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FOREWORD

This report summarizes the research and development
performed under Contract NASl 13573 between October, 1974
and: March 1977 ‘ The work was- sponsored by the Natlonal
Aeronautics and Space Administration, Langley Research
Center, Hampton, Virginia. The technical monitors for the
program were W. S. Lassiter and D. E. Wornom. The object of
this program wés to develop an aircraft borne sensor system
that could traverse the effluent cloud from a rocket exhaust
and provide in-situ measurements of the Hydrochloric Acid
and Carbon Monoxide gases in the cloud.

Yy *-’HT,'

The authors of this report are 1ndebted to -
E. A. Meckstroth, and G. K. Houghton for their valuable

contributions in the design, fabrication and testing of the
system. '
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SUMMARY

A system for measuring air pollutants in-situ using an
aircraft was designed, fabricated and tested. The system
is based upon a technique called Gas Filter Correlation
(GFC) which provides for high sensitivity and specificity
in the presence of interfering species. This particular
system was designed for measuring hydrochloric acid and

carbon monoxide gases emitted from rocket exhaust effluents.

The GFC téchnique is based upon Non-Dispersive-Infra-Red
spectroscopy. HC1l and CO gases are ‘an integral part of
the sensor system and provide a selective filter for their
detection.

The system was designed so that the sensor portion was
located inside the aircraft cabin and a uniquely designed
retroreflector was located on the'wiﬁg tip. ' Thus, as the
aircraft passes through a pollutlon cloud inteérated v

measurements. of the concentratlons are glven

Final performance checks of the system gave sens1t1v1t1es
of less than  two parts per m11110n w1th a one half second

response time.

The system was test flown several times and proved to be
extremely stable (in signal) over a wide range of temperatures
in the aircraft. A data flight provided information on the
concentrations of HC1l and CO emitted from avTitag,III missile.

Following the data flight the instrument was returned to SAI
for further evaluation.
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1.0 INTRODUCTION

The exhaust from solid rocket motors contains large
quantities of HC1l and CO which are of concern because of
potential reactivity. HC1l gas is toxic above about 5 ppm; in
addition, it combines with water, which is present in the
exhaust, to form the corrosive HC1l acid. It is important to
monitor the interaction of these gases with the atmosphefe
dfter release by the solid rocket motor. Certain theoretical
models exist, but these must be confirmed with measured data.
Accurate three-dimensional real-time mapping of the exhaust
cloud as it mixes with the atmosphere is needed, and is best
accomplished with an optical instrument on an aircraft which
can fly through the exhaust cloud.

The use of optical techniques for real-time monitoring
is attractive since they do not require a sampling system that
degrades accuracy and affects response times. The principle
of optiéal measurements is based upon -the fact that most
gases absorb energy at specific wavelengths. Thus, optical
measurement techniques are only limited in response time due to
the response characteristics of the detector and the data

integration time.

In recent years a number of optical techniques have
been developed for detecting gaseous pollutants. These include
infrared absorption spectrometers, Raman scattering systems,
fluorescent systems, laser absorption and differential

absorption systems, and optical correlation techniques.

Studies (1, 2) have been conductéd:to evaluate all
optical techniques for detection of air pollutants. It was
found that the techniques best suited are those that utilize the
spectral fine-structure of pollutants with a presélected in-
strument transfer function to enhance specificity. As shown in
the next section, specificity is a strong requirement. for

optical measurements.



Among the various optical techniques is one called

Gas Filter Correlation (GFC) which has been used for a number

(

Infrared (NDIR) technique that makes use of the particular

of prototype systems. 3-6) It is based upon the Non-Dispersive-

gas to be detected to provide specificity.

The first detailed deséription of an NDIR instrument
was given by Luft(7), although elements of the techniques were
mentioned already by Pfund(s)'in 1939. Two different light-
sources, two cells and one membrane condenser detéctor!_
were used. The detector was sensitized with the gas of interest.
This method, using a sensitized detector and the gas sample in

one light beam, was later classified as 'positive filtering".

A different arrangement by Schmick(g) and Wright and

Herscher(lo)

used one light source, but two cells and two
detectors, which were the two opposed arms of an ac excited
bolometer. 1In this case, the selectivity is provided by
balancing the two cells, and the detectors are non-selective.
The gas sample is introduced into a cell common to both light

beams. This was latér classified as a '""'megative filtering".

GFC is based upon absorption or emission of electro-
magnetic energy by the specific pollutant to be monitored.. As
such, GFC can operate in the UV, visible, or IR regions of the
spectrum. The IR may-be preferable because all-pollutants of
interest have rotational lines that absorb in the IR; also
scattering effects are more pronounced in the UV and visible.

On the other hand, the UV-visible may be preferable if extreme::
spectral interferences occur in the IR; also, more sensitive
photomultiplier detectors are available and pollutant absorptivi-

ties are greater.

Conventional spectroscopic instruments depend upon
finding a single absorption line of a particular species. GFC
makes use of the contribution of all absorption lines of a band

system of a particular species.



The GFC signal is a function both of the concentra-
tion of the pollutant species in the test sample, and of the
degree of correlation between its spectrum and the spectrum
of the pollutant of interest. When these species are the same,

the correlation coefficient is unity.

Specificity is obtained because of random correlation
between spectra of the particular species and interfering
species; the principle of random correlation has been estab-
lished for most pollutant species and interfering species
occurring naturally and in polluted atmospheres. In addition,

a ratioing technique may be employed that minimizes effects of
changes in source intensity, background radiation, and continuum

absorption due to complex molecules, aerosols, or water vapor.

The GFC technique can be applied to both double and
single ended systems. For the double ended system, an active
infrared source and GFC receiver are used to measure an inter--
vening pollutant; in this case, the detection principle is
based upon absorption spectroscopy. For the single ended
system, only the GFC receiver is used to remotely detect a
pollutant; in this case, the detection principle is based upon
either emission or absorption spectroscopy depending upon the
relative temperatures of the pollutant to be detected and the
background. In this report, the development and testing of a
two channel double ended GFC system for simultaneous monitoring
of HC1l and CO is described. This sytem consists of a sensor
located inside the aircraft and a Corner Reflector Array,

mounted externally on the wing-tip fuel tank (see Figure 1-1).
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Figure 1-1.
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GFC Sensor

Outline Drawing of Cessna 402 Aircraft
Locations of Sensor and CRA



2.0 DESIGN OBJECTIVES AND CONSTRAINTS

The basic design objectives and constraints are:

System - Optical instrument using a sensing path external
to a Cessna 402 aircraft.

