THREE-DIMENSIONAL VECTOR MODELING AND RESTORATION OF FLAT FINITE WAVE TANK RADIOMETRIC MEASUREMENTS

by
William M. Truman
Constantine A. Balanis

FINAL REPORT

Prepared by
Department of Electrical Engineering
West Virginia University
Morgantown, West Virginia 26506

For
National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia 23665

Grant No. NGR 49-001-056

May 15, 1977,

Acknowledgement

The authors would like to thank John J. Holmes of the Department of Electrical Engineering, West Virginia University, for his two-dimensional calculations and helpful recommendations. Also we wish to thank J.W. Johnson, Dr. W.L. Jones, B.M. Kendall, and Dr. C.T. Swift of NASA, Langley Research Center for their interest, availability of measurements, and valuable discussions throughout the project.

The project was supported by NASA, Langley Research Center, Hampton, Virginia, under Grant No. NGR 49-001-056.

TABLE OF CONTENTS

Page
Acknowledgements ij
List of Figures v
List of Tables ix
I. Introduction 1
II. Theory 5
A. Brightness Temperature 5
B. Antenna Temperature 10
C. Wave Tank Geometry and Theory 14

1. Z-axis Normal to Radiometer Antenna Aperture 16
2. X-axis Normal to Radiometer Antenna Aperture 34
D. The Gain Functions 55
E. Cross-polarization 58
III. Inversion 60
A. Two-dimensional Approximation 60
B. Three-dimensional Inversion 66
IV. Computations and Results 71
A. Finite Wave Tank 71
3. Direct Computations of Antenna Temperatures 76
4. Inversion (Restoration) Techniques for Antenna Brightness Temperature 79
B. Infinite Tank (Ocean) Data 171
V. Conclusions 181
Bibliograpiny 183

Appendices
I. Transformation of Coordinates 185
II. Restoration Computer Program 191

LIST OF FIGURES

Figure Page

1. Water brightness temperatures 11
2. Radiometer and finite wave tank configuration at NASA Langley Research Center, Hampton, Virginia 15
3. Z-axis coordinate system orientation for vertical polàrization 18
4. Z-axis coordinate system orientation for horizontal polarization 19
5. Overhead view of wave tank with coordinates for the Z-axis geometry 26
6a. Coordinate system transformation describing vertical scanning (β variations) for the Z-axis geometry 32
6b. Coordinate system transformation describing horizontal scanning (β variations) for the Z-axis geomietry 33
6. X-axis geometry and vector alignment on the wave tank surface 35
7. X-axis geometry and parameters describing the vector alignment dot products 37
8. Wave tank configuration to determine the θ limits of integration for the x-axis geometry 43
9. Wave tank scanning plane to determine the \emptyset limits of integration for the X-axis geometry 44
11a. Overhead view of the unit vector alignment on the wave tank surface for the Z-axis geometry 48
11b. Overhead view of the unit vec.tor alignment on the wave tank surface for the X-axis geometry 49
12a. Z-axis antenna geometry 56
Figure Page
12b. X-c̄xis antenna geometry 57
10. Principal plane power pattern of the 8λ corrugated horn antenna 74
11. Principal plane power pattern of the 12λ corrugated horn antenna 75
12. Continuous incidence angle restoration results for the finite wave tank (antenna $=12 \lambda$ horn, $\rho=13$ feet, three iterations) 83
13. Smoothed $\beta=0$ restoration results for the finite wave tank (antenna $=12 \lambda$ horn, $\rho=13$ feet, three iterations) 85
14. Continuous incidence angle restoration results for the finite wave tank (antenna $=8 \lambda$ horn, $\rho=13$ feet, three iterations) 89
15. Smoothed $\beta=0$ restoration results for the finite wave tank (antenna $=8 \lambda$ horn, $\rho=13$ feet, three iterations) 90
16. Continuous incidence angle restoration results for the finite wave tank (antenna $=12 \lambda$ horn, $\rho=26$ feet, three iterations) 94
17. Smoothed $\beta=0$ restoration results for the finite wave tank (antenna $=12 \lambda$ horn, $\rho=26$ feet, three iterations) 95
18. Continuous incidence angle restoration results for the finite wave tank (antenna $=8 \lambda$ horn, $\rho=26$ feet, three iterations) 98
19. Smoothed $\beta=0$ restoration results for the finite wave tank (antenna $=8 \lambda$ horn, $\rho=26$ feet, three iterations) 99
20. Restoration of SPLINE interpolated data for the finite wave tank (antenna $=12 \lambda$ horn, $\rho=13$ feet, one iteration) 119
Figure Page
21. Restoration of linearly interpolated data for the finite wave tank (antenna $=12 \lambda$ horn, $\rho=13$ feet, one iteratior) 120
22. Restoration of SPLINE interpolated data for the finite wave tank (antenna $=8 \lambda$ horn, $\rho=13$ feet, three iterations) 121
23. Restoration of linearly interpolated data for the finite wave tank (antenna $=8 \lambda$ horn, $\rho=13$ feet, one iteration) 122
24. Restoration of SPLINE interpolated data for the finite wave tank (antenna $=12 \lambda$ horn, $\rho=26$ feet, three iterations) 123
25. Restoration of linearly interpolated data for the finite wave tank (antenna $=12 \lambda$ horn, $\rho=26$ feet, one iteration) 124
26. Restoration of SPLINE interpolated data for the finite wave tank (antenna $=8 \lambda$ horn, $\rho=26$ feet, three iterations) 125
27. Restoration of linearly interpolated data for the finite wave tank (antenna $=8 \lambda$ horn, $\rho=26$ feet, one iteration) 126
28. - Restoration of the finite wave tank data with random error and no interpolation (antenna $=12 \lambda$ horn, $\rho=13$ feet, one iteration) 139
29. Restoration of the finite wave tank data with random error and no interpolation (antenna $=8 \lambda$ horn, $\rho=13$ feet, one iteration) 140
30. Restoration of the finite wave tank data with random error and no interpolation (antenna $=12 \lambda$ horn, $\rho=26$ feet, three iterations) 141
31. Restoration of the finite wave tank data with random error and no interpolation (antenna $=8 \lambda$ horn, $\rho=26$ feet, three iterations) 142
Figure Page
32. Restoration of the finite wave tank data with random error and interpolation (antenna $=12 \lambda$ horn, $\rho=13$ feet, one iteration) 151
33. Restoration of the finite wave tank data with random error and interpolation (antenna $=8 \lambda$ horn, $p=13$ feet, one iteration) 152
34. Restoration of the finite wave tank data with random error and interpolation (antenna $=12 \lambda$ horn, $\rho=26$ feet, one iteration) 153
35. Restoration of the finite wave tank data with random error and interpolation (antenna $=8 \lambda$ horn, $\rho=26$ feet, one iteration) 154
36. Measured total antenna temperatures and restored water brightness temperatures for the NASA LaRC wave tank 172
37. E-plane power pattern of the 7.55 GHz Cape Cod Canal antenna 176
38. H-plane power pattern of the 7.55 GHz Cape Cod Canal antenna 177
39. Measured total antenna temperatures, restored and empirical water brightness temperatures for Cape Cod Canal experiment 178
40. Cross-coupling functions in the three-dimensional analysis 180
I-1. General three-dimensional rotation 186

LIST OF TABLES

Table PageI Computed antenna tenperatures for finite wavetank system ($\rho=13$ feet, Antenna $=12 \lambda$ horn,$f=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% / 00$) $\ldots \ldots . . .77$II Computed antenna temperatures for finite wavetank system ($\dot{\rho}=13$ feet, Antenna $=8 \lambda$ horn,$f=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284 \mathrm{~K}, \mathrm{~S}=0 \% / 00$)78
III Computed antenna temperatures for finite wave tank system ($\rho=13$ feet $_{3}$ Antenna $=12 \lambda$ horn, $f=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284 \mathrm{~K}, \mathrm{~S}=0 \% / 00$) 80
IV Computed antenna temperatures for finite wave tanksystem ($\rho=13$ feet, Antenna $=8 \lambda$ horn),$10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% 00$)81
V Restored antenna temperatures for finite wave tankwith three restorations (antenna $=12 \lambda$ horn,$\rho=13$ feet $, f=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}$,
$S=00 / 00$) $\ldots \ldots \ldots$$S=0 \% / 00$)86
VI Restored antenna temperatures for finite wave tank with one restoration (antenna $=12 \lambda$ horn, $\rho=13$ feet, $f=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% \% 0$) 88
VII Restored antenna temperatures for finite wave tank with three restorations (antenna $=8 \lambda$ horn, $\rho=13$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}$, $S=0 \% / 00)$ 91
VIII Restored antenna temperatures for finite wavetank with one restoration (antenna $=8 \lambda$ horn,$\rho=13$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}$,$S=0 \% \% 0$)92
IX Restored antenna temperatures for finite wave tank with three restorations (antenna $=12 \lambda$ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}$, $S=0 \% / 00$) 96
X Restored antenna temperatures for finite wave tank with one restoration (antenna $=12 \lambda$ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \mathrm{o} / 00$) 97
XI Restored antenna temperatures for finite wave tank with three restorations (antenna $=8 \lambda$ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}$, $S=0 \% \% 0$) 100
XII Restored antenna temperatures for finite wave tank
with one restoration (antenna $=8 \lambda$ horn, $\rho=26$
feet, $f=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% / 00$) 102
XIII Restored SPLINE interpolated antenna temperatures for finite wave tank with one restoration
(antenna $\bar{\circ} 12 \lambda$ horn, $\rho=13$ feet, $f=10.69 \mathrm{GHz}$, $\mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% 00$) 103
XIV. Restored SPLINE interpolated antenna temperatures for finite wave tank with three restorations (antenna $=12 \lambda$ horn, $\rho=13$ feet., $f=10.69 \mathrm{GHz}$, $\mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% 00$) 104
XV Restored linearly interpolated antenna temperatures for finite wave tank with one restoration (antenna $=$ 12λ horn, $p=13$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}$, $S=0 \% 00)$ 105
XVI Restored linearly interpolated antenna temperatures for finite wave tank with three restorations (antenna $=12 \lambda$ horn, $\rho=13$ feet, $f=10.69 \mathrm{GHz}$, $T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \mathrm{o} / 00$) 106
XVII Restored SPLINE interpolated antenna temperaturesfor finite wave tank with one restoration (antenna $=$$8 \lambda$ horn, $\rho=13$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}$,$S=0 \% 00)$107
XVIII Restored SPLINE interpolated antenna temperaturesfor finite wave tank with three restorations(antenna $=8 \lambda$ horn, $\rho=13$ feet, $f=10.69 \mathrm{GHz}$,$\mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \mathrm{c} / 00$)108
XIX Restored linearly interpolated antenna temperatures for finite wave tank with one restoration (antenna $=8 \lambda$ horn, $\rho=13$ feet, $f=10.69 \mathrm{GHz}$, $T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% \% 0$) 109
XX Restored linearly interpolated antenna temperatures for finite wave tank with three restorations (antenna $\overline{\bar{o}} 8 \lambda$ horn, $p=13$ feet, $f=10.69 \mathrm{GHz}$, $T_{m}=284 \mathrm{~K}, \mathrm{~S}=0 \% 00$) 110
XXI Restored SPLINE interpolated antenna temperatures
for finite wave tank with one restoration (antenna = 12λ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}$, $S=0 \% / 00$) 111
XXII Restored SPLINE interpolated antenna temperatures for finite wave tank with three restorations (antenna $=12 \lambda$ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}$,
$T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% 00$) 112
XXIII Restored linearly interpolated antenna temperatures
for finite wave tank with one restoration (antenna $=$ 12λ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}$, $S=0 \% \% 0$) 113
XXIV Restored linearly interpolated antenna temperatures
for finite wave tank with three restorations (aritenna $=12 \lambda$ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}$, $\mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% \% 0$) 114
XXV Restored SPLINE interpolated antenna temperatures
for finite wave tank with one restoration (antenna $=$ 8λ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}$, $S=0 \% \% 0$) 115
XXVI Restored SPLINE interpolated antenna temperatures for finite wave tank with three restorations (antenna $\overline{\bar{\circ}} 8 \lambda$ horn, $p=26$ feet, $f=10.69 \mathrm{GHz}$, $T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% \% 0$) 116
XXVII Restored linearly interpolat.ed antenna temperatures for finite wave tank with one restoration (antenna $=$ 8λ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}$, $S=0 \% / 00)$ 117

XXVIII Restored linearly interpolated antenna temperatures for finite wave tank with three restorations (antenna $=8 \lambda$ horn, $\rho=26$ feet, $f=10.69$ $\mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=00 / 00$)118

XXIX Restored antenna temperatures for finite wave tank with random error, no interpolation, and one restoration (antenna $=12 \lambda$ horn, $\rho=13$ feet, $f=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% / 00$)130

XXX Restored antenna temperatures for finite wave tank with random error, no interpolation, and three restorations (antenna $=12 \lambda$ horn, $\rho=13$ feet, $\mathrm{f}=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% / 00$)131

XXXI Restored antenna temperatures for finite wave tank with random error, no interpolation, and one restoration (antenna $=8 \lambda$ horn, $\rho=13$ feet, $\mathrm{f}=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% / 00$)132

XXXII Restored antenna temperatures for finite wave tank with random error, no interpolation and three restorations (antenna $=8 \lambda$ horn, $\rho=13$ feet, $f=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% 00$) $\ldots 133$

XXXIII Restored antenna temperatures for finite wave tank with random error, no interpolation, and one restoration (antenna $=12 \lambda$ horn, $\rho=26$ feet, $\left.f=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=00 \% \mathrm{oo}\right) \ldots \ldots . .134$
XXXIV Restored antenna temperatures for finite wave tank with random error, no interpolation, and three restorations (antenna $=12 \lambda$ horn, $p=26$ feet, $f=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \mathrm{O} / 00$) $\ldots 135$

XXXV Restored antenna temperatures for finite wave tank with random error, no interpolation, and one restoration (antenna $=8 \lambda$ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \mathrm{o} / 00$) $\ldots \ldots . .136$
XXXVI Restored antenna temperatures for finite wave tank with random error, no interpolation, and three restorations (antenna $=8 \lambda$ horn, $\rho=$ 26 feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, S=0 \% / 00$). 137

XXXVII	Restored antenna temperatures for finite wave tank with random error, interpolation, and one
	restoration (antenna $=12 \lambda$ horn, $\rho=13$ feet,
	$f=10.69 \mathrm{GHz}, T_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \mathrm{o} / \mathrm{OO}$) $\ldots \ldots . .143$

XXXVIII Restored antenna temperatures for finite wave tank with random error, interpolation, and three restorations (antenna $=12 \lambda$ horn, $\rho=13$ feet, $f=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=00 \% 00$) $\ldots 144$
XXXIX Restored antenna temperatures for finite wave tank with random error, interpolation, and one restoration (antenna $=8 \lambda$ horn, $\rho=13$ feet, $f=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=00 / 00$) $\ldots145$

XL Restored antenna temperatures for finite wave tank with random error, interpolation, and three restorations (antenna $=8 \lambda$ horn, $\rho=13$ feet, $f=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=00 / 00$) $\ldots 146$
XLI Restored antenna temperatures for finite wave tank with random error, interpolation, and one restoration (antenna $=12 \lambda$ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% / 00$) $\ldots . .$.147

XLII Restored antenna temperatures for finite wave tank with random error, interpolation, and three restorations (antenna $=12 \lambda$ horn, $\rho=26$ feet, $\left.f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=00 / 00\right) \ldots \ldots \ldots . .148$
XLIII Restored antenna temperatures for finite wave tank with random error, interpolation, and one restoration (antenna $=8 \lambda$ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% / 00$) $\ldots149$
XLIV Restored antenna temperatures for finite wave tank with random error, interpolation, and three restorations (antenna $=8 \lambda$ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \mathrm{o} / 00$)150

XLV Optimum restoration for the finite wave tank with the 12λ horn antenna and the 13 foot boom. . 157

XLVI Optimum restoration for the finite wave tank with the 8λ horn antenna and the 13 foot boom... 158

XLVII Optimum restoration for the finite wave tank with the 12λ horn antenna and the 26 foot boom ... 159

XLVIII Optimum restoration for the finite wave tank with the 8λ horn antenna and the 26 foot boom 160
XLIX Antenna temperatures for the finite wave tank with cross-polarization (antenna $=\prime 12 \lambda$ horn, $\rho=13$ feet, $f=10.69 \mathrm{GHz}, T_{\mathrm{m}}=284^{\circ} \mathrm{K}$, $S=0 \% \% 0$) 162

L • Antenna temperatures for the finite wave tank with cross-polarization (antenna $=8 \lambda$ horn, $\rho=13$ feet, $f=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% \mathrm{OO}$) 163
LI Antenna temperatures for the finite wave tank with cross-polarization (antenna $=12 \lambda$ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=00 \% \mathrm{oo}$) $\ldots . . \ldots$. I $_{64}$

LII Antenna temperatures for the finite wave tank with cross-polarization (antenna $=8 \lambda$ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=00 / 00$) $\ldots \ldots . . .165$
LIII. Restored antenna temperatures for finite wave tank with -20 dB cross-polarization and three restorations (antenna $=12 \lambda$ horn, $\rho=13$ feet, $f=10.69$ $\mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=00 \% 00$) 166
LIV Restored antenna temperatures for finite wave tank with -20 dB cross-polarization and three restorations (antenna $=8 \lambda$ horn, $\rho=13$ feet, $f=10.69$ $\mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \mathrm{o} / \mathrm{oo}$)168

LV Restored antenna temperatures for finite wave tank with -20 dB cross-polarization and three restorations (antenna $=12 \lambda$ horn, $\rho=26$ feet, $f=10.69$ $\mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=00 / 00$)169

LVI Restored antenna temperatures for finite wave tank with -20 dB cross-polarization and three restorations (antenna $=8 \lambda$ horn, $\rho=26$ feet, $f=10.69$ $\mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% \mathrm{oo}$) 170

LVII Restoration of error free infinite tank data o (antenna $=12 \lambda$ horn, $f=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284 \mathrm{~K}$, $S=0 \%$)
 173

LVIII Restorations of error free infinite tank data (antenna $=8 \lambda$ horn, $\mathrm{f}=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=$ $284^{\circ} \mathrm{K}, \mathrm{S}=0 \mathrm{o} / 00$) 174

I. Introduction

For years man had desirec the capability to remotely monitor various phenomenon in his environment. For example, the measurement of ocean wave and wind conditions are of vital interest to many marine industries and government agencies. Furthermore, the knowledge of ocean-surface temperature on a global, all-weather, and day-night basis is also of importance to the fishery and marine transport industries, as well as the oceanographers and marine meterorologists, and weather forcasters. In recent years, the microwave radiometer has proven itself to be a feasible remote sensing device. To monitor the environment on an all-weather basis, microwave sensing has the inmediate advantage of being affected less by fog and rain than infrared. In addition, microwave radiometers have been designed [1] that can measure the incident radiation to an accuracy of $\pm 0.1^{\circ} \mathrm{K}$ and remain calibrated, unattended, for a year or more. In fact, small, lightweight, automated radiometer systems have recently been flown by NASA on the Nimbus satellite program [2]. There is presently a great deal of research and development being conducted in the area of microwave remote sensing from satellites.

In order to make precise measurements of the radiometric brightness temperature of a target (and thereby infer certain physical parameters) one must be able to mathematically model the interaction between the electromagnetic radiation properties of the antenna and the incident radiation from the environment. This,
interaction can be described by Fredholm integral equations of the first kind which are extremely unstable. This instability has been studied in corsiderable detail by investigators in many fields. Twomey [3] and Phillips [4] have devised matrix filtering techniques to stabilize the solution. Although these matrix methods are not without merit, Bracewell and Roberts [5] have demonstrated the value of a successive substitution solution. Assuming that the intensity of the emitted radiation of the environment can be represented in scalar form, they have shown that the antenna is only capable of responding to those frequency components of the function representing the environment below a cut-off determined by the antenna aperture. The high frequency components of the emission function are invisible to the antenna. The low frequency components are accepted but their relative magnitude is altered according to the system (antenna.) frequency characteristics. Inversion through the method of successive restorations leads to the principal solution [5], in which frequency components accepted by the antenna have been restored to their original values, but the rejected components are not represented in the solution. The work done by Bracewell and Roberts was, however, more applicable to astronomical observations than to general microwave radiometric measurements. They assumed that the antenna was very efficient and that the sidelobes and backlobes could be neglected, which is not always the case. They also used a scalar representation of the interaction between the antenna radiation characteristics and the emission by the target.

The interaction between the emitted radiation from a water surface and the radiation characteristics of an antenna is a vector relationship. As the sidelobe and backlobe levels of the system (antenna) weighting function become more intense, and the major lobe beamwidth more wide, the vector model interaction becomes more important. Classen and Fung [6] have vectorially modeled the viewing of the ocean using matrix techniques. Their representation, however, assumes that the observed environment is circularly symmetric and infinite in extent. It should also be pointed out that computer time using the matrix modeling would be quite extensive as compared to some other types of numerical techniques..

To study the radiometric signature of a controlled water surface, a wave tank system has been constructed at NASA Langley Research Center, Hampton, Virginia. For the wave tank geometry, the environment is of finite extent and is no longer circularly symmetric. The response of the radiometer for this system was first modeled by Fisher [7], using a two-dimensional scalar approximation. This approximation works well for high efficiency antennas. The direct inversion used by Fisher [7] was, however, sensitive to errors. Holmes [8], by applying the iteration techniques of Bracewell and Roberts [5] to this problem, was able to restore, with acceptable accuracy, the brightness temperature (scalar emission function) of the water from measurements that contained error. Both Holmes [8] and Fisher [7] used the Fast Fourier Transform techniques, with an
algorithm reported by Fisher [9], to perform their computations. The first three-dimensional modeling of the NASA wave tank was done by Beck [10]. He was able to formulate and calculate the antenna response of the system given the emission characteristics of the surroundings. Beck's formulation requires numerical integration for direct computation of the antenna temperature and is not convenient for inversion processes nor can it be modified conveniently for efficient and economic restoration computations. The classical design consideration of a radiometer antenna is the compromise between resolution and system design constraints (size, frequency, etc.). Only after the inversion process has been studied is the true resolution of the antenna known and can the design for the particular application be made. The study of this inversion for the wave tank geometry is the subject of this dissertation. A three-dimensional inversion scheme is described which takes into account the interaction between the radiation characteristics of the antenna and emitted radiation from the wave tank (vector representation), and computations are performed using the efficient and economical Fast Fourier Transform algorithm. The inherent instabilities of the inversion are overcome by the adoption of the filtering properties of the restoration method.

