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1. INTRODUCTION

	

i

	
1.1 Objective

A number of techniques have been developed to infer geophysical

parameters from remote sensing measurements. One such technique is the

statistical estimation of parameters described by Gaut et al. (1972) and
F

Willand et al. (1973). This technique has been implemented at the

Goddard Space Flight Center (GSFC) to operate on microwave remote sensing

measurements obtained on aircraft flight programs. The objective of the

	

-	 present study is to improve the routines implemented at GSFC for

statistical estimation of parameters.

The basic elements of the inversion procedure at GSFC are:

•

	

	 routines to simulate physical parameters of the geophysical

s,-stem and the associated brightness temperatures as measured

by a remote sensor;

0

	

	 routines to form the statistical relationship between the geo-

physical parameters and the simulated brightness temperatures;

O	 routines to apply the a priori statistical relationship to

actual measured brightness temperature to infer the corresponding

geophysical parameters.

In the present study, the following tasks were performed:

0	 Development of an improved sea surface roughness model;

0	 •	 Extension of the cloud model to simulate better the radio-

metric properties of precipitation;

6	 Investigation of the effects of the inclusion of non-linear

0	
terms in the correlation matrices;

•

	

	 Investigation of the effects of decision-making procedures in

the operational application of the inversion method.

0

	

	
These new models and procedures were applied to a data sample selected

from the CV-990 flights for test and evaluation.

O	 1

1W
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1.2 Summary of Results

The surface roughness model of Stogryn (1967) and others are extended

to include the specification of the effects of foam as a function of

wind speed.	 The model results are compared to recent measurements

obtained during the Bering Sea Experiment (BESEX) by instrumentation on

the CV-990 aircraft.	 Computation of the change in brightness temperature

with wind speed agreed well with the measured data.

Effects of large droplets were approximated by extending the Staelin

approximation (Staelin, 1966) to include higher order terms of the Mie

expansion with the condition that the total-expression for extinction be

solvable in closed form.	 The drop size distribution for rain used in

this model was basically that described by Marshall and Palmer (1948).

The effects of non - linearities and real-time decision making on the

accuracy of inversion results were investigated by application to a

sample of BESEX data which included both cloudy and clear-sky cases.

These results show that the inclusion of the non-linear terms selected

in the study in the D-matrix does not appear to alter the inversion

results significantly.	 On the other hand, the use of the proper D-

matrix does improve the inversion results, at least in the statistical

sense.

In this report, the improved physical models of sea state and pre-

cipitation effects on microwave radiation will be discussed in Section

2. Section 3 will present the techniques used to extend the inversion

procedures, while Section 4 will apply these techniques to the inversion

of aircraft data during BESEX. The conclusions and recommendations will

be summarized in Section 5, while complete listings and discussions of

the routines implemented on the Goddard computer system will appear in

the Appendix.

2
	 0 1



2. IMPROVEMENTS OF PHYSICAL MODELS

Two physical models were improved -- those of sea surface roughness

and precipitation. The characteristics of the improved models are

described in this section.

10	 2.1 The Sea Surface Roughness Model

2.1.1	 Observations

The microwave radiative properties of the ocean surface determine

both the surface-emitted thermal radiation and the surface- reflected

component of the downwelling atmospheric radiation. 	 Observations have

indicated that the surface properties are characterized by the general

"sea state" manifested in:	 (a) the spatial and spectral distribution of
V

elemental sea slopes; and (b) the percentage of the surface covered by

various forms of white, water or foam. 	 The effects of the former factor

on observed brightness temperature are presently incorporated within the

ocean surface submodel.

Subsequent observations aimed at isolating the role played by ocean

foam indicate that it may be the more significant determinant of the

brightness temperature.	 Figure 2-1 (from Nordberg et al., 1971) demon-

strates, empirically, the relationship between change in brightness

temperature (relative to a calm, foam-free sea) and wind speed. 	 These

observations yield a wind speed (w) vs. differential brightness temper-

ature (AT B ) relationship of:

U	
AT  (k) = 1.29 U (m sec-l) -10.3	 U > 8 m,sec-1

0	 U < 8 m sec .1	 (2-1)

However, the surface models previously implemented at the GSFC calculate

brightness temperature (and hence AT B) based on the foam coverage sur-

face percentage and not by relating 
AT  

and U empirically. Therefore an

intermediate relationship of the surface foam cover dependence on wind

speed is needed. The white cap model of Cardone (1969) provides a semi-

theoretical	 roachO empirical	 approachpp	 to obtain such a relationship. Figure 2-2

0	 3
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illustrates the dependence of differential brightness temperature-on

foam cover based on: (a) observations - curve 1 and (b) Cardone's

model - curve 2 which is fitted by the line:

F (percent foam cover) = 1.26 U (m sec -l)- 10.1	 (2-2)

Equation (2-2) was previously used to predict surface foam cover. Note

that there appears to be a discrepancy between observed and theoretical

foam vs. wind speed (and hence differential brightness temperature vs.

foam cover) results. In this study, an attempt has been made, based on

subsequent work by Ross and Cardone (1974), to resolve observation and

theory and arrive at a self-consistent surface model. In this approach,

the dependence of foam cover vs. wind speed has been considered independently

of the radiative properties of the foam.

Figure 2-3 plots observations of wind speed vs. percent foam cover

from three observers. The fractions of white cap are plotted separately

from those of total foam, consisting of both white caps and streaks.

Streaks consist of broken white caps caught by the surface wind and

drawn across the surface in the wind direction. White caps are generally

isotropically distributed within an area element while streaks will

generally be oriented in the direction of the surface wind field. In

reconciling curves 1 and 2 in Figure 2-2, two possibilities exist.

Either observations from photographs overestimate foam cover, or the

theoretical curves underestimate total foam (Nordberg, et al., 1971).

Ross and Cardone (1974) emphasize that the effect of streaks was

neglected in Cardone's earlier formulation. Therefore, the previously

implemented relationship of foam cover versus wind speed must be

amended. In Webster et al. (1974), it is remarked that even unit

emissivity for the observed white caps cannot account for the increase

in brightness temperature and that the radiometrically significant part

of the foam fraction must be the streaks. As can be seen in Figure 2-3

there is a considerable amount of scatter in the data. (Note: the data

from Webster et^al. (1974) represents a 5-minute average of measure-

ments over a fully developed sea.) The dotted line corresponds to

Cardone's (1969) white cap model fitted by the polynomial expression:

Fw = -0.00188 U + 0.000263 U 2 -0.00000295 U 3 + 0.00000085 U4	(2-3)

U

i

6	 #1 I
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The solid curve is a fit to Ross and Cardone's (1974) data for total'

.foam (white cap and streaks) generated using the empirically derived
O

=	 `

,relationship:

FT	 =	 (l + Rsw) Fw	 (2-4)ya
A

where r :..t=

FT is the total percentage of foam cover

Fw is the percentage of white cap cover given by Cardone ^Y

(Equation 2-3).

Rsw is the ratio of the percentage of streaks to the

percentage of white caps:
s	 >:;.