Sensitivity - 0.25-1 ppm with 90% response in less than 10 sec.
1-500 ppm with 90% response in less than 0.5 sec.

Specificity - Effects due to interfering species to be less
than 250 ppb.

Accuracy - +5 percent of reading.

Power - 110 volts, 400 Hz or 28 volts DC.

Performance - '~ No reduction in accuracy when operating in aircraft
environment.

Optical measurements made from an aircraft impose
severe requirements on the sensor. The major problem is due
to vibration that can affect the optical alignment of the sensor.
Of secondary concern is the thermal environment that can also
affect the optical alignment. Any optics that are mounted
external to the aircraft require special consideration. A
design that is insensitive to optical misalignment caused by

vibrations is mandatory.

In addition to HC1 and CO, rocket exhaust emissions
may contain large amounts of the gases COZ’ HZO and particulate

A1203. Also present in the polluted atmosphere may be NO, NO

03, SOZ’ CH4 and N20. Any or all of these gases can affect
optical measurements. Figure 2-1 shows the spectral locations

2}

and relative band absorption coefficients for the listed species.

From Figure 2-1, it is apparent that in the measure-
ment of (1) HC1l, interferences may result from the presence of

CH 4’ O3 and N02; and (2) CO interferences may result from the
presence of N (03 A1203 partlcles and the. H 0. continuum extend over

the entire spectrum and may affect the measurements



Figure 2-1. -

Band Spectra of
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In view of the above discussion, initial laboratory
experiments were conducted prior to the building of the flight

system to establish performance characteristics.



3.0 LABORATORY EXPERIMENTS

Experiments were conducted to establish the sensitivity
and specificity characteristics of GFC for detecting HC1 and
CO, using existing breadboard sensors, and to test a newly
developed Corner Reflector Array (CRA) to establish its

sensitivity to optical alignment.

3.1 Description of Breadboard Sensors

The theory underlying the GFC technique has been

1,(3—6)and is expanded in Appendix A. Basi~ " -

described in detai
cally, it congiSts of'mebhaniéally chopping an infraved source

of fddiéfiéh”éiferﬁately befwéeﬁ”a gas-céiiméontainiﬂg the
species to be detected and a reference cell which has no
absorption in the spectral region of interest. The AC signal,
due to a gaseous mixture containing the species to be detected,
is the correlated signal and is expressed by AV. By mechanically
chopping the average infrared radiance passing through the two
cells at a different frequency, a second AC signal, expressed

by V is generated. Electronic ratioing gives a AV/V signal

that eliminates variations in output responsivity and neutral

attenuations in the optical path.

Figure 3-1 is a schematic drawing of the breadboard
system. The optical system consists of a source aperture which
is imaged by the source lens onto the detector lens, and a
detector lens which images the source lens (cell mask) onto

the detector.

’High frequencybchdpping (AV) is performed by a tuning
fork chopper at 200 Hz and the low frequency chopping at 12.6 Hz
with a mirrored surface facing the source. This is done to
reduce the effects of temperature changes of the chopper blade
on the V signal. Both choppers are located at the source end
of the instrument to minimize the number of components which

have chopped emission.

-7-
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The source aperture required is 3.3 mm but is over-
sized to accommodate any slight motions of the source due to
thermal expansion of the support structure near the high-
temperature source. The source requires less than 20 W to
achieve a 1200 K temperature. It is a cone-shaped cavity to

ensure temperature uniformity.

The detector ( 3 x 3 mm PbSe“) is located :on -a -single-~
stage thermoelectric cooler to achieve an operating temperature
of 280 K and is temperature regulated fo 0.3 K. The high
degree of regulation minimizes responsivity changes during
operation.

The quartz sample cell is 20 cm long and may be removed

for true in-situ operation.

A blank-off wire can be inserted into the reference
cell fov. This provides for a span reference calibration by
mechanically creating a fixed offset in the AV signal equivalent
to 500 ppm HC1. ‘Zeroing is done electronically.

Figure 3-2 gives a simplified block diagram of the
electronlcs system used in the.unit:. Infrared radiation
‘chopped at two frequencies, ‘1 (cell chopper) and fz (source
chopper) falls upon the temperature stabilized PbSe detector.
The output of the detector is ampllfled with a low—n01se pre—
_’ampllfler and addltlonal stages of ampllflcatlon and then-
is split into inputs to the AV and V channels.

‘The AV input is passed through a bandpass filter to

- remove the f2 component of the signal. The output of‘the filter
is then fed to span and range amplifiers which respectively
adjust the magnitudé»of-the Signél for full scale span and the
measuring range of the instrument output. The output of the
range amplifier is fed into four gated sample and hold systems,
which sample different but specific parts of the input signal

according to triggering inputs from the data gates.

-9-



weldeTq MOOTg SOTUOILOSOTH

-10-

Yo AV

*Z2-¢ @andtyg
rov
QAMN \
FONY 178
5wt | | | gowia | -9
400 MS IINVEY INAS : . INAS
A } 2H 1% V- ZH (1B
. nv .. . W L3O TON
. v . ////; Sy AWy
A14q ey : Y9 MS
ELAr (i 30119 YA . 5 )
PEES XS . "
x,.\%w%w . TFOHLNOD
Tvlvuzmg - . R FL¥9
Yo123+4340 .
) — ZH [ b
| [ NI onis
< ZH 1P
ATdd NS . roly
svrg Lo Lob,
Hol23130 : A_,
, . FONVIVG
Z \.mqwﬂx v 4 974
e ‘ 2% 4 TYWYINL
dno A VSM\WWQ“—TQ &

HIALYO

A_ 130 0D

NIvg dowia ‘Yo MS dawyv . |
dILT S FaIA70 d¥a . ONAS - ]
w1

Gow 7@
SWAS 3dd
2H 16 -

N 11 F



These four sampled data points are the positive and
negative peaks of the 200 Hz and 12.6 Hz waveforms from which
the peak-to-peak amplitudes are obtained. :Although the 200 Hz
is superimposed on the 12.6 Hz signal, the 200 Hz has a small
amplitude compared to that of the lower frequency and so causes

a negligible error in its measured amplitude.

The outputs of the unit are AV, V, and AV/V, where the
AV/V signal is derived by applying the AV and V signals to an
analogue divider. The display is a panel meter. Additionally,

a jack for a strip chart recorder is provided.

