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thermal detectors, their spectral response can be made nearly flat over broad

spectral regions by the use of appropriate black surface coatings.

A series of comercia.11y available pyroelectric detectors made from PVF2

ILTO, SBN, and TGS have been evaluated in terms of responsivity and detectivity

(D*) as a function of frequency.	 It was found that the performance of the

detectors evaluated was very different, depending upou the manufacturer of the

detector, and this dependency was primarily related to the thickness of the

various detectors. 	 The best detectors of each material were comparable in

performance at frequencies around 10 Hz but differed radically at frequencies

above 100 Hz.

INTRODUCTION

Currently available pyroelectric detectors F-re capable of room temperature

8operation and have detectivities of 4 x 10	 cm H;./w and spectral sensitivities

from the visible to greater than 100 M. 	 Because pyroelectrics are thermal

detectors, their spectral response can be made nearly flat over broad spectral
L

regions by the use of appropriate black surface coatings.

NASA's commitment to air pollution monitoring and thermal mapping of the

earth requires photodetection in the 3 W to 20 W spectral region. 	 If pyro-

electric detectors can be used in these applications in place of cooled photo-

conduCtive and photovoltaic detectors, a large savings in volume, weight, and

power can be realized.



The purpose of this report is to give to potential users of pyroelectric

detectors a brief introduction to the operation and characteristics of pyro-

electric detectors and to present performance data on pyroelectric detectors

which are currently available on the market. All of the detectors evaluated

for this report were purchased prior to March 1976.

TECHNICAL BACKGROUND

A pyroelectric detector is a thermal-to-electrical transducer. By

absorbing incident light and converting it to heat, the pyroelectric detector

becomes an optical-to-electrical transducer.

Pyroelectric materials are insulators with a spontaneous polarization

that changes with temperature. A detector is made from the material by cutting

the material into wafers with the plane of the wafer normal to the polar axis

and making electrical contact to the flat sides. The detector is essentially

a capacitor with the pyroelectric material between the plates.

Radiation incident upon the detector is absorbed by the detector causing

an increase in temperature. The change in temperature causes a change in the

polarization of the pyroelectric material and, thereby, a change in the amount

of charge attracted to its surface. The magnitude of the change of polarization

per unit change of temperature is called the pyroelectric coefficient, p. If

the incident radiation is chopped, the detector becomes an AC generator, and

the charge flowing to and from the surface via an external circuit can be

measured.

The impedance of the pyroelectric detectors at normal operating frequencies

is very high (1013 ohm), and for practical applications, a field effect tran-

sistor (FED) must be used to lower the impedance. Typical circuits are shown
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in figure 1. Since practical use of the pyroelectric requires the FET, mean-

ingi'al performance data must include the -performance of the FET. For the

remainder of this paper, the word "detector" shall refer to the pyroelectric

chip and any integrated impedance-converting circuit. The pyroelectric chip

with its two surface contacts will be referred to as "detector element."

There are many pyroelectric materials from which detectors may be made.

Only four of these, however, have survived the competition and made it to the

marketplace. These are:

(1)Triglycine sulfate (TGS) --- Triglycine sulfate was the material

used in the first marketed detector. It is difficult to handle and is bygro-

scopic, but produces detectors with the highest detectivity.

If the triglycine sulfate is made with deuterium atoms in place

of the hydrogen atoms, the resulting material, called deuteratea triglycine

sulfate (D TGS), has the advantage of a higher Curie temperature than TGS.

(2)Lithium tantalate, (LTO) --- Lithi= tantalite is inexpensive,

easy to handle, nonhygroscopic, but not as sensitive as TGS.

(3) Strontium barium niobate (SBN) --- Strontium barium niobate is

nonhygroscopic and is more difficult to process than LTO; detectivity values

just below TGS are possible.

(4)Polyvin;;lidene fluoride (PVF2 ) --- rolyvinylidene fluoride is

flexible plastic film, nonhygroscopic. It is not competitive fo- small area

detectors, but is the best available material for large area (-1 cm dia.)

detectors.

3
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EXPEPIMMUAL

Detectors from nine different manufacturers were evaluated. The detectors 	 4

with their pertinent design information are listed in Table 1. FET impedance-

converter circuits were added to all detectors not so supplied by the manufac-

turer. All detectors except the PVF 2 were operated in the voltage mode

(fig. la ). The ?FV2 detector was operated in the current mode (fig. lb ) being

supplied this way with the circuit within the detector housing.

