrainment fractions: 105, 115, and 114.
(c) Hydrogen Film Cooling Tests with Core O/F = 8
Five tests were performed with an 8.0 nominal core

gas mixture ratio: tests 108, 109, 110, 111, and 116. The wall temperatures

measured in these tests are plotted on Figures 17 and 18.
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1V Experimental Results and Data Correlation (cont.)

As a result of the severe test 107 streaking, the
film coolant flow rate for the first 8.0 mixture ratio test, test 108,was
increased so that the film-coolant-to-core-gas velocity ratio, uc/ue, was
1.5 instead of the 1.25 originally planned. Severe streaking also occurred
in test 108. The top graph of Figure 17 shows that the throat wall temp-
erature ranged from 567°K to over 1030°K (560°F to over 1400°F). Subsequent
inspection of the test hardware revealed that a mis-alignment between the film
coolant injector and the film cooled chamber had caused the streakino which
occurred in both tests 107 and 108.

The film coolant injector and the film cooled chamber
were realigned and the test 108 conditions were retested in test 109. The
top graph of Figure 17 shows that the realignment removed the severe streaking
and that the throat wall temperatures were reduced to the 670 to 755°K (750
to 900°F) range. This smaller amount of "streaking" appears to be due to core
injector effects. Similar data were subsequently obtained during tests 110, 1171,
and 116 which were successfully conducted at velocity ratios of 1.29, 1.07, and
0.84. Before each of these tests and before every subsequent test, the align-
ment between film coolant injector and film cooled chamber was visually checked
and the alignment was adjusted if necessary. No adjustment more than about .05
mm Was ever necessary.

Data from tests 109, 110, 117, and 116 were used to
determine entrainment fractions with core O/F = 8.

(d) Hydrogen Film Cooling Tests with Core 0/F = 2
Two tests were performed at the 2.0 core mixture
ratio condition: tests 112 and 113. These two tests were conducted success-
fully and the measured wall temperatures are shown on Figure 18.
Additional testing with core O/F = 2 was deleted in

favor of conducting three repeat tests at 0/F = 4 and 6 and the 0.84 velocity
ratio test at 0/F = 8 (for comparison to the helium data).
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IV Experimental Results and Data Correlation (cont.)
(e) Helium Film Cooling Tests

Five tests were conducted with helium film coolant: tests
118, 119, 120, 121, and 122. The velocity ratio range tested was 0.82
and 1.25 and the nominal core mixture ratio was 8.0. The wall temperature
data are plotted on Figure 19. Tests 119, 120, and 122 were successful
tests. The test 118 data was invalid due to unsteady film coolant flow.
In test 121 (a repeat of test 118), the £ilm coolant flow rate was steady but a
data acquisition system malfunction occurred and consequently it was
necessary to repeat the test conditions again in test 122.

(f} Nitrogen Film Cooling Tests

Tests 123 and 124 were performed with nitrogen film
coolant at velocity ratios of 0.32 and 0.27 and with a 2.0 nominal core
gas mixture ratio. The tests were completed successfully and the wall
temperature data are shown on Figure 20. A third test at 0.2 velocity
ratio was planned; however, it was cancelled because the test 123 and 124
wall temperature data indicated that chamber damage would probably occur if
the film cooalnt flow rate was reduced any further.

(g) No-Film-Cooling Performance Tests

Performance data without film cooling effects were
obtained in tests 003, 125, 126, 127, 128, 129. Test 129 was run at low
0/F in the sheet metal "“film cooled" chamber and the other 5 tests were
run with a copper heat sink chamber in place of the sheet metal chamber.
A1l performance data are cummarized on Table IV. In test 003, wall temp-
erature transients were also recorded from which heat transfer coefficients

without film cooling were inferred (See Section 1v.D.).

-33-



Iv Experimental Results and Data Correlation (cont.)
B. TEST RESULTS

This section presents the direct film cooling (heat transfer related)
test results and explains the film cooling data reduction procedure. The
entrainment fraction and heat transfer coefficient results are discussed in
Section IV.B.1. and the film cooling data reduction procedure is discussed
in Section IV.B.2. Correlation of these data are presented in Sections IV.C.
(entrainment fraction data) and IV.E. (heat transfer coefficient data). The
performance results and their correlation are discussed in Section IV.D.

1. Direct Film Cooling Results
(a) Entrainment Fraction Results

The film cooling test wall temperature data were reduced
and evaluated in terms of the entrainment film cooling model described in
Section III.A. The specific Parameter used to characterize the data is the
entrainment fraction, k, which relates the entrained core gas mass flux to the
axial flow core gas mass flux (See Equation 1).

Initial data reduction consisted of calculating adia-
batic wall temperature by correcting the measured wall temperature for heat
loss effects. Then the experimental entrainment fraction values between thermo-
couple pairs were calculated from a specially constructed data reduction version
of the entrainment model. The specific procedures used to calculate adiabatic
wall temperatures and entrainment fraction are described in the next section
of this report, Section III.B.2. Tabulations of each measured wall temperature,
calculated adiabatic wall temperature, and corresponding entrainment fraction
ratio,, k/ko', are provided in Appendix B for each film cooling test. The
parameter ko' is a reference entrainment fraction value given by Equation 44.
The entrainment fraction data are summarized in Table I11.

-.65

k' = kg |- —— Eq. 44




Iv Experimental Results and Data Correlation (cont.)

where:

ke = is defined by Equation 2}

More specifically, ko‘ is the plane unaccelerated flow entrainment fraction
modified to account for known acceleration effects (subsonic region only).

The experimental entrainment fractions for the unity
velocity ratio tests with hydrogen and helium film coolant and for one of the
nitrogen film cooling tests are plotted as a function of axjal position on
Figures 21A and 21B. These data indicate that circumferential variations in

entrainment fraction exist. This circumferential variation in k is signi-
ficant in some cases (e.g., test 103 between thermocouples 3 and 4). This
circumferential k variation is the result of the mild "streaking evident

in all of the wall temperature data, which is apparently related to core

gas injector effects. The B row k values are generally higher than the

row D values and the B and D row data represent the data extremes reasonably
well. They are, however, not consistently the highest or lowest values.
This circumferential k variation is probably indicative of a real rocket
engine environment since core injectors are known to yield less than

perfect circumferential mixture ratio and mass flux distributions.

In addition, there were some differences noted between
the k values indicated for the'upstream and downstream portions of the conver-
gent turn and the conical convergent nozzle section. Since the entrainment
rates were generally low in the convergent region, this was believed due to
either experimental error or core injector effects.

In the interest of establishing design entrainment
fraction correlations, it was decided to circumferentially average the entrain-
ment fraction data, and to correlate the overall entrainment fraction for the
convergent turn and the conical section. The averaged k values for each test
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are tabulated on Table III. These averaged data are plotted as a function
of axial position and velocity ratio on Figures 22 through 23, (all 3 film
coolants) and as a function of axial position and core mixture ratio on
Figure 24 (hydrogen data only). The hydrogen and helium entrainment frac-
tion data are compared directly on Figure 25,

The following trends are evident in the averaged
data plotted on Figures 22 through 23:

(1) In the cylindrical chamber region, the
entrainment fraction is initially quite high then decreases to about the level
that had been anticipated (k/ko' = 3) based on the inert core gas data
reported in References 1 and 2.

(2) The hydrogen and helium film coolant data ex-
hibit a tendency toward decreasing k/ko' in the convergent region of the
thrust chamber and very low entrainment fractions (near zero) are indicated
in the nozzle throat region. This indicates that turns and a convergent
region can be beneficial when the film coolant is relatively light. The
negative k values indicated near the throat are the result of either experi-
mental error or core injector effects (i.e., a non-uniform core gas 0O/F
distribution near the wall) combined with flow turning effects (See Section
IV.C.2.b.).

(3) The nitrogen k values increase dramatically
by almost an order of magnitude in the convergent region. The k/ko' values
near the throat are on the order of 40. This indicates that the convergent
region is detrimental for relatively heavy film coolants.

(4) The limited data obtained in the supersonic
region all indicate that the entrainment fraction increases downstream of
the nozzle throat. For hydrogen and helium film cooling, this increase is
not very large and the k/ko values are about the same as in the convergent
conical region. For nitrogen film cooling, the rapid mixing noted in the
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convergent region upstream of the throat continues to increase downstream
of the throat where a k/ko value of 63 was indicated.

(5) With hydrogen and helium film cooeling, the
k/ko' ratio tends to decrease as the velocity ratio decreases, thus indicating
more efficient film cooling (reduced mixing rate) at the lower velocity ratio.
However, absolute k values must be considered here since ko' contains velo-
city ratio effects (See Equation 21). Figure 26 contains plots of absolute
k vs axial position for core O/F = 4, 6, and 8. The top graph on Figure 26
compares to the top graph in Figure 23. The lower two graphs on Figure 26
compares to the lower two graphs on Figure 22. These Figure 26 plots show
that absolute k also tends to be lowest for the lowest velocity ratio and
therefore film cooling appears to be more efficient at uc/ue = 0.8 than at
uc/ue = 1.0 as previously believed. Future testing with hydrogen film coolant
at uC/ue < .8 is recommended to determine the possible existence of an
optimum velocity ratio where the entrainment fraction is a minimum.

(6) Plotting the entrainment fraction data with core
mixture ratio as a parameter reveals that there is a certain effect of core
mixture ratio on entrainment fraction. The data is plotted in this manner for
nominal velocity ratios of 1.25, 1.0, and 0.8 on Fiqure 24. There is
clearly a trend toward higher entrainment fraction at the lower mixture
ratio. This is believed due to increased turbulence level at the lower mix-
ture ratio. The individual elements of the core gas injector used (premi x
triplet elements) are conducive to higher turbulence levels at lower mixture
ratios because the fuel (gaSeous hydrogen) is injected in two opposing, rad-
jally oriented streams while the oxidizer (gaseous oxygen) is injected in
a single axially oriented stream.
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(b) Heat Transfer Results

Heat transfer coefficients were calculated from most
of the wall temperature transients recorded during the hydrogen film cooling
tests. These coefficients were evaluated in terms of the ALRC analytical
model for non-adiabatic wall heat transfer described in Section III.B. The

specific parameter calculated from the data was the Cg factor of Equation 39.

The reactive heat transfer model and film reference temperature were used.

The calculated C values are listed on Table V.
Similar data obtained without any film cooling in the copper heat sink
chamber are listed on Table VI.

2. Film Cooling Data Reduction Procedure

Reduction of the film cooling test data consisted of
three parts:

(1) Obtaining heat transfer coefficients (hg) and
corresponding correlation coefficients (Cg) from
wall temperature transients using the wall as a
calorimeter.

(2) Using these coefficients to correct steady-state
wall temperatures for external heat losses to
obtain adiabatic wall temperatures, then calculating
the corresponding film cooling effectiveness values.