II. Theory

A. Brightness Temperature

All matter above absolute zero temperature emits electromagnetic radiation due to the thermal motion of its atoms/mole cules. The brightness temperature of a given substance is a standard measure of the intensity of this radiation. By definition, the brightness temperature of a perfect black body radiator is equal to its molecular temperature. For the perfect black body radiator, none of the electromagnetic radiation generated from within the body is reflected back at the interface between the radiating surface and the surrounding transmission media. For all passive physical objects, however, the transmission coefficients for the radiating surface are less than unity. Consequently, the brightness temperature will be less than the molecular temperature. The transmission coefficient is often called the emissivity, and the brightness and molecular temperatures are related by

$$
\begin{equation*}
T_{b}=\varepsilon T_{m} \tag{7}
\end{equation*}
$$

where T_{b} is the brightness temperature, T_{m} the molecular temperature, and ε the emissivity or transmission coefficient.

For a flat semi-infinite radiating surface the emissivity can be found from the complex dielectric properties of the radiator, The emissivity is also a function of both the incidence angle at which the interface is viewed and the polarization of the emitted wave. Stogryn [11] and Holmes [8] have shown how the emissivity is
related to the complex permittivity of the radiator. For the perpendicular (horizontal) polarization the E-field is perpendicular to the plare of incidence and the emissivity is given as [8]

$$
\begin{equation*}
\varepsilon_{h}\left(\theta^{\prime \prime}\right)=\frac{4 p \cos \theta^{\prime \prime}}{\left(\cos \theta^{\prime \prime}+p\right)^{2}+q^{2}} \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
& \gamma=\frac{1}{2} \tan ^{-1}\left(\frac{\varepsilon^{\prime \prime}}{\varepsilon^{\prime}-\sin ^{2} \theta^{\prime \prime}}\right) \\
& \theta^{\prime \prime} \equiv \text { incidence angie } \\
& p=\sqrt{r} \cos \gamma \\
& q=\sqrt{r} \sin \gamma \\
& r=\sqrt{\left(\varepsilon^{\prime}-\sin ^{2} \theta^{\prime \prime}\right)^{2}+\varepsilon^{\prime \prime 2}} \tag{3}\\
& \varepsilon^{\prime}=\operatorname{Re}\left[\varepsilon_{r}\right] \\
& \left.\varepsilon^{\prime \prime}=\text { Im[} \varepsilon_{r}\right] \\
& \varepsilon_{r} \equiv \text { complex dielectric constant of } \\
& \text { the radiator }
\end{align*}
$$

For the parallel (vertical) polarization the E-field is parallel to the plane of incidence and the emissivity is expressed as

$$
\begin{equation*}
\varepsilon_{v}\left(\theta^{\prime \prime}\right)=\frac{4 p \varepsilon^{\prime} \cos \theta^{\prime \prime}+4 q \varepsilon^{\prime \prime} \cos \theta^{\prime \prime}}{\left(\varepsilon^{\prime} \cos \theta^{\prime \prime}+p\right)^{2}+\left(\varepsilon^{\prime \prime} \cos \theta^{\prime \prime}+q\right)^{2}} \tag{4}
\end{equation*}
$$

Through (2) and (4), the radiation is being described as two orthogonal, linearly polarized waves. The radiation from the surface of the water can be described in this manner if the dielectric properties of the water are known. Stogryn [11] has concluded that the dielectric constant ε_{r} for sea water may be adequately represented hv the following equation of the Debye form

$$
\begin{equation*}
\varepsilon_{r}=\varepsilon_{\infty}+\frac{\varepsilon_{0} \div \varepsilon_{\infty}}{1-j 2 \pi \tau f}+\frac{j \sigma}{2 \pi \varepsilon_{0}^{*} f} . \tag{5}
\end{equation*}
$$

where ε_{0} and ε_{∞} are, respectively, the static and high frequency dielectric constants of the solvent, τ the relaxation time, ε_{0}^{*} the permittivity of free space $\left(=8.854 \times 10^{-12}\right.$ farads $\left./ \mathrm{m}\right)$, σ the ionic conductivity of the dissolved salt in mhos/m, and f the electromagnetic frequency.

In order to evaluate (5), the variations of ε_{0}, τ, and σ as functions of salinity, frequency, and temperature need to be known. By using resonant cavity techniques, Stogryn [11] reported, through numerous measurements, empirical equations to evaluate the variables.

The high frequency dielectric constant ε_{∞} is considered to be a constant $(=0.48)$. The low frequency dielectric constant ε_{0} and the relaxation time τ are expressed as

$$
\begin{gather*}
\varepsilon_{0}(T, N)=\varepsilon_{0}(T, 0) a(N) \tag{6}\\
2 \pi \tau(T, N)=2 \pi \tau(T, 0) b(T, N) \tag{7}
\end{gather*}
$$

where T is the water temperature in ${ }^{\circ} \mathrm{C}$ and N is the normality of
the solution. The series expansions used to evaluate (6) and (7) for $0 \leq T \leq 40^{\circ} \mathrm{C}$ and $0 \leq N \leq 3$ are

$$
\begin{align*}
a(N)= & 1.0-0.2551 \mathrm{~N}+5.151 \times 10^{-2} \mathrm{~N}^{2} \tag{8}\\
& -6.889 \times 10^{-3} \mathrm{~N}^{3} \\
\dot{b}(N, T)= & 1.463 \times 10^{-3} \mathrm{NT}+1.0-0.04896 \mathrm{~N} \tag{9}\\
& -0.02967 \mathrm{~N}^{2}+5.644 \times 10^{-3} \mathrm{~N}^{3} \\
\varepsilon_{0}(T, 0)= & 87.74-0.40008 \mathrm{~T} \tag{10}\\
& +9.398 \times 10^{-4} \mathrm{~T}^{2}+1.410 \times 10^{-6} \mathrm{~T}^{3} \\
2 \pi \tau(T, 0) & =1.1109 \times 10^{-10}-3.824 \times 10^{-12} \mathrm{~T} \tag{11}\\
& +6.938 \times 10^{-14} \mathrm{~T}^{2}-5.096 \times 10^{-16} \mathrm{~T}^{3}
\end{align*}
$$

Given the salinity in parts per thousand, the normality can be found as

$$
\begin{equation*}
N=S\left(1.707 \times 10^{-2}+1.205 \times 10^{-5} \mathrm{~S}+4.058 \times 10^{-9} \mathrm{~S}^{2}\right) \tag{12}
\end{equation*}
$$

The series is valid for $0 \leq S \leq 260$. The expression reported for the conductivity σ of sea water is

$$
\begin{equation*}
\sigma(T, S)=\sigma(25, S) e^{-\Delta \zeta} \tag{13}
\end{equation*}
$$

where $\Delta=25-T$ and

$$
\begin{align*}
& \zeta=2.033 \times 10^{-2}+1.266 \times 10^{-4} \Delta+2.464 \times 10^{-6} \Delta \tag{14}\\
& -S\left(1.849 \times 10^{-5}-2.551 \times 10^{-7} \Delta+2.551 \times 10^{-8} \Delta{ }^{-8}\right)
\end{align*}
$$

$$
\begin{align*}
& \sigma(25, S)=S\left(0.182521-1.46192 \times 10^{-3} \mathrm{~S}\right. \tag{15}\\
& \left.+2.09324 \times 10^{-5} \mathrm{~s}^{2}-1.28205 \times 10^{-7} \mathrm{~S}^{3}\right)
\end{align*}
$$

in the range $0 \leq S \leq 40$.
Using (6) - (15) we can obtain ε^{\prime} and $\varepsilon^{\prime \prime}$ from (5). With ε^{\prime} and ε ", $\varepsilon_{h}\left(\theta^{\prime \prime}\right)$ and $\varepsilon_{v}\left(\theta^{\prime \prime}\right)$ are found by the use of (2), (3), and (4). As seen by (1), the horizontal and vertical brightness temperatures of the polarized radiation emitted by the water are

$$
\begin{align*}
& T_{b w h}\left(\theta^{\prime \prime}\right)=\varepsilon_{h}\left(\theta^{\prime \prime}\right) T_{m} \tag{16a}\\
& T_{b w v}\left(\theta^{\prime \prime}\right)=\varepsilon_{\dot{V}}\left(\theta^{\prime \prime}\right) T_{m} \tag{16b}
\end{align*}
$$

Equations (16a) and (16b) yield the intensities of two linearly polarized, orthogonal waves that are needed to describe the radiation emitted from the water.

Brightness temperatures of the earth and sky were also part of this investigation. These brightness temperatures have been found (experimentally) to be nearly randomly polarized and therefore related to molecular temperature by (1). For the sky, Peake [12] expressed the brightness temperature as

$$
\begin{equation*}
T_{b s}\left(\theta_{s}\right)=T_{e f f}\left[1-e^{-\tau_{0} \sec \theta_{s}}\right] \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{\text {eff }}=1.12 T_{\mathrm{m}}-50 \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
T_{0}=-\log _{e}\left(1-3 / T_{\text {eff }}\right) \tag{19}
\end{equation*}
$$

The angle θ_{s} is the angle measured from zenith. For the lack of a more accurate brightness temperature model, the earth emissions are usually assumed to be constant and unpolarized. If a more accurate polarized brightness temperature model were known, it could be utilized in the analysis and computations.

In addition to its own generated radiation, the water surface reflects the incident sky radiation and directs it toward the receiving antenna. To account for this reflection, (16a) and (16b) can be modified as

$$
\begin{align*}
& T_{b w h}\left(\theta^{\prime \prime}\right)=\varepsilon_{h}\left(\theta^{\prime \prime}\right) T_{m}+\left(1-\varepsilon_{h}\right) T_{b s}\left(\theta_{s}=\theta^{\prime \prime}\right) \tag{20a}\\
& T_{b w v}\left(\theta^{\prime \prime}\right)=\varepsilon_{v}\left(\theta^{\prime \prime}\right) T_{m}+\left(1-\varepsilon_{v}\right) T_{b s}\left(\theta_{s}=\theta^{\prime \prime}\right) \tag{20b}
\end{align*}
$$

In Figure 1, we have plotted $T_{b w h}$ and $T_{\text {bwv }}$ as functions of incidence angle for $T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% 00$, and $\mathrm{f}=10.69 \mathrm{GHz}$. The shape of the plots are basically the same for any temperature, salinity, and frequency. The peak in the $T_{b w v}$ curve occurs when the water is viewed at the Brewster angle $\left(\varepsilon_{v}=1\right)$. At this angle, $T_{b W v}$ is equal to the molecular temperature of the water.

B. Antenna Temperature

The antenna temperature measured by a radiometer is the brightness temperature of the observed environment weighted by the power pattern of the antenna. We shall define $T_{b}(\theta, \theta)$ as the

Fig. 1. Water brightness temperatures.
unpolarized brightness temperature of the environment, T_{a} the measured antenna temperature; and $G(\theta, \varnothing)$ the antenna power pattern which has been normalized so that the integral of $G(\theta, \varnothing)$ over the entire solid angle is equal to unity. The variables are related by the following relationship

$$
\begin{equation*}
T_{a}=\int_{0}^{2 \pi} \int_{0}^{\pi} T_{b}(\theta, \emptyset) G(\theta, \emptyset) \sin \theta d \theta d \theta \tag{21}
\end{equation*}
$$

If $G(\theta, \emptyset)$ were a delta function $\delta\left(\theta-\theta_{0}, \emptyset-\emptyset_{0}\right), T_{a}$ would then equal $T_{b}\left(\theta_{0}, \emptyset_{0}\right)$. Practical antennas, however, do not have such convenient radiation characteristics, and T_{a} is generally not equal to the T_{b} at boresight.

If a significant fraction of the emitted radiation from the observed environment (brightness temperature) is polarized, such as that emitted by the water surface, (21) is no longer a valid expression to be used to calculate the antenna temperature. To explain the coupling between the radiation properties of the antenna and emitted polarized radiation from the environment as well as the concept of partial and total antenna temperatures, let us assume that the radiometer system is over the ocean in clear atmospheric surroundings. Since the observed environment is the water and sky, the total antenna temperature T_{a} is equal to the contributions from the water $T_{a w}$ and sky $T_{\text {as }}$. Assuming that the radiation from the sky is unpolarized, T_{as}. is expressed as

$$
\begin{equation*}
T_{a s}=\int_{o v e r} T_{b s}(\theta, \emptyset) G(\theta, \emptyset) \sin \theta d \theta d \emptyset \tag{22}
\end{equation*}
$$

Since the radiation emitted from the water is polarized, to find its antenna temperature contribution, the weight of the gain function $G(\theta, \mathscr{b})$ needs to be found at each integration point in directions perpendicular and parallel to the plane of incidence. To do this, we form the unit vectors $\hat{h}(\theta, \theta)$ and $\hat{v}(\theta, \theta)$ within the water integration limits. The vector $\hat{h}(\theta, \emptyset)$ is perpendicular to the plane of incidence formed at the integration point on the water surface, and $\hat{v} \hat{\gamma} \theta, \theta)$ is orthogonal to $\hat{\hat{h}}(\theta, \theta)$ and $\overrightarrow{\hat{r}}(\theta, \emptyset)$, where $\hat{r}(\theta, \theta)$ is the radial unit vector. For a given antenna, the normalized electric field intensities in the $\hat{\theta}(\theta, \emptyset)$ and $\hat{\emptyset}(\theta, \emptyset)$ directions, $E_{\theta}(\theta, \emptyset)$ and $E_{\emptyset}(\theta, \emptyset)$, can also be found. In turn, the power intensities, at each integration point, for the horizontal and vertical polarizations, G^{h} and G^{V}, are then formulated as

$$
\begin{align*}
& G^{\dot{h}}(\theta, \emptyset)=\left[\hat{h} \cdot \hat{\theta} E_{\theta}+\hat{h} \cdot \hat{\emptyset} E_{\emptyset}\right]^{2} \tag{23}\\
& G^{v}(\theta, \emptyset)=\left[\hat{v} \cdot \hat{\theta} E_{\theta}+\hat{v} \cdot \hat{\emptyset} E_{\emptyset}\right]^{2} \tag{24}
\end{align*}
$$

The antenna temperature contribution from the water can then be expressed as

$$
T_{a w}=\iint_{\substack{\text { over } \\ \text { water }}} T_{b w h}(\theta, \emptyset) G^{h}(\theta, \emptyset) \sin \theta d \theta d \emptyset
$$

$$
\begin{equation*}
\div \iint_{\substack{\text { over } \\ \text { water }}} T_{\text {bwv }}(\theta, \emptyset) G^{v}(\theta, \emptyset) \sin \theta d \theta d \emptyset \tag{25}
\end{equation*}
$$

The total temperature measured by the radiometer is

$$
\begin{equation*}
T_{a}=T_{a s}+T_{a w} \tag{26}
\end{equation*}
$$

Equations (22) and (25) define the relationships between the power pattern of the antenna, the brightness temperature functions of the observed environment, and the measured antenna temperature for both unpolarized and polarized emissions.
C. Wave Tank Geometry and Theory

In order to obtain the microwave emission signature of a water surface in a controlled environment, a wave tank system has been constructed at NASA Langley Research Center, Hampton, Virginia. The mode1, as illustrated in Figure 2, consists of a fourteen foot square tank with the antenna and radiometer placed at the end of a boom over the tank. The antenna and radiometer can move along a circular arc above the tank and can be scanned, at each position, through a complete 360° in a plane which bisects the wave tank. The angle β is the scanning angle and α describes the position of the boom.

Fig. 2. Radiometer and Finite Wave Tank Configuration at NASA Langley Research Center, Hampton, Virginia.

For the wave tank measurements, the total antenna temperature is composed of three partial antenna temperatures; namely that of the water, earth, and sky. The partial antenna temperatures are of the same form as (22) and (25) and are given by

$$
\begin{align*}
& T_{a w}=\int_{\begin{array}{c}
\text { over } \\
\text { water }
\end{array}} T_{b w h}(\theta, \emptyset) G^{h}(\theta, \emptyset) \sin \theta d \theta d \emptyset \\
& \tag{27}\\
& +\int_{\begin{array}{c}
\text { over } \\
\text { water }
\end{array}} \cdot T_{b w v}(\theta, \emptyset) G^{v}(\theta, \emptyset) \sin \theta d \theta d \emptyset \tag{28}\\
& T_{a e}=\int_{\text {over }} \int_{\text {earth }} T_{b e}(\theta, \emptyset) G(\theta, \emptyset) \sin \theta d \theta d \emptyset \tag{29}\\
& T_{a s}=\int_{\text {over }} \int_{\text {sky }} T_{b s}(\theta, \emptyset) G(\theta, \emptyset) \sin \theta d \theta d \emptyset
\end{align*}
$$

where G^{h} and G^{V} are defined by (23) and (24), respectively. The total antenna temperature T_{a} is then equal to $T_{a w}+T_{a e}+T_{a s}$.

1. Z-Axis Normal to Radiometer Antenna Aperture

Patterns from directional antennas used in radiometry, such as horns, are nearly circular symmetric about the boresight. It would therefore be convenient to express the gain functions in a
coordinate system which uses the z-axis as the boresight. The problem was originally formulated in this manner by Beck [10]. The coordinate systems used are illustrated in Figures 3 and 4. The origin of the x, y, z coordinate system is the phase center of the antenna and the origin of the $x^{\prime}, y^{\prime}, z^{\prime \prime}$ coordinate system is the center of the wave tank. Although the radiometer antenna may be of any type, let us assume one with an aperture E-field polarized in the \hat{x} direction (aperture E-field paraliel to the $x-z$ or $x^{\prime \prime}-z^{*}$ plane of Figure 3). This type of antenna has a strongly polarized pattern. As the antenna is scanned parallel to the $x-z$ plane, as shown in Figure 3, the antenna will principally see the vertically polarized emissions from the water. When scanned parallel to the y-z plane, as shown in Figure 4, the horizontal polarization will predominate. In the system implementation, if the boom is allowed to. move only along one plane, the system polarization can be changed by simpiy rotating the antenna aperture 90° about the z-axis. The system at NASA has, however, the capacity to move along either plane. To describe both rotations, shown in Figures 3 and 4, with one set of functions, a fictitious constant \emptyset_{0} is introduced which is set equal to zero when the rotation is as shown in Figure 3 (vertical polarization scan) and equal to $\pi / 2$ for the scanning displayed in Figure 4 (horizontal polarization scan).

The two variable brightness temperature profiles in (27), $T_{\text {bwh }}(\theta, \emptyset)$ and $T_{\text {buvi }}(\theta, \emptyset)$, can be expressed as a function of a single incidence angle variable θ." To find θ ", one begins with the relationship between the primed and unprimed rectangular unit vectors of

Fig. 3. Z-axis Coordinate System Orientation for Vertical Polarization.

Fig. 4. Z-axis Coordinate System Orientation for Horizontal Polarization.

Figures 3 and 4 which are written as

$$
\begin{align*}
& \hat{x}=\hat{x}^{1}\left(\cos \alpha \cos \emptyset_{0}+\sin \emptyset_{0}\right)+\hat{z}^{i} \sin \alpha \cos \emptyset_{0} \tag{30a}\\
& \hat{y}=\hat{y}^{\prime}\left(\cos \alpha \sin \emptyset_{0}+\cos \emptyset_{0}\right)+\hat{z}^{\prime} \sin \alpha \sin \theta_{0} \tag{30b}\\
& \hat{z}=-\hat{x}^{\prime} \sin \alpha \cos \emptyset_{0}-\hat{y}^{\prime} \sin \alpha \sin \emptyset_{0}+\hat{z}^{\prime} \cos \alpha \tag{30c}
\end{align*}
$$

The angle $\theta^{\prime \prime}$ can be expressed as

$$
\begin{equation*}
\cos \theta^{\prime \prime}=\bar{R} \cdot \hat{z}^{\prime} /|\bar{R}|\left|\hat{z}^{\prime}\right| \tag{37}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{R}=R \hat{r}=R(\hat{x} \sin \theta \cos \theta+\hat{y} \sin \theta \sin \phi+\hat{z} \cos \theta) \tag{32}
\end{equation*}
$$

Substituting (30a), (30b), and (30c) into (32), one obtains

$$
\bar{R}=R\left(R_{x} \cdot \hat{x}^{\prime}+R_{y} \hat{y}^{\prime}+R_{z} \hat{z}^{\prime}\right)
$$

$\bar{R}=\dot{R}\left\{\hat{x}^{\prime}\left[\sin \theta \cos \emptyset\left(\cos \alpha \cos \emptyset_{0}+\sin \emptyset_{0}\right)-\sin \alpha \cos \emptyset_{0} \cos \theta\right]\right.$
$+\hat{y}^{\prime}\left[\sin \theta \sin \theta\left(\cos \alpha \sin \emptyset_{0}+\cos \emptyset_{0}\right)-\sin \alpha \sin \phi_{0} \cos \theta\right]$
$+\hat{z}^{2}\left[\sin \theta \cos \emptyset \sin \alpha \cos \phi_{0}+\sin \theta \sin \phi \sin \alpha \sin \phi_{0}\right.$

$$
\begin{equation*}
+\cos \theta \cos \alpha]\} \tag{33}
\end{equation*}
$$

Since the magnitude of the unit vector \hat{z}^{\prime} is unity and $\bar{R} \cdot \hat{z}^{\prime}$ is known from (33), $\cos \theta^{\prime \prime}$ in (31) can now be expressed as

$$
\begin{align*}
\cos \theta^{\prime \prime}=\sin \theta \cos \emptyset \sin \alpha \cos \emptyset_{0} & +\sin \theta \sin \emptyset \sin \alpha \sin \emptyset_{0} \\
& +\cos \theta \cos \alpha \tag{34}
\end{align*}
$$

This allows the evaluation of the incidence angle θ " as a function of $\theta, \emptyset, \alpha$, and polarization (φ_{0}).