= 0.255 U (m sec-1)-2.99 U}

Note that both total foam and white cap models fit-observations relatively,

well in the region U < 17 m sec

Ross and Cardone point out that the percentage cover observations

for wind speed U > 17 m sec 	 considerably below what would be expected,

based on theory, for fully developed sea conditions. 	 In Figure 2-3 it a

can be seen that none of the chosen observations conform to theory;:

within this high wind speed region. 	 It is suggested that these represent ©.

cases where the sea is not fully developed due to limited fetch or

duration.	 Figure 2-4	 adapted from Stogu	 p	 gryn (1967), gives the minimum

fetch and duration for fully developed seas at a given wind speed. 	 It $.r

is unlikely that sufficient duration and fetch is achieved at higher G'

wind speeds for fully developed seas due to the extreme fetch and duration

requirements.	 Therefore, foam cover, and particularly the fraction of

streaks, may be overestimated at higher wind speeds (approximately

20 m sec-l) if seas are not fully developed.	 Additionally, as a con- © _'

sequence of equations (2-3) and (2-4), the foam model saturates at

approximately 22.3 m sec-1 , at which point there is 100 percent white

water coverage.

8.
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2.1.2 Radiative Properties of Foam Components

Both area coverage and radiative properties of a given foam compo- 	
O

nent are necessary to predict radiometric results. These properties of

sea foam may be computed given a viable physical model. The porous

dielectric foam model of Rosenkranz (1971) has previously (for example,

see Willand et al., 1974) been used to compute the absorption coefficient

of a foam layer of given precipitable water content,

F = pQD = 0.004 g m-2

0
where

p is the density of the water

D is the depth of the foam layer 	 0
Q is the ratio of the volume of water in the foam to the

total volume

There is no a priori reason for assuming that various foam components 	 U
such as white caps and streaks have the same radiative properties. On

the contrary, recent observational implications suggest that streaks are

` less emissive than white caps. Nordberg et al., (1971) suggests this

explanation to reconcile the fit of curve 1 in Figure 2-1 with their

data. Ross and Cardone (1974) in formulating a relationship between

differential brightness temperature and foam cover as:

AT  = Kw Fw + Ks Fs 	(^-6) d
where

F  is the percentage coverage of white caps

Fs is the percentage coverage of streaks 	 a

found that the ratio of coefficients K s/Kw which fits their data is

approximately O.S. This concurs with the previous observations that

streaks are less emissive. The discussion can be roughly quantified 	 (^

based on the following simple calculation:	 1

I	 10	
40
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The surface brightness temperature with white cap fraction fw and

streak fraction f s is:

TB (fw , fs) = fs 
L 

E STs + (1-E
S )Tsky] 

+ [fw
  c Ts + (1-Ew)TskyL]

+ (1-fs -fw) [E(,T S + (1-e
0)Tsky] 	 1 

(2-7)

J

0

!()

where

E s = streak emissivity

E 	
= white cap emissivity

s0 = foam-free rough surface emissivity

Ts = surface thermometric temperature

Tsky = black body sky temperature

f 
	 = Fs/100

f  = Fw/100

The change in brightness temperature over a foam-free rough sea is then:

AT  = TB (fw , f s ) - TB (0,0)

(ew-e0)fw + (ES -e0)fs	 (Ts-Tsky)	 (2-8)

Comparing this expression with (2-6) requires that:

K 	 0.5 = 
( Ts - Tsky) ( C 

s  - 
E0 )
	 (2-9)

1Cw	 ( Ts - Tsky) ( Ew - E O )

Assuming E  = 0.4 for the foam free surface and using E  - CO = 0.35

(Rosenkranz (1971)] yields a streak emissivity of:

E	 = 0.58s

or an approximate 25% decrease in streak emissivity as compared to white

caps. Differential brightness temperature calculations based on Equations

f

	
11
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2-3, 2-4 and 2-8 and the emissivities given above (assuming 
(Ts - Tsky)

=273K) are plotted in Figures 2-5 and 2-6 as functions of foam cover and

wind speed, respectively. Agreement with observed values is remarkably

good.

The emissivity difference between streak and white cap can be

interpreted either in terms of intrinsic or geometrical properties; that

is, the differing optical depths may be due to differing absorption

coefficients or differing physical depths. Assuming (for lack of

contradictory evidence) that the porous foam model describes both white

caps and streaks, and given a constant foam mixing ratio, the indicated

emissivity difference can correspond only to a change in characteristic

depths between white cap and streak [Rosenkranz and Staelin ( 1972)].

This is consistent with observations and a suggestion by Webster et al.

(1974).

The following calculation suggests the order of magnitude of the

depth difference. Assume that for a surface layer

R  = 1 - exp (, 2 
y  

di); (i = s,w)	 (2-10)

where

E i = ith component emissivity

Ri = ith component reflectivity

Yi =
ith component absorption coefficient

di = ith component characteristic depth

Solving for the ratio of characteristic depths and assuming Ys = Yw

yields:

ds/dw = 0.6	 (2-11)

This order of magnitude ( 10-1 ) is consistent with observations.

2.1.3 The Foam Model

Based on the above discussion and development, the new foam model

may be summarized by the following set of equations:

01

0

0r1-

J"I

i^

12	 p
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F	 = -0.00188U + 0.000263U2 - 0.000002951i 3 + 0.0000008SU4
w

Fs = (0.2SSU - 2.99) F 
L)

y = 4n QV (A, T, S)/3A

T i = yd i (i = s, w)

TF = F  exp (-2dwy) + Fs exp (-2d sy) + 0 - Fw - Fs)

where

IU

(_1

I (.;)

F  is surface white cap coverage

U is the resultant wind speed

Fs is surface streak coverage

y is the attenuation coefficient of foam

Q is the foam mixing ratio

A is the wavelength

T and S are respectively the temperature and salinity of the water

K" is the imaginary part of the index of refraction of sea water

T i is the optical depth with i = s being streak and i - w being

white cap

TF is the factor by which foam-free rough surface reflectivity is

altered by foam

2.1.4 Model Evaluation

Iu

	

	
Figures 2-7 and 2-8 demonstrate the application of the surface

model in a simple radiative transfer calculation to compute brightness

temperature vs. wind speed. The figures are expressed as differential

brightness temperatures in degrees above a calm sea (U = 0.0 m sec-1).

10 In Figure 2-7 the differential brightness temperatures computed

using three foam models are plotted together with two 19.3S Ghz nadir

observations. The foam models consist of using the Rosenkranz (1971)

attenuation coefficient and: (a) Cardone (1969) white cap coverage;

10
	

(b) Ross and Cardone (1974) streak coverage with a ratio of streaks to

white cap depth of 0.6; and (c) the same with a depth ratio of 0.1.

This last model seemed to fit best and was retained.

10
	

15
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The brightness temperature dependence on wind speed at three other

frequencies (2, 5, and 37 Ghz) and temperature wind speed slopes are

given in Figure 2-8. The inset plots brightness temperature change

versus frequency and essentially demonstrates the frequency dependence

of the foam attenuation coefficient.

The model was further evaluated against measurements obtained by

BESEX. The details of this experiment are found in Wilheit et al.

