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MARTIAN ROVING VEHICLE FROJECT
CORNELL PROGRAM OBJECTIVES

1. TEST PLATFORM

An Operating Roving Vehicle

2. NAVIGATION COMPUTER AND CONTROLS
To Allow Vehicle to Navigate Autonomously to a
Designated Target Within 100 Yards.
a. PDP-8 Computer with Control Algorithm
Mounted External to Vehicle But
b. Up-Link and Down-Link Radio Computer to
Simulate On-Board Computer Contiol.

¢. Direction Sensor

3. OBSTACLE SENSORS
To Detarmine Non-Negotiable Obstacles

a. Microwave Radar to Detect Obstacles Rising
Above Terrain Level at Distances Up to
Thirty Feet.

b. Tactile Obstacle Sensor to Sense Discontinuties
in the Terrain Below the Terrain Level. Also
as a Short Range Detector of Obstacles Rising

Above the Terrain as a Back-Up to the Microwave

Radar Sensor.
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Summary

The roving vehicle simulator has been operated autonomously under
control of the simulated on-board computer. With the microwave radar
obstacle sensor mounted and operating, it was able to avoid a student
placed in its path and to return to the originally assianed direction
when that path was clear. The tactile obstacle sensor was able to
detect impassible obstacles while allowing the vehicle to negotiate
passible obstacles. Analysis of the automatic brake system led to

a recommendation that further work did not look promising.




II.

III.

V.

TABLE OF CONTENTS

11 o o [F Tk T T 1
Specification Of TasKS..uuiiieeeriiiiiinieeniiieerennneeesnennecnenvaanas 2
A. System Design and AnalysSiS....oiuieiiineienerneneonnesonnsnsonsnnnns 2
B. Microwave Obstacle Sensor.......cvieiiierieiinriitnineneinncnnnenanas 2
C. Tactile Obstacle Sensor......c.iiiiiiiiiiiiiiiiereeesennreeennannnnas 2
D. Attitude SeNnSiINg....c.iitiiriiiiininireeetaesasocosasassassosssarencas 2
E. Automatic Brake.......oveiieiieriniiienineneiineeensnrnssncnanennass 3
F. Vehicle Operability and Motion Control.......civiiniiiinennnnnnnnnen 3
Summary Of ReSUTES...ovveuniiiieeriieiereniinseeernnerannnessanasncsanss 4
A. System Design and AnalysSiS....ieivereiiiriiennneesnncrarenorannonans 4
B. Microwave Obstacle Sensor.......cceiiieiiiireiiernecanenenennannanss 15
C. Tactile Obstacle SenSOr....iceteiiieeritieiiirernnseernnnacnanannns 31
D. Attitude Sensing........... P 32
E. Automatic Brake.....oeeviieiriiiiinierrnnniesrennnseeennnasancnonns 39
F. Vehicle Cperability and Motion Control........cccivvviiiiniinnnnnn, 42

Educational Considerations. oo eeeereenereeenneeeeoneeososossasssansas 44



I. INTRODUCTION

The development of prototypes of candidate obstacle detection
systems has been set up with the additional objective of providing
a realistic design experience for Master of Engineering students at
Cornell University. The project has included students from both the
Schools of Electrical and Mechanical Engineering. In addition to
the obstacle detection systems, an autonomous roving vehicle has been
designed, built and tested under limited conditions.

The unmanned exploration of the planet Mars will probably require an
autonomous roving vehicle since the signal transit time is too great
for continuous monitored control. For a vehicle to rove autonomously,
it must either be able to handle all obstacles encountered or be able
to determine which obstacles it encounters can be negotiated and which
cannot. The second alternative appears more probable especially in
light of the lack of knowledge of the Martian terrain. A main thrust
of this project has been obstacle detection from vehicle mounted

sensors.




[I. SPECIFICATION OF TASKS

A. System Design and Analysis. The roving vehicle simulator

controlled by :he PDP8 computer through radio links with informaticn
gathered from the obstacle sensors and attitude sensors is a complex
system with numerous interactions between subsystems. Overall system
design and analysis is to be used to define subsystem interactions
and to set requirements and performance standards for the subsystems.

B. Microwave Radar Qbstacle Sensor. The microwave radar obstacle

sensor is designed to detect obstacles protudina ahove the terrain
ahead of the vehicle. The sensor is to determine the direction and
distance to all obstacles in time for the vehicle to avoid collision

by stecering around the obstacles. The output of the sensor is to be
sent by the radic link to the computer for use in the navigation
avgorithm. The objective is an operating sensor mounted on the

vehicle. Alternate scanning means, such as a phased-array antenna, will
be investigated.

C. Tactile Obstacle Sensor. The extended front cab concept

of a tactile sensor is to be developed to provide quantification of
obstacles, both positive and negative, with a readout compatible with
the radio link and the computer. An algorithm for using the sensor
output in the computer is to be developed.