In order to evaluate $G^{h}(\theta, \varnothing)$ and $G^{V}(\theta, \emptyset)$ for the z-axis jeometry, $\hat{h}\left(\theta, \emptyset, \alpha, \emptyset_{0}\right)$ and $\hat{v}\left(\theta, \emptyset, \alpha, \emptyset_{0}\right)$ must be found. The vectors i and \hat{h} are defined by the vector relationships

$$
\begin{align*}
& \hat{h} \cdot \hat{r}:=0 \tag{35}\\
& \hat{h} \cdot \hat{z}=\hat{h} \cdot \hat{z}^{:}=0 \tag{36}\\
& \hat{v}=\hat{h} \times \hat{r} \tag{37}
\end{align*}
$$

and can be written as

$$
\begin{align*}
& \hat{h}=H_{x} \hat{x}^{\prime}+H_{y} \hat{y}^{\prime}+H_{z} \hat{z}^{\prime} \tag{38a}\\
& \hat{v}=V_{x} \hat{x}^{\prime}+V_{y} \hat{y}^{\prime}+V_{z} \hat{z}^{\prime} \tag{38b}
\end{align*}
$$

Equation (36) implies that $H_{z}=0$ and (35) can then be expanded to yield

$$
\begin{equation*}
H_{x} R_{x}+H_{y} R_{y}=0 \tag{39}
\end{equation*}
$$

Since \hat{h} is a unit vector,

$$
\begin{equation*}
H_{x}^{2}+H_{y}^{2}=1 \tag{40}
\end{equation*}
$$

Solving (39) and (40) simultaneously, one finds that

$$
\begin{align*}
& H_{x}=-R_{y} / \sqrt{R_{x}^{2}+R_{y}^{2}} \tag{41a}\\
& H_{y}=R_{x} / \sqrt{R_{x}^{2}+R_{y}^{2}} \tag{41b}
\end{align*}
$$

Expanding (37) yields

$$
\begin{equation*}
\hat{v}=H_{y} R_{z} \hat{x}^{\prime}-H_{x} R_{z} \hat{y}^{\prime}+\left[H_{x} R_{y}-H_{y} R_{x}\right] \hat{z}^{\prime} \tag{42}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
& V_{x}=H_{y} R_{z} \tag{43a}\\
& V_{y}=-H_{x} R_{z} \tag{43b}\\
& V_{z}=H_{x} R_{y}-H_{y} R_{x} \tag{43c}
\end{align*}
$$

The vectors \hat{v} and \hat{h} have now been broken into their primed rectangular coordinate components. The unit vectors $\hat{\emptyset}$ and θ can also be expressed this way to allow the dot products to be taken. One must begin with the vectors in the uniprimed coordinates

$$
\begin{align*}
& \hat{\theta}=\hat{x} \cos \theta \cos \phi+\hat{y} \cos \theta \sin \theta-\hat{z} \sin \theta \tag{44a}\\
& \hat{\theta}=-\hat{x} \sin \theta+\hat{y} \cos \theta \tag{44b}
\end{align*}
$$

Using (30a), and (30b), and (30c), we can write (44a) and (44b) as

$$
\begin{align*}
& \hat{\theta}=T_{x} \hat{x}^{\prime}+T_{y^{\prime}} \hat{y}^{\prime}+T_{z} \hat{z}^{\prime} \tag{45a}\\
& \hat{\theta}=P_{x} \hat{x}^{\prime}+P_{y} \hat{y}^{\prime}+P_{z} \hat{z}^{\prime} \tag{45b}
\end{align*}
$$

where
$T_{x}=\cos \theta \cos \emptyset\left(\cos \alpha \cos \emptyset_{0}+\sin \emptyset_{0}\right)^{\dot{\prime}}+\sin \alpha \sin \theta \cos \emptyset_{0}$
$T_{y}=\cos \theta \sin \emptyset\left(\cos \alpha \sin \emptyset_{0}+\cos \emptyset_{0}\right)+\sin \alpha \sin \theta \sin \emptyset_{0}$
$T_{z}=\sin \alpha \cos \theta\left(\cos \emptyset \cos \emptyset_{0}+\sin \emptyset \sin \emptyset_{0}\right)-\sin \theta \cos \alpha$
$P_{x}=\sin \emptyset\left(\cos \alpha \cos \emptyset_{0}+\sin \emptyset_{0}\right)$
$P_{y}=\cos \emptyset\left(\cos \alpha \sin \emptyset_{0}+\cos \emptyset_{0}\right)$
$P_{z}=-\sin \alpha \sin \emptyset_{0} \cos \emptyset+\sin \alpha \cos \emptyset_{0} \sin \emptyset$

The dot products in (23) and (24) can now be evaluated using (45a)-(46f) as

$$
\begin{align*}
& \hat{\theta} \cdot \hat{h}=T_{x} H_{x}+T_{y} H_{y} \tag{47a}\\
& \hat{\emptyset} \cdot \hat{h}=P_{x} H_{x}+P_{y} H_{y} \tag{47b}\\
& \hat{\theta} \cdot \hat{v}=T_{x} V_{x}+T_{y} V_{y}+T_{z} V_{z} \tag{47c}\\
& \hat{\theta} \cdot \hat{v}=P_{x} V_{x}+P_{y} V_{y}+P_{z} V_{z} \tag{47d}
\end{align*}
$$

To evaluate the variables $T_{a w}, T_{a e}$, and $T_{a s}$ using (27), (28), and (29), respectively, the only parameters still not known are the limits of integration and the angle $\theta_{S}(\theta, \theta, \alpha)$ (the angle measured from zenith) needed to evaluate $T_{b s}\left(\theta_{S}\right)$.

Since the z-axis always passes through the center of the wave tank, then for any value of θ, as θ is varied from 0 to π, we will always be integrating first over the water, the earth, and ther: the sky. What, is needed then are the values of θ as a function of \emptyset at which the water-earth boundary and the horizon (earth-sky boundary) occur. We will define $\theta_{\text {we }}\left(\emptyset, \alpha, \emptyset_{0}\right)$ as the water-earth boundary and $\theta_{e s}\left(\rho, \alpha, \theta_{0}\right)$ as the horizon. Due to the symmetry of the problem, the integration limits of \emptyset can be made 0 to π for the vertical polarization case and $\pi / 2$ to $3 \pi / 2$ for the horizontal polari zation.

We will first outline the procedure in determining $\theta_{\text {we }}$. Referring to Figure 3, we can write that

$$
\begin{equation*}
\cos \theta_{\text {we }}=\frac{\bar{G} \cdot \bar{R}_{0}}{|\bar{G}|\left|\bar{R}_{0}\right|} \tag{48}
\end{equation*}
$$

where

$$
\begin{gather*}
\bar{R}_{0}=R_{0}\left(-\hat{x}^{\prime} \sin \alpha \cos \emptyset_{0}-\hat{y}^{\prime} \sin \alpha \sin \emptyset_{0}+\hat{z}^{\prime} \cos \alpha\right) \tag{49a}\\
\left|\ddot{R}_{0}\right|=R_{0} \tag{49b}
\end{gather*}
$$

The vector \bar{G} is found by defining the position of each end of the
vector referenced to the primed coordinate system. The coordinates of the point A are $x^{t}=R_{0} \sin \alpha \cos \emptyset_{0}, y^{\prime}=R_{0} \sin \alpha \sin \emptyset_{0}$, and $z^{\prime}=-R_{0} \cos \alpha$. The coordinates of the points along the edge of the tank are shown in Figure 5, which is a view of the wave tank looking straight down, arid are given by

$$
\begin{array}{lll}
x^{\prime}=W, & y^{\prime}=W \tan \emptyset^{\prime} & \frac{\pi}{4}>\emptyset^{\prime} \geq-\frac{\pi}{4} \\
x^{\prime}=W \cot \emptyset^{\prime}, & y^{\prime}=W & \frac{3 \pi}{4}>\emptyset^{\prime} \geq \frac{\pi}{4} \\
x^{\prime}=-W, & y^{\prime}=-W \tan \emptyset^{\prime} & \frac{5 \pi}{4}>\emptyset^{\prime} \geq \frac{3 \pi}{4} \\
x^{\prime}=-W \cot \emptyset^{\prime}, & y^{\prime}=-W & \frac{7 \pi}{4}>\emptyset^{\prime} \geq \frac{5 \pi}{4}
\end{array}
$$

For all cases $z^{1}=0$. This gives four difference expressions for \bar{G}. To eliminate the redundancy of showing the derivations for all four cases, we will show the details of finding $\theta_{\text {we }}$ for case 1 when $\frac{\pi}{4}>\emptyset^{\prime}>-\frac{\pi}{4}$ and then list $\theta_{\text {we }}$ for the other values of θ^{\prime}. For câse $1\left(\frac{\pi}{4}>\emptyset^{\prime}>-\frac{\pi}{4}\right)$, the vector \bar{G} can be expressed as

$$
\begin{align*}
\bar{G}=\left(W-R_{0} \sin \alpha \cos \emptyset_{0}\right) \hat{x}^{\prime} & +\left(W \tan \emptyset^{\prime}-R_{0} \sin \alpha \sin \emptyset_{0}\right) \hat{y}^{\prime} \\
& +R_{0} \cos \alpha \hat{z}^{\prime} \tag{51}
\end{align*}
$$

By defining W_{n} as the ratio of W / R_{0}, we can write the dot product in (48) as

Fig. 5. Overhead View of Wave Tank with Coordinates for the Z-axis Geometry.

$$
\begin{align*}
\bar{G} \cdot \overline{R_{0}} & =\left[\left(-\sin \alpha \cos \emptyset_{0}\right)\left(W_{n}-\sin \alpha \cos \emptyset_{0}\right)\right. \\
& \left.+\left(-\sin \alpha \sin \emptyset_{0}\right)\left(W_{n} \tan \emptyset^{1}-\sin \alpha \sin \emptyset_{0}\right)+\cos ^{2} \alpha\right] R_{0}^{2} \tag{52}
\end{align*}
$$

Equation (52) can be simplified into the form

$$
\begin{equation*}
\bar{G} \cdot \overline{R_{0}}=\left[1-W_{n} \sin \alpha\left(\cos \emptyset_{0}+\sin \varphi_{0} \tan \emptyset^{\prime}\right)\right] R_{0}^{2} \tag{53}
\end{equation*}
$$

The magnitude of the vector \bar{G} is given by

$$
\begin{align*}
|\bar{G}|=R_{0}\left[\left(W_{n}-\sin \alpha \cos \phi\right)^{2}\right. & +\left(W_{n} \tan \emptyset^{\prime}-\sin \alpha \sin \emptyset_{0}\right)^{2} \\
& \left.+\cos ^{2} \alpha\right]^{\frac{1}{2}} \tag{54}
\end{align*}
$$

which can be reduced to

$$
\begin{array}{r}
|\bar{G}|=R_{0}\left[W_{n}^{2}-2 W_{n} \sin \alpha \cos \emptyset_{0}+1+W_{n}^{2} \tan ^{2} \emptyset^{\prime}-2 W_{n} \tan \emptyset^{\prime}\right. \\
\left.\sin \alpha \sin \emptyset_{0}\right]^{\frac{1}{2}} \tag{55}
\end{array}
$$

Substituting (49b), (53), and (55) into (48) and solving for $\theta_{\text {we }}$ of case 1 yields

$$
\begin{align*}
\theta_{w e} & =\cos ^{-1}\left[\left[1-W_{n} \sin \alpha\left(\cos \varphi_{0}+\sin \phi_{0} \tan \emptyset^{\prime}\right)\right] /\left[W_{n}^{2}-2 W_{n} \sin \alpha \cos \emptyset_{0}\right.\right. \\
& \left.\left.+1+W_{n}^{2} \tan ^{2} \emptyset^{\prime}-2 W_{n} \tan \emptyset^{\prime} \sin \alpha \sin \phi_{0}\right]^{\frac{1}{2}}\right\} \tag{56}
\end{align*}
$$

For case $2, \frac{3 \pi}{4}>\emptyset^{\prime} \geq \frac{\pi}{4} . \theta_{\text {we }}$ is found by

$$
\begin{align*}
\theta_{\text {we }} & =\cos ^{-1}\left\{\left[1-W_{n} \sin \alpha\left(\cot \emptyset^{\prime} \cos \emptyset_{0}+\sin \emptyset_{0}\right)\right] /\left[W_{n}^{2}-2 W_{n} \sin \alpha \sin \emptyset_{0}\right.\right. \\
& \left.\left.+1+W_{n}^{2} \cot ^{2} \emptyset^{\prime}-2 W_{n} \cot \emptyset^{\prime} \sin \alpha \cos \emptyset_{0}\right]^{\frac{1}{2}}\right\} \tag{57}
\end{align*}
$$

When $\frac{5 \pi}{4}>\emptyset^{\prime} \geq \frac{3 i \pi}{4}$, we have case 3 and for this

$$
\begin{align*}
\theta_{\mathrm{we}} & =\cos ^{-1}\left\{\left[1+W_{n} \sin \alpha\left(\cos \emptyset_{0}+\sin \emptyset_{0} \tan \phi^{\prime}\right)\right] /\left[W_{n}^{2}+2 W_{n} \sin \alpha \cos \emptyset_{0}\right.\right. \\
& \left.\left.+1+W_{n}^{2} \tan ^{2} \phi^{\prime}+2 W_{n} \tan \phi^{\prime} \sin \alpha \sin \emptyset_{0}\right]^{\frac{1}{2}}\right\} \tag{58}
\end{align*}
$$

For $\frac{7 \pi}{4}>\emptyset^{\prime} \geq \frac{5 \pi}{4}, \theta_{\text {we }}$ is given by

$$
\begin{align*}
\theta_{\text {we }} & =\cos ^{-1}\left\{\left[1+W_{n} \sin \alpha\left(\cot \emptyset^{\prime} \cos \emptyset_{0}+\sin \emptyset_{0}\right)\right] /\left[W_{n}^{2}+2 W_{n} \sin \alpha \sin \varphi_{0}\right.\right. \\
& \left.\left.+1+W_{n}{ }^{2} \cot ^{2} \emptyset+2 W_{n} \cot \emptyset^{\prime} \sin \alpha \cos \emptyset_{0}\right]^{\frac{1}{2}}\right\} \tag{59}
\end{align*}
$$

Given α and \emptyset^{\prime} one can now find $\theta_{\text {we }}$. However, the integration will be performed in the unprimed coordinate system, so a relationship between \emptyset and \emptyset^{\prime} is needed. This can be found from the relationship, referring to Figures 3 and $4, \bar{R}=\bar{R}_{0}+\bar{R}^{\prime}$. The vector \bar{R} has already been expressed in the primed coordinate system by (33), \bar{R}_{0} by (49a), and \bar{R}^{-1} is given by

$$
\begin{equation*}
\bar{R}^{\prime}=R^{\prime}\left(\hat{x}^{\prime} \cos \phi^{\prime}+\hat{y}^{\prime} \sin \emptyset^{\prime}\right) \tag{60}
\end{equation*}
$$

since $\theta^{\prime}=\frac{\pi}{2}$ on the water suriace. Using (33), (49a), and (60), the three vector components of the equation $\bar{R}^{\prime}=\bar{R}-\bar{R}_{0}$ yield

$$
\begin{align*}
& R^{\prime} \cos \emptyset^{\prime}=R\left[\sin \theta \cos \emptyset\left(\cos \alpha \cos \emptyset_{0}+\sin \emptyset_{0}\right)\right. \\
&\left.-\sin \alpha \cos \theta \cos \emptyset_{0}\right]+R_{0} \sin \alpha \cos \emptyset_{0} \tag{61}\\
& R^{\prime} \sin \emptyset^{\prime}=R\left[\sin \theta \sin \emptyset\left(\cos \operatorname{lin}^{\sin \emptyset_{0}}+\cos \emptyset_{0}\right)\right. \\
&\left.-\sin \alpha \cos \theta \sin \emptyset_{0}\right]+R_{0} \sin \alpha \sin \emptyset_{0} \tag{62}\\
& 0=R\left[\operatorname { s i n } \theta \operatorname { s i n } \alpha \left(\sin \emptyset \sin \emptyset_{0}+\cos \emptyset_{\left.\cos \emptyset_{0}\right)}\right.\right. \\
&+\cos \theta \cos \alpha]-R_{0} \cos \alpha \tag{63}
\end{align*}
$$

Substituting (63) into (61) and (62), one can write
$\left(\frac{R}{R}\right)^{\prime} \sin \emptyset^{\prime}=\sin \theta \sin \cos ^{2} \alpha \sin \emptyset_{0}+\sin \theta \sin \phi_{\cos } \emptyset_{0} \cos \alpha+\sin ^{2} \alpha \sin \phi_{0}$

$$
\begin{equation*}
\sin \theta \cos \emptyset \cos \emptyset_{0}+\sin ^{2} \alpha \sin ^{2} \emptyset_{0} \sin \theta \sin \theta \tag{64}
\end{equation*}
$$

$\left(\frac{R}{R}\right)^{\prime} \cos \emptyset^{\prime}=\sin \theta \cos \emptyset \cos ^{2} \alpha \cos \emptyset_{0}+\sin \theta \cos \emptyset \cos \alpha \sin \emptyset_{0}+\sin \theta \cos \phi$

$$
\begin{equation*}
\sin ^{2} \alpha \cos \emptyset_{0}+\sin \theta \sin \emptyset \sin ^{2} \alpha \sin \emptyset_{0} \cos \emptyset_{0} \tag{65}
\end{equation*}
$$

Since \emptyset_{0} is either 0 or $\frac{\pi}{2}, \sin \emptyset_{0}=\sin ^{2} \emptyset_{0}, \cos \emptyset_{0}=\cos ^{2} \emptyset_{0}$, and $\sin \emptyset_{0} \cos \emptyset_{0}=0,(64)$ and (65) can be reduced considerably to

$$
\begin{align*}
& \left(\frac{R}{R}\right)^{\prime} \sin \emptyset^{\prime}=\sin \emptyset \sin \theta\left(\cos \emptyset_{0} \cos \alpha+\sin \emptyset_{0}\right) \tag{6}\\
& \left(\frac{R^{\prime}}{R}\right)^{\prime} \cos \emptyset^{\prime}=\cos \emptyset \sin \theta\left(\sin \emptyset_{0} \cos \alpha+\cos \emptyset_{0}\right) \tag{67}
\end{align*}
$$

Dividing (66) by (67), we get the desired relationship between \emptyset and \emptyset^{\prime} to be

$$
\begin{equation*}
\tan \emptyset^{\prime}=\frac{\sin \emptyset\left(\cos \emptyset_{0} \cos \alpha+\sin \emptyset_{0}\right)}{\cos \emptyset \cdot\left(\sin \emptyset_{0} \cos \alpha+\cos \emptyset_{0}\right.} \tag{68}
\end{equation*}
$$

With the above relationship between $\emptyset^{\prime}, \emptyset, \emptyset_{0}$, and $\alpha,(56),(57)$, (58), and (59) can be used to evaluate $\theta_{\text {we }}\left(\varnothing, \alpha, \emptyset_{0}\right)$.

Finding an expression for θ_{es} is considerably easier. As the observation point moves farther away from the wave tank, the vectors \bar{R} and \bar{R}^{1} become nearly equal. In the limit, as the observation point approaches infinity, $\bar{R}=\bar{R}^{\prime}$. With this approximation for the horizon, equating the \hat{z}^{\prime} components of \bar{R} and \bar{R}^{\prime} yield

$$
\begin{align*}
\cos \theta^{\prime}= & \sin \alpha \cos \emptyset_{0} \cos \emptyset \sin \theta+\sin \alpha \\
& \sin \emptyset_{0} \sin \emptyset \sin \theta+\cos \alpha \cos \theta \tag{69}
\end{align*}
$$

Solving (69) for $\partial_{\text {es }}$, which occurs when $\theta^{\prime}=\frac{\pi}{2}$, results in

$$
\begin{equation*}
\theta_{\mathrm{es}}=\tan ^{-1}\left[\frac{\cos \alpha}{-\sin \alpha \cos \emptyset \cos \emptyset_{0}-\sin \alpha \sin \emptyset \sin \emptyset_{0}}\right] \tag{70}
\end{equation*}
$$

The angle θ_{s}, measured from zenith, can also be found from (69), since

$$
\begin{equation*}
\theta_{c}=\pi-\theta^{\prime} \tag{71}
\end{equation*}
$$

Using (71) and (69) yields

$$
\begin{align*}
\theta_{s} & =\cos ^{1}\left[-\sin \alpha \cos \emptyset_{0} \cos \emptyset \sin \theta\right. \\
& -\sin \alpha \sin \theta_{0} \sin \emptyset \sin \theta-\cos \alpha \cos \theta \tag{72}
\end{align*}
$$

Now, given $T_{b s}\left(\theta_{s}\right), T_{b e}, T_{b w h}\left(\theta^{\prime \prime}\right), T_{b w v}\left(\theta^{\prime \prime}\right), E_{\theta}(\theta, \varnothing)$, $E_{\emptyset}(\theta, \emptyset)$ and the tank dimensions, we can now find $T_{a w}, T_{a e}$, and $T_{a s}$ as function of α for both polarizations. The scan angle β would be equal to zero in these calculations. To calculate the $T_{a}^{\prime} s$ as a function of β (for a given α) requires a transformation of variables. Referring to Figures 6a and 6b, the vertical scanning involves coordinate system rotation about the y-axis and for the horizontat scanning an x-axis rotation. It can be seen that the antenna gain functions will be known in the x_{1}, y_{1}, z_{1} coordinate system or as functions of θ_{1} and \emptyset_{1}. To integrate in the unprimed coordinate system, θ_{1} and \emptyset_{1} need to be expressed as functions of θ and \emptyset. Appendix I contains a derivation of these transformations. For the vertical scanning, pictured in Figure 6a,

$$
\begin{align*}
& \emptyset_{1}=\tan ^{-1}\left[\frac{\sin \phi \sin \theta}{\cos \beta \cos \varnothing \sin \theta+\sin \beta \cos \theta}\right] \tag{73}\\
& \theta_{1}=\cos ^{-1}[-\sin \beta \cos \emptyset \sin \theta+\cos \beta \cos \theta] \tag{74}
\end{align*}
$$

For the horizontal polarization, illustrated in Figure 6b,

$$
\begin{equation*}
\emptyset_{1}=\tan ^{-1}\left[\frac{\cos \beta \sin \emptyset \sin \theta+\sin \beta \cos \theta}{\cos \emptyset \sin \theta}\right] \tag{75}
\end{equation*}
$$

Fig. 6a. Coordinate System Transformation Describing Vertical Scanning (B variations) for the Z-axis Geometry.

