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| INTRODUCTION

The concept of Strainrange Partitioning as a method to analyze complex
creep-fatigue problems was Introduced in 1971 (1). Since this time the method
has exhibited a capability of unifying this complex field. In particular, the
method can treat problems related to fatlgue data obtained under thermal=
mechanical strain-cycling Involving the simultaneous independent variation of
both strain and temperature (2,3). Thus, complex thermal-mechanical problems
can be analyzed on the basis of true variation of service conditions, rather
than requiring simplified assumptions that may miss some of the essence of the
problem,

Within the framework of this method, cyclic damage is contributed by
each of the four generic partitioned strainranges in proportion to the amount
of each present within a cycle. Once the basic strainrange components that
underlie the partitioning concept have been determined, a suitable damage rule
can then be applied to determine the life more precisely. In most general
types of thermal-imechanical cycling where loading is usually gradual, both
creep and plastic types of strain may occur within the same time increment, and
it becomes Important to separate them so that a partitioning analysis can be
made.

The present study was undertaken in order to further characterize the
partitioned strainrange behavior of three alloys including ASTAR 811C, 304
stainless steel and A-286 by providing additional data for evaluation of the
strainrange partitioning concept. This objective was accomplished by testing
specimens utilizing the ''step stress'' method of experimental strain separation
(4,5). This procedure provided results and data which may be used to enable the
partitioning of the inelastic strainranges previously established during the
high temperature, low cycle fatigue testing of the three alloys as reported in
NASA CR-121001 and CR-13452L4 prepared by TRW Inc.

h—



11 EXPERIMENTAL PROCEDURES

—

The three alloys studied in the present program included ASTAR 811C,
304 stainless steel and A-286. Tests were conducted on solid hourglass
specimens provided by the sponsor and shown schematically in Figure 1,
Equipment and procedures used for the vacuum thermal fatigue tests in this
program have been described in detail in previous reports (6,7). Briefly,
the test apparatus was designed to perform completely reversed push-pull
fatigue tests on hourglass specimens using independently programmable tem-
perature and strain control, Temperature was programmed using a thyratron-
controlled 50 KV AC transformer for direct resistance heating of the specimen,
while diametral strain was controlled directly using an LVDT type extensometer
coupled to a programmable closed loop electrohydraulic servo system. The
measured specimen diameter was compensated electronically for thermal expan-
sion so that net mechanical strain was controlled directly. Load, diameter
and temperature were recorded continuously, with load-diameter hysteresis
loops being obtained at periodic intervals during each test.

The test program involved both isothermal and thermal-mechanical strain
cycling for the purpose of separating the creep and plastic strain components
of the inelastic strains that develop during cycling. All testing was con-
ducted at a frequency of 0.0065 Hz in an ultrahigh vacuum environment below
10-7 torr. The specific conditions of temperature and strain cycling for
each test are listed in Table 1. It will be noted that a number of these
tests duplicate conditions tested previously at TRW as reported in NASA CR-
121001 and CR-134524 written by TRW Inc. (6,7). For identification purposes
the original test numbers for these particular tests have also been included
in Table 1. A schematic representation of the five basic types of thermal-
mechanical cycles applied in this study are presented in Figure 2.

The "step-stress'' method of experimental strain separation was utilized
to study the partitioned strainrange behavior of the ASTAR 811C, 304 stain-
less steel and A-286 alloys. This technique has been described previously (1-4).
Briefly, within the framework of this separation method, the component of steady-
state creep for the entire period of the time interval considered in a thermal-
mechanical strain cycling nroblem is taken as the ''creep' strain for use in
strainrange partitioning analysis. All the remaining inelastic strain, whether
instantaneous or whether occurring as primary creep, is taken to be ''plasticity.
The partitioning procedure is to halt, temporarily, the terperature and strain
programmers at a selected point in a stabilized hysterisis loop. The servo-
controller is then switched from strain to load control and the stress and
temperature are held constant at the stabilized values associated with the
selected point while creep strain is measured a: a function of time. This
condition is held until a reiysonably linear cree. rate is established, This
is taken as an approximation to the steady state creep condition. The
controller is then switched back to strain control and the strain and tem-
perature programs are resumed. A series of step-stress levels are thus
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Table |