(3) Calculating from these effectiveness values an

average entrainment fraction between successive
pairs of thermocouples in each axial row.
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Each of these areas is reviewed in the following paragraphs, with the emphasis
on changes from the previous work (Ref. 1 and 2). Details of the wall temp-
erature transient analysis and of the heat loss correction are given in
Appendix B of Reference (1). The measured wall temperature and calculated
adiabatic wall temperature differed by about 2°K at 400°K measured temperature
and by 16°K at 800°K measured temperature.

A data reduction computer program was prepared by inte-
grating previous transient and steady state data programs with the basic
ALRC film cooling program and selected subroutines from the regenerative-
cooling program developed in Task IV. This integration of programs pro-
vided all the thermodynamic and transport properties required for data
reduction with hydrogen film cooling in the present tests (the previous
data reduction programs were restricted to hydrogen-nitrogen systems).
Since transport properties were not included for the helium and nitrogen
film cooling cases, heat transfer correlation coefficients were not cal-
culated for those tests. Because of this computer program integration, data
reduction was accomplished in one step; previously, it was necessary to run
a data reduction program followed by the film cooling program.

a. Heat Transfer Coefficient Analysis

Wall temperature responses were used to infer
internal heat transfer coefficients and, in the case of hydrogen film cooling,
correlation coefficients. The correlation equation used is shown as Equation
45 (a rearranged version of Equation 39).

MW T 0.8

- H -0.2 -0.6
W e W

= 0. G |lai . = v ¥op P £q.
hg 0.026 Cg e r q

Mw T T, - Tw D

e f aw g

with all properties evaluated at the wall mixture ratio and the film tempera-
ture, Tf, defined by

Te = 0.5 (T +T.0)

The mass velocity in the Reynolds number was based on total flow and total

flow area.
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Since correlation coefficients were not calculated
for helium and nitrogen film cooling, the transient analysis option was used
for all such tests. For those hydrogen film cooling tests where the transient
analysis was not run, heat transfer coefficients were calculated from the
above equation using the following correlation coefficient:

u 0.8

1+g () £ . ];1

C = ¢ Ye i

g 9 !
T+g ) % -1

Eq. 46

in which subscript 1 refers to a test in the same series for which the transient
analysis was run. The function g (n) is defined by Figure 8 .

b. Evaluation of the Adiabatic Wall Temperature

In References (1) and (2) external heat loss
coefficients were determined by running tests without film cooling and
measuring both the hot gas temperature and the wall temperature. This
concept was not feasible for this program, consequently it was necessary to
assume an external loss coefficient based on previous results; a uniform value
based on the cylindrical chamber data in Table VII of Reference (1) was used.

A study of the effect of this external loss and its
uncertainty was made for the test 103 Row B data. Figure 27 shows the wall
temperature correction required to obtain the adiabatic wall temperature as
a function of the external heat loss coefficient; this curve applies at the
end of the cylindrical section, at the throat and for most of the convergent
section. A correction of 10°K (18°F) results for the assumed coefficient.
However, the magnitude of the wall temperature correction is of less interest
than its spatial variation. Local entrainment fraction multiplier calculations
are not affected significantly by a uniform loss coefficient, but can be sen-
sitive to spatial variations in the coefficient. Therefore, a thermocouple-to-
thermocouple variations of the loss coefficient from -50% to +50% of the nominal
value was studied;this is the approximate range of coefficients in Reference (1).
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Entrainment fraction multipliers between adjacent thermocouples in the cylin-
drical section differed by 1-18 percent between the uniform and variable loss
coefficient cases. The overall turn, and overall cone entrainment fractions
(used to correlate the convergent region data) were not particularly sensitive
to uncertainties in the loss coefficient variation, as shown in the following

table. k/ko' Change Due to

_Region Loss Coeff. Variation
Asymptotic part of 5.4%
Cylindrical Section (2-5)

Convergent Turn (5-7) 12.1%
Convergent Section (5-10) 12.4%
C. Entrainment Fraction Multipliers

Entrainment fraction results are normalized herein
by the value ko', which accounts for injection parameter and acceleration
effects and is defined by Equation 44.

An average value of k/ko' is calculated between
adjacent thermocouples in each row. For example, between thermocouples i
and j

]
< |

1

(k/ko.)i_- = -

Eq. 47
j a- 80

x|

xn‘_‘<|
. .

i

with ¥ calculated by replacing % with y in Equation 27 and using the entrain-
ment flow ratio NE/NC as calculated by Equation 17 and by Equation 6. Note
that y is merely the value of x required to match the test data.

Entrainment fraction results presented herein are
based on the reactive model for hydrogen film cooling and on the core-reactive
model for nitrogen and helium film cooling (See Section II1.A). However,
one hydrogen test (No. 116 with a core 0/F of 7.6) was also analyzed using
the core-reactive model . This was done to evaluate the analytical significance
of chemical reactions between the core gases and the hydroqen film crolant on

the theriiodynamic pronerties of tae mixing laver. The reactive model accounts
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for reactions by relating Hawvto Taw through a temperature-enthalpy-0/F table.
This table was generated using the Reference 8 computer program assuming
equilibrium chemistry. The core reactive model relates Haw and Taw by treating
the mixing layer as a two component mixture (core gas and film coolant gas).
Reactions between the core and film coolant gases are ignored; however, core
gas composition changes with temperature are accounted for by using the equili-
brium chemistry table to evaluate core gas enthalpy (the film coolant Cp is
assumed constant).

The values of k/ko' calculated with the two models
were virtually identical as shown in the following tabulation:

k/ko' k/ko'
Region Reactive Model Non-Reactive Model
Cylindrical 2.50 2.51
Convergent 1.19 1.18

This agreement of results indicates that the effect of chemical reactions
on the thermodynamic properties of the mixing Tayer is not analytically signi-
ficant for the Test 116 conditions.

Comparisons of the core-reactive and non-reactive
models were also made for Test 120, which had a core mixture ratio of 7.5.
Using an equivalent core specific heat (defined by Eq. 12) evaluated at an
adiabatic wall temperature of 833°K (1500°R) in the non-reactive cases,
yields the following comparison of axially-averaged entrainment fraction
multipliers for Row B:

Core Reactive Model Non-Reactive Model
Cylindrical Section 2.79 2.82
Convergent Section 1.13 1.25

Agreement is excellent in the cylindrical section, where adiabatic wall temp-
eratures ranged from 570 to 1140°K (570 to 1600°F). In the convergent section,
where adiabatic wall temperatures ranged from 1140 - 1230°K (1600-1760°F), the
non-reactive model results indicate an entrainment fraction 10 percent higher
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than the core reactive model. Therefore, use of the non-reactive model with

a core specific heat defined by Equation 12 appears to be justified when the

adiabatic wall temperatures are low relative to the core combustion tempera-

ture. The non-reactive model was also run for test 120 using the frozen core
specific heat evaluated at the core total enthalpy; in this case entrainment

fractions were 40 percent higher than those from the core-reactive model.

c. FILM COOLING DATA CORRELATIONS

For film cooling analysis purposes, it is convenient to
characterize the entrainment fraction, k, as shown in Equations 23 and 48.

k = km ko' Eq. 48

Equation 48 partitions k into two parts: (1) ko', a reference entrainment frac-
tion, defined by Equation (44), predicted by the flat plate correlation of Ref.
1 and the acceleration effect correlation of Ref. 2: (2) km, an empirical
entrainment fraction'multiplier used to reconcile differences between Equation
44 and measured k data. The entrainment fraction data in Figures 20 through 25
have been presented in the form of k/ko' which, by Equation 48, is equivalent
to km.

The purpose of this section is to interpret the entrainment
fraction results of Figures 22, 23, and 24 and correlate them with pertinent
physical parameters using the Equation 48 approach. Comparisons with the
heated nitrogen laboratory tests of References 1 and 2 are made whenever
possible, and design recommendations are presented based on all results. This
discussion is divided into four parts: (1) Cylindrical section data are pre-
sented first; here the primary interest is in combustion effects resulting from
film coolant composition and core mixture ratio changes and in injection velo-
city ratio effects. (2) The second part reviews all data from the turns at the
start of convergence and at the throat. (3) The third part considers the
average entrainment fraction over the entire convergent section. (4) Finally,
design recommendations are presented.
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1. Cylindrical Section Data
a. Injection Slot Lip Effect

Figures 22 and 23 indicate the entrainment fractions
are high immediately downstream of the film coolant injection slot and then
decrease to an asymptotic value between thermocouples 2 and 5. Similar results
were seen in some of the tests of References 1 and 2. The increased entrain-
ment fractions near the slot are probably caused by the wake formed downstream
of the slot ]ip as the 1ip thickness was significant relative to the slot
height (nominal sizes: .05 cm lip, .15 cm slot).

Figure 28 gives the ratio of the maximum to the
asymptotic entrainment fractions for the hydrogen and helium cooalnt tests.
The asymptotic value is defined as the average entrainment fraction between
thermocouples 2 and 5. The maximum-to-asymptotic ratio decreases with in-
creasing injectibn velocity ratio, which is opposite to the trend observed
in the data of References 1 and 2. In the latter tests the ratio was near
unity for a velocity ratio of 0.8 and increased for higher velocity ratios.
The nitrogen film coolant data were omitted from Figure 28 due to the potential
error in entrainment fraction near the slot in these tests. This error is
related to the large change in entrainment flow associated with a small change
in coolant effectiveness when the latter is near unity, so that any experi-
mental or model errors result in large errors in entrainment flow. (See 1\ Vs
NE7WC shown on Figure 4).

The asymptotic entrainment fraction data are
summarized on Figure 29. These data are circumferential averages using all
rows which included thermocouples 2 and 5 and are directly applicable to
othér designs, at least for the type of core injector used herein, consequently
they are discussed in detail in the following paragraphs. Average entrainment
fraction data over the entire cylindrical section are shown on Figure 30;
these results are app]icab]é only for the cylindrical section length and in-
Jjection slot geometry used herein.
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b. Effect of Film Coolant Composition

One of the primary objectives of this program was
to investigate combustion effects on entrainment fractions, with the combustion
effects resulting from film coolant composition and core mixture ratio changes.
It is postulated that if the turbulent mixing mechanism is constant (constant
k) these effects are accounted for explicitly in the various reactive options
of the present entrainment model. The model studies discussed in Section IV.B.2
indicate that chemical reactions between the hydrogen film coolant and core
combustion products are not significant with regard to calculation of thermo-
dynamic properties. However, changing the film coolant or core mixture can
conceivably influence the entrainment fraction if the core gas reactions or
reactions within the mixing layer affect the turbulent mixing mechanism.