Fig. 6b. Coordinate System Transformation Describing Horizontal Scanning (β variations) for the Z-axis Geometry.

$$
\begin{equation*}
\theta_{1}=\cos ^{-1}[-\sin \beta \sin \varnothing \sin \theta+\cos \beta \cos \theta] \tag{76}
\end{equation*}
$$

By using $G^{V}\left(\theta_{1}, \emptyset_{1}\right), G^{h}\left(\theta_{1}, \emptyset_{1}\right)$, and $G\left(\theta_{1}, \emptyset_{1}\right)$ in (27), (28), and (29), $T_{a w}, T_{a e}$, and $T_{a s}$ can be found as functions of α and β for both polarizations. However, using this geometry, (27), (28), and (29) must be evaluated by numerical integration for each value of α and β. One would also have to solve the transcendental equations relating θ_{ρ} and \emptyset_{1} to θ and \emptyset at each integration point. This would require considerable computer time and can be avoided if the scanning of the antenna is described by a rotation about the z-axis instead of a rotation about the x - or y - axis as given by (73)-(76).

2. X-Axis Normal to Radiometer Antenna Aperture:

An alternate coordinate system that avoids the transcendental equations describing the scanning is illustrated in Figure 7. In this case the x-axis is used as the boresight of the antenna for both horizontal and vertical scans. These scans are now mathematically described by rotations about the z-axis, and the transformations of coordinates during the scan (as shown in Appendix 1) Teave the θ variable unaffected and change \emptyset by a constant value. The elimination of the transcendental equations is not the only advantage of rotating about the z-axis. It will be shown that by utilizing this geometry, the integration with respect to \emptyset and the

Fig. 7. X-axis Geometry and Vector Alignment on the Wave Tank Surface.
functional variation with respect to β of (27), (28), and (29) can be established in a correlation form and evaluated conveniently and efficiently by Fourier transform techniques. It was for this reason that this system was adopted.

Since the antenna system is now restricted to rotations about the z-axis, it is not going to be scanned in two orthogonal planes to establish the two different polarizations. Instead, the scanning will be restricted in one plane but the antenna orientation (aperiure field) will be changed to accomplish this. To receive primarily the vertical polarization, the aperture field is assumed to be oriented in the \hat{y}^{\prime} direction. If the horizontal polarization is desired, the F_{θ} and E_{\emptyset} fields are those calculated with the aperture field in the \hat{z}^{\prime} direction. We shall use the subscript p to denote a function that depends upon polarization. The subscript p will represent h for horizontal or v for vertical polarization.

To evaluate (27), (28), and (29) with the new geometry, we again need to find the dot products that represent the degree of alignment between the $\hat{\theta}^{\prime}$ and $\hat{\phi}^{\prime}$ vectors of the antenna's coordinate system and the horizontal and vertical unit vectors. The incidence angle $\theta^{\prime \prime}$ and the various limits of integration also need to be known. The dot products and incidence angle will be found utilizing the geometry as representied in Figure 8.

The planes defired by constant values of \emptyset form on the water surface straight lines N which are parallel to the z-axis.

Fig. 8. X-āxis Geometry and Parameters Describing the Vector Alignment Dot Products.

Along each one of these lines, \emptyset is defined as the angle between the projection of the radial line into the $x-y$ plane and the x-axis. The radial line is R and its projection into the $x-y$ plane is M. Therefore, \emptyset is the angle between H and M. The angle between the z-axis and R is θ. Since the line N and the z-axis are parallel, the lines R, M, N, and the z-axis all lie in the same plane. The z-axis and M intersect at right angles, so the angle between M and R is $\frac{\pi}{2}-\theta$, defined positive in the direction shown. The horizontal vector \hat{h} always lies in the plane that th surface of the water defines. Therefore, if one can find ψ as a function of θ and \emptyset then \hat{h} can be found from ψ. The piane the water surface defines is parallel to the $y-z$ plane and \hat{h} is given by

$$
\begin{equation*}
\hat{h}=\hat{y} \sin \psi-\hat{z} \cos \psi \tag{77}
\end{equation*}
$$

Line segment length L is found from

$$
\begin{equation*}
L=H \tan \theta \tag{78}
\end{equation*}
$$

and M by

$$
\begin{equation*}
M=\sqrt{H^{2}+L^{2}}=H \sec \emptyset \tag{79}
\end{equation*}
$$

To find N we use the relation

$$
\begin{equation*}
\frac{N}{M}=\tan \left(\frac{\pi}{2} \cdot \theta\right)=\cot \theta \tag{80}
\end{equation*}
$$

Substituting (79) into (80) we can find N to be

$$
\begin{equation*}
N=H \sec \emptyset \cot \theta \tag{81}
\end{equation*}
$$

Using (78) and (81), we find that

$$
\begin{equation*}
\psi=\tan ^{-1}\left(\frac{N}{L}\right)=\tan ^{-1}\left[\frac{\cos \theta}{\sin \emptyset}\right] \tag{82}
\end{equation*}
$$

The vector \hat{h} is now known from (77) and we can get \hat{v} from the relationship

$$
\begin{equation*}
\hat{v}=\hat{r} \times \hat{h} \tag{83}
\end{equation*}
$$

The unit vectors $\hat{\theta}, \hat{\emptyset}$, and \hat{r} are expressed in (44a), (44b) and (32), respectively. Using (32) and (77) in (83) yields

$$
\begin{align*}
\hat{v} & =\hat{x}(-\cos \psi \sin \phi \sin \theta-\sin \psi \cos \theta) \\
& +\hat{y} \cos \psi \cos \emptyset \sin \theta+\hat{z} \sin \psi \cos \emptyset \sin \theta \tag{84}
\end{align*}
$$

Knowing the vectors $\hat{h}, \hat{v}, \hat{\theta}$, and $\hat{\theta}$, the various dot products needed to evaluate (23) and (24) can be expressed as

$$
\begin{align*}
& \hat{\theta} \cdot \hat{h}=\sin \emptyset \cos \theta \sin \psi+\sin \theta \cos \psi \tag{85a}\\
& \hat{\theta} \cdot \hat{h}=\cos \emptyset \sin \psi \tag{85b}
\end{align*}
$$

$$
\begin{align*}
\hat{\theta} \cdot \hat{v} & =\cos \emptyset \cos \theta(-\cos \psi \sin \phi \sin \theta-\sin \psi \cos \theta) \\
& +\sin \emptyset \cos \theta \cos \psi \cos \phi \sin \theta-\sin \psi \cos \emptyset \sin ^{2} \theta \tag{85c}
\end{align*}
$$

$\hat{\emptyset} \cdot \hat{v}=\sin \emptyset(\cos \psi \sin \emptyset \sin \theta+\sin \psi \cos \theta)$
$+\cos \psi \cos ^{2} \emptyset \sin \theta$

Expanding and simplifying (85c) and (85d), we find that

$$
\begin{equation*}
\hat{\theta} \cdot \hat{v}=-\hat{\emptyset} \cdot \hat{h}=-\sin \psi \cos \emptyset \tag{86a}
\end{equation*}
$$

$$
\begin{equation*}
\hat{\theta} \cdot \hat{v}=\hat{\theta} \cdot \hat{h}=\sin \psi \cos \theta \sin \theta+\cos \psi \sin \theta \tag{86b}
\end{equation*}
$$

Ne now have the needed dot products in the unprimed coordinate system. The incidence angle $\theta^{\prime \prime}$ is found by the relationship

$$
\begin{equation*}
\tan \left(\frac{\pi}{2}-\theta^{\prime \prime}\right)=H / P \tag{87}
\end{equation*}
$$

and P from

$$
\begin{equation*}
P=\sqrt{L^{2}+N^{2}}=H \sqrt{\cot ^{2} \theta\left(1+\sec ^{2} \emptyset\right)} \tag{88}
\end{equation*}
$$

Substituting (88) into (87) yields

$$
\begin{equation*}
\theta^{\prime \prime}=\tan ^{-1}\left[\sqrt{\cot ^{2} \theta\left(1+\sec ^{2} \theta\right)}\right. \tag{89}
\end{equation*}
$$

Now that the incidence angle is known, let us next find the relationship between the primed coordinate system of the antenna and the unprimed coordinate system representing the water. Referring to Figure 7, the primed coordinate system is rotated about the z-axis through the angle $\alpha+\beta$. From Appendix I, we know the transformation to be

$$
\begin{gather*}
e=\theta^{\circ} \tag{90}\\
\emptyset=\emptyset^{\prime}+\alpha+\beta \tag{91}
\end{gather*}
$$

We can now express (27), (28), and (29) as functions of α and β.

$$
\begin{aligned}
T_{a w p}(\alpha, \beta) & =\int_{\text {over }} \int_{\text {water }}\left[\hat{h}(\theta, \emptyset) \cdot \hat{\theta} E_{\theta p}(\theta, \emptyset-(\alpha+\beta))\right. \\
& \left.+\hat{h}(\theta, \emptyset) \cdot \hat{\emptyset} E_{\emptyset p}(\theta, \phi-(\alpha+\beta))\right]^{2} T_{b w h}\left[\theta^{\prime \prime}(\theta, \emptyset)\right] \sin \theta d \theta d \\
& +\int_{\text {over }} \int_{\text {water }}\left[\hat{v}(\theta, \emptyset) \cdot \hat{\theta} E_{e p}(\theta, \emptyset-(\alpha+\beta))+\hat{v}(\theta ; \emptyset) \cdot\right.
\end{aligned}
$$

$$
\begin{equation*}
\left.\hat{\emptyset} \mathrm{E}_{\emptyset \mathrm{p}}(\theta, \emptyset-(\alpha+\beta))\right]^{2} T_{b w v}\left[\theta^{\prime \prime}(\theta, \emptyset)\right] \sin \theta \mathrm{d} \theta \mathrm{~d} \emptyset \tag{92}
\end{equation*}
$$

$$
\begin{equation*}
T_{\text {aep }}(\alpha, \beta)=\iint_{\substack{\text { over } \\ \text { earth }}} T_{b e}(\theta, \emptyset) G_{p}(\theta, \emptyset-(\alpha+\beta)) \sin \theta d \theta d \emptyset \tag{93}
\end{equation*}
$$

$T_{a s p}(\alpha, \beta)=\int_{\substack{\text { over } \\ \text { sky }}} T_{b s}(\theta, \emptyset) G_{p}(\theta, \emptyset-(\alpha+\beta)) \sin \theta d \theta d \emptyset$
where G_{p} has been normalized so that its value over the entire solid angle is unity.

In order to evaluate (92), (93), and (94), we need to find the limits of integration. The edges of the tank which are parallel to the z-axis, as illustrated in Figure 9, lie in constant \emptyset plane. The values of \emptyset which define these edges are indicated in Figure 10 as \varnothing_{1} and \varnothing_{2}. The boom length is ρ and

$$
\begin{equation*}
H=\rho \cos \alpha \tag{95}
\end{equation*}
$$

The distances C and D are known as

$$
\begin{align*}
& C=h / 2-\rho \sin \alpha \tag{96a}\\
& D=k / 2+\rho \sin \alpha \tag{96b}
\end{align*}
$$

The relationship between $\emptyset_{1}, \theta_{2}, C$, and D are

$$
\begin{align*}
& \theta_{1}=\tan ^{-1}(D / H) \tag{97a}\\
& \theta_{2}=\tan ^{-1}(C / H) \tag{97b}
\end{align*}
$$

Substituting (95), (96a), and (96b) into (97a) and (97b), we find the limits of integration for \emptyset between the water and earth to be

$$
\begin{align*}
& \varphi_{1}=\tan ^{-1}[(W / 2+\rho \sin \alpha) / \rho \cos \alpha] \tag{98a}\\
& \varphi_{2}=\tan ^{-1}[(W / 2-\rho \sin \alpha) / \rho \cos \alpha] \tag{98b}
\end{align*}
$$

Fig. 9. Wave Tank Configuration to Determine the θ Limits of Integration for the X-axis Geometry.

Fig, 10. Wave Tank Scanning Plane to Determine the \emptyset Limits of Integration for the X -axis Geometry.

Referring to Figure 9, for each value of \emptyset between $-\emptyset_{2}$ and \emptyset_{1} we need to find the value of $\theta_{\text {ew }}$ that defines the other edge of the tank. First, we find B by

$$
\begin{equation*}
B=H \tan \varnothing \tag{99}
\end{equation*}
$$

We express E as

$$
\begin{equation*}
E=\sqrt{H^{2}+B^{2}} \tag{100}
\end{equation*}
$$

By combining (95), (99), and (100), we find E as a function of ρ, α, and \emptyset as

$$
\begin{equation*}
E=p \cos \alpha \sec \emptyset \tag{101}
\end{equation*}
$$

It can be seen from Figure 9 that

$$
\begin{equation*}
\tan \left(\frac{\pi}{2}-\theta_{\mathrm{ew}}\right)=F / E=\cot \left(\theta_{\mathrm{ew}}\right) \tag{102}
\end{equation*}
$$

and for this square tank

$$
\begin{equation*}
F=W / 2 \tag{103}
\end{equation*}
$$

The angle θ_{ew} is found from (101), (102), and (103) as

$$
\begin{equation*}
\theta_{\mathrm{ew} .}=\cot ^{-1}[(W / 2) / 0 \cos \alpha \sec \emptyset] \tag{704}
\end{equation*}
$$

For values of \emptyset not between $-\emptyset_{2}$ and \emptyset_{1} we will define $\theta_{\text {ew }}$ as $\frac{\pi}{2}$. The sky is integrated for values of \emptyset between $\frac{\pi}{2}$ and $\frac{3 \pi}{2}$ for all
values of θ. We can now rewrite (92), (93), and (94), showing the limits of integration, as

$$
\begin{align*}
& T_{a w p}(\alpha, \beta)=\int_{-\emptyset_{2}}^{\emptyset_{1}} \int_{\theta}^{\pi / 2}[\text { same as in (92)] }] \sin \theta d \theta d \emptyset \\
& +\int_{-\emptyset_{2}}^{\emptyset_{1}} \int_{\theta_{\text {ew }}(\alpha, \rho, W, \emptyset)}^{\pi / 2}[\text { same as in (92) }] \sin \theta d \theta d \emptyset \tag{105}\\
& \therefore \operatorname{aep}(\alpha, \beta)=\int_{-\pi / 2}^{\pi / 2} \int_{0}^{\theta} \operatorname{ew}(\alpha, \rho, W, \emptyset) \tag{106}\\
& T_{\text {asp }}(\alpha, \beta)=\int_{\pi / 2}^{3 \pi / 2} \cdot \int_{0}^{\pi / 2}[\text { same as in (94)] } \sin \theta d \theta \cdot d \emptyset \tag{107}
\end{align*}
$$

where G_{p} has been normalized so that its value over the entire solid angle is 2.

We need only integrate θ from 0 to $\pi / 2$ because the geometry is symmetrical about the $x-y$ plane. It should be noted here that the geometry does not have to be symmetrical to obtain a solution to the problem. The tank need not be square but of any shape. We need only to know F as a function of B to find $\theta_{\text {ew }}$ as a function of \varnothing. If the tank is not symmetrical about the $x-y$ plane, then we need to integrate θ from 0 to π. The value of $\theta_{\text {ew }}$ that describes the back edge of the tank can be found in the same manner
as the $\theta_{\text {ew }}$ for θ between 0 and $\pi / 2$.
By utilizing the rotation about the z-axis to represent the rotation of the support arm through the angle α and the scanning angle β, we obtain a much more powerful representation of the problem than is possible with the earlier geometry which utilized the z-axis perpendicular to the aperture of the antenna. Previously we found $\theta_{\text {we }}$ from (56), (57), (58), and (59) and $\theta_{\text {es }}$ from (70). Equations (98a), (98b) and (104) are much simpler. The dot products for the first coordinate system (z-axis normal to antenna aperture) are functions of $\theta, \emptyset, \alpha$, and polarization $\left(\emptyset_{0}\right)$. By rotating about the z-axis, the dot products are only functions of θ and \emptyset because the transformation between θ, \varnothing and $\theta^{\prime}, \emptyset^{\prime}$ is performed merely by the addition of a constant to \emptyset. Figure 11a shows the vectors $\hat{\theta}$ and $\hat{\varphi}$ on the surface of the water when the z-axis is directed straight down into the water surface. The vector $\hat{\theta}$ is equal to \hat{v} and $\hat{\emptyset}$ equal to \hat{h} and all of the dot products are either 1 or 0 . When we rotate this coordinate system about either the x or y axis, the $\hat{\emptyset}^{1}$ vector no longer lies in the plane of the water surface and the dot products become functions of θ^{\prime}, a', and the amount of angular rotation. The dot products would, therefore, need to be calculated for each rotation angle. This is a consequence of the transformation of variables between θ, \emptyset and $\theta^{\prime}, \emptyset^{\prime}$ shown in transcendental form in Appendix I. Figure 11b shows how the vectors $\hat{\theta}$ and $\hat{\theta}$ align on the surface for the second system (x-axis normal to antenna aperture). If this coordinate system is rotated about the z-axis and the vector $\hat{\theta}^{\prime}$ and $\hat{\theta}^{\prime}$ were

Fig. 71a. Overhead View of the Unit Vector Alignment on the Wave Tank Surface for the Z-axis Geometry.

Fig. 11b. Overhead View of the Unit Vector Alignment on the Wave Tank Surface for the X-axis Geometry.
ploted they would look exactly the same all the time. Rotation about the z-axis does not affect the alignment of the vectors on the surface and consequently does not alter the dot products.

In addition to all the above advantages, the rotation about the z-axis has another tremendous advantage. The integration with respect to \emptyset is in the form of a correlation, which can be evaluated by the use of Fourier transform techniques. The integration with respect to θ will be executed by numerical integration.

In order to reduce the computation time, we make the gain functions independent of α. This way the spectrum of the gain need only be found once and used for all values of α. To do this we add α to \emptyset in the integrands of (105), (106), and (107) and then subtract α from the limits of integration creating $\emptyset_{0}=\emptyset-\alpha$. This yields

$$
\begin{align*}
& T_{a w p}(\alpha, \beta)=\int_{-\emptyset_{2}-\alpha}^{\emptyset_{1}-\alpha} \int_{\theta}^{\ln / \iota}\left[\hat{h}\left(\theta, \emptyset_{0}+\alpha\right) \cdot \hat{\theta} E_{\theta p}\left(\theta, \emptyset_{0}-\emptyset_{0}+\alpha\right)+\hat{h}\left(\theta, \emptyset_{0}+\alpha\right) \cdot\right. \\
& \left.\left.\hat{\emptyset} E_{\emptyset p}\left(\theta, \emptyset_{0}-\beta\right)\right]^{2} T_{b w h}\left[\theta, \emptyset_{0}+\alpha\right)\right] \sin \theta d \theta d \emptyset_{0} \\
& +\int_{-\emptyset_{2}-\alpha}^{\emptyset_{1}-\alpha} \int_{\theta_{\mathrm{ew}}\left(\alpha, \rho, W, \ell_{0}+\alpha\right)}^{\pi / 2}\left[\hat { v } \left(\theta, \ell_{\theta}+(\iota) \cdot \hat{\theta} \mathrm{E}_{\theta \mathrm{p}}\left(\theta, \phi_{\rho}-\beta\right)+\hat{\dot{v}}\left(\theta, \emptyset_{0}+\alpha\right) \cdot\right.\right. \\
& \left.\hat{\emptyset} E_{\emptyset p}\left(\theta, \theta_{0}-\beta\right)\right]^{2} T_{b w v}\left[\theta^{\prime \prime}\left(\theta, \theta_{o}+\alpha\right)\right] \sin \theta d \theta d \rho_{0} . \tag{108}
\end{align*}
$$

$$
\begin{align*}
& T_{\text {aep }}(\alpha, \beta)=\int_{-\pi / 2-\alpha}^{\pi / 2-\alpha} \int_{0}^{\theta} \mathrm{ew}\left(\alpha, \rho, W, \emptyset_{0}+\alpha\right) \tag{109}\\
& T_{b e}\left(\theta, \emptyset_{0}+\alpha\right) G_{p}\left(\theta, \emptyset_{0}-\beta\right) \sin \theta d \theta d \emptyset_{0} \tag{110}\\
& T_{\text {asp }}(\alpha, \beta)=\int_{\pi / 2-\alpha}^{3 \pi / 2-\alpha} \int_{0}^{\pi / 2} T_{b s}\left(\theta, \emptyset_{0}+\alpha\right) G_{p}\left(\theta, \emptyset_{0}-\beta\right) \sin \theta d \theta d \emptyset_{\circ}
\end{align*}
$$

The following furctions will now be defined:

$$
\begin{align*}
& {\left[{ }^{T}{ }_{b w h}\left(\theta^{\prime \prime}\right) \text { for }-\emptyset_{2}-\alpha \leq \varphi_{0} \leq \varphi_{1}-\alpha\right.} \\
& \text { arid } \theta_{\text {ew }} \leq \theta \leq \pi / 2 \tag{110a}\\
& 0 \text { elsewhere } \\
& T_{b w v}^{\prime}\left(\theta, \emptyset_{0}+\alpha\right) \equiv\left[\begin{array}{ll}
T_{b w v}\left(\theta^{\prime \prime}\right) & \text { for }-\emptyset_{2}-\alpha \leq \emptyset_{0} \leq \emptyset_{1}-\alpha \\
& \text { and } \theta_{\text {ew }} \leq \theta \leq \pi / 2
\end{array} \quad \begin{array}{ll}
& \text { elsewhere }
\end{array}\right. \tag{110b}\\
& T_{b e}^{\prime}\left(\theta, \emptyset_{0}+\alpha\right) \equiv\left[\begin{array}{ll}
T_{b e}\left(\theta, \emptyset_{0}+\alpha\right) & \text { for }-\pi / 2-\alpha \leq \emptyset_{0} \leq \pi / 2-\alpha \\
& \text { and } 0 \leq \theta \leq \theta_{e w}
\end{array}\right. \tag{110c}\\
& 0 \text { elsewhere }
\end{align*}
$$

$$
\mathrm{T}_{\mathrm{bs}}^{\prime}\left(\theta, \emptyset_{0}+\alpha\right) \equiv\left[\begin{array}{ll}
\mathrm{T}_{\mathrm{bs}}\left(\theta, \emptyset_{0}+\alpha\right) & \text { for } \pi / 2-\alpha<\emptyset_{0}<3 \pi / 2-\alpha \tag{110d}\\
\cdot & \text { and a11 } \theta \\
\cdot & \\
0 & \text { elsewhere }
\end{array}\right.
$$