(1974), and Webster et al. (1974), and in a discussion given in Section 4

of this report. As part of the experiment, the CV-990 aircraft made low

level (150 m) measurements at a number of frequencies of brightness
t^

temperature over the ice-free Arctic Ocean under various surface wind

conditions. These data were used to compare with the model computations.

Since it was reported by Wilheit et al. (1974) that the brightness

temperature as measured by the aircraft radiometers suffered apparent 	
U

linear offsets in the absolute calibration, comparisons were made with

the change in brightness temperature with wind speed, that is

AT 

A^31 M	 U

Figure 2-9 shows the data reported in Webster et al. ( 1974) and the

model computed values. The agreement is quite good.

2.2 Precipitation Model 	 (,^II

2.2.1 Background

An important feature of the simulation and inversion software

implemented at GSFC is the ability to generate, through simulation,

large statistical samples of brightness temperatures, at any given set

of frequencies, for different ensembles of geophysical parameters using

sets of physical drui radiometric models which require very little	
rj

computation time to execute. One important radiometric model defines

the effects of precipitation on microwave radiation. As part of this

program, an investigation was performed to arrive at a first model which

would satisfy the need for computation economy without sacrificing

unduly the physics of the problem. 'i'he model adopted and modified is

18	 0
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one previously described by Gaut et al. (1975). A more accurate model
designed for the treatment of varying cloud raindrop distributions has
since been developed (Fowler et al., 1976).

II
2.2.2 Theoretical Considerations of the Extinction Model

The starting point for the model development is the unit volume
extinction coefficient which, for precipitation with a spectrum of drop
sizes N ( r), is given by:

0

YE 2ft(X , T),rE	 f	 N(r) Q 
E f

ift(AJ) , r 
I 

r dr	 (2-12)
0

where

Y E is unit volume extinction coefficient (neper m - 1

N(r) is drop size distribution function ( cm-3 11m-1

QE is the Mie efficiency factor for extinction

ft(X,T) is the complex index of refraction (dimensionless)

A is wavelength (cm)

r is drop radius (um)

and T is absolute temperature (*K)
yf
y

fi

Furthermore, according to Mie (1908)

Z	 2	 (2X	 1) Re Ca R (fl(X,T),q)
• QE 	 2 Z=l

b (n(xj),q))
	 (2-13)

iZ	 where a and b are the well - known coefficients in Cie Hie series, and q
t	 R4

[2wr/(X x 10 )] is the dimensionless drop size parameter. The
complex index of refraction of water at centimeter wavelengths is given
by the Debye Formula ( 1929):

E2	 0
+ i(A077 

+ C	 (2-14)

20
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Here e  and e . are the static and optical dielectric constants and Aois

the Debye relaxation wavelength.

Since the complex index of refraction, ti, is a function of tempera-

ture and wavelength, QE (S,a,r) must be specified for each A and T, as

well as for each r. Due to the series summation in Expression 2-13,

this is not an easy matter computationally.

2.2.3	 Approximations of the Extinction Model

An alternate form for the Mie extinction efficiency factor is given

by a power series expansion in the dimensionless drop size parameter.

QE(a,r,T) = gZ(a,T) + q 3 A(a,T) + q 4 B(A,T) + ...	 (2-15)

where

Z= 4 Im (-K} = 4 Im

	

	
2	 1

if2+2
 )

4	 ft  - 1 
A4 

+ 27 iS 2 + 38
A = - 5 Im 

ft  + 2	 2i[2 + 3

B = 8/3 Re 
it2+2
 )

This expansion is valid for all values of q.

The Staelin Approximation

I

	

ICJ	 When q << 1, that is, when A << r, Equation 2-15 reduces to:

QE	gZ(a,T)	 for	 q - o

This approximation basically defines the Rayleigh limit appropriate to

the scattering of microwaves by cloud droplets.

Substituting into Expression 2-12,

	

0	
YE =	 J N(r) gZ(a,T) 7rr2 dr = mF(a,T)	 (2-16)

0

21
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where

M = 41rp j N(r) r3 dr is the mass density of the

0

droplet ensemble

and

F(a,T) is a function of wavelength and temperature only. This

function has been evaluated empirically by Staelin (1966) for which the

expression becomes:

0.0122(291-T)
YE = 1.0016 x 2104 m 10	 (neper m-1 ).	 (2-17)

X

This says that the unit volume extinction of a nonprecipitating

cloud is proportional to its mass density (m) regardless of the nature

of the droplet distribution. This is not true, however, for a precipitating

cloud and this approach is not applicable.

Large Drop Approximation

Figure 2-10 shows a computation of QE as a function of q. It is

seen that as q i -, QE -* 2 (Geometric Limit). Therefore, for large

droplets which have r >> a, Q E can be approximated by 2.

ERT-Approximation - First Model

An average_ raindrop has a characteristic radius on the order of 103

um. At a wavelength of 1 cm, the q parameter is of order 1. The

Rayleigh limit is no longer valid and, furthermore, it must be recog-

nized that the extinction factor will vary orders of magnitude within

the size range of the rainfall droplets. For complete accuracy, the

full Mie Theory using Equation 2-13 should be used in this range of drop

sizes. This would be feasible if all raindrops had the same radius and

atmospheric temperature structure was isothermal. However, distri-

butions of droplet radius and atmospheric vertical temperature structure

make a layered computation using Equation 2-13 computationally complex.

,i
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The approach taken here was to assume that the Mie expression

(Equation 2-15) could be approximated by a small number of terms. 	 Also,

the number of terms included was assumed to be dependent on the size

range of the droplets such that the attenuation coefficient can be

expressed as:

YE	 E1 N (r ) Q	 (r,a,T) nr2 dr
V

0

r1	r2

= j	 N(r) QE (rd nr2 dr + j	 N(r) QE (r2) nr2 dr
0 ,©

r1

+	 ...	 ..	 N(r) QE	(r.)	 7rr2 dr	 (2-18)

r 

for n + 1 size intervals.	 Ideally, each of the above integrals should

be expressible in closed form.

Three size intervals or regions are assumed, each with its own

approximation to the Mie efficiency factor as follows:

QE	-	 qZ	 for 0 < r < r 

=	 qZ + Aq3 + Bq4	for r 	 < r < r 

=	 2	 for r > r 	 (2-19)

The quantities q, Z, A, and B are as previously defined.

The limits r 	 and r 	 are specified in the following manner.	 The

upper limit to the Rayleigh region is taken where the dimensionless drop

size parameter reaches 0.10.	 This is approximately the point at which

the q3 term in Equation 2-15 reaches 10% of the leading term in q.

Thus,

q 
	 =	 0.10

and

r 
	 =	 (1.59 x 102)7.

O

24	
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The lower limit of the large sphere region is located by specifying

the position of the optical resonance region. The general criteria

adopted is:

r =
ax104

21n

where

I h l	 >

With these approximations, Equation 2-18 becomes:

r

(R

	 r 

Y =	 1 gZN (r) wr2 dr +	 J	 (Aq3 + Bq4) N(r) nr2 dr
0

r 

m
+	 J	 2 N(r) nr 2 dr	 (2-20)

r
c

2.2.4 The Precipitation Drop Size Model

In order to Evaluate Equation 2-20 in closed form, the drop size

distribution must be specified. The particular form of the drop size

distribution N(r) is empirically determined and for the purpose of our

study, the most general specification for cloud droplet spectra is the

Deirmendjian (1964) distribution:

N(r) = ArC1 exp {-BrC2 }	 (2-21)

which characterizes the ensemble in terms of four parameters, two of

which (A and B) are scale parameters, the others being shape parameters.