Figure 29 shows excellent agreement between the
hydrogen and helium asymptotic entrainment fraction multipliers for all
three common injection velocity ratios. Figure 25 compares the local entrain-
ment fraction multipliers for each velocity ratio; agreement between the hydro-
gen and helium values js very good throughout the test section. These data
indicate that either: (1) combustion of the film coolant within the mixing
Jayer did not increase the rate of film coolant and core gas mixing, or (2)
no combustion occurred within the mixing layer.

The hydrogen and helium film coolant data plotted
on Figure 25 were obtained at a core mixture ratio of approximately 8.0
where the total mole fraction of oxidizer (OH, 02, 0) is about 18% (See Figure
18). This is not a highly oxidizing environment but it represents the most
severe practical case since significantly higher mixture ratios are not likely
to exist in most hydrogen/oxygen rocket engines. However, certain small
thruster designs have been considered which operate with core O/F in the
50/1 range. At 50/1 mixture ratio the mole fraction of 02 is approximately
0.7 and it is possible that some effect of core gas/film coolant gas combus -
tion may exist at this extreme condition. The 50/1 mixture ratio case
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would be difficult to test in the larger scale hardware required for experi-
mental accuracy. However, the Figure 1 test components could be used to
evaluate an equally extreme case: oxygen film cooling with core O/F = 2

(H2 mole fraction = 0.75). This oxygen film cooling test is recommended

for future work.

Figure 29 also indicates the same entrainment
fraction multipliers for nitrogen at velocity ratios of 0.27 - 0.32
and hydrogen at a velocity ratio of 1.0. The hydrogen data at 0.8 velocity
ratio lie below these data, consequently there appears to be an optimum
injection velocity somewhere between 1.0 and 0.3.

c. Effect of Core Mixture Ratio

Figures 29 and 30 show the effect of core mixture
ratio on asymptotic and average cylindrical section entrainment fraction
multipliers, respectively, for three hydrogen injection velocity ratios.

In each case, increasing the core mixture ratio decreases the entrainment
fraction. This general trend was noted previously in the entrainment frac-
tion profiles of Figure 24.

A number of possible explanation of this mixture
ratio effect can be postulated.

1. It is likely that the freestream turbulence
level increased as the core mixture ratio
decreased. Increasing turbulence intensity
is known to reduce film coolant effective-
ness, i.e., to increase entrainment frac-
tions, as noted in Reference 7. In the APS
core injector used in the present tests,
oxidizer is injected axially while the fuel
1s injected perpendicular to the oxidizer
flow in two impinging streams. Therefore,
at low mixture ratios a significant part
of the core flow is associated with these
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transverse impinging jets, which should

promote turbulence.

The entrainment fraction may depend on the

core Reynolds number, which decreases by a fac-
tor of almost two due to viscosity changes

as the core mixture ratio increases from 2

to 8. In Reference 1 a similar reduction in
core Reynolds number was accomplished by
reducing the chamber pressﬁre in one test
series. Entrainment fraction multipliers

were reduced in this case as well, but the
relative reduction was about half that ob-

served in the rocket engine tests.

The assumption of equilibrium core chemistry
used to calculate experimental entrainment
fraction could be in error. Species concen-
tration changes predicted at the higher mix-
ture ratios due to cooling in the mixing
layer may be limited by kinetic effects.

If the core reactions noted above do occur,
they may affect the turbulent mixing process;
e.g., there could be a coupling between the
energy absorption associated with these reac-
tions and the decay of turbulent kinetic
energy. (This explanation is considered the
least likely of the four presented here).

It should be noted that the changes in entrainment fraction multiplier with

core mixture ratio are not caused by the corresponding changes in injection

density ratio.

Larger density ratio changes resulted from the use of nitrogen

and helium film coolants vs hydrogen, without changes in entrainment fraction

multiplier.
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d. Effect of Injection Velocity Ratio

The ALRC entrainment model is designed to account
for injection velocity ratio effects in the asymptotic part of the cylin-
drical section through the reference entrainment fraction kO derived from
plane, unaccelerated flow laboratory data. However, Figure 29 shows a
reduction in entrainment fraction multiplier k/ko' as the velocity ratio
is reduced from 1.3 to 0.8. The single data point obtained at a velocity
ratio of 1.5 agrees with the 1.3 velocity ratio data. The nitrogen data
obtained in the velocity ratio range 0.27 - 0.32 agrees with the corresponding
hydrogen data at a ratio of 1.0. These trends may be seen more clearly in
Figure 31, which provides a crossplot vs velocity ratio of the entrainment
fraction multipliers of Figure 29. Since it is desirable for the ratio k/ko'
to be independent of injection velocity ratio (See Equation 48), changes in
the velocity ratio function f (uc/ue) contained within ko' were considered.
Figure 32 compares the Figure 7 f (uc/ue) values to values calculated
from data using Equation 49 which simply adjusts the f (uc/ue) function so
that the experimental k/ko' values are independent of velocity ratio and
equal to the values measured at uc/ue 1.0. "
(k/ko') = = 1.0

e

u u
f(—c) calculated = f (__c_) Eq.
Ue Ye Figure 7 (k/ko*) Y

L
u
e

The open symbols on Figure 32 are the rocket firing data and reflects the
velocity ratio effects described previously. A low entrainment fraction

gives a high value of f. Data from References 1 and 2 are shaded and fal]
below the original correlation line for velocity ratios less than unity, but
are mostly above the correlation for the higher velocity ratios. This charac-
teristic is just the opposite of the rocket firing data trend.

Injection velocity ratio effects are of great
design importance since they establish the optimum slot height. Figures
29 and 30 also give the absolute entrainment fractions values in order to
show the total effect of velocity ratio. Figure 33 presents a cross-plot
vs velocity ratio of the absoluyte asymptotic entrainment fractions for core

mixture ratios of 2 and 8. However, in order to isolate the effect of velocity
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ratio the nitrogen data have been corrected to the hydrogen density and
viscosity using the effects in the ko correlation, Equation 21. The helium
data correction is less than 10 percent and has been neglected. It is

seen that the optimum injection velocity ratio based on the Combustion
Effects Program tests is less than unity and may be less than 0.8. This
result compares with the ko correlation of Eq. 21, which indicates an optimum
velocity ratio of 1.05 with constant slot height. The hot nitrogen core

flow data from References 1 and 2 indicate an optimum velocity ratio greater

than 1.0.

Design recommendations for the velocity ratio effect are
Visted on page 58.
e. Comparison with Previous Results

Injection slot lip and velocity ratio effects
from previous contracts have been compared above with the present data.
1t remains to compare the asymptotic entrainment fraction multipliers for
a velocity ratio of unity; this compa%ison is given in Table VII. Except
for the nitrogen data of Reference (2), which were obtained with a .038 cm
slot height and .05 cm 1ip, all of the laboratory test entrainment fraction
multipliers are well below the present firing data. This is also shown in
Figure 34 which compares all of the data obtained with .15 cm siot and .05 cm
lip. The higher values measured in an actual rocket engine are probably due
to the higher turbulence intensity which is thought to be associated with
the firing data. The higher multipliers observed with the smaller slot
height are probably caused in part by residual effects from the wake behind
the slot lip, i.e., the cylindrical section was not long enough to obtain a
true asymptotic value. Film coolant injector alignment is more critical
for the small slot as well. Although an asymptotic cylindrical section
multiplier cannot be inferred from the limited cylindrical region data of
Reference 9 (hot air core gas) the data for the short cylindrical section
appear to be consistent with the Reference 1 and 2 results (k/ko ~2).

Another difference between the present tests and
most of those in References (1) and (2) is the injection density ratio.
Figure 35 shows the range of density ratios tested and the resultant asymptotic
entrainment fraction multipliers. Also shown is the range of density ratios
upon which the ko correlation is founded; this range approximates that of
the test data except for the rocket engine nitrogen film coolant tests.
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Although the entrainment multiplier variations shown have been attributed
herein to turbulence intensity changes associated with the core flow and
to slot height effects, Figure 35 indicates that density ratio effects
cannot be completely ruled out in the pc/pe < 2.0 region.

2. Turning Effects

The effort initiated in References (1) and (2) to corre-
Tate the significant effects of flow turning on entrainment fraction has
continued under the present contract. These turning effects are considered
to result from the difference in centrifugal force across the mi xing
layer, which makes it easier for either the core gas or the cooler mixture
at the wall to turn with the chamber contour. If the cool gas at the wall
can turn easier (relatively Tow wall gas momentum) mixing is increased in
the turn at the start of convergence since the cool gas tends to turn into
the core gas; conversely,mixing is decreased in the throat turn since the
two flows tend to diverge. The opposite effects would be expected when the
core gas can turn easier (relatively high wall gas momentum): relatively
high momentum near the wall decreases mixing in the first turn and increases
it in the throat turn. A turn correlation parameter was proposed in Reference
(1) and also used in Reference (2). It is based on the ratio of the centrifugal
force differential across the mixing layer to a reference turbulent shear force
in the mixing layer. In Reference (1) the centrifugal force differential
was based solely on density differences and the turning parameter was defined
by Equation 50.

DTP = Density Turn Parameter = 2

5 Eq. 50

The parameters Oar ¥y, and s (mixing layer thickness) are evaluated at the
start of the turn and R is the turn radius of curvature. R is taken to be
positive at the start of convergence and negative in the throat turn. Use
of this parameter was investigated herein. However, a modification which
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accounts for the velocity differential across the mixing layer was also used;
this parameter 1s defined by Equation 51.
P Uz’w U2
MTP = Momentum Turn Parameter = 2( £ £ WoW) %— Eq. 51

In Equation 51, u, is an effective velocity near the wall. Physically U, is
the velocity at the edge of the wall boundary layer if the latter is thin
relative to the mixing layer. In order to evaluate u the effective velocity
used in the heat transfer correlation (Figure 8) was selected.

Wo W
u, = Ye +g (E/c) (uC - ue) Eq. 52
As indicated on Figure 8, the velocity u, approaches u, as the effectiveness
becomes small.

a. Start of Convergence

A1l turning data from References (1) and (2) have
been reviewed along with the present results in order to present the various
data on a consistent basis. For the turn at the start of convergence,
results are presented as the ratio of the average entrainment fraction multi-
plier in the turn to the asymptotic multiplier in the upstream cylindrical
section. Using the thermocouple designations of Figure 13, this ratio is
given by Equation 53.

(k/k ")g_7
k = 0 = Convergence turn effect factor Eq. 53

ct —_

(k/kg) 2.5
In Reference (1) the thermocouples did not isolate the turn; however, interpolated
adiabatic wall temperatures were used to eliminate the small segment of the

conical section between thermocouples.