The signal voltage and noise voltage of each detector was measured as a

function of chopping frequency over the frequency range of 2 Hz to 500 Hz.

From these data, responsivities (R) and detectivities (D e ) were calculated.

Equipment.- A schematic of the experimental setup is shown in figure 2.

The radiation source was a 500 0 K, conical cavity, black-body. Tempera-

ture of the black body was monitored with a thermocouple which was connected

to an ice-point reference. The radiation was chopped with a 23 cm diameter

wheel. Typical source aperture was 0.300 em 2 ; typical source-to-detector

distance was 15 cm; and typical chopper form factor (ref. 1) was 0.422, giving

a typical flux density of 6.3 x 10 5 watt/cm. 2.

Signals from the detector were amplified by a Quan Tech 206C preamp and

measured with a Quan Tech 304A wave analyzer set to a 1 IIz bandwidth.

Detector noise was measured with the Quan Tech 304A set to 1 Hz bandwidth

and a 100 second integration time. The chopper motor was stopped, and the

radiation was blocked during the noise measurements.

The equations used are listed below.

ff xaxT4XA
Ii =	 s

nd2

4



R=HA
d

D*=SNP

r H 
VV

where:

H = irradiance, watt cm-2

ff = chopper form factor (ref. 1)

Q = Stefan-Boltzmann Constant, 5.67 x 107"" W cm 2

T = black-body temperature, °K

As = source arirture, cm 

d = source-to-detector distance, cm

R = responsivity, volt/watt

S = signa;.l voltage, volt

Ad = active area of detector, cm2

D* = detectivity, cm Hz 1/2 watt-1

N = noise voltage, volt

Af = amplifier bandwidth, Hz

5
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RMULTS

Figure 3 is a plot of D * versus frequency of one each of the nine

different brands of detectors. Where more than one detector from a given

manufacturer was tested, a curve representative of the mean performance was

chosen. Figure 3a presents curves of the best performing detectors of each

material; LTO, DTGS, PVF and SBN. It should be noted that the PVF
2'	 2 was

operated with a built-in operational amplifier in the current mode.

Figure 3b presents D* versus frequency of all of the LTO detectors. The

curves in 3a and 3b are the same as in figure 3; they are shown separately to

aid in comparison. Fijrirze 4 presents the noise voltage versus frequency of

one d-ttector of each material.

DISCUSSION

On figure 3 several observations can be made: the performance of all

detect ,)rs peak at 20 Hz or below. D* values are within one order of magnitude

at 10 Hz and spread to 2.5 orders of magnitude at 500 Hz. There is a larger

difference between different manufacturers using the same material (LTO) than

between detectors of different material.

In fiC;ure 3b, the large differences in performance of different models

of LTO detectors can be seen. The active areas of the detector chips range

from 0.00785 cm 
2 
to 0.0314 cm 

2 
but show no correlation with performance.

Three of the detectors have windows and two do not, but no effect is noticed

here. The use of windows decreases the responsivity of the detector by

reducing the amc-,unt of energy reaching the detector chip, however the windows

decrease noise by reducing airborne acoustics, by reducing thermal fluctuations

due to air currents, and protecting by the detector from moisture and dirt.

6
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The differences in performance are taken to be due to wafer thickness,

wafer mounting, and choice of FET's; with thickness being the primary factor.

The thicknesses of the lithium tantalite chips of figure 3b are:

#5 - 12.5 um, #3 - 8.5 Wa, N2 - 20 Wu, Nk - 25 Pm, Nl - TO Um.

The noise voltage versus frequency curves for one detector of each

material are shown in figure k. Again, it must be noted that the PVF2

detector is operated in the current mode. The noise of the PVF 2 detector is

dominated by the noise contribution from the amplifier current noise. The

curve should not be used to compare PVF2 to other materials but is given as

an example of noise from a current-mode-operated detector.

Is
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PVF2 A. D. Little B100/off .785 10 KRS-5

DIGS Barnes Engineering T-300 .20 10 KRS-5

SBNM1 Harshav Chemical PV3 .04 250 None

SBN#2 Honeywell LK191 .0026 20 Ge (coated)

LTONl Eltec 404 .0314 70 Ge

LTON2 Laser Presision kT-2210 .00784 20 IR-II

LTOM3 Martin-Marietta Laboratory .01 8.5 None
device

LT0#4 Molectron P1-71 .00785 25 None

Lm0 5 Servo 1401 .01 12.5 KRS-5
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Fifrure 1. Detector circuit., used for determination of D*
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