Using the primed functions we can rewrite (108) - (110) as

$$
\begin{align*}
T_{a w p}(\alpha, \beta)= & \int_{0}^{2 \pi} \int_{0}^{\pi / 2}\left\{\left[\hat{h}\left(\theta, \emptyset_{0}+\alpha\right) \cdot \hat{\theta} E_{\theta p}\left(\theta, \emptyset_{0}-\beta\right)+\hat{h}\left(\theta, \emptyset_{0}+\alpha\right) \cdot\right.\right. \\
& \left.\hat{\emptyset} E_{\emptyset p}\left(\theta, \emptyset_{0}-\beta\right)\right]^{2} T_{b w h}^{\prime}\left(\theta, \emptyset_{0}+\alpha\right)+\left[\hat{v}\left(\theta, \emptyset_{o}+\alpha\right) \cdot\right. \\
& \left.\hat{\theta} E_{\theta p}\left(\theta, \emptyset_{0}-\beta\right)+\hat{v}\left(\theta, \emptyset_{0}+\alpha\right) \cdot \hat{\emptyset} E_{\emptyset p}\left(\theta, \emptyset_{o}-\beta\right)\right]^{2} \\
& \left.T_{b w v}^{\prime}\left(\theta, \emptyset_{0}+\alpha\right)\right\} \sin \theta d \theta d \emptyset_{o} \tag{111}
\end{align*}
$$

$$
\begin{equation*}
T_{a e p}(\alpha, \beta)=\int_{0}^{2 \pi} \int_{0}^{\pi / 2} T_{b e}^{\prime}\left(\theta, \emptyset_{0}+\alpha\right) G_{p}\left(\theta, \emptyset_{0}-\beta\right) \sin \theta d \theta d \emptyset_{0} \tag{112}
\end{equation*}
$$

$$
\begin{equation*}
T_{a s p}(\alpha, \beta)=\int_{0}^{2 \pi} \int_{0}^{\pi / 2} T_{b s}^{\prime}\left(\theta, \emptyset_{o}+\alpha\right) G_{p}\left(\theta, \emptyset_{o}-\beta\right) \sin \theta d \theta d \emptyset_{o} \tag{173}
\end{equation*}
$$

Expanding (111) and dropping the arguments for convenience, yields

$$
\begin{align*}
T_{a w p}(\alpha, \beta) & =\int_{0}^{2 \pi} \int_{0}^{\pi / 2}\left[(\hat{h} \cdot \hat{\theta})^{2} E_{\theta p}^{2} T_{b w h}^{\prime}+(\hat{h} \cdot \hat{\emptyset})^{2} E_{\emptyset p}^{2} T_{b w h}^{\prime}\right. \\
& +2(\hat{h} \cdot \hat{\theta})(\hat{h} \cdot \hat{\emptyset}) E_{\theta p} E_{\emptyset p} T_{b w h}^{\prime} \\
& +(\hat{v} \cdot \hat{\theta})^{2} E_{\theta p}^{2} T_{b w v}^{\prime}+(\hat{v} \cdot \hat{\emptyset})^{2} E_{\emptyset p}{ }^{2} T_{b w v}^{\prime} \\
& \left.+2(\hat{v} \cdot \hat{\theta})(\hat{v} \cdot \hat{\emptyset}) E_{\theta p} E_{\emptyset p} T_{b w v}^{\prime}\right] \sin \theta d \theta d \emptyset_{\sigma} \tag{174}
\end{align*}
$$

Equations (112), (113), and (114) are all of the form

$$
\begin{equation*}
T_{a}(\alpha, \beta)=\int_{0}^{2 \pi} \int_{0}^{\pi / 2} T_{b}^{\prime}\left(\theta, \emptyset_{o}+a\right) G\left(\theta, \emptyset_{o}-\beta\right) \sin \theta d \theta d \emptyset_{0} \tag{115}
\end{equation*}
$$

By performing the integration with respect to θ as a summation, (115) can be written as

$$
\begin{equation*}
T_{a}(\alpha, \beta)=\sum_{i=1}^{N} W_{j} \sin \theta_{T} \int_{0}^{2 \pi} T_{b}\left(\theta_{j}, \emptyset_{0}+\alpha\right) G\left(\theta_{i}, \emptyset_{0}-\beta\right) d \emptyset_{0} \tag{116}
\end{equation*}
$$

The variable θ is sampled N times while $\theta_{1}=0$ and $\theta_{N} \cong \pi / 2$. The function W_{i} is the weighting factor for the particular numerical integration technique used.

For any constant value of α, (116) can be evaluated as

$$
\begin{equation*}
T_{a}\left(\alpha_{0},-\beta\right)=\sum_{i=1}^{N} W_{i} \sin \theta_{i} F^{-1}\left\{\overline{T_{b}(f)_{i}} \overline{G(f)}_{i}^{*}\right\} \tag{117}
\end{equation*}
$$

where
$\overline{T_{b}(f)}{ }_{i}=$ the periodic Fourier transform of $T_{b}\left(\theta_{i}, \theta_{0}+\alpha_{0}\right)$
$\overline{G(f)}_{i}^{*}=$ the complex conjugate of the transform of $G\left(\theta_{i}, \theta_{0}\right)$ Since $F^{-1}[\bar{A}]+F^{-1}[\bar{B}]$ is equivalent to $F^{-1}[\bar{A}+\bar{B}]$, computation time can be reduced by evaluating (117) as

$$
\begin{equation*}
T_{a}\left(\alpha_{o},-\beta\right)=F^{-1}\left\{\sum_{i=1}^{N}{\overline{T_{b}(f)_{i}}}_{G_{i}(f)_{i}}{ }^{*} W_{i} \sin \theta_{i}\right\} \tag{118}
\end{equation*}
$$

The antenna temperature contributions can now be found as

$$
\begin{align*}
& T_{a w p}\left(\alpha_{0},-\beta\right)=F^{-1}\left\{\sum_{i=1}^{N}\left[\overline{T_{b w h f}^{\prime}(\hat{i} \cdot \hat{h})_{j}^{2}} \overline{E_{\theta p i}^{2}} W_{i} \sin \theta_{i}\right]\right. \\
& +2 \sum_{j=1}^{N} \overline{\left[T_{b w h i}^{\prime}(\hat{\theta} \cdot \hat{h})_{i}(\hat{\emptyset} \cdot \hat{h})_{j}\right.} \overline{\left.E_{\emptyset p i} E_{\emptyset p i} W_{i} \sin \theta_{i}\right]} \\
& \left.+\sum_{i=1}^{N} \overline{\left[T_{b w h f}^{\prime}(\hat{\emptyset} \cdot \hat{h})_{i}^{2}\right.} \overline{E_{\emptyset p i}^{2}} W_{i} \sin \theta_{i}\right] \\
& +\sum_{i=1}^{N}\left[\overline{\left[T_{b w v i}^{\prime}(\hat{\theta} \cdot \hat{v})_{i}^{2}\right.} \overline{E_{\theta p i}^{2}} W_{i} \sin \theta_{i}\right] \\
& \left.+2 \sum_{i=1}^{N} \overline{\left[T_{b w v i}^{\prime}(\hat{\theta} \cdot \hat{v})_{i}(\hat{\theta} \cdot \hat{v})_{j}\right.} \overline{E_{\theta p i} E_{\emptyset p i}} W_{i} \sin \theta_{i}\right] \\
& \left.\left.+\sum_{i=1}^{N} \overline{\left[T_{b w v i}^{1}(\hat{\emptyset} \cdot \hat{v})_{i}^{2}\right.} \overline{E_{\emptyset p i}^{2}} W_{i} \sin \theta_{i}\right]\right\} \tag{119}
\end{align*}
$$

$T_{\text {aep }}\left(\alpha_{0}, \cdots \beta\right)=F^{-1}\left\{\sum_{i=1}^{N} \overline{T_{b e i}^{\prime}} \overline{G_{p i}} W_{i} \sin \theta_{j}\right\}$

Given α, equations (119), (120), and (121) can be used to find $T_{a w p}, T_{\text {aep }}$, and $T_{\text {asp }}$, respectively, for all values of β. The $\overline{t r a n s f o r m s ~ o f ~}_{*}$ of the gain functions for each polarization, $\overline{E_{\theta p i}^{2}}$, $\overline{E_{\emptyset p i}^{2}}$, and $\overline{E_{\theta \rho}} \overline{E_{\ell p i}}$, need be computed only once, since the gain functions are neyer needed in the time domain. The function $\overline{\mathrm{G}_{\mathrm{pi}}}{ }^{*}$ is equal to $\overline{\mathrm{E}_{\theta \mathrm{pi}}^{2}}+\overline{\mathrm{E}_{\emptyset \mathrm{ppi}}^{2}}$ and need not be computed separately.

The problem has ncw been formulated in two coordinate system configurations. The first used the z-axis as the antenna boresight to conform with the circularity of the antenna's power pattern. The second required the x-axis as the boresight. This allows the use of Fourier transforms to perform the integration and reduce the computation time when the $T_{a}{ }^{\prime} s$ for all values of β are computed. The necessity of knowing the T_{a} 's for all values of β will become apparent in the inversion process.

D. The Gain Functions

In order to use either the z-axis or x-axis analysis, one must know the radiation characteristics of the antenna. Figure 12a shows the antenna geometry when the z-axis is taken to be perpendicular to the antenna aperture and Figure 12b shows the geometry with the x-axis perpendicular to the aperture. For either

Fig. 12a. Z-axis Antenna Geometry.

Fig. 12b. X-axis Antemna Geometry.
geometry, the three-dimensional power pattern can be obtained by

$$
\begin{align*}
G(\theta, \emptyset) & =G\left[\theta^{\prime}(\theta, \emptyset), \emptyset^{\prime}=0\right] \cos ^{2} \emptyset^{\prime}(\theta, \emptyset) \\
& +G\left[\theta^{\prime}(\theta, \emptyset), \emptyset^{\prime}=\frac{\pi}{2}\right] \sin ^{2} \emptyset^{\prime}(\theta, \emptyset) \tag{122}
\end{align*}
$$

where

$$
\begin{align*}
\theta^{\prime} & =\cos ^{-1}\{\cos \phi \sin \theta\} \tag{123a}\\
\emptyset^{\prime} & =\tan ^{-3}\{-\sin \phi \tan \theta\} \tag{123b}
\end{align*}
$$

Equations (122) and (12a) - (123b) can be used to construc the three-dimensional gain patterns from principal plane measurements whenevar they can not be determined analytically.
E. Cross-polarization

Most practical anternas possess what is usually referred to as a cross-polarization pattern. For example, referring to Figure 12a, if there is no cross-polarization pattern, then in the E-plane ($\emptyset^{\prime}=0$) there would only be an E_{θ} component and in the H-plane ($\phi^{\prime}=\frac{\pi}{2}$) only an E_{\emptyset} component. Any radiated component which is orthogonal to the principal polarization is usually referred to as cross-polarization. Having no cross-polarization in the principal planes does not insure no cross-polarization in any other plane, as is demonstrated for a reflector system by

Silver [13]. In this investigation, the cross-polarized pattern will be assumed to have the same shape as the principal pattern. With this assumption, the antenna temperatures with cross-polarization ($T_{a v}^{\prime}$ and $T_{a h}^{\prime}$) can be related to the antenna temperatures with no cross-polarization ($T_{a v}$ and $T_{a h}$) by

$$
\begin{align*}
& T_{a v}^{\prime}=T_{a v} /(1+\text { CROSS })+\dot{T}_{a h} \cdot \text { CROSS } /(1+\text { CROSS }) \tag{124a}\\
& T_{a h}^{\prime}=T_{a h} /(1+\text { CROSS })+T_{a v} \cdot C R O S S /(1+\text { CROSS }) \tag{124b}
\end{align*}
$$

where CROSS refers to the fraction of power in the cross-polarized pattern. For example, if there is a -20 db cross-polarized pattern, then CROSS is 0.01 . Equations (124a) and (124b) are exact if the shape of the cross-polarized pattern is the same as the principal pattern.
III. Inversion

A. Two-dimensional Approximation

So far, we have only concerned ourselves with the direct problem, that of finding the antenna temperature $T_{a}(\alpha, \beta)$ from the brightness temperature $T_{b}(\theta, \varnothing)$. Let us now approach the inverse problem of finding $T_{b}(\theta, \emptyset)$ from $T_{a}(\alpha, \beta)$. This inversion problem for the wave tank geometry was first approached by Fisher [7]. Referring to Figure 7, Fisher used a two-dimensional approximation to represent the wave tank system. Assuming that the antenna maximum (boresight) is directed only along the $\theta=\frac{\pi}{2}$ plane, the water is scanned along the line L_{p}. The two-dimensional approximation assumes that most of the energy of the antenna is within the major lobe and only integration along the $\theta=\frac{\pi}{2}$ plane is necessary, With this approximation (111), (112), and (113) can be reduced considerably. The dot products can be expressed as

$$
\begin{align*}
& \hat{\theta} \cdot \hat{h}\left(\frac{\pi}{2}, \emptyset_{0}+\alpha\right)=\hat{\emptyset} \cdot \hat{v}\left(\frac{\pi}{2}, \emptyset_{0}+\alpha\right)=1 \tag{125a}\\
& \hat{\emptyset} \cdot \hat{h}\left(\frac{\pi}{2}, \emptyset_{0}+\alpha\right)=\hat{\theta} \cdot \hat{v}\left(\frac{\pi}{2}, \emptyset_{0}+\alpha\right)=0 \tag{125b}
\end{align*}
$$

Renormalizing the gain functions so that

$$
\begin{equation*}
\int_{0}^{2 \pi} G_{p}\left(\frac{\pi}{2}, \emptyset\right) d \emptyset_{0}=1 \tag{126}
\end{equation*}
$$

. we can write (111),(112), and (113) as

$$
\begin{align*}
T_{a w p}(\alpha, \beta) & \simeq \int_{0}^{2 \pi} E_{\theta p}^{2}\left(\frac{\pi}{2}, \emptyset_{0}-\beta\right) T_{b w h}^{\prime}\left(\frac{\pi}{2}, \emptyset_{0}+\alpha\right) d \emptyset_{0} \\
& +\int_{0}^{2 \pi} E_{\emptyset p}^{2}\left(\frac{\pi}{2}, \emptyset_{0}-\beta\right) T_{b w v}^{\prime}\left(\frac{\pi}{2}, \emptyset_{0}+\alpha\right) d \emptyset_{0} \tag{127}\\
T_{a \in p}(\alpha, \beta) & \simeq \int_{0}^{2 \pi} G_{p}\left(\frac{\pi}{2}, \emptyset_{0}-\beta\right) T_{b e}^{\prime}\left(\frac{\pi}{2}, \emptyset_{0}+\alpha\right) d \emptyset_{0} \tag{128}\\
T_{a s p}(\alpha, \beta) & \simeq \int_{0}^{2 \pi} G_{p}\left(\frac{\pi}{2}, \emptyset_{0}^{-}-\beta\right) T_{b s}^{\prime}\left(\frac{\pi}{2}, \emptyset_{0}+\alpha\right) d \emptyset_{0} \tag{129}
\end{align*}
$$

The limits of integration can be made 0 to 2π since the primed brightness temperature functions are equal to zero in their respective regions to avoid overlapping. Assuming no cross-polarization in the principal planes, $E_{\emptyset p}^{2}$ is zero for the horizontal scan and $E_{\theta p}^{2}$ is zero for the vertical scan. We can then write (127), (128) and (129) as

$$
\begin{align*}
& T_{a w p}(\alpha, \beta) \simeq \int_{0}^{2 \pi} G_{p}\left(\emptyset_{o}-\beta\right) T_{b w p}^{\prime}\left(\frac{\pi}{2}, \varphi_{0}+\alpha\right) d \emptyset_{0} \tag{130}\\
& T_{a e p}(\alpha, \beta) \simeq \int_{0}^{2 \pi} G_{p}\left(\emptyset_{o}-\beta\right) T_{b e}^{\prime}\left(\frac{\pi}{2}, \varphi_{0}+\alpha\right) d \emptyset_{o} \tag{131}
\end{align*}
$$

$$
\begin{equation*}
T_{a s p}(\alpha, \beta) \simeq \int_{0}^{2 \pi} G_{p}\left(\emptyset_{0}-\beta\right) T_{b s}^{\prime}\left(\frac{\pi}{2}, \emptyset_{o}+\alpha\right) d \emptyset_{0} \tag{132}
\end{equation*}
$$

which are of the same form as reported by Fisher [7] and Holmes [8]. With this two-dimensional approximation we can find the total antenna temperature by summing $T_{a w p}$, $T_{a e p}$, and $T_{a s p}$, or $T_{a p}$ can be found from one integral. To calculate T_{a} directly we use the continuous $T_{b p}\left(\frac{\pi}{2}, \varnothing_{b}+\alpha\right)$ which is

$$
\begin{equation*}
T_{b p}\left(\varphi_{0}+\alpha\right)=T_{b w p}^{\prime}\left(\frac{\pi}{2}, \varphi_{0}+\alpha\right)+T_{b e}^{\prime}\left(\frac{\pi}{2}, \varphi_{0}+\alpha\right)+T_{b s}^{\prime}\left(\frac{\pi}{2}, \emptyset_{0}+\alpha\right) \tag{133}
\end{equation*}
$$

We can therefore find $T_{a p}(\alpha, \beta)$ as

$$
\begin{equation*}
T_{a p}(\alpha, \beta) \simeq \int_{0}^{2 \pi} G_{p}\left(\rho_{0}-\beta\right) T_{b p}\left(\rho_{0}+\alpha\right) d \emptyset_{0} \tag{734}
\end{equation*}
$$

Equations (130), (131), (132), and (134) are all now in correlation form and can be evaluated, using Fourier transforms, as

$$
\begin{align*}
& T_{a w p}\left(\alpha_{0},-\beta\right)=F^{-1}\left\{\bar{G}_{p}^{*} \cdot \overline{T_{b w p}^{1}}\right\} \tag{135}\\
& T_{a e p}\left(\alpha_{0},-\beta\right)=F^{-1}\left\{\overline{G_{p}} \cdot \overline{T_{b e}^{\prime}}\right\} \tag{136}\\
& T_{a s p}\left(\alpha_{0},-\beta\right)=F^{-1}\left\{\overline{G_{p}} \cdot \frac{*}{\left.T_{b s}^{1}\right\}}\right. \tag{137}
\end{align*}
$$

$$
\begin{equation*}
T_{a p}\left(\alpha_{o},-\beta\right)=F^{-1}\left\{\bar{G}_{p} \cdot \overline{\left.T_{b p}\right\}}\right. \tag{138}
\end{equation*}
$$

Using (138) as an example, $T_{b p}$ can be found from $T_{a p}$ by a simple division in the frequency domain followed by an inverse transform, or

$$
\begin{equation*}
T_{b p}\left(\varphi_{o}+\alpha_{0}\right)=F^{-1}\left[\overline{T_{a p} / G_{p}} *\right\} \tag{139}
\end{equation*}
$$

Although (139) is a valid expression for the $T_{b p}$ expressed in (134), the inversion technique is extremely sensitive to error in $T_{a p}$. Small errors in $T_{a p}$ can cause large oscillations in the inverted function for $T_{b p}[8]$. The instability of the equation can be explained in both the spatial and frequency domains. In the frequency domain, we note that, for the type of functions used for G_{p}, the high frequency components of its spectrum are small compared to the low frequency components. Due to the division by \bar{G}_{p}, ${ }^{*}$ relatively small errors in the high frequency components of $\overline{\mathrm{T}_{a p}}$ can cause large errors in the corresponding components of $\overline{T_{b p}}$. These errors cause high frequency oscillations in the spatial domain solution of $T_{b p}$ in (139). This instabiłity can also be explained by observing (134). If a high frequency sinusoid is added to $T_{b p}$, the function $T_{a p}$ will be nearly unaffected [3,4]. Therefore, (134) does not uniquely define $T_{b p}$ for a $T_{a p}$ known with a moderate accuracy. The inversion of the Fredholm integral equation, of which (134) is one type, has been encountered and studied in the fields of aerosol detection, astronomical measurement
interpretation, and spectral analysis where cause and effect situations are of interest. Twomey [3] and Phillips [4] investigated the Fredholm equation of the first kind and were able to stabilize its inversion by employing matrix filtering techniques. Bracewell and Roberts [5] have reported an iterative restoration process which is particularly adaptable to our needs. The process introduced by Bracewell and Roberts and applied to a two-dimensional modelling of the wave tank geometry by Holmes stabilizes the inversion by avoiding the direct division by $\bar{G}_{p}{ }^{*}$ in (139). Writing $1 / \bar{G}_{p}{ }^{*}$ of (139) as $1 /\left[1-\left(1-\overline{G_{p}}\right)^{*}\right]$, and then performing a series. expansion [5] results in

$$
\begin{align*}
T_{b p}\left(\emptyset+\alpha_{0}\right) & =F^{-1}\left\{T _ { a w p } \left[1+\left(1-\bar{G}_{p}\right)^{*}\right.\right. \\
& \left.\left.+\left(1-\bar{G}_{p}\right)^{2}+\left(1-\bar{G}_{p}\right)^{*}+\ldots \ldots\right]\right\} \tag{140}
\end{align*}
$$

The infinite series expansion of $1 / \bar{G}_{p}$ converges provided that $\left|1-\overline{G_{p}}\right|<1$. For most antennas used in radiometry, their gain patterns are symmetrical, smooth varying functions which insure that —*
G_{p} is always real and positive in the dominant frequencies. The maximum values of these $\bar{G}_{p}{ }^{\prime}$'s will be the average value of the spatial domain functions. Since G_{p} is normalized by (126), the average value is $1 / 2 \pi$. The necessary conditions to insure the convergence of the series are therefore met. As the series converges, (140) becomes equal to (139) and the presence of error in $T_{\text {awp }}$ will again cause oscillations. Fortunately, these unwanted oscillations
mainly arise from the higher order terms in the series expansion of $1 / \bar{G}_{\mathrm{p}} \cdot *$ By properly truncating the series we can obtain the smooth principle solution of the inversion. This inversion process can also be performed in the space domain. The first term of the series expansion assumes that $T_{a p}$ is the first approximation of $T_{b p}$ and each addition term represents a new approximation of $T_{b p}$. This restoring process can be interpreted as letting the values of $T_{b p}$ be equal, respectively, to

$$
\begin{gather*}
T_{b p o}=T_{a p} \tag{141a}\\
T_{b p 1}=T_{b p o}+\left(T_{a p}-G_{p} * T_{b p o}\right) \tag{141b}\\
T_{b p 2}=T_{b p 1}+\left(T_{a p}-G_{p} * T_{b p 1}\right) \tag{141c}\\
\cdot \\
T_{b p n}=T_{b p(n-1)}+\left[T_{a p}-G_{p} * T_{b p(n-1)}\right] \tag{141d}
\end{gather*}
$$

where * implies correlation. The altered inversion procedure reduces to an iterative method, as indicated by (141a) - (141d), and will be referred to as restoration [5]. The second term in (141a)(141d) is a correction factor which is added to the values of the previous restored brightness temperature to obtain the newly created function.