Figure 36 shows all convergent turn data, including a
point from Reference 9 as a function of the density turn parameter defined by
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Equation 50. Except for the two nitrogen tests of the present contract,
~ this plot shows the expected trend, j.e., kct increases from unity as the
(hg = 0,)
lation parameter is associated with a smaller centrifugal force at the wall,
so that the film coolant tends to turn into the core flow and promote mixing.

term becomes Dositive. In this turn a positive value of the corre-

The two nitrogen film cooling points which are not consistent with the other
data represent very low injection velocity ratios (0.27 and 0.32), while
most of the other data are in the 0.8 - 1.3 velocity ratio range. This
apparent velocity ratio effect resulted in consideration of the momentum
turn parameter of Equation 51. Figure 37 shows the same kCt data as a
function of the momentum turn parameter. It is seen that the two low-
velocity nitrogen points are now consistent with the rest of the data. The
curve drawn on Figure 37 is the correlation recommended for the turn at

the start of convergence.

b. Throat Turn

In the present testing 18 of the 32 throat turn
entrainment fraction multipliers were negative, as were 16 of the 25 multipliers
in the second half of the conical section. Negative values in the cone and
throat turn were also observed with one test section in Reference (2). Two
explanations of these negative values can be postulated. The most likely
cause is that entrainment fractions were small and a fundamental accuracy
problem was encountered, since the entrainment fraction multiplier in this
region was usually inferred from a very small change in adiabatic wall temp-
erature. Converting this measurement to a change in effectiveness depends
on the accuracy of the kinetic energy recovery model. Converting the re-
sultant entrainment fraction tork/ko' depends on the acceleration mode].
Therefore, measurement and model errors are much more significant in the
throat region than in the cylindrical section or in the turn at the start

of convergence.

-52-




Iv Experimental Results and Data Correlation (cont.)

The second explanation of the negative entrainment
fractions concerns the mixing layer profile shape factor, 8. It is possible
that © changes due to turning effects (contrary to the present model assump-
tion) or that the basic shape factor correlation is in error. Data from
test 115, Row B were selected to study the effect of a change in throat
shape factor on the entrainment fraction multiplier (k/k ')8 10 between
the middle of the conical section and the throat. These data were selected
because of the large negative multiplier inferred with the present shape
factor correlation (-2.01). Two new throat shape factors were calculated,
using the experimental effectiveness and Equation 17, which correspond to
k/k ' values of 0. and 3.0 in the thermocouple 8-10 region. The 3.0 value
approx1mates the average value from the start of convergence to the middle

of the conical section. The results are listed below.

(k/kq')gi10 Wg/Me & 8
. Calculated Calculated Model (Figure 5)
-2.01 0.960 - 0.784
0 1.033 0.756 0.7785
3.0 1.142 0.717 0.772

It is noted that a very small change in shape
factor yields a non-negative entrainment fraction; such a change could be
the result of turning effects influencing the velocity and mixture ratio dis-
tributions in the mixing layer. An error in the basic shape factor correlation
cannot be the sole cause of negative entrainment fractions, since an extremely
steep slope is required for the 8 vs W /N correlation if negative values
are to be avoided. In Section IV.D. 1t is shown that acceptable performance
loss predictions for Test 115 are obtained for all three of the foregoing
@ values. This means that the performance loss data do not rule out the
possibility of decreased @ in the convergent region due to turning effects.

Correlation of the throat turn entrainment fraction

multipliers was investigated using the momentum turning parameter evaluated
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for the throat turn. It was of interest to see if a trend similar to the
convergent turn correlation could be observed with the positive values
and if the negative entrainment fraction values were grouped in a particular
region. The turn multipliers were normalized by the corresponding multipliers
in the conical section, so that in terms of the Figure 13 thermocouple
notation the resulting ratio is

(k/ko")g_19

k = ———————— Eq. 54

tt .
(k7kg');

Data from Reference (1) were not used since it was not possible to isolate
the conical section and the throat turn with sufficient accuracy. Figure
38 is a plot of ktt as a function of the corresponding momentum turn para-
meter. This correlation attempt was unsuccessful since the negative values
occur over a wide range of the momentum parameter and no trend is apparent
in the other data.

C. Boundary Layer Studies

A two dimensional finite-difference boundary
layer computer program was used in an attempt to define alternate parameters
for the correlation of turning effects. NASA Langley Research Center Program
02630, References 10 and 11, was selected for this purpose since the eddy
viscosity formulation was developed specifically for film cooling. Although
it was found that this program cannot predict observed turning phenomena,
an interesting comparison with the ALRC entrainment model in a cylindrical
flow region was obtained. Four cases were run with Program D2630, repre-
senting air film cooling with a heated air core flow in the Figure (1) test
section. The air/air system was chosen for analysis because the computer
program cannot consider two gases with unequal molecular weights. Two
film coolant temperatures were assumed in order to provide different injec-
tion density ratios (pc/pe). For each density ratio two problems were run:
one representing the cylindrical section plus the turn at the start of conver-
gence, and the other a cylindrical reference case with the same contour
length. The free stream velocity was constant in each problem in order to
isolate turning effects.
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Figure 39 compares the effectiveness predictions
of Program D2630 and the ALRC entrainment model for the cylindrical section.
An entrainment fraction multiplier of 1.6 was used for the latter based on
the heated nitrogen tests of Reference (1). Although the entrainment model
effectiveness curves in Figure 39 drop below unity sooner than the Program
D2630 curves, the effectiveness values at the end of the cylindrical section
are in reasonable agreement. Better agreement between the effectiveness
distributions could be obtained by increasina the initial free jet region
in the entrainment model and modifying the first part of the transition
regions. However, the amount of such a change which can be justified
by test data has not been investigated. Mixing layer concentration and
enthalpy profiles from Program D2630 indicate a much lower asymptotic shape
factor than used in the entrainment model, approximately 0.41 vs. 0.76.

Program D2630 predicted only a small effect of
turning on effectiveness. For both density ratios the effectiveness change
along the turn was about 5 percent less than for the corresponding straight
case, which indicates a similar reduction in entrainment fractions. The
two density ratios give momentum turning parameters of 0.038 and 0.070, for
which the turning correlation of Figure 37 indicates entrainment fraction
increases of 90 and 170 percent, respectively. In view of the significant
discrepancies between predicted and observed results, additional parametric
studies with Program D2630 were not run. It is apparent that the limitations
of boundary layer theory preclude the analysis of mixing phenomena in turns.

3. Convergent Section

In view of the problems encountered with the throat turn
data and in order to provide design guidelines extending to the throat, corre-
lation of the overall entrainment fraction multipliers for the convergent
section was investigated. Three correlation parameters were studied, each
evaluated for the turn at the start of convergence since this turn usually
dominates the convergent section entrainment. Entrainment fraction multi-
pliers were normalized by the asymptotic cylindrical section multiplier, so
the data are presented as
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(k/k ")e_
= 0 >-18 Eq. 55
(k/kg)a-s

k
convy,

Direct correlation of the convergent section multiplier (k/ko')s_]0 was also
investigated, but this approach was not as good.

The first correlation studied was based on the density
difference parameter (o, - o )/o and was motivated by the data from the

1 Since the coolant injection slot and chamber contour were

present contract.
fixed in the present testing, variations in the density turning parameter

used above and in References (1) and (2) are due primarily to the density
difference parameter. Figure 40 shows the convergent section data obtained
during the Combustion Effects tests as a function of this parameter. It
indicates the domination of the first turn decreases as the density difference
parameter becomes more negative (trend toward relatively heavy film coolant).
The nitrogen data are influenced significantly by large entrainment fractions
in the throat turn. Note that the hydrogen data with velocity ratios less

than unity are not in good agreement with the rest of the data.

Figure 41 adds the data of References (1) and (2) to
Figure 40, thereby adding a high entrainment region at positive density
differences which is dominated by the turn at start of convergence. Thus,
Figure 41 is consistent with our original hypothesis that positive density
differences (relatively light film coolant) increase mixing in the convergent
turn but decrease it in the throat turn, while negative differences (relatively
heavy film coolant) have the opposite effect. The convergent turn dominates
except at large negative density differences, where the increased mixing in
the throat turn overpowers the greatly decreased mixing in the former.

Figure 41 Tleads to a useful design rule for pc/pe. The
data indicate that the convergent section entrainment fraction multiplier
does not exceed the asymptotic cylindrical section value if pw/oe at the end
of the cylindrical section is in the following range:

0.75 <o /o, < 2.5
)

15 = 1/2 (oe *t o,
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No increased entrainment occurs in the convergent region if ow/pe at the
upstream end is in this range, in fact, the entrainment will be reduced.
Mixing effects will always move pw/pefrom pc/pe toward 1.0; therefore, for
film coolant injected upstream of the start of convergence, the desirable
pc/ne range is somewhat larger than 0.75-2.5 depending on the amount of
mixing which occurs between the injection point and the start of convergence.

Figure 42 shows the convergent section data as a function
of the density turning parameter, i.e., the density difference parameter
of Figure 41 is multiplied by the dimensionless mixing layer thickness S/R,
where S is the mixing layer thickness at the start of convergence. The
primary effect of this modification is to spread the high entrainment data
from References (1) and (2) into two groupings corresponding to different

radii of curvature.

The final correlation investigated was based on the
momentum turning parameter. This approach is shown in Figure 43, which
includes the convergent turn correlating line from Figure 37. It is seen
that most of the convergent section data with positive momentum turning para-
meters are slightly higher than the convergent turn line and most of the data
with negative parameters are somewhat lower, but the trends are the same.

This illustrates the statement made previously that the first turn dominates
the entrainment characteristics in the convergent section for almost all of
our tests. However, Figure 43 does not adequately correlate those nitrogen
tests in which the throat turn is important (half-shaded squares). There-
fore, Figure 43 shows two results for momentum turning parameters near zero,
depending on which turn is tending to control the convergent section. Evalua-
tion of the momentum turning parameter at the throat turn rather than the
start of convergence for the nitrogen tests does not help to solve this
problem. It can only be concluded that Figure 43 does not provide a general
correlation for heavy film coolants such as nitrogen. It does, however, provide
- a design correlation for hydrogen film cooled hydrogen-oxygen rocket engines.
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4. Design Recommendations

The key results from this section can be summarized in the
following design recommendation for the local entrainment fraction multiplier:

kikg' = k= ko ke kg Eq. 56
The parameter ko' is given by Equations 21 and 44, and the four individual
factors which comprise km are defined below.

(n kHp is the slot 1ip multiplier and accounts for
1ip wake effects. It is given in Figure 28 for
x < 15h. For 15h < x < 27h, kHp
unity and the multiplier from Figure28. For x > 27h,
k]ip is unity. (h = slot height). For tlip/h ratios
smaller than tested (1/3), kHp is probably sma]]gr
and likewise if t]ip/h is greater than 1/3, k]i

is the average of

p
is probably larger.

(2) kf accounts for uncertainties in the function f (uC/ue).

Three curves for kf, based on Figure 32, are plotted

on Figure 44 as a function of uc/ue. The kf parameter

is unity at uc/ue = 1.0 by definition. If a conserva-
tive analysis is desired, the maximum kf on Figure

44 is recommended. If a "best estimate" analysis for

rocket engines is desired, the dashed line on Figure

44, which is based on the Combustion Effects Program

rocket engine data, is recommended.