3.2 Design Performance

The pollutant-generated signal, referred to the

instrument detector, is closely given by:

S'= AV = nAQNOTOECLpAlR, volts (3-1)
where

N is the overall efficiency

A is the area of the specifying cell

Q is the so0lid angle subtended by the detector lens

N° is the blackbody source radiance

To is the specifying-cell transmissivity

k is the mean absorption coefficient

C is the concentration

L is the optical pathlength

P is the sample pressure

AN is the filter HBW

R is the detector responsivity

For a detector-noise limited system, the root mean square (rms)

noise, at the detector is

N = — R, volts (3-2)
D*

-11-



where

Ad is the detector area
Af is the electronics-noise bandpass
D* is the specific detectivity

R is the detector responsivity

The values of the breadboard instrument parameters

for measuring HC1l and CO are presented in Table 1.

From the instrument parameter values given in Table 1
and the signal and noise equations, it is calculated that the
minimum detectabilities for HC1 and CO are 39 and 25 ppb,
respectively. If, however, the minimum detectability is defined
by S/Np_p =1, where Np_p is the peak-to-peak noise, the minimum
dectabilities will be higher by a factor of 5; i.e., 195 and
125 ppb for HC1l and CO, respectively.

3.3 HC1l Experimental Results

3.3.1 Sensitivity

Measurements were made of the relative signal, using
100 ppm HC1l diluted with N2
cell with varying HC1l concentrations in the specifying cell.

to 1 atm pressure in the sample

These results indicated Optimum sensitivity is obtained for a
specifying cell transmissivity Tb( 0.8 to 0.9). Thus, a
To~ 0.9 was used for the final sensitivity and specificity

experiments.

Measurements of the signal and noise for Nz—diluted

mixtures of HC1l were made. The results are shown in Figure 3-3.

Using the system gain factor given in Table 1 and the
signal equation, the theoretical signal calculated for 10 ppm
HC1 is 1.9V compared with the 2.0V measured.

-12-



TABLE 1. SUMMARY OF BREADBOARD INSTRUMENT PARAMETERS

Parameter . HC1 CO - Note

n 0.031 0.031 a
A, cm? 2.16 2.16 --
Q, sr 0.012 - 0.012 ‘ b
N°(T = 1000°C), W/cm®-p-st 0.47 0.26 c
Y, 0.90 0.83 d
k, atm “cm 0.50 1. e
L, cm 20.0 20.0 --
P, atm 1.0 1.0 --
AX,um 0.18 0.20 £
R, V/W 1.05 x 10% 1.6 x 10% g
A cm? 0.09 0.09 -
Af, Hz 0.025 0.025 h
D*, cm Hz 1/2 /m 2.0 x 10° 1.8 x 10° i
S (C=1), V 6.42 16. 65 -
NV 2.5 x 1077 4.2 x 1077 --
Cnin 39 PPE 25 PPE j
System Gain 3 x10 6 x 10 k

a. 'n is assumed to be the product of the transmissivities of the two lenses
(tg), the two cell windows (TW)., the two sample-cell windows (TS), the gas
transmissivity (To), the emissivity of the source (eg), the optical filter
(Tr), and the electronics efficiency (ne); viz

N = (D)% () ? (1) (16) (es) (TR) (&) (3-3)
= (.75)%(.88)2(.88)2(.9)(.5)(.65)¢.31)

= .031

.25, 2
20 )
For HC1, Ay = 3.4 um, and for CO, A, = 4.7 um.

Based on measured values with the pertinent optical filters.

Q =1 sin a“ﬂ(

o a o o

‘Same as note d.

£ Uses actual optical filter HBW.

£ Actual measured responsivity of the detector at operating temperature of 20°C.

h Af = 1/4t where t is the time constant to reach 63% of full scale (=10 seconds).

1 Actual detector D* at 200 Hz and T = 20°C.

] C_._ is minimum detectable concentration for S/N = 1.
min TmS

k Overall electronic gain applied to detector output.

-13-
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Correspondingly, the calculated peak-to-peak noise
is 30 mV, compared with the 80 mV measured. This indicates a

sensitivity of about 0.4 ppm HC1.

3.3.2 Specificity

Measurements were made of the effects due to the

presence of CH CO and H,O. The results are shown below.

4 2
Experiment Results
HC1 + CH4 1.4 ppm CH4 + <0.4 ppm HC1
HC1 + CO 100 ppm CO -+ no effect.
HC1 + HZO 3.5% H20 (= 100% R.H. at 300K) - <0.4 ppm HC1

Theoretical calculations were made using a spectral
line-by-line computer program assuming 20 cm and 8 m path lengths.
The results are shown in Figures 3-4 and 3-5 and the 8 m
path length results re-plotted linearly (see Figure 3-6). It
appears that the theoretical calculations are overly pessimistic
since measurements with 3.5 percent water vapor indicate less
than a 0.4 ppm effect, while the theoretical calculations indicate

a 1.2 ppm effect.
3.4 CO Experimental Results

3.4.1 Sensitivity

Measurements were made using CO similar to those
discussed for HC1l in Section 3.3.1. It turns out that for CO
o 1is 0.80 to 0.85 and, thus, 15 = 0.83 was used

for the final experiments.

the optimum T

The measurements of the signal and noise for N2—diluted

mixtures of CO are presented in Figure 3-7.

=3B
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L = 8 meters HC1

+ 1.4 ppm CH4

1.0

+ 1.5% Hzo

////// + 3.5% H30

1.0 [HC1], ppm

| Figure 3-6. Theoretical Influence of Interfering Species on HC1
for L = 8m (linear plot)
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As was done in Section 3.3.1, the theoretical and
measured results may be compared. The results show that for
10 ppm CO a 10V signal should be obtained compared with the 9V
signal observed. And, the calculated peak-to-peak noise is
125 mV compared with the 200 mV measured. This indicates a
sensitivity of about 0.2 ppm CO.

3.4.2 Specificity

Measurements were made on the effects due to the

presence of C02, N20, H20 and HC1l. The results are shown below.

Experiment Results

COo + 002 + NZO 350ppm 002 + 0.25ppm N20 + <200ppb CO

CO + HC1 100ppm HC1 + no effect.

CO+ H20 3.5% H,0 (=100% R.H. at 300K)» -200ppb CO

2

Theoretical calculations for CO and interfering species
are shown in Figures 3-8, 3-9 and 3-10. Again, comparing the
theoretical and measured results, it appears that the theoretical

calculations are overly pessimistic.