Holmes [8] hàs tested the restoration process with the two-dimensional simulation of the wave tank problem. He has calculated $T_{a p}\left(\alpha_{0}, \beta\right)$ from the semi-empirical brightness temperature
models, added errors to represent measuring inaccuracies, and restored the data using a truncated series to represent $1 / G_{p}$ in (140). Errors that caused large oscillation by direct inversion (139) did not create a stability problem in the restoration method.

B. Three-dimensional Inversion

Let us now investigate the problem of inverting the data using the three-dimensional model. As seen in (114), $T_{\text {awh }}$ is dependent on both $T_{b w h}^{\prime}$ and $T_{b w v}^{\prime}$ and the same is true of $T_{a w v}$. The equations are coupled and inversion is more complicated than in the two-dimensional case. At this point, we should review the goals of our inversion and what we will be given to obtain the necessary information. The desired results will be to obtain $T_{b w h}\left(\theta^{\prime \prime}\right)$ and $T_{b W V}\left(\theta^{\prime \prime}\right)$, where $\theta^{\prime \prime}$ is the incidence angle, given $T_{a h}\left(\alpha_{0}, \beta\right)$ and $T_{a v}\left(\alpha_{0}, \beta\right)$. To accomplish this, we will first need to make estimates of $T_{b e}^{\prime}(\theta, \emptyset)$ and $T_{b s}^{\prime}(\theta, \emptyset)$ to calculate $T_{a e p}\left(\alpha_{0}, \beta\right)$ and $T_{a s p}\left(\alpha_{0}, \beta\right)$ The estimated $T_{\text {aep }}$ and $T_{\text {asp }}$ will then be subtracted from the total antenna temperature to find $T_{a w h}\left(\alpha_{0}, \beta\right)$ and $T_{a w v}\left(\alpha_{0}, \beta\right)$. In turn, the $T_{a w h}\left(\alpha_{0}, \beta\right)$ and $T_{a w v}\left(\alpha_{0}, \beta\right)$ functions will be inverted to restore $T_{b w h}\left(\theta^{\prime \prime}\right)$ and $T_{b w v}\left(\theta^{\prime \prime}\right)$.

At this point, we must make some assumptions about either the environment or the antenna in order to estimate $T_{b s}^{\prime}$ and $T_{b e}^{\prime}$. The sky brightness temperature ($\mathrm{T}_{\mathrm{bs}}^{\prime}$) is not extremely critical. In the calculations the brightness temperature of the
sky was assumed to be only a function of \emptyset. The functional variation of $T_{b s}^{\prime}$ along the $\theta=\frac{\pi}{2}$ plane as a function of \emptyset can be approximated by either the empirical sky model or by the $T_{a p}$ measured through the sky. Using these approximations of $T_{b s}^{*}(\emptyset)$ for all values of θ is a good representation of the hemispherical brightness temperature profile except for the values of θ near θ and π. Since these areas are only seen by the sidelobes of the antenna, this error causes negligible error in $T_{\text {asp }}^{\prime}$.

The brightness temperature of the earth is a little more critical since it borders the water. Since, for the earth, there is no functional relationship between the brightness temperature in the $\theta=\frac{\pi}{2} p$ lane and the other θ planes, we assume that $T_{b e}$ is only a function of $\emptyset . T_{a p}$ can be used as an approximation of $T_{b e}^{\prime}$ except for the values of β which put the boresight near the wave tank. Referring to Figure 10, we define a new function $T_{b}^{\prime \prime}(\phi)$ as

$$
\begin{array}{ll}
T_{b}^{\prime \prime}(\emptyset)=T_{a p}\left(\beta=\emptyset_{1}-\alpha+\frac{\pi}{90}\right) & \emptyset_{1}+\frac{\pi}{90}>\emptyset>0 \\
T_{b}^{\prime \prime}(\emptyset)=T_{a p}(\beta=\emptyset-\alpha) & \frac{\pi}{2}>\emptyset>\emptyset_{1}+\frac{\pi}{90} \\
T_{b}^{\prime \prime}(\emptyset)=0 & \frac{3 \pi}{2}>\emptyset>\frac{\pi}{2} \\
T_{b}^{\prime \prime}(\emptyset)=T_{a p}(\beta=\emptyset-\alpha) & 2 \pi-\emptyset_{2}-\frac{\pi}{90}>\emptyset>\frac{3 \pi}{2} \\
T_{b}^{\prime \prime}(\emptyset)=T_{a p}\left(\beta=-\emptyset_{2}-\alpha-\frac{\pi}{90}\right) & 2 \pi>\emptyset>2 \pi-\emptyset_{2}-\frac{\pi}{90}
\end{array}
$$

Using $\theta_{e w}$ as expressed in (104) and $T_{b}^{\prime \prime}(\theta)$, we can form $T_{b e}^{\prime}(\theta, \emptyset)$ as

$$
\begin{array}{ll}
T_{b e}^{\prime}(\theta, \emptyset)=T_{b}^{\prime \prime}(\emptyset) & \text { if } \theta<\theta_{\text {ew }} \\
T_{b e}^{\prime}(\theta, \emptyset)=0 & \text { if } \theta>\theta_{\text {ew }} \tag{143b}
\end{array}
$$

Equation (120) can now be used to find $T_{\text {aep }}\left(\alpha_{0}, \beta\right)$.
Referring to Figures 8 and 10, the x^{\prime}-axis Cantenna boresight) intersects the plane of the water surface at incidence angles between 0 and \emptyset_{1} if φ_{2} is positive or between φ_{2} and \emptyset_{1} if \emptyset_{2} is negative. Knowing the $T_{b w p}$'s for these incidence angles is sufficient to compute the $T_{b w p}$'s over nearly the entire water surface of the tank, since the incidence angle can be computed exactly over the entire water surface with the use of (89). The only points which have incidence angles not in these ranges are the corners of the tank that are the farthest from the antenna. The brightness temperature functions of the water can be interpolated for these points. Given $T_{b w v}^{\prime}\left(\frac{\pi}{2}, \varnothing\right)$ and $T_{b w h}^{\prime}\left(\frac{\pi}{2}, \emptyset\right)$, the brightness temperature all over the water surface can be found and, from (119), $T_{a w h}\left(\alpha_{0}, \beta\right)$ and $T_{\text {awv }}\left(\alpha_{0}, \beta\right)$ can be calculated.

The restoration process used by Holmes [8] will now be applied to the three-dimensional problem. The first approximation of $T_{b w h}^{\prime}\left(\frac{\pi}{2}, \emptyset_{0}\right)$ and $T_{b w v}^{\prime}\left(\frac{\pi}{2}, \emptyset_{0}\right)$, for the particular range of incidence angles needed, will be $T_{a w h}(\beta)$ and $T_{a w v}(\beta)$, respectively. These first approximations will be called $T_{b w h l}\left(\emptyset_{0}\right)$ and $T_{b w v l}\left(\emptyset_{0}\right)$, and from them we can find $T_{a w h l}(\beta)$ and $T_{a w v l}(\beta)$ through (119). The difference between $T_{a w h l}(\dot{\beta})$ and $T_{a w h}(\beta)$ will be defined as $E R_{h 7}(\beta)$.

Similarly, the difference between $T_{a w v i}(\beta)$ and $T_{a w v}(\beta)$ will be called $E R_{v 1}(\beta)$.

A second approximation of $T_{b w V}$ and $T_{b w h}\left(T_{b w V 2}\right.$ and
$T_{b w h 2}$, respectively) needs to be found from $T_{b w v 1}, T_{b w h 1}, E R_{h 1}$, and $E R_{h 2}$. Since the brightness temperatures and antenna temperatures are coupled, the following algorithm will be used to restore $T_{b w h}$ and $T_{b w v}$:

$$
\begin{align*}
& T_{b w h 2}=T_{b w h 1}+W F_{1} \cdot E R_{h 1}+W F_{2} \cdot E R_{v 1} \tag{144a}\\
& T_{b w v 2}=T_{b w v 1}+W F_{3} \cdot E R_{h 1}+W F_{4} \cdot E R_{v 1} \tag{144b}
\end{align*}
$$

or in general

$$
\begin{align*}
& T_{b w h(n+1)}=T_{b w h(n)}+W F_{1} \cdot E R_{h(n)}+W F_{2} \cdot E R_{v(n)} \tag{145a}\\
& T_{b w v(n+1)}=T_{b w v(n)}+W F_{3} \cdot E R_{h(n)}+W F_{4} \cdot E R_{v(n)} \tag{145b}
\end{align*}
$$

The terms $W F_{1}, W F_{2}, W F_{3}$, and $W F_{4}$ are weighting functions.
To determine the weighting functions for any value of B, we find what percentage of the power of the antenna incident on the water surface aligns with the horizontal vectors and what percentage aligns with the vertical vectors. If $x \%$ of the antenna's. power picks up $T_{\text {bwh }}$ while measuring $T_{a w h}\left(\beta_{0}\right)$, then $x \%$ of the error in the approximation of $T_{\text {bwh }}$ at that particular incidence angle can be corrected by $E R_{h 7}\left(\beta_{0}\right)$. The functions $W F_{7}, W F_{2}, W F_{3}$, and $W F_{4}$ are defined to be the percentage alignment of G_{h}, G_{h}, G_{v}, and G_{v} in the
h, v, h, and v directions, respectively, for each value of β.
For example, the weighting function $W F_{1}$ would be found as
$\iint\left[\hat{h} \cdot \hat{\theta} E_{\theta h}+\hat{h} \cdot \emptyset E_{\emptyset h}\right]^{2} \sin \theta d \theta d \emptyset_{0}$

All the functions in (145a and b) have now been defined and the restoration can be performed.

The three-dimensional restoration acknowledges the influence of the following:

1. the vector misalignment off the principal axes of the antenna, 2. any cross-polarization in the antenna pattern, 3. the entire three dimensional environment, and 4. the true two variabie power pattern of the antenna. The previously mentioned stability characteristics of the restoration procedure are also retained.
IV. Computations and Results
A. Finite Wave Tank

The modeling of the interaction between the wave tank environment and the radiometer antenna has now been described in several different ways. In order to establish the validity of the various methods, computations were made with each of the methods while viewing identical environments with the same antenna. The results of these computations will establish the accuracy of the three-dimensional vector formulations and also the shortcomings'of the two-dimensional scalar method.

Given the brightness temperature characteristics of the wave tank environment, the antenna temperature for the horizontal scan T_{ah} and the vertical scan T_{av} can now be predicted with four different computer programs developed during the course of this investigation. The first of these is a computer program based on the three-dimensional analysis when the z-axis is normal to the radiometer antenna aperture, similar to the one developed by Beck [9], of the wave tank system. The integration with respect to the spherical coordinates θ and \emptyset is numerically performed with the trapezoidal rule. This program is designed to make direct calculations of $T_{a h}(\alpha, \beta=0)$ and $T_{a v}(\alpha, \beta=0)$ given the brightness temperature profiles of the water, $T_{b w h}(\theta, \varnothing)$ and $T_{b w v}(\theta, \theta)$, of the earth $T_{b e}(\theta, \varnothing)$, and of the sky $T_{b s}(\theta, \emptyset)$. Since $\beta=0$ (no scanning) for all cases with this program, the antenna is always assumed to be viewing the center of the tank at the incidence angle α. Secondly,
another three-dimensional computer program has been developed that takes the x-axis perpendicular to the radiometer antenna aperture and performs the calculations again with numerical integration. The integration with respect to \emptyset is done using a 256 point midpoint rule and with respect to θ using a 32 point Gaussian quadrature method. This program was written to yield $T_{a h}$ and $T_{a v}$ for various α 's and $\beta=0$, as was the first program. The third and most important program uses the same coordinate system alignment as the second program (x-axis perpendicular to the aperture) but has the capability to handle scanning in the \varnothing direction. It uses a 32 -point Gaussian quadrature method to integrate with respect to θ. However, the scanning of the antenna through the entire 360° range of the angle β and the integration with respect to \emptyset is handled simultaneously in the transform domain via the correlation form and a 256 sample point fast Fourier transform technique. The results of this program can be compared with those of the two previous programs for $\beta=0$. It is the use of this program that enables the inversion (restoration) of the data. The last program that predicts the radiometer response is the twodimensional approximation used by Fisher [7] and Holmes [8]. This formulation also uses fast Fourier transform techniques to carry out the integration for the scanning of the radiometer.

Computed data of the same geometry using these four programs will be used to verify the analyses and computer programming of the equations. Several different combarisons between them will ho made
to validate the techniques. If the results from the z-axis and x-axis programs agree, the validity of both formulations as well as the accuracy of the programming and integration techniques will be established. When the results of the x-axis numerical integration program match the output of the x-axis fast Fourier. transform program, they insure that the transform techniques is accurately performing the necessary integration. Finally, comparisons of the two-dimensional approximation with the three-dimensional data provides criteria as to when it is mandatory to use the threedimensional program to obtain the desired accuracy.

To test these various methods, the radiation characteristics of two different radiometer antennas will be used. Both of the antennas are pyramidal, corrugated horns with square apertures. The first horn has an aperture width of 12λ and a total flare angle of 13°. The half-power beamwidth of this horn is approximately 6°. This is the antenna that is being used by NASA to take measurements in the wave tank system. In addition to the 12λ aperture antenna, the response of the system using an 8λ corrugated horn with a halfpower beamwidth of 10° and a total flare angle of 19° will also be examined. The flare angles of these horns were designed so there would be a 120° phase lag in the wave at the edges of the aperture as compared to the wave at the center. This particular phase taper in the aperture field creates a far-field pattern with no appreciable sidelobes or backlobes, which is desirable for radiometric measurements. Shown in Figures 13 and 14 are the principal plane patterns

Fig. 13. Principal Plane Power Pattern of the 8λ Corrugated Horn Antenna.

Fig. 14. Principal Plane Power Pattern of the 12λ Corrugated Horn Antenna.
of the 8λ and 12λ horns, respectively. These will be used to carry out the necessary computations of the finite wave tank system.

Before attempting any inversions, it will be desirable to perform some direct computations, calculating the antenna temperatures given the brightness temperatures, to validate the analyses and computer programming. Upon a successful evaluation of the formulation and programming, inversion (restoration) of data will then be examined.

1. Direct Computations of Antenna Temperatures

Physically, the wave tank is 14 feet square and the length of the boom that supports the antenna can be either 13 feet or 26 feet. In Table I, the predicted results for the 12λ horn and the 13 foot boom are shown. The variables $T_{a w h}$ and $T_{a w v}$ are the horizontal and vertical antenna temperature contributions from the water's surface, and $T_{\text {aes }}$ is the combined antenna temperature from the earth and sky. All three of the three-dimensional programs yield nearly identical results. With this antenna and boom length combination, the two-dimensional formulation also yields fairly accurate results.

In Table II, the predicted results for the 8λ horn and the 13 foot boom are shown. It is quite evident that the data from the two x-axis programs are almost identical and agreement with the z-axis results is very good. With the wider 8λ horn, agreement

TABLE I
Computed Antenna Temperatures for Finite Wave Tank System

$$
\begin{gathered}
(\rho=13 \text { feet, Antenna }=12 \lambda \text { horn }) \\
\left(f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{~S}=0^{\circ} / 00\right)
\end{gathered}
$$

		$\alpha=0^{\circ}$	$\alpha=20^{\circ}$	$\alpha=40^{\circ}$	$\alpha=60^{\circ}$	$\alpha=80^{\circ}$
	$\mathrm{T}_{\text {awh }}$	109.07	104.12	89.17	64.47	34.31
	$\mathrm{T}_{\text {awv }}$	109.07	114.48	133.37	176.71	231.84
	$\mathrm{T}_{\text {aes }}$	0.08	0.09	0.19	1.28	36.34
	$\mathrm{T}_{\text {awh }}$	109.07	104.13	89.18	64.48	34.46
	Tawv	109.07	114.46	133.37	176.77	232,91
	$T_{\text {aes }}$	0.08	0.10	0.18	1.20	35.08
	Tawh	109.07	104.12	89.18	64.48	34.46
	Tawy	109.07	114.46	133.37	176.77	232.91
	T aes	0.08	0.09	0.18	1.20	35.06
무N. 눈	Tawh	108.95	104.00	89.05	64.46	34.24
	$\mathrm{T}_{\text {awv }}$	109.23	114.59	133.40	176.74	233.14
	$\mathrm{T}_{\text {aes }}$	0.03	0.05	0.14	1.15	34.79

TABLE II
Computed Antenna Temperatures for Finite Wave Tank System ($\rho=13$ feet, Antenna $=8 \lambda$ horn $)$

$$
\left(f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{~S}=0^{\circ}, j 00\right)
$$

		$\alpha=0^{\circ}$	$\alpha=20^{\circ}$	$\alpha=40^{\circ}$	$\alpha=60^{\circ}$	$\alpha=80^{\circ}$
	$T_{\text {awh }}$	108.96	103.98	88.90	63.52	30.84
	$\mathrm{T}_{\text {awv }}$	108.96	114.40	133.17	173.03	201.28
	$\mathrm{T}_{\text {aes }}$	0.41	0.46	1.12	7.19	63.18
	$T_{\text {awh }}$	108.97	104.01	88.96	63.58	37.14
	Tawv	108.97	114.38	133.22	173.23	202.79
	T ${ }_{\text {aes }}$	0.38	0.46	1.00	6.90	61.06
	Tawh	108.96	104.00	88.95	63.58	31.14
	Tawv	108.97	114.37	133.21	173.22	202.79
	Taes	0.38	0.46	1.00	6.90	60.98
$\stackrel{9}{\sim_{N}^{2}}$	$\mathrm{T}_{\text {awh }}$	108.74	103.77	88.74	63.54	31.16
	$\mathrm{T}_{\mathrm{aw} v}$	109.35	114.72	133.41	173.30	204.12
	$\mathrm{T}_{\text {aes }}$. 16	. 12	. 79	6.61	59.42

between the three- and two-dimensional computations is not as good.

The resilts obtained using the 12λ horn and the 26 foot boom are shown in Table III. Again the three-dimensional modelings yiels results in agreement; however, the two-dimensional programming is not as accurate even.though the more efficient 12λ horn was used. With the 26 foot boom, the angular limits of the wave tank are appreciably smaller and some of the main beam power spills over intc the earth. Since the earth is very warm, as compared to the water, an accurate modeling is needed at directions off the antenna boresight. The two-dimensional modeling can not provide this accuracy.

To demonstrate how the greater accuracy of the three-dimensional formulation becomes imperative for antennas with wider main beams, the computed responses of the wave tank system with the 8λ horn antenne and the 26 foot boom are shown in Table IV. By examining the data it is clear that, although all of the threedimensional modelings agree well, the two-dimensional approximation is no longer an accurate method for predicting the radiometer response. Having now established the accuracy and necessity of the three-dimensional formulation, an examination of the inversion (restoration) procedure, as applied to the wave tank system, will be undertaken.

2. Inversion (Restoration) Techniques for Antenna Brightness Temperature

With the 26 foot boom and the 14 foot wave tank; the

TABLE III
Computed Antenna Temperatures for Finite Wave Tank System ($\rho=26$ feet, Antenna $=12 \lambda$ horn)

$$
\left(f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, S=0^{\circ} / 00\right)
$$

		$\alpha=0^{\circ}$	$\alpha=20^{\circ}$	$\alpha=40^{\circ}$	$\alpha=60^{\circ}$	$\alpha=80^{\circ}$
	$\mathrm{T}_{\text {awh }}$	108.76	103.76	88.58	64.40	25.09
	$T_{\text {awv }}$	108.76	114.06	132.32	169.73	173.30
	Taes	. 94	1.16	2.34	11.95	104.03
	$\mathrm{T}_{\text {awh }}$	108.76	103.81	88.66	62.65	25.04
	$T_{a w v}$	108.77	114.10	132.49	170.37	173.31
	Taes	. 93	1.03	2.02	10.85	104.12
	$\mathrm{T}_{\text {awh }}$	108.77	103.81	88.66	62.65	25.04
	Tawy	108.76	114.10	132.49	170.37	173.31
	Taes	0.93	1.03	2.02	10.85	104.10
$\stackrel{0}{\stackrel{1}{N}}$	$T_{\text {awh }}$	108.82	103.83	88.71	62.83	27.30
	Tawv	109.09	114.38	132.78	170.84	188.43
	$\mathrm{T}_{\text {aes }}$. 41	. 58	1.39	9.90	85.90

TABLE IV
Computed Antenna Temperatures for Finite Wave Tank System

$$
\begin{gathered}
(\rho=26 \text { feet, Antenna }=8 \lambda \text { horn }) \\
\left(f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{~S}=0^{\circ} / 00\right)
\end{gathered}
$$

		$\alpha=0^{\circ}$	$\alpha=20^{\circ}$	$\alpha=40^{\circ}$	$\alpha=60^{\circ}$	$\alpha=80^{\circ}$
	$\mathrm{T}_{\text {awh }}$	106.94	101.72	85.60	57.48	18.66
	Tawv	106.94	111.78	127.53	154.66	128.18
	$\mathrm{T}_{\text {aes }}$	5.94	7.12	12.90	36.46	150.02
	$\mathrm{T}_{\text {awh }}$	106.93	101.96	85.82	58.04	18.42
	Tawv	106.92	112.03	128.00	156.01	126.85
	$\mathrm{T}_{\text {aes }}$	5.99	6.45	12.03	34.07	151.43
	$\mathrm{T}_{\text {awh }}$	106.93	101.96	85.82	58.04	18.42
	$\mathrm{T}_{\text {awv }}$	106.92	112.03	128.00	156.01	126.85
	$\mathrm{T}_{\text {aes }}$	5.98	6.44	12.03	34.05	151.36
온花	$T_{\text {awh }}$	107.88	102.78	86.76	59.23	21.58
	$T_{\text {awk }}$	108.42	113.44	129.77	158.99	147.34
	Taes	2.61	3.33	8.15	28.60	127.10

boresight of the antenna will intersect the edges of the wave tank when $\beta= \pm 15^{\circ}$ for $\alpha=0^{\circ}$. With the 13 foot boom, the angular 1 imits of the wave tank are $\beta= \pm 28.3^{\circ}$ for $\alpha=0^{\circ}$. For all other values of α, the angular space for viewing the wave tank is reduced. Since the antenna only possesses finite resolution, the range of incidence angles from which the brightness temperatures can be restored will be less than the angular limits of the wave tank. Therefore, in order to get continuous restored brightness temperature profiles, it will be necessary to combine the data from several values of α. The values of α that were chosen are $5^{\circ}, 10^{\circ}$, $20^{\circ}, 30^{\circ}, 40^{\circ}, 50^{\circ}, 55^{\circ}, 60^{\circ}, 65^{\circ}, 70^{\circ}, 75^{\circ}$, and 80°.