“"Conditions of Temperature and Strain C cltng for Fatigue Tests
Conducted In the Present Pro ogram

Previous
Specimen Specimen
Alloy Number Test Condition Number Previous Report
ASTAR 811C AlD 1SOT 2100°F (1149°C) Al NASA CR-121001 (6)
" A15D TCIP 2100°F (1149°C) ~400°F (204°C) AlS " " "
" A21D TCOP 400°F (204°C)2100°F (1149°C) A21 " " "
" AL9D TCIPS 2100°F (1149°%C) .~ 400°F (204°C) AL9 " " "
304 Statnless A21A 1SOT 1200°F (649°C) ALA NASA CR-134524 (7)
" " A24LA TCIP 1200°F (649°C) " 600°F (316°C) (*) -
" " A25A TCOP 600°F (316°C). ~1200°F (649°C) (*) -
" " A22A TCIPS 1200°F (649°C) ~ 600°F (316°C) A7A NASA CR-134524 (7)
" " A23A TCOPS 600°F (316°C).  1200°F (649°C) AllA " " "
A-286 L57 1SOT 1100°F (593°C) Lk NASA CR-134534 (7)
" L6} TCIP 1100°F (593°C) 600'F (316°C) (%} NASA CR-134524 (7)
" L62 TCOP 600°F (316°C)--1100°F (593°C) (%) -
n L58 TCIPS 1100°F (593°C). 600°F (316°C) L50 NASA CR-134524 (7)
" L59 TCOPS 600°F (316°C)_ -1100°F (593°C) L5 " " "

(*) These Tests will be conducted to failure.
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investigated both in the tensile and compressive portions of the hystereslis
loop. A plot of the steady-state creep rate versus time within the thermal-
mechanical cycle that each stress and temperature was encountered Is then
constructed. By integrating the area under this curwe, the amounts of
tensile and compressive steady-state creep strain can be determined. Areas
above the horizontal axls represent tensile creep, those below the horizontal
axis represent compressive creep.



111 RESULTS AND DISCUSSION

A. Test Results

The dynamic stress-strain response (hysteresis loops) for all the fatigue
tests conducted In this program are presented In Appendix A along with each
typical load-time trace and strain-time trace for the cyclically stabilized
condition. The Isothermal loops were basically symmetrical for all three mate-
rials. Assymetric hysteresis loops were developed with all four types of thermal
fatigue cycles. This assymetry was caused by the difference in flow stress at the
different temperature levels. In-phase cycling generated loops having a net
compressive stress, while out-of-phase cycling caused a mean tensile stress to be
developed.

The results of the fourteen fatigue tests conducted in this program are
presented in Table 1l. For clarity of presentation, these results have been
grouped according tc the various alloys tested (A-286, 304 stainless steel and
ASTAR 811C). The present study was undertaken in order to determine the parti-
tioned strainrange behavior of these alloys and to provide additional data for
evaluation of the strainrange partitioning concept. In order to accomplish these
objectives, a number of the tests were conducted duplicating conditions tested
previously at TRW (6,7). These particular tests were not conducted to failure in
the present program and are specifically identified in Table 11I.

The data presented in Table |l include axial total strainrange, axial
elastic strainrange, axial inelastic strainrange, axial stress range and number
of cycles to failure (complete specimen separation) for those tests continued to
fallure. The step stress method of strainrange partitioning was utilized to
accomplish partitioning of the inelastic strainranges. Within the framework of
this method, a plot of the steady state creep rate versus time within a thermal
mechanical cycle that each stress and temperature was encountered was constructed,
By Integrating the area under this curve, the amounts of tensile and compressive
steady state creep strain were determined. The component of steady state creep
for the entire period of the time interve) considered was taken as the ''creep'
strain for use in strainrange partitioni:g analysis. The various plots of steady
state creep rate versus time for the thermal-mechanical cycles applied in this
study are shown in Figures 3-16,