3.5 Corner Reflector Array (CRA)

The problem of an externally mounted IR beam reflector,
located on the wing tip, is that of maintaining optical align-
ment when the wing flutters. This effect is overcome by using
an array of small corner cube reflectors, since every ray is
directly turned back on itself but, with a lateral displacement
of up to the corner cube dimension. If the reflector is under-
filled by the beam, 'an array of small corner cubes is therefore

preferable to a single large corner cube retroreflector.

A triangular sub-array of lcm first surface mirror
corner cubes was developed. It is injection molded from a
machined and polished master; it is then aluminized and over-
coated with Si0. Using a number of sub-arrays, a single, large
CRA may be assembled. This is illustrated by Figure 3-11.

-20-
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Signal, AV/V x 103

1.0

0.8

Co

L = 8 meters

+0.25ppn1N20

and 350 ppm CO2

+1.5% H,0

+3.5% H,0

Figure 3-10. Theoretical Influence of Interfering Species on
CO for L=8 m (linear plot).
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Experiments were conducted using a single CRA unit,
a He-Ne laser, beam splitter, auxiliary optics and a Silicon
detector. The experimental set-up is shown in Figure 3-12.
No change in signal level was observed by translational move-

ment of lcm or angular movement of 5 degrees of the CRA.

3.6 Summary and Conclusions

A GFC breadboard system was used to evaluate the
technique for detecting HC1l and CO. The results indicate
that adequate sensitivity can be obtained and that theoretical
signal and noise equations can be used to design a flight

system.

Specificity testing showed that the GFC technique will

not be influenced by other species present in the exhaust cloud.

A corner reflector array was developed and tested.
This array permits the mounting of a CRA on the wing tip that
will be insensitive to wing motion, thereby eliminating optical

alignment effects.

Although not mentioned, the testing of the breadboard
did show two major drawbacks. One, the tuning fork choppers
are vibration sensitive and not suitable for an aircraft
instrument and, two, the split reference cell-specifying cell-
reference cell configuration gives a serious drift problem due
to changes in the near field-of-view and varying ambient

temperature.
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4.0 FLIGHT SYSTEM

Details of the system and its performance are
documented in the Operation Manual. Thus, this section is

abbreviated.

4.1 Optical-Mechanical System

The basic sensor is to be mounted inside the aircraft
cabin. It directs an infrared beam of energy onto a Corner
Reflector Array (CRA) that is to be mounted on the wing-tip
fuel tank shrouding. The CRA re-directs the infrared energy,
thus providing a measure of the mean concentrations of HC1l and
CO between the sensor and CRA.

The optical-mechanical layout is shown in the scaled
drawing (Figure 4-1). All components are shown to scale with
respect to size and placement except the instrument window and

the externally mounted CRA.

Figure 4-2 is a schematic of the chopping technique.
The high temperature source radiance is chopped at 411 Hz by
a multi-tooth blade which is coupled directly to the motor
shaft. The beam is then modulated at 9.1 Hz by the low frequency
rotation of the '"split" cell. The "split" cell is coupled to
the same motor through a 3:1 gear train to provide perfect

synchronization of the two chopping frequencies.

The separate sections of the split cell contain HC1
and CO respectively. Since the spectral bands of the two gases
do not overlap, the alternate cell is employed as a reference
cell; e.g., HC1l in one cell is the specifying gas which absorbs
at 3.4 um while CO in the alternate cell does not absorb at
this particular spectral interval, allowing this cell to be
used as a reference cell for HCl. Both cells are filled with
N_-diluted gases to provide a mean transmissivity, 1,, of 0.85

2
and hermetically sealed.
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. SOURCE )
éﬁ (\f CE

ROTATING CELL CHOPPER
545 RPM —~ 9.4 HZ

HIGH FREQDENCM C\}DP.PER
(646 RPN — 4| HZ

Figure 4-2. Schematic of Chopping Technique
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The chopped source flux is collimated by an f/5 lens
such that the beam dimension at the CRA located at 5m distance,

on the wing tip, remains small (20 cm dia.).

A beam splitter directs the flux through the window
which shields the instrument from the aircraft exterior
environment to the CRA. The CRA reflects the beam back on
itself. A fraction of the beam is transmitted by the beam

splitter and brought to focus by the f/2 collecting lens.

A long pass filter reflects the 3.4 um flux to a
detector/filter combination for HC1l and transmits the 4.6 um

flux to the detector/filter combination for CO.

The detectors are both PbSe cooled to -20°C by two stage
thermoelectric coolers; narrow pass band filters are included
in each detector package (mounted in a TO-37 can). The specific
detectivity at 411 Hz chopping frequency is conservatively
estimated to be 5 x 109 cm Hzé/w.

The retroreflector (CRA) is a 30 x 30 cm array of
1 cm first surface mirror corner cubes. The total array is
made up of mating triangular subarrays, each containing 60
corner cube reflectors. The property of a corner cube is that
it returns a ray parallel to the incident ray, but with a
lateral displacement of up to the corner cube dimension. An
array of small elements therefore provides a smaller diameter
return beam than would a larger reflector of the same accuracy.
An additional benefit is that a large array can be assembled,
which is thin, lightweight, and can be inexpensively and quickly
repaired, if necessary. Because a corner cube is insensitive
to alignment, a heavy rigid support structure is not needed and
a lightweight assembly is provided.

The arrays are injection molded from a machined and
polished master; the arrays are then aluminized and overcoated
with SiO. The specified accuracy of the reflector elements is
that they return a beam with a angular deviation of 6 arc minutes

or less with respect to the incident beam.
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4.2 Electronics

As discussed in the description of the optical layout,
the HC1 and the CO measurements use a common source, chopper
and optical system, but are imaged onto separate detectors by
the 45° filter. This permits the use of separate, identical
signal processing circuits with common circuits for the generation
of the synchronous demodulation pulses, chopper drive and power
supplies.

A block diagram of the electronic system is shown in
Figure 4-3.

A signal processing sequence begins at the detector.
For each gas, the detector is a photoconductive PbSe device on
a two-stage thermo-electric cooler. The TE cooler power supply
is a controlled current circuit using the detector resistance
as the sensor to ensure a stable detector temperature. The
detector bias voltage is obtained from a very well filtered
regulated supply. The heavy filtering is required because
noise on the bias directly degrades the signal/noise ratio and

is practical because of the very low current required.