In Figure 15, the results of a restoration process are shown. For the above mentioned values of α, antenna temperature profiles were calculated, using the 12λ horn antenna and the 13 foot antenna supporting boom, from the semi-empirical brightness temperature models of Stogryn [11]. Each α value only yields a limited range of incidence angles. The resulting antenna temperature profiles T_{a}, the original brightness temperature profiles T_{b}, and the restored brightness temperatures $T_{\text {bres }}$, using three iterations, are shown in the figure for vertical and horizontal polarizations. By combining the profiles for the different α ' s, nearly continuous curves have been formed. To improve the accuracy of the resulting curves, one could draw smooth curves through the $\beta=0^{\circ}$ points of the data. These points yield fairly accurate results since they represent the system while the boresight is viewing the center of the wave tank. This has beerl done and the antenna, the restored

Fig. 15. Continuous Incidence Angle Restoration Results for the Finite Wave Tank (Antenna $=12 \lambda$ horn, $\rho=13$ feet, three iterations).
brightness and the empirical brightness temperatures for the 12λ horn, 13 foot boom, and $\beta=0^{\circ}$ data are shown in Figure 16. It can be seen from the plotted data in Figures 15 and 16 that the horizontal polarization results are improved by the restoration process for incidence angles greater than 60°, and the vertical polarization inversion results are less accurate than the antenna temperatures for the larger angles. However, little can be inferred about the accuracy of the results for the incidence angles less than 60° for both polarizations.

In order to get a more detailed look at the accuracy of the restoration process, some of the data from Figures 15 and 16 is listed in Table V. This table includes the total antenna temperature T_{a}, the restored brightness temperature $T_{b r e s}$, the difference between T_{a} and the original brightness temperature T_{b}, and the difference between $T_{b r e s}$ and T_{b}. As can be seen, the restored brightness temperatures are always a better approximation of the true brightness temperature than the antenna temperatures for the horizontal polarization. Improvement is obtained in the vertical polarization case for all incidence angles up to and including 60°. Although the differences between the antenna temperatures and the brightness temperatures were very small, the restoration process was still able to improve the results.

Any instability in the solution will become evident as more restorations are taken. To show that the computations with three iterations are indeed convergent and are an improvement from those

Fig. 16. Smoothed $\beta=0$ Restoration Results for the Finite Wave Tank (Antenna $=12 \lambda$ horn, $\rho=13$ feet, three iterations).

TABLE V
Restored Antenna Temperatures for Finite Wave Tank with Three Restorations
(Antenna $=12 \lambda$ horn, $\rho=13^{\circ}$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, S=0^{\circ} / 00$) HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$T_{b r e s}$	$T_{a}-T_{b}$	$T_{b r e s}-T_{b}$
0°	109.14	109.08	0.04	-0.02
10°.	107.92	107.88	0.06	0.01
20°	104.22	104.17	0.06	0.01
30°	98.02	97.98	0.06	0.01
40°	89.36	89.25	0.10	-0.01
50°	78.44	77.97	0.34	-0.13
60°	65.69	64.56	0.98	-0.14
70°	58.15	50.42	8.20	0.48
80°	69.54	39.90	37.57	1.93

VERI ICAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\text {bres }}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\text {bres }}-\mathrm{T}_{\mathrm{b}}$
0°	109.18	109.12	0.08	0.02
10°	110.46	110.41	0.07	0.01
20°	114.56	174.46	0.12	0.01
30°	121.92	121.75	0.19	0.02
40°	133.55	133.17	0.36	-0.02
50°	151.25	150.12	0.68	-
60°	177.97	176.15	1.10	-
70°	219.07	220.28	2.11	.73
80°	267.99	283.05	-1.71	13.35

obtained with fewer restorations, the results of the inversion process for the 12λ horn and the 13 foot boom with one restoration are listed ir Table VI. By comparing Table V with Table VI, one can see that, with the exception of the 80° incidence angle, more accurate results are obtained with the three-restoration process. When $\alpha=80^{\circ}$, the angular limits of the wave tank (see Figure 7) are at $\beta=+3.5^{\circ}$ and $\beta=-11.3^{\circ}$. This is too small of an angular sector to expect accurate results. The restoration process is shown to be convergent and to yield improved results.

In Figure 17, the computed antenna, the restored brightness (three restorations), and the empirical brightness temperatures for the continous incidence angle data, utilizing the 8λ horn and the 13 foot boom, are shown. In Figure 18, the smoothed $\beta=0^{\circ}$ curves for the same case are shown. As with the 12λ horn and 13 foot data, an improvement can be seen in the horizontal polarization with a slight instability for the vertical polarization at incidence angles greater than 60°. For a more accurate analysis of the data, Table VII has been included. From the table, one can see that the restored data yields a more accurate approximation than the antenna temperatures for all angles listed, except 70° for the vertical poiarization. Table VIII lists the one restoration results for the 8λ horn and the 13 foot boom. Again one can conclude that the restoration process has proven to be convergent and utilitarian.

The restoration process has also been applied to computed antenna temperatures for the 12λ horn and the 26 foot boom. For

TABLE VI

Restored Antenna Temperatures for Finite Wave Tank with One Restoration
(Antenna $=12 \lambda$ horn, $\rho=13$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% \% 00$) HORIZONTAL POLARIZATION

Incidence Ang1e	T_{a}	$\mathrm{T}_{\text {bres }}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\mathrm{bres}}-\mathrm{T}_{\mathrm{b}}$
0°	109.14	109.08	0.04	-0.02
10°	107.92	107.87	0.06	0.01
20°	104.22	104.17	0.06	0.01
30°	98.02	97.98	0.06	0.02
40°	89.36	89.30	0.10	0.04
50°	78.44	78.27	0.34	0.17
60°	65.69	65.16	0.98	0.46
70°	58.15	51.08	8.20	1.14
80°	69.54	38.90	31.57	0.93

VERTICAL POLARIZATION

Incidence Angle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{b r e s}-T_{b}$
0°	109.18	109.12	0.08	0.02
10°	110.46	110.41	0.07	0.01
20°	114.56	114.46	0.12	0.01
30°	121.92	121.77	0.19	0.04
40°	133.55	133.30	0.36	0.11
50°	151.25	151.17	0.68	0.60
60°	177.97	179.15	1.10	2.28
70°	219.07	224.60	2.11	7.63
80°	267.99	271.27	-1.71	1.56

Fig. 17. Continuous Incidence Angle Restoration Results for the Finite Wave Tank (Antenna $=8 \lambda$ horn, $\rho=13$ feet, three iterations.).

Fig. 18. Smoothed $\beta=0$ Restoration Results for the Finite Wave Tank (Antenna $=8 \lambda$ horn, $\rho=13$ feet, three iterations)

TABLE VII
Restored Antenna Temperatures for Finite Wave Tank with Three Restorations
(Antenna $=8 \lambda$ horn, $\rho=13$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0^{\circ} / 00$) HORIZONTAL POLARIZATION.

Incidence Angle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{b r e s}-T_{b}$
0°	109.34	109.12	0.24	0.03
10°	108.14	107.87	0.27	0.01
20°	904.47	104.12	0.31	-0.40
30°	98.41	97.80	0.44	-0.16
40°.	89.96	89.03	0.70	-0.23
50°	80.31	77.90	2.22	-0.19
60°	70.48	64.84	5.78	0.13
70°	71.81	51.62	21.86	1.68
80°	92.20	38.86	54.23	0.89

VER:ICAL POLARIZATION

Incidence Angle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{b r e s}-T_{b}$
0°	109.39	109.17	0.29	0.07
10°	110.68	110.40	0.28	0.00
20°	114.84	114.37	0.39	-0.08
30°	122.36	121.39	0.64	-0.34
40°	134.22	132.57	1.02	-0.62
50°	152.63	149.97	2.06	-0.60
60°	180.13	177.74	3.25	0.87
70°	221.39	229.98	4.43	13.02
80°	263.84	272.49	-5.86	2.79

TABLE VIII
Restored Antenna Temperatures for Finite Wave Tank with One Restoration
(Antenna $=8 \lambda$ horn, $\rho=13$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0^{\circ} / 00$) HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\text {bres }}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\text {bres }}-\mathrm{T}_{\mathrm{b}}$
0°	109.34	109.12	0.24	0.02
10°	108.14	107.96	0.27	0.10
20°	104.47	104.31	0.31	0.15
30°	98.41	98.19	0.44	0.23
40°	89.96	89.68	0.70	0.42
50°	80.31	79.02	2.22	0.92
60°	70.48	65.87	5.78	1.16
$.70^{\circ}$	71.81	51.22	21.86	1.28
80°	92.20	37.38	54.23	-0.59

VERTICAL POLARIZATION

Incidence Angle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{b r e s}-T_{b}$
0°	109.39	109.16	0.29	0.06
10°	110.68	110.51	0.28	0.11
20°	114.84	114.68	0.39	0.24
30°	122.36	122.19	0.64	0.46
40°	134.22	134.30	1.02	1.11
50°	152.63	153.83	2.06	3.26
60°	180.13	182.87	3.25	6.00
70°	221.39	224.71	4.43	7.75
80°	263.84	252.18	-5.86	-17.52

three restorations, the continuous incidence angle data is shown in Figure 19 and the smoothed $\beta=0$ data is shown in Figure 20. The $x^{\prime} s$ in Figure 20 indicate antenna temperatures that did not fit on the smooth curve. Improvement can be seen in the results except at the larger incidence angles for the vertical polarization. Table IX lists some of the data used in Figure 19 and 20. An improvement with the restored data can be seen at all angles for the horizontal polarization and up to 60° incidence for the vertical. It should be noted that with the 26 foot boom the angular limits of the wave tank are $\beta=+4.2^{\circ}$ and $\beta=-17.0^{\circ}$ for $\alpha=70^{\circ}$, and $\beta=+2.1^{\circ}$ and $\beta=-3.6^{\circ}$ for $\alpha=80^{\circ}$. To again demonstrate the convergence of the restoration process, the one-restoration computations are listed in Table X. Comparing the data in Tables IX and X again verifies the convergence and the need for the restoration process.

The fourth and final antenna and boom combination is the 8λ horn with the 26 foot boom. For three restorations, the continuous incidence angle data is shown in Figure 21 and the smoothed $\beta=0$ data is shown in Figure 22. For this case, the largest difference between the antenna and brightness temperatures is realized and the restoration process is needed the most. As can be seen in the figures, the restoration process works very well and yields an improved result for both polarizations at all incidence angles. Tabulating the data shown in Figures 21 and 22, one obtains Table XI and can see that the inversion process does recover the original water brightness temperatures $T_{b w h}$ and $T_{b w v}$ with good accuracy up to an incidence angle of about 60°. To again check

Fig. 19. Continuous Incidence Angle Restoration Results for the Finite Wave Tank (Antenna = 12λ horn, $\rho=26$ feet, three iterations).

Fig. 20. Smoothed $\beta=0$ Restoration Results for the Finite Wave Tank (Antenna $=12 \lambda$ horn, $\rho=26$ feet, three iterations).

TABLE IX

Postored Antenna Temperatures for Finite Wave Tank with Three Restorations
! Antenna $=12 \lambda$ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0^{\circ} / 00$) HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{\text {bres }}-T_{b}$
0°	.110 .14	109.04	1.04	-.06
10°	108.41	107.74	.54	-.13
20°	104.84	103.88	.68	-.28
30°	98.90	97.56	.94	-.40
40°	90.68	88.80	1.42	-.46
50°	82.69	77.83	4.60	-.27
60°	73.50	65.17	8.79	.46
70°	88.07	52.86	38.12	2.92
80°	129.16	40.39	91.19	2.42

IVRTICAL POLARIZATIO:

Incidence Angle	T_{a}	$T_{b r e s}$	$T_{a}-T_{b}$	$T_{b r e s}-T_{b}$
0°	110.18	109.08	1.08	-.02
10°	110.94	110.25	.54	-.15
20°	115.13	114.08	.68	-.37
30°	122.65	121.12	.93	-.60
40°	134.52	132.42	1.33	-.77
50°	153.70	150.24	3.13	-.33
60°	181.23	179.19	4.35	2.32
70°	227.85	231.94	10.89	14.98
80°	277.43	231.69	7.73	11.99

TABLE X
Restored Antenna Temperatures for Finite Wave Tank.
with One Restoration
(Antenna $=12 \lambda$ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0^{\circ} / 00$) HORIZONTAL POLARIZATION

Incidence Anqle	T_{a}	$\mathrm{T}_{\mathrm{bres}}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\mathrm{bres}}-\mathrm{T}_{\mathrm{b}}$
0°	110.14	108.98	1.04	-0.12
10°	108.47	108.16	0.54	0.29
20°	104.84	104.58	0.68	0.42
30°	98.90	98.64	0.94	0.68
40°	90.68	90.30	1.42	1.04
50°	82.69	79.97	4.60	1.87
60°	73.50	66.96	8.79	2.26
70°	88.07	51.88	38.12	1.94
80°	129.16	34.99	91.19	-2.98

VERTICAL POLARIZATION

Incidence Angle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{\text {bres }}-T_{b}$
0°	110.18	109.02	1.08	-0.08
10°	110.94	110.72	0.54	0.32
20°	115.13	114.97	0.68	0.52
30°	122.65	122.71	0.93	0.99
40°	134.52	135.09	1.33	1.90
50°	153.70	155.02	3.13	4.45
60°	187.23	184.29	4.35	7.42
70°	227.85	223.46	10.89	6.50
80°	277.43	242.77	7.73	-26.92

Fig. 21. Continucus Incidence Angle Restoration Results for the Finite Wave Tank (Antenna $=8 \lambda$ horn, $\rho=26$ feet, three iterations).

Fig. 22. Smoothed $\beta=0$ Restoration Results for the Finite Wave Tank (Antenna $=8 \lambda$ horn, $\rho=26$ feet, three iterations).

TABLE XI
Restored Antenna Temperatures for Finite Wave Tank with Three Restorations
(Antenna $=8 \lambda$ horn, $\rho=26$ feet, $\mathrm{f}=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% \% 0$) HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{\text {bres }}-T_{b}$
0°	115.43	106.80	6.33	-2.30
10°	111.36	107.24	3.49	-.63
20°	108.41	103.60	4.25	-.57
30°	103.90	97.67	5.94	-.29
40°	97.85	89.47	8.60	.21
50°	95.52	80.30	17.43	2.21
60°	92.11	67.61	27.40	2.90
70°	124.80	53.63	74.85	3.68
80°	169.85	36.87	131.88	-1.08

VERTICAL POLARIZATION.

Incidence Angle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{b r e s}-T_{b}$
0°	115.45	106.82	6.35	-2.28
10°	113.85	109.80	3.45	-.59
20°	118.48	113.84	4.03	-
30°	126.98	121.43	5.26	-.30
40°	140.03	133.84	6.84	.64
50°	161.81	156.76	11.25	6.19
60°	190.08	188.16	13.20	11.29°
70°	238.86	229.40	21.89	12.44
80°	278.28	254.82	8.58	-14.88

the convergence of the restoration process, the single restoration data for the 8λ horn and the 26 foot boom is listed in Table XII. Comparing Tables XI and XII, the data shows that the process is convergent with the exception of the larger incidence angles.

Now that the restoration process has been investigated with error-free data, antenna temperatures with added errors will be examined to determine their effect on the inversion. To include error in the data, the antenna temperature functions will be sampled every 5.6° and then interpolated between these points to obtain the 256 needed data points (sampling every 1.4°). The first interpolation method to be used is a routine called SPLINE which was provided by Squire [14]. The SPLINE program uses a polynomial to represent the function between the sample points. The polynomials are formed so that the derivative of the interpolated curve is continuous at the sample points. In addition to the SPLINE interpolation method, linear interpolation was also used. The results obtained using these two interpolation methods are listed in Tables XIII through XXVIII. These tables show the data obtained with (a) 12λ antenna, 13 foot boom; (b) 8λ antenna, 13 foot boom; (c) 12λ antenna, 26 foot boom; and (d) 8λ antenna and 26 foot boom. For each antenna and boom combination and particular interpolation method used, a graph is included of the results obtained with the optimum number of restorations using the $\beta=0$ data. These graphs comprise Figures 23 through 30 .

For the 12λ horn and the 13 foot boom, examination of the

TABLE XII
Restored Antenna Temperatures for Finite Wave Tank with One Restoration
(Antenna $=8 \lambda$ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0^{\circ} / 00$) HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\text {bres }}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\mathrm{bres}}-\mathrm{T}_{\mathrm{b}}$
0°	115.43	108.69	6.33	-0.41
10°	111.36	109.81	3.49	1.94
20°	108.41	106.56	4.25	2.40
30°	103.90	100.86	5.94	2.90
40°	97.85	92.55	8.60	3.29
50°	95.52	81.88	17.43	3.79
60°	92.11	67.88	27.40	3.17
70°	124.80	48.69	74.85	-1.25
80°	169.85	28.66	131.88	-9.31

VERTICAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\mathrm{bres}}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\mathrm{bres}}-\mathrm{T}_{\mathrm{b}}$
0°	115.45	108.71	6.35	-0.39
10°	113.85	112.48	3.45	2.08
20°	118.48	117.35	4.03	2.91
30°	126.98	125.76	5.26	4.03
40°	140.03	138.75	6.84	5.56
50°	167.81	158.61	11.25	8.04
30°	190.08	185.40	13.20	8.52
70°	238.86	203.71	21.89	-13.25
80°	278.28	196.29	8.58	-73.41

TABLE XIII

Zestored SPLINE Interpolated Antenna Temperatures
for Finite Wave Tank with One Restoration
(Antenna $=12 \lambda$ horn, $\rho=13$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, S=0 \% / 00$)
HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{b r e s}-T_{b}$
0°	109.18	109.14	0.08	0.04
10°	107.92	107.86	0.06	-0.01
20°	104.22	104.20	0.06	0.04
30°	98.02	98.05	0.06	0.08
40°	89.36	89.18	0.10	-0.08
50°	78.44	78.23	0.34	0.13
60°	65.69	66.19	0.98	1.48
70°	58.15	48.87	8.20	-1.08
80°	69.54	38.34	37.57	0.37

VERTICAL POLARIZATION

Incidence Angle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{\text {bres }}-T_{b}$
0°	109.21	109.17	0.12	0.08
10°	110.46	110.40	0.07	0.00
20°	114.56	114.48	0.12	0.04
30°	121.92	121.81	0.20	0.08
40°	133.55	133.23	0.36	0.04
50°	151.25	151.16	0.68	0.59
60°	177.97	179.46	1.10	2.58
70°	219.07	224.09	2.11	7.13
80°	267.99	270.61	-1.71	0.91

TABLE XIV
Restored SPLINE Interpolated Antenna Temperatures for
Finite Wave Tank with Three Restorations
(Antenna $=12 \lambda$ horn, $\rho=13$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0^{\circ} / 00$)
HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\mathrm{bres}}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\mathrm{bres}}-\mathrm{T}_{\mathrm{b}}$
0°	109.18	109.17	0.08	0.07
10°	107.92	107.80	0.06	-0.06
20°	104.22	104.32	0.06	0.15
30°	98.02	98.26	0.06	0.29
40°	89.36	88.72	0.10	-0.54
50°	78.44	77.88	0.34	-0.21
60°	65.69	68.83	0.98	4.12
70°	58.15	43.76	8.20	-6.19
80°	69.54	37.77	37.57	-0.20

VERTICAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\text {bres }}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\mathrm{bres}}-\mathrm{T}_{\mathrm{b}}$
0°	109.21	109.21	0.12	0.11
10°	110.46	110.35	0.07	-0.05
20°	114.56	114.57	0.12	0.13
30°	121.92	121.94	0.20	0.21
40°	133.55	132.87	0.36	-0.32
50°	151.25	150.14	0.68	-0.43
60°	177.97	177.44	1.10	0.56
70°	219.07	218.79	2.11	1.83
80°	267.99	280.72	-1.71	11.02

TABLE XV
Restored Linearly Interpolated Antenna Temperatures
for Finite Wave Tank with One Restoration
(Antenna $=12 \lambda$ horn, $\rho=13$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0^{\circ} \% 00$)
HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{b r e s}-T_{b}$
0°	109.08	109.02	-0.02	-0.08
10°	107.92	107.91	0.06	0.04
20°	104.22	104.21	0.06	0.04
30°	98.02	98.01	0.06	0.04
40°	89.36	89.23	0.10	-0.03
50°	78.44	77.62	0.35	-0.48
60°	65.69	63.48	0.98	-1.23
70°	58.15	43.21	8.20	-6.73
80°	69.54	32.39	31.57	-5.58