D. Attitude Sensing. The previously develcped attitude sensors

are to be tested and incorporated into the autonomous operation of the

vehicle.



E. Automatic Brake. A braking system is required to stop the

vehicle and to hold the vehicle on slopes. Redesign and test of the
brake is proposed. The brake is still not to require external logic
to control its action.

F. Vehicle Operability and Motion Control. The rover simulator

vehicle is to be maintained fully operational to permit installation
and on-board testing of the various sub-systems. It will be operated

under control of the computer, through the radio data link.




III. SUMMARY OF RESULTS

A. SYSTEM DESIGN AND ANALYSIS
The operational support vehicle with the microwave radar

obstacle Sensor Mounted is shown in Figure 1. The vehicle layout is
shown in Figure 2. The system schematic is shown in Figure 3.
The vehicle as shown in Figure 1 was operated on level ground on which
obstacles (student project members) were placed. The vehicle was
given a heading which could not be maintained due to the obstacles.
The microwave radar sensor determined that obstacles were present and
the computer set up an avoidance procedure which cleared the obstacles
and then returned to the assigned heading.

With the microwave radar sensor shut off the vehicle was operated
in a mede which simulated failuve of the microwave radar sensor.
The tactile sensor outputs were compared to the maximum tolerable
1imits for each sensor in the on-board control section. In this mode
the vehicle was stopped when a non-negotiable obstacle was encountered
while it was not stopped when neaotiable obstacles were encountered.
These obstacles were simple steps and ramps of various heights.

The original concept of MRV, its general lay-out, and the need
for and the functioning of the various sub-systems has been described

at length in previous reports, so will not be repeated in detail here.
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Included in this report are block diagrams of the several principally
elecrical sub-systems. The block diagrams, some of which have
appeared in provizus reports, are largely self-explanatory.

The vehicle lay-cut, shown in Figure 2, shows the locations of the
principal sub-systems. The layout was dictated by operational restric-
tions, and by the need to distribute the weight equitably.

Figure 3 shows the ertire MRV system, including the radio-linked
base station, as well as the MRV itself. It is probable that a light-
weight computer could be carried aboard the vehicle, thus avoiding
the need for this particular radio link. Currently, mini-computers
of sufficient capability were not available to the project, however.

Figure 4(a) and 4(b) shows the data 1ink, through which the signals
sensed by the vehicle are transmitted for‘processing in the computer,
and the resulting computer commands returned to the vehicle for
execution. The sensed data is from gyros, strain gauges, radar, etc.,
as suggaested in the venicle software, Figure 5.

Fiqures 6,7, and 8 depict the gyro, motor control, and steering
control systems, respectively. The start-up of the gyro involves
starting the spin motor, caging, and uncaging, all in proper sequence.
Motor control has to do with the six driving wheels that move the
vehicle. The vehicle motion and steering controls have an inherent
feed-back through the directional gyreo, which senses and reports the
vehicle heading.

The vehicle mounted control and processing elements are shown in

Fiaures 9(a), (b), and (c).
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B. MICROWAVE RADAR OBSTACLE SENSOR.

The radar obstacle detector, shown in Figures 10(a), 10(b), and
10(c), Radar Lay-out, is a frequency-scanned microwave unit employing
separate transmitting and receiving antennae. The transit time of the
frequency-scanned microwave signal results in the received frequency
being different from that of the wave then being transmitted. The
frequency difference can be obtained from the output of a mixer, and
is proportional to the transit time, and so is proportional, also, to
the distance to the obstacle which is reflecting the received signal.
See Figures 11 and 12. At the heart of the scanned oscillator is a
Gunn..diode and varactor tuner, shown in Figures 13(a),13(b), and 14.
The radar IF amplifier, Fiqure 15, shows a circuit of operational
amplifiers for processing the output of the mixer.

The radar obstacle detector is used to scan some 19 paths fanning
out across the area covering nearly 180° ahead of the vehicle. The
obstacle avoidance system showing how the radar information is used in
the over-all system is shown in Figure 16.

The generalized ana1og-to-digitél conversion scheme is shown in
Figure 17 while Figure 18 shows the computer hardware for data
processing.

A1l the sub-section assemblied depicted in the block diagrams and in
the circuit diagrams have been designed, constructed, and tested. They
have been operated successfully, both as individual units and as parts

of the entire MRV.

15
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Some attention was given the problem of pattern recognition involving
multiple reflections produced by the radar when several objects were
in the scan area at the same time. It appears that a Fourier integral
technique could be developed to locate the objects individually,
but time did not permit a serious study of the situation.