(3) k_ is the asymptotic cylindrical section multiplier
for a velocity ratio of unity. Measured values range
from 1.6-4.2(including the Ref. 1 and 2 data) and
the magnitude of k_ probably depends on turbulence
intensity. For most rocket applications k_ is probably
in the 3.0-4.2 range, the range measured on this pro-
gram (see k2_5/ko' for uC/ue = 1.0 on Figure 29). A

X = contour distance from injection point, h = slot height
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value of 3.0 represents the rocket firing data

obtained in the present contract for the core mixture
ratio range most likely to be encountered in film-
cooled hydrogen/oxygen applications. The kmkf products
measured during the Combustion Effects Program tests
are the kz_s/ko' values shown on Figures 29 and 31.

(4) kt accounts for turning effects in the convergent
section. In the turn at the start of convergence
the correlation of Figure 37 is recommended. For
an overall average in the convergent section,
multipliers can be determined from either of the
correlations shown on Figures 41, 42, and 43. For
a conservative analysis, all three of these corre-
lations should be evaluated and the highest kt should
be used.

D. CORRELATION OF PERFORMANCE LOSS RESULTS

Twelve hydrogen film cooled tests, five inert gas film cooled
tests, and five no-film-cooling tests were utilized to calibrate and verify
the performance loss model described in Section III.B. The hot fire test
performance and film cooling data are summarized in Table IV. The five
uncooled engine tests provided no-film-cooling performance data over the
overall mixture ratio range from 0.8 to 8. The purpose of these tests was
to establish the uncooled delivered performance for the premix triplet in-
jector tested. This characteristic curve is shown on Figure 45 along with
all the film cooled specific impulse data. Uncooled engine data for a very
similar injector created during Contract NAS 3-14379 was included in the
figure to aid in drawing the no-film-cooling performance curve.

The film cooled data plotted on Figure 45 indicate that cooled

engine performance is well characterized as a function of overall mixture
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ratio and the coolant injection velocity ratio, uc/ue. These data also
indicate that the film cooling specific impulse loss can be referenced
to an uncooled engine delivered impulse defined as a function of the overall

engine mixture ratio.

The influence of the film coolant percentage and the core flow
mixture ratio on the film coolant performance loss is shown on Figure 46.
This plot indicates that the film cooling loss is a function of the core
mixture ratio and the distribution of mass between the core streamtube and
the wall mixing.layer streamtube.

The primary form of the film coolant loss equation, which was
developed after assessing the data shown in Figures 45 and 46,is shown below.

AIspFCL N Isp uncooled - Isp cooled
@ 0/F overall @ 0/F overall
Isp cooled ) Ncore ) Isp core ¥ NML ) Isp ML
@ 0/F overall W @ O/F core W @ O/F ML

The exact formulation of the above equations including engine efficiency
factors and one dimensional equilibrium specific impulse reference values
is detailed in Section III.B. In correlating the film cooled engine data
with predictions of the performance loss model, the primary problem became

proper definition of the respective efficiency factors (qﬁ ). Figure
sp's
45 indicates that the uncooled engine specific impulse can be referenced to

the overall mixture ratio, thus:

Isp uncooled 7[Isp X Isp ODE
@ 0/F overall @ O/F overall

This definition was left unchanged for all the model correlation variations.
The 7& values calculated from the uncooled tests are listed on Table VII .
sp
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The final expression obtained for film cooling performance loss is stated

as Equation 38 in Section III.B. In finalizing the form of this equation, four
combinations of the definitions for the core and mixing layer efficiency
factors were investigated. Each is briefly explained below.

Case 1: ”Isp core - ”Isp ML T ”Isp
@ 0/F overall

This definition assumes the core and mixing layer efficiency
factors are equal to the uncooled enginé efficiency at the overall mixture
ratio. This formulation is lacking in that the efficiency factor is known
to be a function of mixture ratio and the core and mixing layers operate
at mixture ratios different from the overall.

Case 2: Vlsp core - T (0/F core) 715p ML
In this case, the core efficiency factor is defined from the
uncooled engine data at the core mixture ratio. The mixiny layer factor is

assumed equal to the core value.

Case 3: 7/Isp core - T (0/F core) 7Isp ML - f (0/Fy )

In this case, the core and mixing layer factors are defined at
their respective mixture ratios from the uncooled engine delivered impulse
versus overall mixture ratio curve. This form tends to underpredict mixing
layer performance because injector effects lowered uncooled engine perfor-
mance at low mixture ratios.

Case §: 7Isp core - [ (0/F core), 7{Isp ML 7lsp core

Since the mixing layer streamtube is wmade up of entrained core

qases (NE) and injected film coolant gas (NC), the 7]Isp ML can be defined by
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nass weightingjﬁsp core and assuming a coolant efficiency factor of 1.0.
The coolant efficiency factor of 1.0 assumes the film coolant gases expand
isentropically to the exit nozzle area ratio. This is reasonable since at
low mixture ratios (typical of the mixing layer) combustion related perfor-
mance losses are small.

Performance model predictions are compared with the measured
hydrogen film cooling losses on Figure 47. The most consistently accurate
correlation was abtained with the Case 4 correlation. The data agree with
this prediction within -10%/+425% at low AIS vg]ues (< 200 m/sec or 20 1bf-sec/
1bm) and within + 5 sec for the 200 to 450 m/sec (25 to 45 sec) AIS range.
This is considered a good correlation.

Figure 48 compares the selected correlation predictions to the
hydrogen, helium, and nitrogen film coolant data. The helium coolant
predictions are within the accuracy 6f the hydrogen film cooled tests while
the film coolant loss is underpredicted by approximately 40 percent for the
nitrogen cooled tests.

The underprediction of the nitrogen data has not been explained
and does not seem important for practical design cases. The wall temperature
data from the nitrogen tests indicate extremely rapid mixing in the convergent
region and this could indicate an extremely well mixed mixing layer with a
shape factor smaller than predicted by the entrainment model (See Figure 6).
This could be responsible for the discrepancy. It is also possible that
the Equation 38 formulation is simply not valid for all combinations of 02,
HZ’ and an inert gas. Some oxygen film cooled data may clarify this area since
oxygen is a heavy gas like nitrogen but not inert.

The sensitivity of the predicted film coolant loss to the shape
factor, 8, at the nozzle throat was also investigated. Figure 49 shows the
film cooling loss predicted for test 115 by making the following assumptions:
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(1)  The entrainment model shape factor correlation, 6
VS wE/wc (Figure 5), and the circumferential average
entrainment fractions calculated from the wall temp-
erature data. (This is the procedure used to generate
all of the predictions shown on Figures 47 and 48).

(2) Same as (1) except only the row B k data were used,

(3) k/k ' = @ between thermocouples 8 and 10 {the region
between the convergent cone midpoint and the nozzle
throat) and the corresponding & value calculated
from Equation 17 (See Section IV.C.2.b. for further
discussion).

(4) Same as (3)4except (k/ko')8-10 = 3.0 was assumed.

The Figure 49 plot shows that the predicted loss decreases as
the shape factor decreases. This occurs because a smaller shape factor
corresponds to a larger NE/W which means that the film coolant mixing
upstream of the throat is more complete. The most significant aspect of
the Figure 49 results is that even for the most extreme case assumed
(k/k ' = 3.0) the comparison between measured and predicted loss is acceptable
(w1th1n 10%). Consequently, the effect of flow turning on shape factor
theorized in Section II1.C.2.b. is plausible since it does not lead to
unreasonable performance loss predictions.

E. CORRELATION OF HEAT TRANSFER RESULTS

Experimental C values, defined by Equation 39, were obtained
experimentally with and w1thout film cooling effects during the Combustion
Effects on Film Cooling Program Tests. In the film cooling test data reduc-
tion procedure, hg values were calculated from the wall temperature transients
and used to calculate Taw from the measured wall temperatures. These hg
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values were also converted to the Cg values listed on Table v assuming

the reactive model and the average film reference temperature. Similar
results from a test firing performed without film cooling are listed on

Table VI. In the test without film cooling, heat fluxes were calculated

from copper heat sink chamber temperature transients assuming one-dimensional
radial conduction. The C_ values are based on the theoretical combustion
enthalpy and the heat flux and wall temperature indicated at the end of

the firing.

Equation 40 is compared to the Row B C values on Figure 50.
This data plot indicates that the Equation 40 correlation for injection
velocity effect on Cg predicts the trend of the data reasonably well.

The Row B C_ values determined without film cooling and
with film cooling at uc/ue = 1.0 are compared on Figure 51 (The copper
heat sink chamber thermocouples were located at the Row B circumferential
position). The chamber contours tested with and without film cooling
were nearly identical, therefore the data can be compared on an axial
distribution basis. Better agreement between the two sets of data is ob-
tained using the adiabatic wall reference temperature.
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v ANALYTICAL PREDICTIONS

A. Analysis Scope

This section contains analytical predictions of wall temperature
and performance loss vs. hydrogen film cooling flow rate which were obtained
for a proposed hydrogen/oxygen combustor design using the HOCOOL computer
program. The combustor design analyzed is regeneratively cooled with hydrogen
flowing in rectangular coolant passages. The design is defined on Figure
86 of Reference 12. Figure 52 shows the combustor attached to a tubular,
regeneratively cooled nozzle. The regenerative coolant for the combustor
enters the cooling channels downstream of the nozzle throat at an area ratio
of about eight and flows toward the main injector through the coolant channels
in one pass. Coolant passage geometry and the thrust chamber contour are
defined on Figure 53.

The nominal operating conditions for the combustor operating
without film cooling are listed below:

Propellants: 02/H2

Overall Mixture Ratio: 6.5

Chamber Pressure: 1310 N/cm2 (1900 psia)
Nominal Thrust: 88,964N (20,000 1bf)
Hydrogen Inlet Temperature: 50°K (90°R)

Hydrogen Inlet Pressure: 2896 N/cm2 (4200 psia)

Total Propellant Flow Rate: 20.4 kg/sec (45 1b/sec)

Regenerative Coolant Flow Rate:1.73 kg/sec (3.808 1b/sec)

Wall temperature and film cooling performance loss predictions
were determined for the following four cases:
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Case ] Case 2 Case 3 Case 4
NFC/Nf None .05,.1,.2,.3  .05,.1,.15,.2 .05,.1,.15,2
Film Coolant
Injection Temperature - (a) 50°K (90°R) 273°K 273°K
and

(b) 273°K (460°R)

Film Coolant
Injection Point - Main Injector End of Cylin- Halfway be-
drical Section tween main
injector and
throat

/(W )

wregen regen 1.0 (a) ]'0'(NFC/Nf) 1.0 1.0

Case 1
(b) 1.0

Overall mixture ratio, total propellant flow rate, and regen coolant inlet
pressure were assumed constant for the film cooled cases. The results for these
four cases are described in Sections V.C.