Fair weather and stratus clouds conform nicely to this characterization.

A simple form of the Deirmendjian distribution may be used to describe

precipitation.

A review of the literature, especially that pertaining to radar

studies of precipitation, indicated that the Marshall-Palmer (1948)

model of drop size distribution for precipitation is the most appro-

priate for studies of satellite-measured brightness temperatures. The

25
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virtues of this model are that: (1) an empirical expression exists

which relates the drop size distribution (useful in computations of

radiative interaction) to the instaneous rainfall rate (useful in synoptic

studies), and (2) the form of the expression is essentially that of the

Deirmendjian expression used in modeling cloud droplet distributions.

The Marshall-Palmer model is expressed as:

k
N(r,R)	 k1 exp - {k2
	

3
rR	 (2-22)

where

k	 16.0 x 10-6

k	 8.156 x 10
3

2

k3	0.21

and

N(r,R) is the number density of particles per unit size range (cm 
3 
Um

1

r	 is the droplet radius (Um) for a given rain rate

R	 is the rainfall rate (mm/hr)
f.

This is essentially the Deirmendjian distribution with parameters:

A	 k1
k

B	 k2 R 3

C	 0

C2

0 14

U A

0# A

26
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2.2.S The Combined Model

®

	

	 Substituting Equation 2-22 into Equation 2-20 and evaluating, the

extinction coefficient becomes a function of wavelength, temperature,

and rainfall rate:

7
	

0.21n
Y(A,T,R) =	 E Cn Fn (A) Gn (A , T) Hn (a,R) R	 (2-23)

n=1

where

C  are constants

and

FN , GN , HN are functions of the indicated variables.

n ra

ry•

p[
p

C
[M[

K

1^	

w
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3. INVERSION PROCEDURE OPTIMIZATION

.IQ
3.1 Summary of the Inversion Procedure

The inversion-simulation procedure implemented at GSFC has been

described in previous reports such as Gaut et al. (1972) and Willand

et al. (1974). This procedure is shown schematically in Figure 3-1.

Briefly, the approach uses pvysical and interaction models operating on

an ensemble of atmospheric data (including clouds and precipitation) to

create a correlation matrix or "D-Matrix" between brightness temperatures

V at selected frequencies and geophysical parameters of interest. This

D-Matrix is then used to "infer" from actual radiometric measurements

the values of the corresponding geophysical parameters.

In the normal procedure, the correlation matrix (and the D-Matrix)

^-)	 include a priori statistics most representative of the annual climatic

condition appropriate to the region of interest. As a consequence, the

ensemble would include both cloudy (and precipitating) and clear sky

conditions, calm and rough seas, and varying profiles of atmospheric

temperature and water vapor, with the statistical distribution of these

conditions determined by climatology. An acceptable argument can be

made that with this kind of "mixed" D-Matrix, the inversion results,

on a seasonal basis, must be optimized in a statistical sense. However,

for any given situation, especially when the general condition (clear,

cloud; calm, rough) can be independently determined, a D-Matrix can be

constructed, again based on a priori data, which would be more repre-

sentative of the actual situation. Given this specially tailored

D-Matrix, it is argued that better inversion results can be obtained.

Tests were performed to evaluate the improvement in inversion

results using specially tailored D-Matrices. The analysis addressed

only the two simple situations: clear and cloudy conditions. A deci-

0	 sion scheme, based on differences between two channels, was used to

differentiate between clear and cloudy skies. This decision scheme was

also tested. Results are presented in this section.

Another aspect of the inversion procedure investigated was the way

®	 in which the correlation matrix is formed. Normally, the matrix con-

sists of only linear terms. The question was raised, and addressed, as

to the effect of including nonlinear terms in the correlation.

0	 29
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3.2 D-Matrix Selection

V

	

	 A simple experiment was conducted to test the effects of D-Matrix

selection on inversion results. In this experiment, two different

D-Matrices were generated, each from an ensemble of 60 sets of geophysical

data. The first D-Matrix was generated using data sets which contained

U
	 clouds (and/or precipitation). The second D-Matrix was generated using

only data with clear sky conditions. The parameters and channel frequencies

used are shown in Table 3-1.

These two D-Matrices were applied to two ensembles of simulated

brightness temperatures generated from a different set of geophysical

conditions. Again, the first data set included only cloudy conditions,

while the second was generated from clear sky data only.

The inversion results from this experiment are shown in Table 3-2.

The important data in this table are the Figures of Merit, which is

defined as the improvement of the inversion results (in a statistical
I

f
sense) over that obtained from "guess" based on climatology. The

Figures of Merit show that when a D-Matrix is used with the appropriate
t

data set (clear sky D-Matrix with clear sky data, cloudy D-Matrix with

cloudy data), the inversion results, in a statistical sense, are quite

good (that is, Figure of Merit > 1.5). These results do not seem to

degrade appreciably in the case when a cloudy D-Matrix is applied to

I P ^
clear sky conditions. However, in the case in which a clear sky D-Matrix

k is applied to cloudy data, the degradation in the inversion results is

dramatic, with Figures of Merit < 1 indicating results which are worse

than a climatological guess.

Analysis was performed to arrive at a clear/cloudy condition discrimination

such that an operational procedure for D-Matrix switching can be

implemented. The choice of this discrimination was limited to the

channels identified in Table 3-1. The analyses included single and

multiple-channel approaches. The final selection made is given below:

[TB (31.4 GH Z ) - TB (19.35 Gli )] < 20.5°K clear
z

> 20.5°K cloudy

a

C	 31
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TABLE 3-1

MICROWAVE CHANNELS AND GEOPHYSICAL PARAMETERS

USED IN THE INVERSION ANALYSIS

Channel
Number Channel

Freq.	 Angle	 Pole
GHz

1 1 1.42	 00	 H

2 2 4.99	 380	 V

3 3 10.69	 380	 V

4 4 10.69	 380	 H

5 5 19.35	 00	 H

6 6 22.235	 00	 V

7 7 31.4	 00	 V

8 8 37.0	 380	 V

9 9 37.0	 380	 H

Parameter
Number Parameter Units

10 1 Sea Surface Temperature °K

-111 2 Wind Speed m sec

12 3 Integrated Water Vapor (W.V.) g cm-2

13 4 Integrated Liquid Water g cm-2

14 S Mode Radius um

-315 6 W.V.	 0-500m g m

-316 7 W.V.	 S00-1500m g m

17 8 W.V. 1500-3500 m g m-3

-318 9 W.V. 3500-11000m g m

l

C) k.,d

t_? I

G I -1

C) 1

r^
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The rationale for selecting this threshold condition is given in

Figure 3-2 in which simulated values of [T.(31.4 GH Z) - TB (19.35 GHZ)J

are plotted against cloud liquid water content. The data indicate

minimum effects due to varying surface roughness (or windspeed), and have

a defined intercept of ti 20° to 21°K for liquid water content approaching

zero. This technique was tested in the cases to be discussed in

Section 4 and showed that accurate decisions were made in all situations.