The signal output of the detector is a 411 Hz '"carrier"
amplitude modulated at 9.1 Hz by the rotating gas cell. The
amplitude of the 411 Hz signal is the V signal (proportional to
source radiance) and the amplitude of the 9.1 Hz modulation
contains the AV (pollutant) term as well as an imbalance term
which is removed after the first demodulator. In addition to
the 411 Hz, a small component may be present at 9.1 Hz, but only
the 411 Hz component is accepted by the first demodulator.

A preamp is located immediately adjacent to each
detector. This servés to increase the signal to such a level
that subsequent noise introduction will not degrade the S/N
ratio. It is expected that the preamp will not contribute
appreciable noise because of the relatively high noise output

inherent to PbSe detectors.
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The first synchronous demodulator consists of two
sample-hold modules and a summing amplifier and operates with
gate pulses derived from the 411 Hz wheel chopper. The output
is a DC voltage equal to the 411 Hz carrier amplitude and a
superimposed 9.1 Hz square wave ripple equal to the carrier
modulation. Any signals at other than 411 Hz will not pass

this synchronous demodulator.

Next, the balance correction is introduced. The
condition to be satisfied is that zero AV signal (= zero
amplitude modulation) exist for zero pollutant gas concentration
in the optical path. The physical condition to satisfy this
would be that the total source energy passing through the
specifying cell be equal to that through the reference cell.
However, in this two gas design in which each cell serves
both as the specifying cell (for one gas) and as the reference
cell (for the other gas), it is not possible to simultaneously
balance both gas systems by aperture adjustment. Consequently,
an electronic analog of aperture balancing is employed. To
accomplish this the signal out of the first synchronous demodu-
lator is amplified by a stage having its gain switched in phase
with the 9.1 Hz signal; the gains being of such amplitudes that
the 9.1 Hz signal is reduced to zero. This serves as a ''zero"
adjustment. Moving the CAL/DATA switch to CAL moves a cover
containing a small retroreflector into the near field-of-view.
There is thus no pollutant gas in the optical path and the
output can be nulled for each gas individually using the ZERO
controls on the instrument panel. Electronically, this is
accomplished by adjusting the relative gains of the switched

gain stage.

The "span'" adjustment operates on a similar principle.
Placing the SPAN/DATA switch to SPAN introduces a known change
in the amplitude of the balance square wave. This causes a

shift in the output data which is proportional to the overall
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sensitivity and corresponds to a calibrated scale output. The
SPAN panel adjustment varies the electronic gain to set the

output signal to the prescribed value.

The DATA position of the CAL/DATA switch opens the

entrance aperture to the external retroreflector.

The remainder of the signal processing system is
straightforward. As previously explained, the amplitude of the
411 HZ carrier is the V signal; the amplitude of the 9.1 Hz
modulation is the AV signal.

The second synchronous demodulator also consists of
two samplehold modules and a summing amplifier and operates at
9.1 Hz. The output is the AV signal; the span and range
variable gain stage operates on this signal. Range selection in
steps of 1, 10, 50 and 500 are provided.

At this point the AV and V signals exist separately
and are ratioed in a divider module to eliminate the source

term from the modulation function.

A low-pass filter is provided with a variable (two-
position panel - switched) time constant so that low level
signals can be read to a higher precision when conditions permit
the longer integration time. The two time constants are 0.5

and 10 seconds.

A driver stage provides a low impedance output to the

panel meters and recorder jacks.

A photograph of the front panel of the sensor is presented
in Figure 4-4.

4.3 Design Performance

Following the presentation in Section 3.2, the values
of the flight instrument parameters are presented in Table 2.
The theoretical detectable limits for S/Np_ =1, using a 10

P
second time constant, are calculated to be 99.5 and 70.0 ppb for

HC1 and CO, respectively. g
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TABLE 2. SUMMARY OF FLIGHT INSTRUMENT PARAMETERS

Parameter HC1 CO Note
n 8 x 107> 8 x 10_3 a
A, cmz, source lens 3.1 3.1

Q, sr 7.8 x 1072 7.8 x 107% b
N°(T = 1000°C)W/cm’-p-sT 0.47 0.26

T 0.85 0.85

X, atm™> cn > 0.5 1.5

L, cm 10° 10° c
P, atm 1.0 1.0

AX, um 0.14 0.12

R, V/W 8.9 x 10° 8.9 x 10°

K cm? 0.16 0.16

Af, Hz 0.075 0.075 d
D*, cm Hz%/w 1010 1010 e
s(C=11), V 4.88 6.94

N__, V 9.75 x 1078 9.75 x 1078

Cmin 19.9 ppb 14.0 ppb f
"= (1) (1) (o) ()2 () (1 I (T4 () (t ) (n) (4-1)

(.88)2(.95)(.32)(.88)2(.23)(.68)(.95)(.7)(.7)(.8)(.75) = 8 x 10”3

o solid angle subtended by source, seen from source lens
€ assumes 10m optical path (double pass; 5 m each way)
for a 10 second time constant

o nominal manufacturer's value at Td = —SOOC

Hh

for S/N =1
rms

i



4.4 Laboratory Test Results

Measurements of the signal and noise for both HC1l and
CO were made by inserting Nz-diluted test gas mixtures in a
50 cm long cell with 7.62 cm dia sapphire windows. The
sensitivity results are shown in Figures 4-5 and 4-6 in terms
of the optical thickness in ppm-m normalized to the 0-1 ppm

range.

The final peak-to-peak noise measurements gave the
following Noise-Equivalent-Concentrations for a 10 m optical
path.*

Species Time Constant NEC, ppm
HC1 A = 0.5 sec 2.0
HC1 B = 9 sec 0.45
CO A = 0.5 sec 1.0
CO B = 9 sec 0.23

Comparing these data with calculated sensitivities
show that actual performance is about five times worse than
anticipated. However, no actual data was provided by the detector
manufacturer for specific detectivity and, the D% (=1010) used

for the calculation may have been overly optimistic.

* Revised values, see Appendix B "System Noise."
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5.0 FLIGHT TESTS

5.1 Installation and Preliminary Test Flights

After shipment of the system to NASA, it was re-tested
by NASA personnel. It was discovered that both the HC1l and CO
channels had become noisier than the data shown in Section 4,
by about a factor of 5. Calibration checks showed excellent
agreement with the HC1l calibration (Figure 4-5) but, the CO
calibration data at NASA indicated signals about 25 percent

lower than those shown in Figure 4-6.