B. Method of Analysis

In each of the four cases considered, the hot-gas-side heat
transfer coefficient values, hg, were calculated from Equation 39 with
adiabatic wall reference temperature. The Cg values were determined so
that the no-film-cooling hg values were exactly the same as given on pages
14-16 of Reference 12. The coolant side coefficient, hL’ was calculated
from the Hess and Kunz correlation (Reference 13) adjusted for turning
effects with the equation given by Taylor (Reference 14). Some arbitrary
adjustment of the hL correlation was required as explained in the next section.

In the film cooling analyses, the film coolant was assumed
either injected at uc/ue = 0.8 or through a .0625 cm (.025 in.) thick annular
slot if the 0.8 velocity ratio corresponded to a slot height less than .0625 cm
(.025 in.). The velocity ratio and slot height data used in all the film
cooled cases are tabulated below.
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Injection Temp. = 273°K (460°R) Injection Temp. = 50°K (90°R)

% Hydrogen Core Momentum Momentum
Film Cooling O/F uc/ue h,cm Turn Parameter uc/ue h,cm Turn Parameter
(1) (2) a7

5 6.84 17 .0625 .0041 (.0006) .031 .0625 .005

10 7.22 .35 .0625 .0046 (.0005) .0654 .0625 .0072

15 7.65 .55 .0625 - (.0003) - - -

20 8.15 vy .0625 .0017 (-.0007) .14 . 0625 007

30 9.29 .8 .189 .0017 - .23 .0625 .0058

(1) Calculated at the start of convergence for film coolant injection at
the main injector.

(2) Calculated at the start of convergence assuming injection at the start
of convergence.

Entrainment fractions for the film cooling analyses were evaluated
using the Equation 56 approach:

ko= kmko' = (kpio ke k, k) ko'

The individual components of km were evaluated as follows:

klip-considered to be a function of axial position and velocity
ratio ranging from the maximum value given by Figure 28 at the injection
point to 1.0 at a distance of 0.69 cm (1.75 inches) downstream of the injection

point. For the range of uc/ue considered, maximum k]ip = 2.0.

kf k, - This product was considered a function of core O/F
and velocity ratio. It was assumed to be the same as the data plotted on
Figure 29. For the range of Uc/ue considered, kg k_ ranged from 2.0 (uc/ue =

0.8) to 3.0 (u_/u, < 0.3).

kt - The momentum turning parameter correlation for the entire

convergent region (Figure 43) was used. For injection into the cylindrical
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region, the momentum turning parameters were calculated using the results
of an entrainment model analysis for the cylindrical region. The resulting
kt factors determined from Figure 43 were: 1.05 for film coolant injection
at the main injector, 1.0 for film coolant injection at the start of the
turn or in the middle of the turn.

C. Analysis Results
1. Case 1: No Film Cooling

Axial distributions of maximum gas-side wall temperature
calculated assuming no film cooling are shown on Figure 54 along with the
distribution from Figure 79 of Reference 12. The initial wall temperatures
calculated (curve (1) of Figure 54) were significantly higher than the
Reference 12 values, shown as curve (3). The difference was most significant
in the two areas where the step change in channel width occurs. The maximum
wall temperature calculated in this initial analysis is 933°K (1220°F) while
a value of 745°K (880°F) is reported in Reference 12. A thorough investiga-
tion of this discrepancy was beyond the scope of this program; however it
is recommended that such an investigation be undertaken in the future. Since
the hg values used are identical to those given in Reference 12, the differ-
ences must be associated with the wall conduction model and the coolant side
heat transfer coefficient. It was decided to decrease the analysis differ-
ences by arbitrarily increasing the hL values by 30% in the high heat flux
regions of the combustor. This was done solely to allow an expedient evalua-
tion of the effect of film cooling on wall temperature. Curve (2) of Figure
54 is the wall temperature distribution obtained with the increased hL values.
This curve was used as a reference in evaluating the effect of film cooling
on wall temperature. The maximum temperature predicted with the increased
hL values is B828°K (1030°F).

2. Case 2: Hydrogen Film Coolant Injected at the
Main Injector

Two film coolant injection temperatures were considered:
50°K (90°R), the regenerative coolant inlet temperature, and 273°K (460°R),
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the regenerative coolant outlet temperature when no film coolant is injected.
For the 50°K injection case, the film coolant flow rate was subtracted from
the regenerative coolant flow rate. These two injection temperatures repre-
sent film cooling with hydrogen upstream of the coolant passages and down-
stream of the cooling passages. Curves (2a) and (2b) of Figure 55 show
maximum combustor wall temperature for these two injection conditions versus
the calculated film-cooling performance loss. The Figure 55 graph provides
the basis for two conclusions: (1) Maximum cooling effectiveness is obtained
by film cooling downstream of the cooling passages using the higher tempera-
ture film coolant, and (2) A significant reduction in wall temperature is
predicted for a relatiyvely small loss in performance. For example, 10%

of the hydrogen flow injected as film coolant at a temperature of 273°K (460°R)
is predicted to produce a 190°K (340°F) wall temperature decrease at the cost
of approximately 1% in overall specific impulse performance.

3. Case 3: Hydrogen Film Coolant Injected at the End of
the Cylindrical Region

Only the higher injection temperature was considered due
to the Case 2 findings. The maximum wall temperature in the film cooled
region tends to be slightly less than the Case 2 value as shown on Figure 55.
However, in this type of configuration one must also consider the wall temp-
erature upstream of the injection point. The two most likely ways of intro-
ducing film coolant at this point are: (1) with a sleeve through which the
film coolant is injected, and (2) from the OD at an axial position near the
injection point. Considerétion of a sleeve was beyond the scope of this
analysis. It was assumed that the film coolant is introduced from the 00,
the axial length of the injection device is negligible, and that the coolant
channel geometry downstream (coolant wise) of the injection point was unchanged.

The maximum combustor wall temperature corresponding to
the above assumptions is plotted on Figure 56. It was found that the
region upstream of the injection point is limiting for Case 3 if more than
10% fuel film cooling is used. At lower film cooling percentages, the wall
temperature versus performance loss curve is about the same as for Case 2b.
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Consequently, there appears to be no advantage in injecting the film coolant
at the end of the cylindrical section in the assumed manner. Consideration
of an axially oriented injection sleeve is recommended for future work.

4, Case 4: Hydrogen Film Coolant Injected Midway Between
The Main Injector and Throat

The results of this case are also plotted on Figures 55
and 56. The wall temperature versus AIS curve on Figure 55 for the film
cooled region yields the lowest wall temperatures for a given AIS; however,
Figure 56 shows that the region upstream of the injection point is limiting
even at the 5% film cooling condition. Consequently, the conclusion is the
same as for Case 3; there appears to be no advantage in injecting film coolant
at this point in the assumed manner, but consideration of a sleeve is rec-
ommended.
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12! CONCLUSIONS AND RECOMMENDATIONS
A.  CONCLUSIONS

1. The ALRC entrainment film cooling model, which relates film

cooling effectiveness to the amount of mainstream or core flow gases entrained
by and mixed with film coolant gases, can be used to predict adiabatic wall
temperature, film cooling performance loss, and gas-side heat transfer coeffi-
cient in gas film cooled rocket engines.

2. The 2-streamtube entrainment flow model has provided a valid
analytical basis for a film cooling performance loss prediction mode 1.
The performance loss prediction equation developed for hydrogen/oxygen
rocket engines is:

AIsp - .’{Isp X Isp ODE -77Isp core X Is.p ODE
FCL @ O/F overall @ O/F overall @ O/F core @ O/F core
W
= L ”ISp M. * Ispope X ML Eq. (38)
@ O/F ML W
where:

X
Pt
wn
=]
1

engine efficiency factor = f (0/F)

X
—
w
=)
\

7)15p x W W,
ML @ O/F core W W

The above equation can be expected to predict performance loss within + 25%
for loss values less than 196 meters/second (20 seconds), and within + 49
meters/second (+ 5 seconds) for loss values greater than 196 meters/second
(20 seconds).
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VI Conclusions and Recommendations (cont.)

3. The entrainment fraction, k, which relates entrained core gas
mass flux to the axial core gas mass flux, can be estimated from the following
equation for hydrogen/oxygen rocket engines;

k = k'

o' Krip kg ko Ky Eq. (56)

where:

k' = the entrainment fraction for plane unaccelerated flow
corrected for known acceleration effects (defined by
Equations 44 and 21) '

K, = a factor which accounts for wake turbulence effects
in the region immediately downstream of the injection
slot 1lip,

kf = a factor which accounts for velocity ratio effects
not predicted by the ko correlation, Equation 21.

k = the asymptotic cylindrical section multiplier
(ranges from 3.0 to 4.2 in the rocket engine data),

k = a factor which accounts for the effect of flow turning
The evaluation of each term of Equation 56 is described in Section IV.C.4.

4. No adverse entrainment due to turning effects occurred in
the convergent region of the thrust chamber tested when:

0.75 « pw/;)e < 25

where:
P = density of mixing layer gas adjacent to the nozzie
wall at the convergent region inlet
Pe = density of core gases

The above relationship is recommended as a design guideline for convergent
geometries similar to the one tested (Figure 13).
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VI Conclusions and Recommendations (cont.)

5. Combustion between the film coolant gas and the core gas has
no effect on entrainment fraction for the range of core gas mixture ratios
likely to be encountered in a hydrogen/oxygen rocket engine. This conclusion
is based on the agreement of data obtained with hydrogen and helium film coolants
at a core mixture ratso of eight (Figure 25). Either the fiIlm cvuolant combustion
did not influence mixing or else no film coolant combustion occurred.

6. A significant reduction in the wall temperature of the hydrogen/
oxygen combustor proposed in Reference 12 can be realized with a relatively
small film cooling performance loss. Analyses performed with the HOCOOL
computer program and the Section IV data correlations (Section V) indicate
that if 10% of the hydrogen is injected as film coolant at the main injector,
the maximum wall temperature will be reduced 190°K (340°F) and the performance
loss will be approximately 1% of the no-film-cooling performance.

B. Recommendations

1. The HOCOOL camputer program is recommended for future heat
transfer analyses of hydrogen/oxygen rocket engines. The HOCOOL computer
program consists of: (1) a version of the ALRC entrainment model prepared
specifically for hydrogen film cooled hydrogen/oxygen rocket engines, (2)
film cooling performance loss formulations, and (3) a generalized regenerative
cooling model.

2. Extension of the HOCOOL computer program to include the case
of liquid film cooling, and a series of test firings with Tiquid film coolants
to determine appropriate design inputs (as done on this program for gas film
coolants) is recommended for future work.