3.3 Nonlinearities

The D-Matrix, as employed in the statistical regression algorithm

for estimating the geophysical properties of the ocean surface and the

intervening atmospheric conditions, has as its formulation:

= S(P., d) . C7 1 (a , d)
	

(3-1)

where d is the prediction data vector, and P is the predicted parameter

vector. This formulation does not consider any nonlinear relationships

between d and P. The quality of the estimated parameters can be degraded

by the existence of nonlinear relationships if they are not treated

properly. Any nonlinearities must be treated in the formulation of the

D-Matrices in order for them to be considered in making parameter

estimates.

The existence and impact of nonlinear relationships were inves-

tigated by providing for the incorporation of nonlinear terms in the

generation of the D-Matrices. A data basis function vector ^(d) was

defined such that ^(d) could be composed of linear and squared terms of

d. For example, t might contain the following representations of d:

m l = d2

^2 = d3

m 3 = d4

^4 = d 
2

^6 = dl

The D-Matrix is now defined by:

Q	 (P, ^)	 l (1, 0	 (3-2)
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This provides the capability to investigate the correlation of

nonlinear representations for any prediction data vector and the results

obtained for inferences with the data basis function so defined.	 O

Also, a parameter basis function vector 6 (P) was defined such that

6(P) could be composed of linear or nonlinear representations of P.

Several nonlinear representations are included for use at the pro-

grammer's option.

The D-Matrix, defined by the new data basis function vector and the

new parameter basis function vector, is:

Q = _(6, o • C 1 (^1 0)	 (3-3)	 CJ

The capability now provided allows for the expression of any or all

terms of 6 and o as linear or nonlinear terms. If all linear terms are

chosen, the definition of the D-Matrix is once again that of Equation

(3-1). In general, no significant differences in retrieval results were

obtained for inversions employing nonlinear representations for either

the data basis functions or the parameter basis functions. However, no

attempt was made in this study to define which nonlinear representations 	 ^I

are most valid in describing data-parameter relationships. Incorporation

of nonlinearities (such as, an exponential response of brightness

temperature to liquid water) should produce improved inversion results.

3.4 Channel-Parameter Correlations

Correlation coefficients between channel brightness temperatures

and geophysical parameters are now provided as part of the improved

inversion system. These correlations are of interest in themselves, and 	 ^_)

are also useful as the basis for optimizing (that is, minimizing) the

channel configuration for any given set of geophysical parameters.

While no actual optimization analysis was performed during the course of

this study, the correlation coefficients were analyzed to understand

better the contributory effects of each of the channels to the acquisi-

tion of the varicus parameters.

Figures 3-3 through 3-5 show the correlation coefficients between

the set of channels identified in Table 3-1 and the parameters of sea's

surface temperature, surface wind speed, integrated water vapor, and

l-_`_
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integrated liquid water content. The correlations with sea surface

temperature (Figure 3-3) are generally low for all frequencies with the

maximum values found in the surface channel at 4.99 GHz. Physically

this is realistic, for the very low frequency channels are most sen-

sitive to salinity, and wind effects become strong beyond 6 GHz.

j	 Furthermore, the strongest physical dependence of microwave radiation

on sea surface temperature occurs at the frequency of 6 GHz. The correla-

tions for the cloudy case appear higher than those for the clear, but

i	 this is due merely to artificial (random) correlations and is not

B_ - i
statistically significant.	 In fact, the only correlation which is

clearly statistically significant for a sample this size is the corre-

lation between 4.99 GHz and the surface temperature.

The high correlation between surface wind speed and brightness

temperature under clear conditions (Figure 3-4) explains much of the low

correlation with the surface temperature. 	 As shown in the previous

section, wind speed effects cause large changes in the emissivity of the

ocean surface, and thus cause far greater changes in surface brightness

temperatures than occur due to variations in surface temperature. 	 Thus,

channels which are highly dependent on surface emission show a much

stronger dependence on wind speed than on temperature.	 The maximum

sensitivity to this parameter, under clear conditions, occurs at

10,69 GHz with correlations dropping to 0.6 only for the surface channel

(4.99 GHz) and the water vapor channel 	 (22.235 GHz).

The sensitivity of the channels to wind speed changes significantly

when cloudiness occurs, resulting in decreasing correlation with increas-

ing frequency, and indicating that the 1.42 GHz channel is the most

useful for inferring wind speeds. 	 Figure 3-5, showing the high correla-

tion of frequencies greater than 10 GHz with liquid water, explains this

loss of sensitivity.	 It also shows the strong correlation of frequen-

cies near 22.235 GHz with water vapor when r ►o clouds are present and the

reduction in sensitivity to water vapor when liquid water is also found.

In data sets of this size, correlations greater than 0.2 are

statistically significant at the 95-percent level, indicating that

channels with higher correlations should provide data for inversion of

that parameter. Thus, sea surface temperature can be inferred from

channels at 1.42 and 4.99 GHz under all atmospheric conditions, although
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the lack of a really strong correlation might impair the results some-

what. All channels provide data on wind speed under clear conditions,

while frequencies lower than 11 Gfiz provide good information when clouds

are present. Water vapor is best inferred from channels between 22.235

and 31.4 GHz with channels at 19.35 and 37 GHz also aiding inversions

under clear conditions. For inversion of liquid water contents, the

frequencies of 31.4 and 37 Miz are the most useful, while frequencies

between 10.69 and 22.235 GHz should also provide excellent data.

The effects of these correlation coefficients on inversion results

can be seen more clearly in the elements of the D-Matrix. Tables 3-3

and 3-4 show the D-Matrices computed using, respectively, clear sky and

cloudy data. As can be seen from the D-Matrix elements, the 1.42 and

the 4.99 GHz channels are dominant in the inversion for sea surface

temperature, although other channels contribute because of the very

small variation in correlation with frequency. The wind speed coef-

ficients are also easily interpreted in light of the correlations, for

the 10.69 GHz channels and the channels greater than 30 GHz are the key

data sources for the winds under clear conditions. When clouds are

present, the 1.42 and the 10.69 GHz channels become dominant.

The dependence of water vapor and liquid water on individual

channels is small when clouds are present. Under clear conditions, the

D-Matrix relies upon the 22.235 GHz channel to define the water vapor

content, but this channel alone ceases to be sufficient when liquid

water is sensed. Little frequency dependence is seen in the correlation

with water vapor for frequencies between 1.42 and 19.35 . GHz and for fre-

quencies between 22.235 and 37 GHz, and the difference between these two 	 i

frequency ranges is quite small. Likewise, there is little sensitivity

to frequency in the liquid water correlations when the frequency exceeds

10 GHz. Thus, for cloudy conditions, the D_-Matrix relies on the cor-

relations between the atmospheric parameters and all the selected

frequencies to separate and infer liquid water and water vapor. In a

channel optimizaton approach, however, fewer of these channels could be

used, since it is apparent that many of the frequencies supply similar,

possibly redundant information. In fact, inversion results might be

improved through more careful channel selection.