The system was installed in the chartered Cessna 402
aircraft. Figures 5-1, 5-2 and 5-3* illustrate the installation.

Figure 5-1 shows the mounting of the sensor in the
aircraft together with the other instruments aboard and the PADS

data acquisition system.

Figure 5-2 shows an overview of the aircraft with the sensor
view port and the back of the CRA.

Figure 5-3 shows a front view of the mounted CRA.

* Note - NASA LRC has glossy prints of these photographs.
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After installation of the system, the sensor-retro-
reflector separation was measured as 5.36 meters, giving a total
optical path of 10.72 meters. Using this value, the calibration
data has been established for the X 50 ranges. The results are
shown in Figures 5-4 and 5-5.

A 2 3/4 hour test flight was conducted and several
important results obtained.

1. The sensor did not have to be re-aligned during
flight conditions.

2. The "noise'" levels during flight were the same

as on the ground.

3. No effects were observed by turning off the engine
between the sensor and retroreflector.

4. No radio interferences were observed.

5. The sensor zero and span levels remained stable
throughout the flight.

6. Some degradation in V signal was noted. This is
believed to be caused by a gradual warming of the
detectors.

7. A pass over the Yorktown refinery indicated an

increase in CO of about 2 ppm.

8. A pass over the West Point pulp mill indicated

an increase in CO of about 5 ppm.

. 7. -
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5.2 Mission Test Flight

The GFC sensing system was flown through an actual rocket
exhaust cloud. The cloud was generated by a Titan 3C rock
launched from Kennedy Space Center at 20:25 EDT on March 14, 1976.

Both the HC1l and CO channels functioned throughout the
flight.

Prior to the actucal mission:
1. The retroreflector was re-installed on the aircraft.

2. The sensor system was tested; no shift in zero or
span settings had occurred from the time the system

was initially test flown from LaRC.

3. A test flight made from PAFB through a natural cloud
indicated that extreme turbulence could cause a
significant optical mis-alignment and invalidate the
data.

4. As a result of (3) the vibration mounts were removed
and the sensor was bolted directly to the equipment
shelf. Photograph Figure 5-1 was taken with the
original mount configuration. This appeared to
eliminate the turbulence problem as determined by
severely rocking and wing tip on which the retro-

reflector was mounted.

5. No shift in zero or span was observed even though the
system was operated in the aircraft over temperature
ranges from 10°C to 38°C (5OOF to IOOOF).

Following the mission flight, the recorded data was
examined. Figure 5-6 is a tracing of the flight recording of
the CO and HC1l data during the first pass. An unexpected
phenomena is apparent that invalidates most of the data. Namely,
that most of the data indicates a negative correlation between
the HC1l and CO channels; when one channel given a large positive
signal, the other channel gives a large negative signal. The

negative excursions are not seen in Figure 5-6 because the output
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of the instrument is clipped at zero volts. However, there

are a number of instances where the CO channel remained
positive and a simultaneous positive response was observed from
the HC1l channel. An example is seen in Figure 5-6, pass #1
flight data, where at 21.5 seconds the HCl reads 16 ppm above
its zero offset.

At such times when this negative-correlation effect did
not exist, peak concentration data that are believed valid

were obtained. These are summarized below:

Pass HC1l, ppm Time (launch:20:24 EDT)
1 16 20:30:21.5
6 16 20:42:04.5
6 7 20:42:35
7 6 20:44:03
7 5 20:44:13
8 12 20:49:48
8 6 20:50:01
8 8 20:50:06
9 8 20:52:08.5

10 6 20:54:12
10 8 20:54:15
14 5 02:02:02
14 8 02:02:39
15 3 02:04:29
18 2 02:11:50
18 3 02:12:08
18 3 02:12:19
20 5 02:16:47

No CO was observed above the noise level - 1 ppm.

-4 8-
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6.0 DISCUSSION

The GFC sensor system has proven to be a viable
technique for measuring gaseous pollutants, in-situ, using an
aircraft. Besides the present application of measuring HC1
and CO in rocket exhaust plumes, many other applications are
possible; such as measuring local urban pollutants, regional

air pollutants, and even stratospheric pollution.

However, the operational field program revealed several
problems in the delivered system.

1. Upon receipt of the instrument at NASA-LaRC, the noise
levels on the CO and HCl data outputs were approximately
a factor of five times higher than stated by SAI before
shipment. The calibration curves for the CO and HC1l had
not changed. The high noise level remained through the
mission flight.

2. The large amplitude negative correlation phenomenon between
the CO and HC1l data during the mission flight was not
seen at SAI, nor did it occur during the test flight at PAFB.

3. A data output zero offset exists which is a function of the
distance to the retroreflector. As a consequence, there
is a zero offset between data taken with the internal
calibration retroreflector and the aircraft wingtip retro-
reflector.

Following the completion of the operational mission flight,
the instrument was returned to SAI, at SAI's request, for
investigation of these problems. The results of this investi-

gation are included as Appendix B to this report.
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APPENDIX A

THEORY OF OPERATION

Infrared absorption spectroscopy has long served as a
powerful technique for gas mixture analysis. In contrast
to dispersive spectroscopy, a nondispersive infrared (NDIR)

device makes use of the particular gas to provide specificity.

Refinements of NDIR have been made recently through a
better understanding of the monochromatic spectroscopic

properties of gases.

If the optical thickness of the comparison gas in the
sensor is kept small, an ultimate high-spectral-resolution
filter (provided by the natural line-width of the gas) results.
High spectral resolution is the most important parameter in
obtaining specificity and accuracy in pollutant analysis.

The term ''gas filter correlation" (GFC) was adopted to describe

the sensors using this technique.

GFC is based upon absorption or emission of electromagnetic
energy by the specific pollutant to be monitored. As such,
GFC can operate in the UV, visible, or IR regions of the spectrum.
The IR may be preferable because all pollutants of interest
have rotational lines that absorb in the IR; also, scattering
effects are more pronounced in the UV and visible. On the other
hand, the UV-visible may be preferable if extreme spectral
interferences occur in the IR; also, more sensitive photo-
multiplier detectors are available and pollutant absorptivities

are greater.

Conventional spectroscopic instruments depend upon finding
a single absorption line of a particular species. GFC uses
the contribution of all absorption lines of a particular species'

band system.