3. Additional testing with gas film coolants injected at velocity
ratio, uc/ue, values in the 0.3 to 1.0 range is recommended to determine the
“optimum” velocity ratio where the entrainment fraction, indicative of the
rate at which the film coolant and core gases mix, is a minimum.

4, In future film cooling tests, oxygen film cooling and a fuel rich
core gas mixture ratio are recommended as an extreme case for further evaluating:
(a) film coolant/core gas combustion effects, (b) performance loss with heavy
film coolants, and (c) turning effects with heavy film coolants.
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o
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o
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Film

TABLE 1

NOMINAL TEST CONDITIONS

Coolant uc/ue
H2 1.25
H2 1.0
N2 0.30
N2 0.25
H2 1.25
H 1.0

0.80
H2 1.25
H2 1.0
H2 0.80
H2 1.50
H2 1.25
H2 1.0
H2 0.80
He 1.25
He 1.0
He - 0.80
none -
none -
none -
none -
none -
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Test
Number Remarks
112 Film Cooled Chamber
113 (O/F)core =2
123
124
102 Film Cooled Chamber
103 (O/F)core =4
104,117
105 Film Cooled Chamber
106,115 (O/Flegpe = 6
107,114
108,109 FiTm Cooled Chamber
110 (O/F)core =8
M
116
118,121,
122
119
120
129 Uncooled Chamber,
125 No-Film-Cooling
Performance Tests
126
003,127
128



TABLE II
OVERALL TEST CONDITIONS

p Core Film u Ju
Test Number C, psia 0/F Coolant ¢’ e Remarks
2K86-12-003 322 5.39 None - Checkout test, copper heat
sink chamber, no-film-
cooling performance data
-102 303 3.89 H, 1.21
-103 286 3.82 H2 1.02
-104% 117 282,281  3.84, 4.00 W, .77 Data repeatability good
-105 293 5.85 H2 1.31
-106, -115 294,289 6,07, 5.93 H2 1.07 Data repeatability good
-107¥ .14 282,287  5.98, 6.27  H, .84 Test 107: invalid data
-108%¥ -109 310, 310 8.0, 7.97 H, 1.5) Test 108: invalid data
-110 308 7.7 H2 1.29
-1 298 7.99 H2 1.07
-116 285 7.60 H2 .84
-112 296 2.06 H2 1.28
-113 295 2.07 H2 1.0%
-ns¥ 332 7.75 H - Test 118: invalid data
-121% 332 7.75 He - Test 121: data system
malfunction
-122 332 7.75 He 1.25
-119 317 7.75 He 1.02
-120 307 7.46 He .82
-123 330 2. N Nz 0.32
-124 318 2.06 N2 0.27
-125¥% 312 2.14 None - Tests 125, 126, 127, 128:
. No film cooling perfor-
-126" 299 3.99 None - mance tests with copper
heat sink chamber
-127% 308 6.23 None -
-128 ¥ 314 8.09 None -
-129% 138 .782 None -

(*) No film cooling data reduction performed for this test.
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Z, éd)(in.)

4.39 (1.73)
5.66 (2.23)

6.93 (2.73)

10.67 (4.2)
11.94 (4.7)
14.38 (5.66)

(1)

NO-FILM-COOLING HEAT TRANSFER COEFFICIENT DATA
Test 003 Data
RThroat = 2.44 cm (.960 in)

TABLE vI

Copper Heat Sink Thrust Chamber

Cg Values Defined by Equation

Thermo- (C)
A/AT couple 9 Film
-3.36 A9 0.63
B9 0.65
-3.36 A8 0.69
B8 0.67
-3.36 A7 0.701
B7 0.69
-3.36 B5 0.64
-3.36 A4 0.58
-1.98 A3 0.64
B3 0.60

Z = Axial Distance From Film Coolant Injection

Point in the Film Cooled Chamber (Fig. 13)

Row

Ox Inlet
A

B

Circumferential Position
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16° 30
39°

Average Average
C C
( g)fi]m g)ow
0.64 0.93
0.68 0.99
0.695 1.01
0.64 .93
0.575 .835
0.62 .90




TABLE VII
Hoc00L77 Igp FACTORS

O/F 71

(02/H2) SP

.900*
.917*
.938*
.9607 **
.9665**
.9570 **
.9533**
.9525**
.9523**
.9522**
.9522 **
.9522*

N O O W~

_— 0 N B WY -

~N

*Indicates Extrapolated Values

** Values Calculated from the ODE and No-Film-Cooling Curves
on Figure 45
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TABLE VIII

COMPARISON OF ASYMPTOTIC ENTRAINMENT FRACTION MULTIPLIERS
(k/ko) FOR A VELOCITY RATIO OF UNITY

.15 cm .038 cm
Source Slot Height Slot Height

Reference (1) - Ambient 1.6-1.9
- Cold 2.2

Reference (2) - Hydrogen 1.3
- Nitrogen 3.7-4.0

Present Data 2.8-4.3 (Varies with core 0/F)
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C -Cb

8 = Shape Factor = T
e W
Core Gas O/F (C=C,)
Edge of Core Gas
Mixing Layer Stream tube
S b — — — —_ J— —_ _ — —_—
8 Near 1.0
Radial Distancg
From Chamber Asymptotic 8,
Wall

(3

8 Very Small

Chamber Wall

Mixture Ratio (02/H2)

Figure 6. Typical Mixture Ratio Profiles
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_ 1.5
f = (uc/ue) for u /u, <1.0

2.0
1.5
<
1.0
0.8
0.6
0.4
0.3
Temperature Data
O Air
0.2 < Helium
0.15
Concentration Data
J Air
0.1 o
A Argon
08 O Arcton 12

0.2 0.5 1.0 2.0 5.0 10.
uc/ue, Velocity Ratio

Figure 7. Velocity Ratio Correlating Function
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1.

QPTION 1:

FILM OR REGENERATIVE COOLING OPTION

(a)

Reqeneratively
Cooled Chamber

{b) Film Cooled
Chamber r-.
Film
Covlant
— M>1
(c) Film Cooled /f\\
Nozzle Film
.Coolant
OPTION 2: COMBINED COOLING OPTION
. Film
(a) Film and Regen-
eratively Cooled Coolant
Chamber L
-
Regen
Cooled Regen + Film Cocled
- - - — __"
— M>1
(b} Film and Regen- /R
eratively Cooled Film
Nozzle Coolant
OPTION 3: SEGMENTED COOLING OPTION
(a) Regenerative
Cooling Upstream Film
Regen Cooled
Cooled
(b) Combined Cooling
Upstream
Regen + Film Film Cooled
Cooled
{c) Film Cooling Up- r“

stream

L Film Cooled

(Case 1) Film + Regan
Cooled
(Case 2}

WM —

B —

—

No Film Cooling
Subsonic and/or Supersonic Regions
Coolant Flow Path Optional

No Regenerative Cooling
Subsonic Film Coolant Injection
Supersonic Region Optional

No Regenerative Cooling
Supersonic Film Coolant Injection Into
Supersonic Region

Film Coolant Injection in Subsonic or Supersonic
Region.
Regenerative Cooling Upstream of Injection
Point, Regen + Film Cooling Downstream.
Regen Section can be a Film Coolant Injecting
Sleeve; However, two Analysis Cases Required:
(a) Case 1 - Option la (Sleeve)
(b) Case 2 - Option 2a (Regen + Film)
Regen Coolant Flow Path Optiona)l

* Supersonic Injection Into Subsonic Region.

Regen Coolant Flow Path Optional

Regenerative Cooling Upstream of lnjection
Point, Film Cooling Downstream.

Subsonic or Supersonic Injection

Regen Cooled Section can be a Film Coolant
Injecting Sieeve (Input TSIN = 0)

Similar to Option 3a except Film Coolant
Injected in Regen Cooled Section.

Subsonic or Supersonic Injection
Two Analysis Cases Required:
{(a) Case 1 - Option 1b Analysis for
Entire Chamber.
{b) Case 2 - Option 2b Analysis for Film
+ Regen Cooled Region (ISOL = O,
Taw Input)

Figure 9. HOCOOL Heat Transfer Analysis Options
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Figure 11. Film Cooling Test Assembly Mounted on Test Stand
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ODL Computer Program Results
Pc = 300 psia
Ambient Temperature Propellants
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Figure 14.

Mixture Ratio, OZ/HZ

02/H2 Core Gas Composition
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Figure 15. Steady State Wall Temperatures Measured with
Core Gas O/F = 4
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Figure 17.

Steady State Wall Temperature Measured with

Core Gas O/F = 8
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Figure 27. Effect of Loss Coefficient on Temperature Correction
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Figure 34. Comparison of Entrainment Fraction Ratios
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Vacuum Specific Impulse, lbf-secllbm
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Figure 45. Vacuum Specific Impulse Data
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Film Cooling Performance Loss, tI FC(]bf—sec/lbm)
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Predicted AIs, FCL (1bf-sec/1bm)
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Figure 48. Comparison of Predicted and Measured Film Cooling
Performance Loss Values
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Figure 55. HOCOOL Predictions of Maximum Wall Temperature
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English Letters

=

Isp Mt

Isp core

AIsp
FCL
Isp uncooled

I
I

sp cooled

sp ODE
L 9

sp losses

APPENDIX A
NOME NCLATURE

Mass fraction

Heat transfer correlation coefficient

Specific heat

Velocity ratio correlating function (Figure 7)
velocity decay function (Equation 41)

Mass flux

Slot height

Static enthalpy

External or ambient-side heat transfer coefficient
Gas-side heat transfer coefficient

Total enthalpy

Adiabatic wall enthalpy

Specific impulse of mixing layer stream tube

Specific impulse of core gas stream tube

Film cooling specific impulse loss

Uncooled engine delivered specific impulse
Cooled engine delivered specific impulse
One dimensional equilibrium specific impulse

Summation of real engine performance losses
excluding film cooling

Entrainment fraction

Entrainment fraction for plane, unaccelerated flow with
continuous plot injection, defined by Equation 21

Defined by Equation 44

Plane, unaccelerated flow entrainment fraction multiplier
(Defined by Equations 48 and 56)

Entrainment fraction multiplier due to flow turning

A-1




Nomenclature (cont.)

English Letters

k]ip Lip wake factor
kf Velocity ratio factor
k. Asymptotic cylindrical section multiplier
MW Molecular weight
m Acceleration exponent
O/F Mixture ratio, 02/H2
Pr Prandtl number
Q/A Nozzle wall heat flux
r Local chamber or nozzle radius
R Radius of curvature of nozzle wall
Rec ‘Coolant Reynolds number based on sliot height, Pe Ue h/uC
ReD Nozzle Reynolds number in Equation 39
St Stanton Number in Equation 39
s Mixing layer thickness
tlip Stot Tip thickness
T Static temperature
T0 Total temperature
Taw Adiabatic wall temperature
Wg Gas-side nozzle wall temperature
u Effective mixing layer velocity (Equation 7)
u Axial velocity
uc/ue Fi!m coolant to core gas velocity ratio at the injection
point
v (NE/NC) Velocity mixing function (Equation 7A)
W Total flow rate
wML Mixing layer flow rate at the throat
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Nomenclature (cont.)