38



0

701 Ift

Clear
06	 vertical	 3r
0 horizontal	 300—
0	 nadir	 0°

Cloudy
A vortical	 3r
0	 horizontal	 38°
0	 nadir	 00

1.42 4.99 1010.69 19.35 20 22.35	 30 31	 37 40	 U

1.0

.8

-.2

-.4

Z .6

LL
U.
W .40
0
Z
0so

.2

W

0
C.)	 0

FREQUENCY(GH.)

Figure 3-3 Correlation Coefficients Between Microwave Measurements and Sea Surface Temperature



701244

1.0

h,

.8

Z .6
W_

V
LL
LL
W
0 .4

Z. 0
H

A Q .2O J
W

v 0

t^
i

-.2

-4

Clear
Q	 vertical	 380
0	 horizontal	 38°
0	 nadir	 0°

Cloudy
a	 vertical	 38°
8	 horizontal	 38°
0	 nadir	 0°

0 1.42	 4.99	 1010.69	 19.35 20 22.35	 3031	 37	 40	 50

FREQUENCY (GHZ)

Figure 3-4 Correlation Coefficients Between Microwave Measurements and Surface Wind Speed



0	 O	 0

70116!

O

1.0

.8

.62
W_

U
U.

.4
O
U

2
_O

F' .2a
J
W
Q
tt

U 0

2

4

 ^ Cloudy

/
vertical	 38°

®	 horizontal	 38°
nadir	 0°
Liquid water

i

I Clear
Q	 vertical	 38°
q 	 horizontal	 X-
0	 nadir	 0°

Cloudy
vertical	 380
horizontal	 38°
nadir	 0°
Water vapor

01.42 4.99	 10 10.69	 19.35 20 22.25	 30 31.40	 37	 40
	

50

FREQUENCY (GHZ)

Figure 3-5 Correlation Coefficients Between Microwave Measurements
and Atmospheric Water Vapor and Liquid Water 	

A



e

TABLE 3-3
	

°sm

CLEAR -- NO NOISE -- D-MATRIX

O-MATRIX FCR ORIGINAL DATA BASIS FUNCTIONS
THE-FIRST	 6 STATISTICALLY ORTHOGONAL-BASIS FUNCTIONS WERE USED

2.7351E 02 1.2933E 02 2.2125E 02 -5.9611E 01 -4.6274E 00 -9.2070E Ol
9.3375F. 00 7.7646E 01 1.8233E Ol -2.1373E 02 1.8688E 02 8.9087E 01
5.644?E-01 7.3219E 00 3.5385E 00 -1.8019E 00 -4.0351E 00 -1.2500E 00
0.0	 0.0	 0.0	 .0.0	 0.0	 0.0
0.0	 0.0	 0.0	 0.00.0	 0.0
3.0106E 00 1.4658E 01 2.3059E 01 -2.3137E Of -2.5752E 01 -1.3201E 01
1.918SE 00 7.7936E 00 1.4158E 01 -1.3626E-0l -2.3194E 01 -6.4049E 00
7.77171C-Ol 2.0412E 00 2.3113E 00 -4.5779E 00 -3.3224E 00 9.5652E-01

is	 8.8812E-02 5.3521E-01 6.7655E-01 -4.8913E-01 3.152 4E-01 rA•3213E-04N

,.96311E 01 -L•3919E 02 -3.9628E 01 1.2315F. 02
2o3531Lr Ol -1.0877E 02 -1.80SSE 02 2.OS20E 07'
8.2595E 00 -2.9928E 00 - T.9000E-01 3.9390E 00
DOD	 0.0	 D00	 000
0.0	 000	 000	 0.0
1.4215= 01 -1.1756E 01 8.9165E 00 4.7308E Of
1.4979= Of -5.5450E 00 9.5878E OC 2.9013F Ol
1.9039E 01 -4.9831E 00 -5.3500E 00 -2.6199E 00
3.0110E 00 -1.1384E 00 -1.4994E 00 -1.0718E 00

TABLE 3-4

CLOUDY -- NO NOISE -- D-MATRIX

n-MATPIN rfR nRIGINAL DATA PAS1S FUNC:TInNS
THE FIRST	 8 STATISfICALLV ORTHOGONAL OASIS FUV--T

?.7351F 0? 1.1267F 02 9.0201E 01 -8.6562°_
0.1357F 00 2.71 1 `IF 0? -3.3414F  O l -4.5359E
1.o6eaF 00 1.193OF Cl	 1.957.1E 00 -1.2576E
^.?5770-07 -1.9374 2 03 -7.7515E-01 2.0233E
4.0644E Ol S.SB43E 03 1.5GOAF 03 -5.9027E
4.1186F 09 6.4141F 01 -7.0144E 00 -6.4100_
J.:14%r 00 7.5570E Ol 2.6239E On -7.742iE
t.a141r 0) 3.6761F 01 6.1914F 00 -3.9727=
7.1006E-01 -d.2537E 00 5.3637E-01 0.5167E

IOVS WERE USED

01 -1.7881E 01 4.7283E 01 -1.75131 01 5.5122E 012.128SE Ol -4.8933E 01
O2 2.7547.E 02 1.i573F 01 9.5330_-Ol -2.4319E Of -3.3702F 01 3.1675E 01
01 2.0602F.-01 8.0944F. 00 9.7903[ 00 -1.8tO4F 01 1.5450E 01 -2.93750 00
00 -2.1185E-01 -I.1079c 00 4.3354E-Ol -1.99B9F-Ol -7.2649[-01 7.658')_^-01
03 3.1143E 02 4.35290 03 -1.3373E 03 3.9567E 02 3.1314E 03 -2.416?E 03
01 6.4319E 00 7.5205E Ot 6.2299E 00 -9.694?F 01 1.062f.F 02 -2.6013 0. 01
Ol 7.151BE 00 7.4563E 01 6.9561= 00 -8.2015E OL 9.8554E 01 -2.910.3E 01
01	 1.1357F 00 2.4552E 01	 1.15831 01 -3.1030 0 01 3.4711E 01 -1.113OF 01
00 -1.54 614E 03 -1.0709E 01 7.8213= 00 1.5341E 03 -8.8808E 00 4.6759E 00

Y
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4. INVERSION OF BESEX DATA

4.1 The BESEX Experiment

The Bering Sea Expedition (BESEX) was a joint US-USSR scientific

study to obtain detailed information on the atmospheric and geophysical

characteristics of the Bering Sea area. A large portion of the inter-

national waters was designated as the test area; within this area the

NASA Convair 990, a Russian IL-8, the American icebreaker STATEN ISLAND,

and the Russian weather ship PRIBOI all made extensive measurements

during February and March 1973. One phase of the study investigated the

response of microwave sensors to clouds with varying liquid water con-

tent. Another aspect of the experiment attempted to determine the

response of various microwave frequencies to differences in sea state,

U	 sea ice and sea surface temperature; the ships were used to make con-

current observations of the appropriate surface parameters. The com-

plement of microwave radiometers (down looking) on board the aircraft is

that identified previously in Table 3 - 1. A more detailed description of

.^	 the experiment is given by Wilheit et al. (1974). This experiment

provides good data to test the new models and inversion algorithms. For

this purpose, one set of data, that for 3 March 1973, was selected for

detailed analysis.