In order to illustrate this strainrange partioning method as applied to a
complicated thermal mechanical problem, consider the plot of steady state creep
rate versus time during in-phase thermal-mechanical strain cycling 2100°F (1149°C)
LOO°F (204°C) applied to ASTAR 811C (Specimen A15D) shown in Figure 4. Areas
above the horizonta! axis represent tenslle creep, those below the horizontal
axls represent compressive creep. In this example the compressive steady state
creep strain is 0,00005. Since the compres-ive inelastic strain is 0.02560, the
compressive plastic strain is 0.02555. Similarly, the tensile creep strain as
determined from Figure 4 is 0.00018. Since the tensile inelastic strain is also
equal to 0.02560, the tensile plastic strain is 0.02542. Hence, the partitioned
strainranges are:

Aepp = 0.02542, Aecc = 0,00005, Aecp = 0.00013



Spec imen

Alloy Numbe r
ASTAR BliC AlD
ASTAR B11C AlSD
ASTAR B11C A21D
ASTAR BlIC AM3D
304 Stainless A21A
304 Stainless A26A
304 Stainless A25A
304 Stainless A22A
304 Scainless A23A
A-286 Ls?
A-286 L61
A-286 L62
A-286 LS8
A-286 L59

Yable i1

Summary of Fatigue Results for Stu!nnq_._ Partltloni? fests Conducted
on " tainless -

Test Axlal Strainrange Axial Pnrtltioned Inglastic Strainranges
Condition Jotal Elastic Iinelastic Acpg decq Scpe
1507 0.028433 0.003A5 0.02088 0.0207% 0.00014 - -
2100°F(1143°C)
TP 0.03082 0.00522 0.02560 0.02542 0.00005  0.00013 -
2100°F (1149°C)%
VOD*F (204°C)
TCOP 0.02543 0.0047)  0.02063 0.020A8 0.00003 - 0.00006
%00°F (204°C)%
2100°F (11497C)
TCIPS 0.02345 0.00508 0.01837 0.01826 - 0.00011 -
2100°F(1149°C)=
&00°F (204°C)
1sov 0.02359 0.00277 0.02082 0.02068 ©.00014 - -
1200°F (649°C)
e 0.01746 0.00352 0.01392 0.013%0  0.0000) 0.00001 -
1200°F (649°C )
600°F(316°C)
TCoP 0.02880 0.00332 0.025A8 0.02535 0.0001 - 0.00012
600°F(316°C)%
1200°F (649°C)
TCIPS 0.0262% 0.00312 0.02312 0.02292 - 0.00020 -
1200°F (649°C)"5
600°F (316°C)
TCOPS 0.02309 0.00336 0.01972 0.01956 - - 0.0L016
600°F(316°C)
1200°F (649°C)
(507 0.02502 0.00762 0.01740 0.01729  0.72001) - -
1100°F (593 .
T 0.02535 0.01120 0.01M15 0.01408 0.00007  0.00002 -
1100°F(Sy ;%
600°F(316°C)
TCOP 0.03006 0.01150 0.01856 0.038%  0.00005 - 0.00010
600 F{J16°CYe
1100°F (593°C)
TCIPS 0.03439 0.01299 0.02)%  0.0212) - 0.00017 -
1100°F(593°CY>
600°F(316°C)
TCOPS 0.02780 0.01176  0.01566 0.01558 - - 0.00008
500°F (316°C)~

1100°F (593°C)
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where be;, = Aepp + be . * Accp s (0,02560

The strainrange fraccions are:
Fop = 8ep/oc;, = §0222 = 0.993
Fo = 8e,/be; = G-08g5 = 0.002
Fcp = Aecp/Aeln - %f%gg%%-- 0.005

B. Analytical Procedure for the Development of the Basic Strainrange
Fart‘t!oning Life Relationships

From the strainrangs partitioning data presented in “able || and utilizing
the procedure described in the above example the strainrange fractions can be
calculated for each of the fatigue tests conducted in this study. The strain
fractions are used in the Interaction damage rule which can be written as:

Fop+ Fec # Fec v Fpe | 1
N N N N N

PP cc cp pc pr

where N._, N, N_, N__ are the cyclic lives determined from entering the life
retatloﬂghlpgcat Spstrgfnrange equal to the entire Inelastic strainrange of the
cycle of interest, and N__ Is the predicted life. A schematic illustration of
typical partioned stralnpznge-llfe relationships used to characterize material
in the creep-fatigue range are shown in Figure 17 (8). These curves are based
upon the use of the interaction damage rule and the interpretation of creep
strain as being only the steady- state (secondary) portion of the time-dependent
strain, Once the life relationships for a specific material are known, the
predicted fatigue 1ife for a complicated thermal mechanical strain cycle can be
determined by partitioning the hysteresis loop into its inelastic components and
applying the interaction damage rule.

In the work done previously at TRW on ASTAR 811C, 304 stainless anc A-
286 (6,7), however, the basic life relationships were not determined prior o
conducting complex thermal mechanical strain cycling tests. An example of tie
typical results obtained In these programs is shown in Figure 18, which includes
the fatigue life results for A-286 alloy. Similar results are also available
for ASTAR 811C and 304 stalnless. The :asults of these programs can be utilized
along with the strainrange data developed in the present study to develop the
basic life relationships by analytical methods. For evample, assume that the
basic life relationships for A-286 can be represented in reality by the series
of lines shown In Figure 17. At this point, however, only the pp line is known
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with any degree of certainty. This pp line can be taken to be the isothermal
data presented in Figure 18 for tests conducted at 1100°F (593°C) and 0.65 Hz.
It is generally accepted that in tests conducted at this frequency essentially
all of the damage is of the pp type. In the isothermal test duplicated in the
present program at 0.0065 Hz, however, damage consists of both the pp and the cc
type. The interaction damage rule for this complicated test can be written as:

F_F

1 cc
Ne R * 5
pp cc

where N, is the failure time from the 0.0065 Hz isothermal line from Figure 18
for the particular inelastic strainrange, F__ and F__ are the partitioned in-
elastic strainranges given in Table |l and RP is th& failure time from the 0.65
Hz isothermal line from Figure 18 for the paP?icular inelastic strainrange. This
equation can now be solved for N__. In this example (Specimen L57), the in-
elastic strainrange is 0.01740, F€ = 0.99, F__ = 0.01, and N__ = 350. Solving
the equation for Ncc indicates a YBlue of 20 gecles to failurB? This data point
thus represents theé first point on the assumed cc line for A-286 shown in Figure

17.

To extend this analytical method further, consider the TCIP test con-
ducted for A-286 at 0.0065 Hz reported in Table Il. In this particular test,
pp, cc and cp damage were all obtained. The interaction damage rule for this
thermal mechanical test can be written as:

! F F F
= PR, _SC, ¢P
N h 3 "
f np cc ¢
71 of the strainrange fractions are known. N_ and ii__ can be obtained from the

data presented in Figure 18 for A-286. Although onlypgne data point exists for
the N__ line, a first assumption can be made as to the slope of this line and

N c c§§ then be estimated at the particular inelastic strainrange. The equation
cdn now be solved for N resulting in a first approximation for this value. In
a similar manner, the pgptitioned TCOP test results can be used to develop a
first approximation for the N line. Utilizing the partitioned strainrange
data for each of the tests coRducted on A-286, ASTAR 811C and 304 stainless
during the present study, an iterative or step-wise analytical development of
the basic life relationships can be established for these alloys.

C. Creep Stress Versus Steady State Creep Rate Plots

Plots of creep stress versus steady state creep rate for each specimen
are shown in Figures 19-21. Each figure contains data for a particular alloy
and includes the steady state creep rates measured at the various temperatures.
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ASTAR 811C, Specimen A15D, TCIP Type Test.
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