C. TACTILE OBSTACLE SENSOR.

The tactile obstacle sensor uses the extended front cab, Figure 2,
as the sensor. Signals are generated by the strain gage bridges
mounted on the main beams of the vzhicle fore and aft of the center cab.
Two modes of operation are used. The normal update mode interrogates the
sensor every wheel revolution. However, obstacles may be encountered
between update positions. Therefore limits to each sensor output have
been set up and whenever these are exceeded the motor interrupt is
activated. Since this operation is "safe", the vehicle may be able
to negotiate the obstacle encountered. After the motor is stopped,
the algorithm is to be used to check the negotiability of the obstacle.
If the obstacle is negotiable the vehicle is to be started. Since the
full algorithm was not included in the computer program, this action
has not been tested.

The strain gage electronics subsystem is shown in Figure 19.
A maximum of flexibility has been included so that the system can
be adjusted to function correctly. The overall sensor system electronics
is shown in Figure 20.

Photographs of the sensor tests are shown in Figures 21,22, and 23.

The tactile sensor algorithm is shown in Figure 24, The alcorithm uses

R
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inputs of the bending strain in the main beam, tensional strain in the
nain beam Poth fore and aft of the center cab, and pitch and roll
angles of the front cab. The vehicle parameters of Kb’ Kt1’ Ktz’ A and B
must be inserted in the program. These constants are the linear
coefficients to convert bending strain to obstacle height, and to
convert torsional strains to angles of the front and rear cabs relative
to the center cab. The constant A is the distance between the center
cab and the rear cab and B is the distance between the front cab and
the center cab.

These calculated and measured values are then compared with experimen-
tally determined 1imits in the sequehce shown in Figure 24 to determine

the appropriate action to be taken.

D. Attitude Sensing
A11 work on attitude and direction sensing was incorporated

under the general system development.
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TACTILE TORSION TEST
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Figure 24

THE TACTILE SENSOR ALGORITEHM
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E. Automatic Brake
For the simple idealized model, Figure 25, descending a hill with

the motors operating, an on-off brake characterized by Figure 26(a)
resulted in an oscillating motion. Configurations (b) and (c) gave
constant speeds somewhat higher than the level terrain speed. This
would constitute satisfactory operation if no time lag occurred in
the braking operation. Curves of speed vs. time for the vehicle
starting on a downhill slope of o degrees are whown in Figure 27.
(These are for the curve shown in Figure 26(c).)

A study wasthen made of a system in which the brake release cam
had to rotate a finite amount to release the brake While errors have
been found in the program, the conclusion that this cundifion leads
to unstable operation seems to hold. The indexing phenomena may
result in the brake being - and remain%ng - completely disengaged.
This concept should not be pursued further unless a different physical

system is devised.
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F. Vehicle Operabiliby and Motion Control.
Most of the aspects of this topic have been covered in Section

A. However, one aspect of vehicle operation was changed to avoid
problems with excessive vibration of the vehicle. The metallastic
wheels used previously were made with a Tow soring rate to give a large
footprint. This resulted in a large amplitude of oscillation whenever -
the vehicle operated on any surface except a finished flat surface.

To overcome this,a new wheel was designed and built. This wheel
is basically a belted radial tire built integraily with the wheel.
The design concept used 90 spring steel bands deflected to the shape
shown in Figure 28. The inner and outer hoops were to be 0.040 inch

thick aluminum sheet. Attachment of the bands to the hoops near the

ends of the hoops should reduce pinch point problems to a negliaibie
condition.

The wheels actually built were limited by availability of materials
and construction facilities. Twenty-six bands were used and the belt
was a 2 inch wide strip. The bands were not as severly deformed
in assembly as had been proposed. However, the wheels performed
so well that no thought had to be aiven to limitations from the wheels

either in load capacity or vibration.
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IV. EDUCATIONAL CONSIDERATIONS

This project has inspired considerable enthusiasm and effort among
those of our students who are interested more in produc ing engineering
devices that work than in understanding the theory behind engineering
devices. The drive of the aeneral student group, inspired and encour-
aged by student manager Jerome Stockton, to produce an operating
vehicle with an operational microwave radar obstacle sensor and a
working tactile sensor was well beyond previous groups working on the
project. Further, they were able, by reason of much extra effort,
to achieve their goals even though they were somewhat short of the
totally autonomous vehicle able to navigate to an assigned taraget
through an. unknown obstacle field.

The experience of working with other engineers as a team is one
somewhat foriegn to our educational system which discourages cooperation
to insure that each student has done his own work in order to build his
competence. After some hesitation in this new environment, most of
the project members enjoyed the priveledge of working together to
achieve the project goals. Cooperation between the electrical students
and the mechanical students was not as good since they often.found
themselves attacking the problem in different ways. This was a good
experience for both as engineering projects rarely fit just one
engineering discipline.

The students have found industry interviewers to be intrigued by
their participation in the project. This experience improved their

opportunities for employment and will increase their value in their jobs.
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