English Letters

W Film coolant flow rate

c
wcore Core gas streamtube flow rate at the throat

NE tntrained flow rate

X Contour distance from the film coolant injection point
X Contour integral defined by Eq. (28)

y Value of X required to satisfy Eq. (27)

Greek Letters

a Angle between the nozzle centerline and the wall tangent
Y Mass fraction of the injected film coolant
n Film cooling effectiveness, defined by Eq. (1)
”Isp Performance efficiency factor, ISp uncoo]ed/Isp ODE
6 Enthalpy and mass fraction profile shape factor
for the mixing layer
i Viscosity
£ Mixing layer area fraction
p Density
pc/pe Film cooTant to core gas density ratio at the injection point
] Ratio of 2D flow mass velocity to 1D flow mass velocity

Subscripts

@ O/F overall Evaluated at engine overall mixture ratio
@ 0/F core Evaluated at core mixture ratio

@ O/FML Evaluated at mixing layer mixture ratio
aw Adiabatic wall conditien

b Bulk value for the mixing layer

C Coolant at the injection point

A-3




Subscripts

Core

Nomenclature (cont.)

Evaluated for core mass at nozzle throat plane
Freestream or core

Average film temperature

Evaluated for mixing layer mass at nozzle throat plane
Film coolant injection location (except Ho’ To, ko)

At the edge of the viscous sublayer

At the chamber wall




APPENDIX B
TABULATED FILM COOLING TEST DATA

The following pages contain output from the data reduction version
of the ALRC entrainment film cooling model. Pertinent data parameters
are listed for each of the film cooling tests. Most of the parameters
listed are defined in Appendix D and Reference 5; however there are a
few exceptions and they are defined below.

Wall Temp. = Adiabatic Wall Temperature

Temp. = Measured Wall Temperature

Core MR = Mixture Ratio of Core Gases

TFc = Film Coolant Injection Temperature
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APPENDIX C
TEST COMPONENTS AND COLD FLOW DATA

| FILM COOLING TEST ASSEMBLY

The film cooling test assembly is shown schematically on Figure 1
and as an assembly drawing in Figure C1. The following test components
were designed and fabricated in this program: film cooled chamber, film
coolant injector, and water cooled cylinder. These components are described
in Sections II, III, and IV. Section 1II also contains cold flow data for
the film coolant injector. Core injector cold flow data are presented in
Section V.

I FILM COOLED CHAMBER

The film cooled chamber design is shown on Figure C2. This chamber
was designed to be assembled with the core injector residual from the APS
Program and the film coolant injector. The chamber was designed with variable
cylinder length so as to provide flexibility during testing. The 4.0 inch
cylindrical length design was fabricated and tested. Two thermocouples for
measuring film coolant injection temperature were installed on the chamber
ID as shown on Figure C3.

Stainless steel was chosen as the wall material for the film cooled
thrust chamber. Hoop stress requirements dictated the .045 inch minimum
wall thickness indicated on Figure C2. Thinner walls would be allowable
for higher strength steels; however, wall conduction analyses indicated no
advantage of thinner walls whereas the fabrication would be significantly
more difficult.

Chamber wall thickness is important from the standpoint of data
reduction because measured wall temperatures differ from the desired adiabatic
wall temperatures due to external heat losses and axial wall conduction. A
two-dimensional conduction analysis of the chamber wall in the cylindrical
section was run using the ANSYS computer program in order to evaluate the

C-1



I1 Film Cooled Chamber (cont.)

effect of wall thickness on axial conduction error and the magnitude of

(Taw - Twa]] measured). An injection velocity ratio of 0.75 with a core
mixture ratio of 8.0 was selected to maximize the axial temperature gradient.
Each wall thickness case was run two ways; with the external surface insulated,
and with a heat loss coefficient of 0.5 x 10'4 Btu/inz-sec-°F. This is a
typical loss coefficient measured during previous testing. The resultant
differences between the adiabatic wall temperature (976°F in this case)

and the external surface temperature at the end of the cylindrical section

were as follows:

Taw'Tmeasured’ F
(2)
Error with
(1) External Losses
Wall Axial Conduction and Axial External Heat
Thickness, in. Error Conduction Loss Error

0 0 25 25

.025 3 34.5 31.5

.050 6 44 38

(1) Perfectly insulated wall assumed
(2) Includes axial conduction and external loss effects

The insulated wall results show that the axial conduction effects are small
since only a 6°F error is introduced for a .050 inch wall thickness. The
results obtained assuming external losses show that the external loss error
is a function of wall thickness. Since the axial effects were so small,
they were neglected and the external loss error was calculated using a one-

dimensional model.




ITI FILM COOLANT INJECTOR

The film coolant injector design is shown on Figure C4. This design
was based upon the film coolant injectors fabricated and tested on the
two previous NASA Lewis film cooling programs conducted at ALRC. A hydraulics
analysis of the design yielded the predicted pressure drop characteristic
shown on Figure C5, and indicated flow circumferential uniformity within +

o/
0.

Heat transfer analyses of the film coolant injector were performed
to obtain estimates of (1) the temperature of the injector-lip which separates
the film coolant and core gases upstream of the injection point, (2) the gas-
side temperature of the injector forward end flange, and (3) the film coolant
bulk temperature rise. The heat transfer analysis results are summarized

below.
LIP TEMPERATURE AND BULK TEMPERATURE RISE
Core o ; Fl}m Coolgpt

Film Coolant 0/F ¢’ e lip, °F Bulk’

H2 2 0.75 945 -

H2 4 0.75 1250 44

H2 6 1.25 1045 -

H2 6 0.75 1290 -

H2 8 0.75 1270 48

He 8 0.75 1440 60

N2 2 0.3 1615 -

N2 2 0.2 1850 70

Maximum Forward Flange Temperature = 1190°F
(for maximum thickness = .085")

Two cold flow tests were conducted to measure orifice-to-orifice mass
flow distribution of the gaseous film coolant injector. Gaseous nitrogen
was flowed to ambient back-pressure at flowrates that established Mach
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111 Film Coolant Injector (cont.)

number similarity between the cold flows and hydrogen-cooled hot fire tests
at 300 psia chamber pressure. A photograph of the test setup is shown as
Figure C6. The film coolant ring was bolted to a steel mounting assembly.

A lathe-type spindle was mounted on the same assembly in a manner resulting
in centerline alignment between the film coolant ring and the spindle. A
total pressure probe (i.e., pitot tube) was attached to the spindle allowing
circumferential and radial indexing of the probe. The probe measured the dy-
namic head at the centerline of all 60 orifices during a test. The orifice
numbering system used in presentation of the flow test results is shown on
Figure C7.

Figure C8 shows the flow distributions calculated for the two film
coolant ring cold flow tests. The results of the two tests both indicate
+ 4 percent orifice-to-orifice coolant flowrate distribution. These results
agree well with the analytical prediction of + 5 percent distribution allowing
for manufacturing tolerances. Measured flowrates and pressure drops for each
test are all indicated on the figure. Flow stagnation points would be ex-
pected to occur 90° from the ring inlets and the high orifice flows at 90° and
270° in the plots indicate this effect.

On Figure C5, the predicted coolant ring pressure-drop characteristic
is compared with the measured data. The nitrogen flowrate was converted to an
equivalent hydrogen flow rate with the following equation (based on Mach number
similarity).

1/2

(N)N = (N)H2 (Pamb/Pc) (MW of NZ/MH of H2)

2

The agreement between measured and predicted AP is satisfactory and probably
within the accuracy of the manifold mercury manometer measurement.

The effect of ribs on orifice velocity distribution was investigated

in a short cold flow test conducted with a single orifice (Orifice #1). Total
pressure was measured at the orifice centerline and over the orifice rib at
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111 Film Coolant Injector (cont.)

two axial planes. The first axial station was at the face plane and the
second one-half inch downstream. The results are summarized on Figure C9.

At the injection point the measured rib velocity was significantly less

than the orifice centerline velocity, as would be expected. At one-half

inch from the injection point the rib velocity is 90 percent of the center-
line value, indicatirg rapid diffusion. The data indicates rib effects

could be expected to be minimal at axial distances greater than approximately
one inch. This test was conducted with unconstrained free jet orifice flow.
The expected effect of a chamber wall would be more rapid attainment of a
uniform velocity profile.

IV REGENERATIVELY COOLED CYLINDER

The design for the water cooled cylinder which separated the propellant
injector and the filim coolant injector is shown on Figure C10. Cooling of
the channel walls was accomplished with water flowing in 60 milled channels
which are nominally 3/32 inch wide by .075 inch deep. The design water cooling
conditions were: 10 1b/sec flow rate at 500 psia total inlet manifold pressure.
A regenerative cooling analysis produced the axial distributions of coolant
bulk temperature, gas-side wall temperature, gas-side heat flux, and burnout
safety factor which are plotted on Figure C11. The gas-side heat flux data
of Reference 4 were utilized in performing the analysis.

v INJECTOR CORE DISTRIBUTION TEST

A GN2 cold flow distribution test was also conducted for each propellant
circuit of the premix triplet injector. The flow of each element in the outer
injector row (36 out of 72 total elements) was sampled with a plastic tube
connected to a float type rotameter. The oxidizer and fuel circuits were
both flowed at GN2 flowrates of 0.12 1bm/sec, corresponding to oxygen and
hydrogen hot fire flowrates of 2.67 and .67 1bm/sec, respectively. These flow-
rates are consistent with a nominal operating condition of 4:1 mixture ratio
and 300 psia chamber pressure. '
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v Injector Core Distribution Test (cont.)

The two test results are summarized on Figure C12. The element
numbering system utilized is indicated on the figure. Both circuits have
elements that deviate up to 8 percent from a nominal single element flow-
rate. At a total injection mixture ratio of 4:1 the element-to-element
mixture ratio varies from 3.6 to 4.4:1. This corresponds to a + 10%
range in outer row mixture ratio for all core mixture ratios.

Vi COPPER HEAT SINK THRUST CHAMBER

The copper heat sink thrust chamber used in the no-film-cooling tests
consisted of the heat sink chamber and L* section shown on Figure C-13. These
components were residual from Contract NAS 3-14379 (Reference 4).
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Pressure Drop, Psia
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N2 Cold Flow Tests
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Figure C5. Pressure Drop Across the Film Coolant Injector
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Figure C6. Fi
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Figure C7. Film Coolant Injector Orifice Nomenclature
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Figure C9. Comparison of Rib and Orifice Centerline Velocity Measurements
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