Specificity is obtained by using random correlation
between spectra arising from the particular and the inter-
fering species; the principle of random correlation has been
established for most pollutant species and for inter-
fering species occurring naturally and in polluted atmospheres.
In addition, a ratioing technique may be used that minimizes
effects of source intensity changes, background radiation, and
continuum absorption due to complex molecules, aerosols, or

water vapor.

GFC technique can be applied to both double-and single-
ended systems. For the double-ended system, an active infrared
source and GFC receiver are used to measure an intervening
pollutant; in this case, the detection principle is based upon
absorption spectroscopy. For the single-ended system, only
the GFC receiver is used to remotely detect a pollutant; in
this case, the detection principle is based upon either emission
or absorption spectroscopy, depending upon the relative tempera-
tures of the pollutant to be detected and the background.

A schematic diagram which illustrates the apparatus used
for initial laboratory studies is presented in Figure A-1. The
basic components are a high-temperature infrared source; a
sample cell in which the gas mixture to be analyzed is placed;

a rotating chopper; a reference cell containing a vacuum or a
transparent gas such as nitrogen; a specifying cell containing

a sample of the gas to be detected; an adjustable aperture limit-
ing the radiation passing through the reference cell; an optical
filter confining the radiation to the spectral region where the
gas to be detected possesses absorption bands; a sensitive in-
frared detector; and optics to collimate the radiance from the
source and to focus it on the detector. The radiation from the
source passes through the sample cell where it is spectrally

absorbed by the specific gas and possible interfering gases.
The radiation, having traversed the sample cell, is
alternately passed through the reference and specifying

cells. When passing through the reference cell, the radiation
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Figure A-1. Scheinatic diagram of double-ended GFC technique.

is unattenuated; but when passing through the specifying cell, it is atten-
uated by the spectral absorption character of the gas in the cell. Thus,
an alternating signal is generated at the detector. The magnitude of this

" signal is related to the concentration of the gas to be detected in the
sample cell.

The following development assumes that self-emission by the
sample gas is negligible compared with the source radiance, N. Re-
ferring to Figure A-1, when the cell chopper at frequency fi is in the
position indicated, the energy from the source which reaches the detector
through the reference cell is given by

E, = f COINQ, T ) 7,() T(A) 7_dX (1)
Al
where
C(A) is the spectral attenuation due to the

optics, cell windows, and optical filter;

N, Ts) is the radiance from the source;

'ri(l) ~ is the spectral transmission through
possible interfering gases;
,g () is the spectral transmission due to
the gas to be detected;
‘ o + is the transmission through the aperture.
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E is obtained by integrating over the spectral wavelength interval
A)\ defined by the optical filter. Radiation, due to self-emission by the
gases, windows, and other instrument components, is neglected, since
for source temperatures greater than 1000°K and wavelengths less than -
5 um, the radiance from the source is at least three orders of magnitude
greater than the radiance from 300°K materials.

- Similarly, when the cell chopper passes radiation through the
specifying cell, the energy reaching the detector is given by

SN, 0 T0) 7 Mk ' )
A

where T,(A) is the transmission due to the gas in the specifying cell .
and C ()3 is the spectral attenuation due to the optics.

The peak-to-peak signal difference at the detector by chopping is
proportional to the difference between E, and El; that is,

AVGE,-E, = fN(x,T)Ti(x)f(x)[c'(x)ro(x)-C(x)fr]'dx (3)
AX

Now, for slowing varying functions in A, N(\, T ) and C’(\) can be
averaged over the interval AX. Thus,

AVaN T’ ri(x)fm[ () - S 7 ] an )
AX

where the bars indicate mean values over AX. But, 7 (A) and 7(A\) are
strongly correlated, since they represent the spectral transmission due
to the same gas, and 'ri(k) is assumed to be uncorrelated with T45(}).
Then, applying the mean value theorem,

AVaN ‘c"?i [ﬁo - (c/c’ )?rr] AN (5) '

Since the two parameters C(A) and C’(\) differ from each other by
only very minor differences between the nominally identical optical paths,
the product of their ratio and the instrument adjustable aperture trans-
mission may be considered to be an effective aperture, 'rlf . .Thus,

B | T —
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AV = Kﬁ?.[?‘r‘ -?r'] _ (6)

for a given set of instrument parameters, where K is a proportionality
constant. :

- To zero the instrument, the optical path is made transparent
(r= Ty = 1) and the aperture adjusted such that 'r; =7,- Thus,

AV = K'N'[??O-FFO] - KNM )

where M is the AC modulation.

As seen from Equation 5, the instrument signal, AV, may be in-
creased by increasing the source radiance, N, and by judicious selection
of the transmission through the specifying cell, 7 o

From this development, AV is proportional to N, 7j, and the
overall responsivity and efficiency of the instrument. To eliminate these
dependencies, a double-chopper system is used to facilitate an electronic
ratioing technique. The signals generated by this system are shown
schematically in Figure A-2.
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Figure A-2. Schematic diagram of signals generated
by double-chopping GFC instrument.
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Here we assume the source chopper, Co, is operating at a lower fre-
quency (f9) than the instrument cell chopper, C;. And we assume all
background radiation, from the instrument or extraneous, is contained
in the single term "Npg." Then, the signals generated at frequency f;
during phase P are given by

AV1 = (N + 'NB) (ﬁo - "F'rr) + 'Ncl('rr - ?0) (8)

where N(, is the radiance from chopper C1 and the remaining symbols
are as previously defined.

Similarly, during phase P’, when the source is blocked,

AVi = (-NB + 'ﬁcz) ('r_'r0 - ?'rr) + -NC (Tr - ?o) (9)

1

Now, AVy >> AV{, being proportional to the source radiance, so AV{
is easily subtracted electronically from AVy, giving

S, = AV, - AV/

1 1-4Vy = (N-N

C2) (??0 i ?Tr) (10)

The result is an AC signal at frequency fl

The signals at frequency f‘.2 are similarly obtained. During P,

P TT +Frr e Yot ¥
and during P’,
2 A TT +:F'rr - ?0+‘l'r

S S S ———————



Subtracting gives
TT +7T7T
(0]

~ Forming the ratio between Equations 10 and 13 yields

S TT =TT
s—l' Y i Bt (14)
2 TTo+TT,

This ratio is completely independe'nt of all temperature-dependent in--
. strument parameters, being a function only of the unknown transmissivity

7 and the instrument transmissivities 7, and 7T,. Thus, an extremely
stable (no drift) signal results.




APPENDIX B

Post-Flight Diagnostic Tests

Subsequent to the operational flight, at the request of
SAI the instrument was returned to the SAI lbaoratory in
San Diego for diagnostic tests.