4.2 Meteorological Conditions for 3 March 1973

The experiment performed on 2 and 3 March 1973 sampled an extensive

0
cloud system associated with a dissipating warm occlusion and a develop-

ing secondary cyclone (Figure 4-1). The measurements were made at

altitudes of 0.16, 2, 4 and 11 km along a narrow strip from 55 0W, 171°W

(pointnt A, Figure 4-1) to 58 . 3 0 , 172.5°W (pointnt B, Figure 4-1), a flight

path almost perpendicular to the primary frontal system and intersecting

the secondary low centered at 55°N and 170°W.

On the day prior to this flight, the primary low had been located

near 49°N, 173 0E with the associated frontal system trailing to the

O	
southeast and beginning to occlude. This cyclone moved northwestward to

S4 0 N, 1700 E during the twenty-four hours previous to the flight, with no

O	 43
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change occurring in the central pressure.	 At the same time, the frontal

system swung well to the northeast into the Bering Sea test area and

® advected a significant amount of warm air ahead of the system. 	 This

warm air mass was forced aloft as the system became occluded. 	 At the

time of the experiment (2300 GMT, 2 March 1973 - 0230 GMT, 3 March

1973), the front was thoroughly occluded, and no traces of the warm air

►̂ mass were found at the surface.

Shortly before 0000 GMT, 3 March 1973, vorticity advection behind

the front led to the development of a secondary cyclone near 55°N,

170°W.	 This cyclone effectively cut off most of the warm air advection

associated with the primary front, and began feeding warm, moist air

into the surface layer beneath the second cold air mass.	 The resulting

air mass contrasts encountered during the flight are shown in a schematic

representation based on that developed by Danielsen (1959) in Figure 4-2.

The associated cloud system and the aircraft measurements of wind are

shown in a similar format in Figure 4-3. 	 (Since these analyses represented

a composite of four hours of measurements during which the system moved

50 km north, the exact position of the front varies with the time of

microwave sampling.)

The observations made from the Convair 990 showed that the clouds

were structured into a multilayered stratiform system with maximum cloud

heights below 10.5 km. North of 57 0N, a cirrus canopy topped the system

between altitudes of 8 and 10 km with a thin layer of cirrocumulus

forming its base at 7.5 km. Below this canopy was a layered mass of

altostratus and altocumulus which stretched as far south as 56.5°N and

formed the top of the cloud mass throughout most of the warm air sector.

Underneath this layer was one of dense altostratus topping at 6 km as

far south as 56.6 0N, then dropping to 4.5 km as the cloud penetrated the

secondary cold front. In the regions where clouds occurred above the

altostratus, the layers were frequently separated by a thin strip of

clear air.

Below 4 km, the stratiform pattern began to change to a cumuliform

situation. Multilayered altocumulus was found between 2 and 4 km from

58°N almost as far south as 55°N; beneath this stratocumulus, cumulus

and stratus fractus were found from 2 km down to below 100 m in altitude.

These clouds were quite cellular in structure below 200 m, and the cells

0	 45
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often appeared to grow and dissipate during the experiment. The upper

cloud levels were far more stable in structure, with differences due

more to the slow northward motion of the front than to marked internal

changes.

The Convair 990 sampled this cloud system at four different levels,

11 km, 4 km, 2 km and 160 m. The high level pass was above the entire

cloud mass, from south to north. Upon its completion at 57.5 0N, the

aircraft descended through cirrus, cirrostratus and altostratus to

4 km and the sampling of cloud droplets was begun. The 4-km pass was

made primarily in the altostratus layer, although the stretch between

56.5°N and SON occurred in the clear air strip separating the altostratus

from stratocumulus, and only clear air was encountered south of 55.6°N.

The cloud particle samples of altostratus made at this level indicated

that the cloud was at least partially frozen north of 56.5°N, and

primarily liquid south of SON (Fowler et al., 1974).

Near 55°N, the aircraft turned and descended to 2 km to begin a

northward run through the stratocumulus. This leg of the flight was

continuously in cloud and was characterized by very limited variability

in the cloud parameters along the flight path. The final pass of the

experiment was made through the cloud base at 150 m; this started at

57.5°N and terminated at 55°N. The cloud liquid water content varied

considerably at this level. Heavy snow, limited visibility, and easterly

winds of 35 to 40 knots were reported north of 56°N. South of this

boundary, a change to rain and decreasing winds showed the penetration

of the low level warm air mass. This change in air mass was also

indicated by the termination of the main cloud system and the occurrence

of small cumulus cells.

A small segment, ten minutes of data (230454 to 231512 GMT), from

this flight was selected for analysis. The location of this data

segment is shown in Figure 4-2 as lying between SS°N and S6.S°N.

During this time the aircraft was flying at 11 km (3500 ft) and passed

over the location of the surface frontal position (note wind shift).

For most of the flight, the aircraft was flying over an unlercast of

stratocumulus, altocumulus and altostratus layers. The winds, extra-

polated to the surface, were estimated to be of the order of 30 to 3S kts

(approximately 15 m sec -1). Since no ice was encountered along this flight
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segment, and since the flight path was near the edge of the pack ice,

the sea surface temperature is estimated to be of the order of :73±1°K,

a value which agrees well with infrared surface measurements made on

clear days during the BESEX Experiment.

4.3 Microwave Measurements

The brightness temperatures measured by the downward ' cooking radi-

ometers for this flight segment are shown in Figure 4-4 1 The data shown

include correction for the viewing geometry as illustrated in Figure 4-5.

v

	

	 However, no calibration correction has been applied to the data. It has

been pointed out in Wilheit et al. (1974) that the data have systematic

offsets. A procedure was developed, based on comparison between

simulated and measured values, to arrive at an objective set of bright-

ness temperatures for the full complement of channels.

The offsets were arrived at as follows: a set of 100 environmental

profiles (including clouds and surface properties) were generated using

data corresponding to the climatological regime of the BESEX area and

cloud models applicable to the frontal system shown in Figure 4-3.

These profiles were used to simulate the corresponding set of 100

brightness temperatures for each of the channels. The means of the

simulated data were compared with the averaged value of the measured

data with the differences adopted as the channel offsets. These offsets,

the system noise values, and the sample means and standard deviation,

are shown in Table 4-1. It is interesting-to note that with very few

exceptions the standard deviations are less than 10% of the corresponding

mean values, and that the only extreme offset is found for the 4.99 V

channel, a channel which was malfunctioning (personal communication,

Wilheit, 1975).

4.4 Inversion Results

U

The selected segment of microwave measurements was inverted using

the models and techniques described in previous sections. The a priori

data consisted of February and March soundings from St. Paul's Island

a

a	 49
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TABLE 4-1

MICROWAVE RADIOMETER OFFSETS AND SYSTEM NOISE

Theoretical Actual Data (a-b)

No. Channel Average a Average a Offset System Noise
^K ) ^K ) l^K ) NK ) l^K ) lsK )

1 1.42 H 99.66 0.63 99.58 .91 -5.9 1.0

2 4.99 V 120.02 1.69 152.7 1.62 -32.7 3.8

3 10.69 V 132.50 4.41 139.5 3.28 -7.0 0.8 it

4 10.69 H 98.64 6.05 95.57 3.49 3.1 0.8

5 19.35 H 138.59 9.57 152.71 2.5 -14.1 1.0

6 22.235 V 155.59 11.57 153.9 3.63 1.7 1.6

7 31.4 V 165.66 15.44 102.06 3.42 3.6 1.0
E

8 37.0 V 199.87 15.35 189.76 3.85 10.1 3.8 j

9 37.0 H 173.44 21.68 161.76 4.82 11.7 1.1

}!

L!
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(57°N, 170.2°W) collected from 1957 to 1963 while cloud models were

derived from cloud particle samples made during the flight on 3 March

1973. The sea surface parameters were randomly selected from wind

statistics compiled from the St. Paul's Island data, and from the Bering

Sea temperature statistics measured during the Bering Sea Experiment.

Two sets of atmospheric models were derived from the a priori data, one

set representing only clear conditions and the other, only cloudy conditions.

Simulation of the brightness temperatures corresponding to these

models used the new sea surface roughness and precipitation models.

Noise was randomly added to the completed radiometric measurements to

simulate the system noise shown in Table 4-1. The atmospheric models
1

and simulated brightness temperatures were then correlated and "clear"

and "cloudy" D-Matrics were generated. No nonlinearities were incorporated

in the D-Matrix generation but the use of clear and cloudy D-Matrices

permitted a test of the D-Matrix switching approach discussed in

Section 3.2.

Figure 4-6 shows the parameters of sea surface temperature, surface

3
wind speed, integrated liquid water and integrated water vapor content

}	 inferred from the measured microwave data. In all samples the measured

atmospheric conditions were cloudy and the inversion procedure accurately

selected the cloudy D-Matrix for use. Agreement of the inverted

parameters with the meteorological conditions seen in Figures 4-2

and 4-3 is quite good, although the sea surface temperature results do

appear to be slightly high and more variable than would be expected.

This is due primarily to the malfunctioning of the 4.99 GHZ channel,

identified by the correlation analysis as providing the optimum informa-

tion on sea surface temperature. Thus the data set lacked a strong

sea surface temperature channel (see Section 3.4). However, the

divergence of the values from the a priori mean of 273.5°K demonstrates

that the D-Matrix is responding to the measured data despite the absence

of strong channel-parameters correlations.

On the other hand, the inverted wind speed values i-e excellent

due to the strong correlation of the 10.69 GHz channels with this

parameter. The decrease in wind speed which occurred with the wind

E
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direction shift at the front is clearly delineated at the proper location.

(Because of system movement north during the experiment, the schematic

shown in Figure 4-3 shows the front at 56°11, its location at the end of

the mission. At 2300 GMT it was nearer 55.5 0N.) Wind speeds north of

the front are generally 12 to 15 m sec -1 corresponding well to the winds

of 12 to 17 m sec-1 deduced from aircraft measurements. The increase in

wind speed south of the frontal zone is also indicated by the first few

points.

The inversions for integrated water vapor and integrated liquid

It	 water content show very reasonable values. For these parameters, it was

difficult to determine precise values from the available aircraft data

although Wilheit et al. (1974) estimates water vapor contents of 1.3 to 	 I

1.8 m 3 and liquid water contents of 0.015 to 0.05 g m_
3 
 for this time

segment. However, both the liquid water and water vapor values do show

their maximum in the frontal zone, which was the region of maximum

convective activity. They also clearly indicate the decrease in total

moisture content and the absence of liquid precipitation associated with

the cold surface air north of the front. In general the water vapor

contents change little within each of the three air masses indicated, but

do show the air masses boundaries in agreement with meteorological

I	 observations. The liquid water values are higher than would be expected,

but do respond sharply to.the small, variable convective cells

imbedded in the surface layer, and thus the variability in liquid water

provides another means of identifying the frontal zone and identifying

I	
the decreases with increasing stability north of the front.

The inversion of this selected data segment demonstrates several '

factors. First, the relative utility of the selected channel package in

inferring the four parameters discussed above agrees with the correla-

tion analysis presented in Section 3. The best results are obtained for

surface wind speed, with good results also found for integrated water

vapor and liquid water. More difficulty is encountered in the determina-

tion of sea surface temperature, due to the absence of a channel strongly

correlated with that parameter. For all parameters the inferred results

departed significantly from the a priori mean and corresponded well to

the trends seen in the measured brightness temperatures (Figure 4-4).
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Even more encouraging, the parameter values reliably reflect the

meteorological conditions which they represent. Finally, the inversion

results demonstrate the reliability of the new models and techniques,

with the value of the new sea state model most clearly identified.

'?!
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S. CONCLUSIONS AND RECOMME3DATIONS

During this study, a new sea state roughness model has been

developed which incorporates recent microwave measurements better to

define the relationship between surface wind speed and radiometric

brightness temperatures. This model takes into account the differences

in emissivity between white caps and foam streaks and shows good agree-

ment with empirically derived values. A precipitation model has also

been included in the microwave simulation package to extend the cloud

model to incorporate the effects of large drops. The approach taken

avoided the computational difficulties of a full scattering treatment by

expressing the Mie extinction efficiency factors as a power series and

approximating that series by a small number of terms. These terms were

then used with Marshall-Palmer drop size distribution to derive an

expression for the extinction coefficient as a function of rainfall

rate.

The inversion procedure was also modified to permit the incorporation

>	 on nonlinear parameter-data relationships and to allow D-Matrix switching,

using information provided by microwave measurements. This option

allows the selection of the D-Matrix most appropriate to data inversion

(such as, clear/cloudy sky, land/sea background) by comparison of brightness

ay,	 temperature differences found between channels appropriate to the selection

criteria. In an analysis of the value of this option in switching

between clear and cloudy D-Matrices, inversion results were seen to be

improved over those derive,! through use of a mixed clear/cloudy D-Matrix.

The inversion package was further modified to permit the output of the

inter-correlations between parameters and data. This change greatly

facilitates the interpretation of the relationship between microwave

measurements and geophysical values and the optimization of channels for

a	 inversion.

Inversion of microwave data measured during the Bering Sea Experiment

demonstrated the reliability of the above models and inversion procedures.

It also demonstrated the value of the microwave system carried by the

NASA Convair 990 aircraft in measuring meteorological parameters such as

surface wind speed and atmospheric water vapor and liquid water content

and in defining many of the characteristics of a frontal system.
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It is recommended that further study be done on the type of

nonlinearities which best express parameter-data relationships and

improve inversion results. It is also recommended that the correlati

now available be used to select the optional subset of microwave

channels for inversion of the desired parameters and that the value c

this approach be demonstrated through the use of both simulated and

measured data. Finally, it is recommended that surface models representa-

tive of land and sea-ice conditions.now under development be incorporated

into the simulation package to permit an analysis of the usefulness of

microwave sensors in inferring a number of surface parameters such as

soil moisture or surface vegetation coverage.

Q
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