As a result of this investigation, several changes were
made in the instrument data processing to improve its performance.
Also, at this time, the corner cube retroreflector units in
the wingtip-mounted array, which had been damaged during the
flight, were replaced, and a new rotating gas cell was
installed to replace the original cell which was found to be
broken.

A discussion of each of these points follows. It would be
valuable if, in future test flights, the "V'" outputs, available
on the front panel, were recorded in addition to the normal

data outputs to assist in evaluating the performance.

System Noise

During the final tests of the instrument in December, 1975,
prior to delivery to NASA, the noise levels were measured and
reported to NASA personnel. Upon receipt, NASA personnel
measured noise levels approximately five times higher than the

pre-delivery measurements.

The original test tapes have been re-examined and it appears
that an arithmetic error was made in the original data reduction.
The pre-delivery noise was higher than reported by a factor of
three, leaving a discrepancy of a factor of approximately 1.5,

which is probably within the measurement accuracy.

Possible sources of this noise have been investigated.



The infrared detector vacuum jackets are intact. Loss of
vacuum can be a source of S/N degradation if the capabilities
of the thermoelectric cooler or its power supply are exceeded in
trying to overcome the resulting air convection heat leakage.
However, both detectors are being cooled to the original levels,
as measured by the detector element resistance, with no increase

in the thermoelectric cooler driving current.

The white noise generated by the electronic components is
not the source of this residual system noise. This is easily
demonstrated by optically blocking the detectors and observing
the noise on the AV and V signals into the divider module (the
divider module will not operate with zero voltage at the
demominator input). Changes were made in the design of the
preamps which further reduced this noise, but with negligible

effect on the system noise level.

Numerous minor changes have been made, each contributing a
corresponding improvement in noise level. A large portion of
the remaining noise is believed to be due to tolerances in the
rotating cell bearing and drive system and marginal torque on
the chopper drive motor. These problems have been addressed
on another program and if successful, should be retrofitted here.

By these efforts, the overall system noise on this instrument
has now been reduced by a factor of 2 to 3. Because the
sensitivity has also been affected by the changes made to improve
the negative correlation phenomenon, the present noise-equivalent

concentration is discussed at the end of the following section.

Negative Correlation Phenomenon

During the operational flight, the HC1l and CO output signals
exhibited the peculiar phenomenon of large random excursions
which were mutually out of phase between the two channels. This

can be seen in Figure 5-6.




These spurious signals could have been caused by a rapid
change in the total IR radiant energy returning to the
instrument, such as would be caused by rapid changes in the
opacity of the atmosphere between the instrument window and the
retroreflector. These laboratory tests have shown that such

signals can be generated by this means.

The instrument data processing has been changed to reduce
the sensitivity to rapid opacity variations. The electronics
processing sequence is described in Section 4.2: synchronous
demodulation of the 411 Hz V, signal, balance for AV=0 by
synchronous gain switching, and synchronous demodulation of the
9.1 Hz AV signal. The ratio AV/V is intended to remove the
effect of radiance changes, but very short duration variations
could enter the AV signal, instead of having proportional
amplitudes. For these radiance pulses, the ratioing technique
would fail. Because the HC1l and CO channels use the same optical
system, but with the gas-reference data mutually out of phase,
a single radiance pulse would enter both channels with opposite

polarity, as was observed in flight.

This effect has been reduced by a change in the demodulation
of the 411 Hz signal. Previously, the sample-hold module
sampled very narrow portions of the signal positive and negative
peaks; this has been changed such that each now samples its
entire half cycle and resistors in series with the hold capacitors
cause the output to be averaged over all 411 Hz cycles occurring
during each 180° rotation of the gas cell. After the following
differential amplifier, additional sample-hold module has been
added which takes short samples at 9.1 Hz at such times that the
charging interval of the averaging demodulator is removed. Thus,
short duration radiance variations are severely attenuated

before they enter the AV processing circuits.



By extending the sampling period to cover the entire half
cycle, the output signal is reduced by approximately a factor
of three compared to the previous peak-to-peak sampling, causing
a corresponding factor of three degradation in the output signal-
to-noise ratio. By improving the system noise level, the final
noise-equivalent concentration, as discussed in the previous
section, is similar to the pre-flight value for CO and is higher
for HCl. These electronic changes are shown in Figure B-1.

Because the flight performance of the instrument was limited
by the negative correlation phenomenon rather than system noise,
a net improvement in field performance should result.

The final noise equivalent concentrations, expressed in
terms of peak-to-peak noise and ppm concentration over a 10 meter

path (2 pass, 5 meters each way) are:

Species Time Constant NEC, ppm (Previous NEC)
HC1 0.5 sec 3.5 (2.0)
HC1 9 sec 0.82 (0.45)
CO 0.5 sec 0.61 (1.0)
CcO 9 sec 0.14 (0.23)

Zero Offset

The data output zero offset which exists between data taken
with the internal and the external retroreflectors was in-
vestigated. It is a function of the internal optical alignment
of the instrument, but could not be eliminated within the

existing adjustment ranges.

Gas Cell Repair

Upon initial disassembly of the instrument following receipt
at the SAI laboratory, it was discovered that the Pyrex web,

which separates the two halves of the rotating gas cell, was

B-4



cracked. Presumably, this was caused by handling shock or
vibration acting on residual stress in the web. It is not
known when the crack occurred, but no gas leakage apparently

occurred since the instrument sensitivity was not affected.

The cracked cell was discarded and a new cell was constructed

and installed.

Retroreflector Repair

The retroreflector array as installed on the wingtip tank
shroud is shown in Figures 3-11, 5-2 and 5-3. The corner cubes
making up the array are front surface aluminized and are in-
stalled with no protective window to prevent undersirable
absorption or reflection. The array sensitive surfaces are thus,

of necessity, exposed to any abrasive or corrosive environment.

The retroreflector was examined following the pre-launch
test flight, 13 March 1976, at PAFB; no damage to the surface

quality was seen.

However, following the operational flight, it was found that
approximately 80% of the aluminum coating was destroyed, but
with no apparent damage to the surface of the acrylic substrate.
Presumably, this was caused by corrosive gases in the post-
launch atmosphere. The retroreflector units (each is a sub-
array of 60 corner cubes) are attached to the aluminum structure

with RTV silastic and can be readily removed.

All damaged retroreflectors have been replaced with new units.
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