VERTICAL POLARIZATION

Incidence Angle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{b r e s}-T_{b}$
0°	109.25	109.19	0.15	0.09
10°	110.46	110.36	0.07	-0.04
20°	114.56	114.37	0.12	-0.07
30°	121.92	121.64	0.20	-0.08
40°	133.55	133.09	0.36	-0.10
50°	151.25	150.65	0.68	0.08
60°	177.97	178.38	1.10	1.50
70°	219.07	223.20	2.11	6.24
80°	267.99	272.14	-1.71	2.44

Restored Linearly Interpolated Antenna Temperatures for
Finite Wave Tank with Three Restorations
(Antenna $=12 \lambda$ horn, $\rho=13$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% 00$) HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\text {bres }}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\mathrm{bres}}-\mathrm{T}_{\mathrm{b}}$
0°	109.08	109.02	-0.02	-0.08
10°	107.92	108.00	0.06	0.13
20°	104.22	104.32	0.06	0.15
30°	98.02	98.14	0.06	0.18
40°	89.36	89.35	0.10	0.09
50°	78.44	77.09	0.35	-1.01
60°	65.69	61.16	0.98	-3.55
70°	58.15	25.12	8.20	-24.83
80°	69.54	19.15	31.57	-18.82

VERTICAI. POLARIZATION

Incidence Angle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{b r e s}-T_{b}$
0°	109.25	109.20	0.15	0.10
10°	110.46	110.26	0.07	-0.14
20°	114.56	114.22	0.12	-0.23
30°	121.92	121.44	0.20	-0.28
40°	133.55	132.70	0.36	-0.49
50°	151.25	149.02	0.68	-1.55
60°	177.97	174.21	1.10	-2.67
70°	219.07	215.87	2.11	-1.09
80°	267.99	287.06	-1.71	17.36

TABLE XVII

Restored SPLINE Interpolated Antenna Temperatures for
Finite Wave Tank with One Restoration
$\begin{aligned} & \text { (Antenna }=8 \lambda \text { horn, } \rho= 13 \text { feet, } f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0^{\circ} \% 00 \text {). } \\ & \text { HORIZONTAL POLARIZATION }\end{aligned}$

Incidence Angle	T_{a}	$\mathrm{T}_{\mathrm{bres}}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\mathrm{bres}}-\mathrm{T}_{\mathrm{b}}$
0°	109.38	109.17	0.28	0.07
10°	108.14	107.96	0.27	0.09
20°	104.47	104.33	0.31	0.17
30°	98.41	98.20	0.44	0.24
40°	89.96	89.63	0.70	0.37
50°	80.31	79.15	2.22	1.05
60°	70.48	65.99	5.78	1.28
70°	71.81	50.74	21.86	0.80
80°	92.20	37.11	54.23	-0.86

VERTICAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\text {bres }}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\text {bres }}-\mathrm{T}_{\mathrm{b}}$
0°	109.42	109.21	0.32	0.11
10°	110.68	110.51	0.28	0.11
20°	114.84	114.70	0.39	0.25
30°	122.36	122.19	0.64	0.47
40°	134.22	134.28	1.02	1.08
50°	152.63	153.89	2.06	3.32
60°	180.13	182.90	3.25	6.02
70°	221.39	224.61	4.43	7.65
80°	263.84	252.07	-	5.86

TABLE XVIII
Restored SPLINE Interpolated Antenna Temperatures
for Finite Wave Tank with Three Restorations (Antenna $=8 \lambda$ horn, $\rho=13$ feet, $f=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=0^{\circ} \% 00$) HORIZONTAL POLARIZATION

Incidence Anqle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{b r e s}-T_{b}$
0°	109.38	109.20	0.28	0.10
10°	108.14	107.85	0.27	-0.02
20°	104.47	104.23	0.37	0.06
30°	98.41	97.83	0.44	-0.14
40°	89.96	88.73	0.70	-0.53
50°	80.31	78.60	2.22	0.50
60°	70.48	65.70	5.78	0.99
70°	71.81	49.96	21.86	0.02
80°	92.20	38.06	54.23	0.09

VER":ICAL POLARIZATION

Incidence Angle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{b r e s}-T_{b}$
0°	109.42	109.24	0.32	0.14
10°	110.68	110.38	0.28	-0.02
20°	114.84	114.45	0.39	0.01
30°	122.36	121.40	0.64	-0.32
40°	134.22	132.40	1.02	-0.79
50°	152.63	150.30	2.06	-0.27
60°	180.13	177.95	3.25	1.08
70°	227.39	229.62	4.43	12.66
80°	263.84	272.15	-5.86	2.45

TABLE XIX
Restored linearly Interpolated Antenna Temperatures
for Finite Wave Tank with One Restoration
(Antenna $=8 \lambda$ horn, $\rho=13$ feet $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% \%$) HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{\text {bres }}-T_{b}$
0°	109.30	109.06	0.20	-0.04
10°	108.14	107.93	0.27	0.06
20°	104.47	104.25	0.31	0.09
30°	98.41	98.02	0.44	0.06
40°	89.96	89.24	0.70	-0.01
50°	80.31	77.82	2.22	-0.28
60°	70.48	63.45	5.78	-1.26
70°	71.81	46.68	21.86	-3.26
80°	92.19	33.41	54.22	-4.56

VERTJCAL POLARIZATION

Incidence Angle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{\text {bres }}-T_{b}$
0°	109.47	109.24	0.38	0.14
10°	110.68	110.43	0.28	0.03
20°	114.34	114.54	0.39	0.09
30°	122.36	121.94	0.64	0.22
40°	134.22	133.90	1.02	0.71
50°	152.63	153.11	2.06	2.54
60°	180.13	187.97	3.25	5.09
70°	221.39	223.95	4.43	6.99
80°	263.84	253.20	-5.86	-16.50

TABLE XX
Restored Linearly Interpolated Antenna Temperatures for
Finite Wave Tank with Three Restorations
(Antenna $=8 \lambda$ horn, $\rho=13$ feet, $f=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=0^{\circ} / 00$)
HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{\text {bres }}-T_{b}$
0°	109.30	109.17	0.20	0.02
10°	108.14	107.93	0.27	0.06
20°	104.47	104.25	0.31	0.09
30°	98.41	97.76	0.44	-0.20
40°	89.96	88.44	0.70	-0.82
50°	80.37	75.28	2.22	-2.82
60°	70.48	57.69	5.78	-7.02
70°	71.81	35.77	21.87	-14.18
80°	92.19	26.16	54.23	-11.81

VERTICAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\text {bres }}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\text {bres }}-\mathrm{T}_{\mathrm{b}}$
0°	109.47	109.30	0.38	0.20
10°	110.68	110.28	0.28	-0.12
20°	174.84	114.14	0.39	-0.30
30°	122.36	120.96	0.64	-0.77
40°	134.22	131.74	1.02	-1.46
50°	152.63	148.18	2.06	-2.38
60°	180.13	174.95	3.25	-1.93
70°	221.39	227.67	4.43	10.71
80°	263.84	277.49	-5.86	7.79

TABLE XXI

Restored SPLINE Interpolated Antenna Temperatures for Finite Wave Tank with One Restoration
(Antenna $=12 \lambda$ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0^{\circ} / 00$) HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\text {bres }}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\mathrm{bres}}-\mathrm{T}_{\mathrm{b}}$
0°	111.33	110.76	2.23	1.66
10°	108.41	107.86	0.54	-0.01
20°	104.84	104.42	0.68	0.26
30°	98.90	98.88	0.94	0.92
40°	90.68	91.22	1.42	1.96
50°	82.69	80.11	4.60	2.01
60°	73.50	65.73	8.79	.1 .02
70°	88.07	49.69	38.13	-0.26
80°	129.16	34.05	91.19	-3.92

VERTICAL POLARIZATION

Incidence Angle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{b r e s}-T_{b}$
0°	111.36	110.79	2.26	1.69
10°	110.94	110.43	0.54	0.03
20°	115.13	114.82	0.68	0.38
30°	122.65	122.88	0.93	1.76
40°	134.52	135.69	1.33	2.50
50°	153.70	155.12	3.14	4.56
60°	181.23	183.98	4.35	7.11
70°	227.85	222.52	10.89	5.55
80°	277.43	242.35	7.73	-27.35

TABLE XXII
Restored SPLINE Interpolated Antenna Temperatures
for Finite Wave Iank with Three Restorations
(Antenna $=12$. horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% / 00$)
HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{\text {bres }}-T_{b}$
0°	111.33	111.58	2.23	2.49
10°	108.41	106.20	0.54	-1.66
20°	104.84	103.22	0.68	-0.94
30°	98.90	98.81	0.94	0.84
40°	90.68	92.72	1.42	3.46
50°	82.69	78.75	4.60	0.65
60°	73.50	62.30	8.79	-2.40
70°	88.07	45.60	38.13	-4.35
80°	129.16	37.28	97.19	-0.69

VERTICAL POLARIZATION

Incidence Ang $7 e$	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{b r e s}-T_{b}$
0°	111.36	111.61	2.26	2.51
10°	110.94	108.79	0.54	-1.61
20°	115.13	113.44	0.68	-1.00
30°	122.65	121.98	0.93	0.26
40°	134.52	135.00	1.33	1.81
50°	153.70	150.96	3.13	0.40
60°	131.23	178.88	4.35	2.00
70°	227.85	228.98	10.89	12.02
80°.	277.43	280.02	7.73	10.32

TABLE XXIII

Restored Linearly Interpolated Antenna Temperatures
for Finite. Wave Tank with One Restoration
(Antenna $=12 \lambda$ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0^{\circ} / 00$ HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{\text {bres }}-T_{b}$
0°	110.51	109.46	1.41	0.36
10°	108.41	107.80	0.54	-0.07
20°	104.84	103.89	0.68	-0.27
30°	98.90	97.40	0.94	-0.56
40°	90.68	88.27	1.42	-0.98
50°	82.69	74.52	4.60	-3.58
60°	73.50	58.18	8.79	-6.53
70°	88.07	38.92	38.13	-11.02
80°	129.16	26.52	91.19	-11.45

VERTICAL POLARIZATION

Incidence Angle	T_{a}	$T_{b r e s}$	$T_{a}-T_{b}$	$T_{b r e s}-T_{b}$
0°	110.67	109.63	1.57	0.53
10°	110.94	110.30	0.54	-0.10
20°	115.13	114.25	0.68	-0.20
30°	122.65	121.58	0.93	-0.14
40°	134.52	133.48	1.33	0.29
50°	153.70	151.64	3.13	1.08
60°	181.23	180.33	4.35	3.46
70°	227.85	218.98	10.89	2.02
$\dot{0}^{\circ}$	277.43	241.96	7.73	-27.74

TABLE XXIV
Restored Linearly Interpolated Antenna Temperatures for
Finite Wave Tank with Three Restorations
(Antenna $=12 \lambda$ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \%$) HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\text {bres }}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\text {bres }}-\mathrm{T}_{\mathrm{b}}$
0°	110.51	109.94	1.41	0.84
10°	108.41	107.49	0.54	-0.38
20°	104.84	103.10	.0 .68	-1.07
30°	98.90	95.77	0.94	-2.19
40°	90.68	84.98	1.42	-4.28
50°	82.69	61.76	4.60	-16.33
60°	73.50	38.34	8.79	-26.37
70°	88.07	8.88	38.13	-41.07
80°	129.16	8.35	91.19	-29.62

VERTICAL POLARIZATION

Incidence Angle	T_{a}	$T_{b r e s}$	$T_{a}-T_{b}$	$T_{b r e s}-T_{b}$
0°	110.67	110.11	1.57	1.01
10°	110.94	109.76	0.54	-0.64
20°	115.13	113.04	0.68	-1.41
30°	122.65	119.28	0.93	-2.44
40°	134.52	129.22	1.33	-3.97
50°	153.70	140.55	3.13	-10.02
60°	181.23	167.55	4.35	-9.33
70°	227.85	217.12	10.89	0.16
80°	277.43	278.83	7.73	9.12

TABLE XXV

Restored SPLINE Interpolated Antenna Temperatures
for Finite Wave Tank with One Restoration
(Antenna $=8 \lambda$ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0^{\circ} / 00$) HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{\text {bres }}-T_{b}$
0°	115.30	108.51	6.20	-0.59
10°	111.36	109.83	3.49	1.96
20°	108.41	106.66	4.25	2.50
30°	103.90	107.04	5.94	3.07
40°	97.85	92.75	8.60	3.49
50°	95.52	81.81	17.43	3.72
60°	92.11	67.52	27.40	2.81
70°	124.80	47.96	74.85	-1.98
80°	169.85	28.07	131.88	-9.907

VERTICAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\text {bres }}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\text {bres }}-\mathrm{T}_{\mathrm{b}}$
0°	115.32	108.53	6.23	-0.56
10°	113.85	112.49	3.45	2.10
20°	118.48	117.43	4.03	2.99
30°	126.98	125.90	5.26	4.17
40°	140.03	138.90	6.84	5.71
50°	161.81	158.59	11.25	8.02
60°	190.08	185.27	13.20	8.40
70°	238.86	203.44	21.90	-13.52
80°	278.28	196.18	8.58	-73.52

TABLE XXVI

Restored SPLINE Interpolated Antenna Temperatures
for Finite Wave Tank with Three Restorations
(Antenna $=8 \lambda$ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0^{\circ} / 00$) HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{\text {bres }}-T_{b}$
0°	175.30	106.66	6.20	-2.43
10°	111.36	107.30	3.49	-0.56
20°	108.41	104.10	4.25	-0.06
30°	103.90	98.72	5.94	0.76
40°	97.85	90.76	8.60	1.50
50°	95.52	80.46	17.43	2.36
60°	92.11	66.87	27.40	2.16
70°	124.80	51.28	74.86	1.34
80°	169.85	34.62	131.88	-3.35

VE.RTICAL POLARIZATION

Incidence Angle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{\text {bres }}-T_{b}$
0°	115.32	106.69	6.23	-2.41
10°	113.85	109.86	3.45	-0.54
20°	118.48	114.27	4.03	-0.18
30°	126.98	122.26	5.26	0.53
40°	140.03	134.78	6.84	1.59
50°	161.81	156.99	11.25	6.42
60°	190.08	188.03	13.20	11.15
70°	238.86	228.58	21.90	11.62
80°	278.28	254.42	8.58	-15.28

TABLE XXVII

Restored Linearly Interpolated Antenna Temperatures
for Finite Wave Tank with One Restoration
(Antenna $=8 \lambda$ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% / 00$)
HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{~T}_{\text {bres }}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\mathrm{bres}}-\mathrm{T}_{\mathrm{b}}$
0°	116.30	109.53	7.20	0.44
70°	111.36	108.64	3.49	0.78
20°	108.41	105.08	4.25	0.91
30°	103.90	98.74	5.94	0.77
40°	97.85	89.55	8.60	0.29
50°	95.52	77.21	17.43	-0.89
60°	92.11	61.88	27.40	-2.83
70°	124.80	41.61	74.86	-8.34
80°	169.85	25.03	131.88	-12.94

VERTIこAL POLARIZATION

Incidence Angle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{\text {bres }}-T_{b}$
0°	116.44	109.67	7.34	0.57
10°	113.85	111.30	3.45	0.97
20°	118.48	115.92	4.03	1.48
30°	126.98	123.89	5.26	2.17
40°	140.03	136.44	6.84	3.24
50°	161.81	175.61	11.25	5.04
60°	190.08	132.42	13.20	5.54
70°	238.86	291.28	21.90	-15.68
80°	278.38	196.41	8.58	-73.29

TABLE XXVIII

Restored Linearly Interpolated Antenna Temperatures for
Finite Wave Tank with Three Restorations
(Antenna $=8 \lambda$ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% / 00$) HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{b r e s}-T_{b}$
0°	116.30	108.70	7.20	-0.40
10°	117.36	104.85	3.49	-3.02
20°	108.41	100.40	4.25	-3.76
30°	103.90	92.46	5.94	-5.50
40°	97.85	81.06	8.60	-8.20
50°	95.52	64.89	17.43	-13.21
60°	92.11	47.16	27.40	-17.55
70°	124.80	27.05	74.86	-22.90
80°	169.85	21.46	131.88	-16.51

VERTICAL POLARIZATION

Incidence Angle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{\text {bres }}-T_{b}$
0°	116.44	108.83	7.34	-0.27
10°	113.85	107.35	3.45	-3.04
20°	118.48	110.68	4.03	-3.77
30°	126.98	116.81	5.26	-4.92
40°	140.03	127.37	6.84	-5.82
50°	161.81	147.13	11.25	-3.44
60°	190.08	178.35	13.20	1.47
70°	238.86	220.41	21.90	3.45
80°	278.28	255.46	8.58	-15.24

Fig. 23. Restoration of SPLINE Interpolated Data for the Finite Wave Tank (Antenna $=12 \lambda$ horn, $\rho=.13$ feet, one iteration).

Fig. 24. Restoration of Linearly Interpolated Data for the Finite Wave Tank (Antenna $=12 \lambda$ horn, $\rho=13$ feet, one iteration).

Fig. 25. Restoration of SPLINE Interpolated Data for the Finite Wave Tank (Antenna $=8 \lambda$ horn, $\rho=13$ feet, three iterations).

Fig. 26. Restoration of Linearly Interpolated Data for the Finite Wave Tank (Antenna $=8 \lambda$ horn, $\rho=13$ feet, one iteration).

Fig. 27. Restoration of SPLINE Interpolated Data for the Finite Wave Tank (Antenna $=12 \lambda$ horn, $\rho=26$ feet, three iterations).

Fig. 28. Restoration of Linearly Interpolated Data for the Finite Wave Tank (Antenna $=12 \lambda$ horn, $\rho=26$ feet, one iteration).

Fig. 29. Restoration of SPLINE Interpolated Data for the Finite Wave Tank (Antenna $=8 \lambda$ horn, $\rho=26$ feet, three iterations).

Fig. 30. Restoration of Linearly Interpolated Data for the Finite Wave Tank (Antenna $=8 \lambda$ horn, $\rho=26$ feet, one iteration).

SPLINE interpolated data shows that the single iteration results are more accurate than those obtained with three restorations. With the interpolation error, three restorations can no longer be taken and still achieve accurate results. With one restoration, improvement is achieved up to an incidence angle of about 60°. With linear interpolation, again the single iteration data is better than with three restorations and it is an improvement over the antenna temperatures. Due to the high frequency error in the spectrum of the linearly interpolated antenna temperatures, the inversion results, using three restorations, are less accurate than for the SPLINE routine. The accuracy of the results yielded with one restoration is about the same with either interpolation method. With the 8λ horn antenna and the 13 foot support boom, the tabulation of the SPLINE interpolated data shows that three restorations yield more accurate results than one iteration, and the recovered brightness temperatures are almost always better approximations than the interpolated antenna temperatures. Examination of the linearly interpolated data shows that additional restorations are not useful due to the previously mentioned high frequency error in the spectrum of the antenna temperatures. However, the single iteration case does yield improved results over the original antenna temperatures at the lower incidence angles for vertical polarization and at all incidence angles for horizontal polarization. Comparing the best case data for the two different interpolation techniques, one can see that with the 8λ horn and 13 foot boom
cumbifacion, sthafe incerpolation is superior.
Next, the effect of interpolation will be examined for the 12λ horn and 26 foot boom computations. With SPLINE interpolation, the accuracy of the one- and three-iteration results appears to be very nearly the same but with a slight overall superiority for the three restorations. With this antenna and boom combination, the tank looks very narrow and the antenna, having a very narrow beam, creates a rapidly varying function as the tank is scanned. The 5.6° sampling is not rapid enough in this case to let the SPLINE routine fit an accurate curve. With the rapidly varying functions involved with this antenna-boom combination, the high frequency error in the linear interpolation is most pronounced making the three restoration results much inferior than those of one iteration. The one restoration case does, however, yield improved results over the antenna temperatures. Due to the rapidly varying functions, the linear interpolation yields better results than does the SPLINE routine.

Finally, the antenna temperatures for the 8λ horn and the 26 foot boom vary less rapidly than those yielded with the narrow 12λ horn and 26 foot support boom. Consequently, the restoration of the SPLINE interpolated data is more convergent and the threeiteration case does yield better results than the single restoration. With three restorations, results are yielded that are a considerable improvement over the interpolated antenna temperatures. With the linear interpolation, multiple iterations are not desirable and the best results are obtained with one restoration
where the recovery process definitely yields improved results and should be used. For the 8λ horn and the 26 foot boom, a slightly more accurate approximation of the water brightness temperature can be obtained with linear rather than SPLINE interpolation.

The restoration process has up to now been investigated using error-free and interpolated antenna temperatures. The process will now be examined with a random error added to the antenna temperatures. A Gaussian error with a mean of 0° and a standard deviation $0: 1^{\circ}$ was added to the antenna temperature profiles for each value of α. The maximum error that was added to the antenna temperatures was approximately $\pm 2.8^{\circ}$. These profiles were then smoothed through the use of a Fortran subroutine named ICSSMU of the IBM IMSL library. The function with error and the standard deviation of the error is supplied to the subroutine which places a smooth cubic spline along the given set of data points. The subroutine can also interpolate between the data points. In this investigation, the subroutine was used to smooth the antenna temperatures that were known every 1.4°, after the random error had been added. Also, to show the combined effect of both the random error and interpolation, data with the random error was supplied to the subroutine at 5.6° intervals and the program was used to both smooth the antenna temperatures and interpolate to provide the needed 1.4° sampling. Tables XXIX through XXXVI show the results obtained by smoothing the antenna temperatures with added random error and not interpolating. All four combinations of the 12λ,

TABLE XXIX

Restored Antenna Temperatures for Finite Wave Tank with Random Error, No Interpolation, and One Restoration $\begin{aligned} & \text { (Antenna }=12 \lambda \text { horn, } \rho=13 \mathrm{feet}, \underset{\text { HORIZONTAL POLARIZATION }}{\mathrm{f}}=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% \\ & \%\end{aligned}$

Incidence Angle	T_{a}	$T_{b r e s}$	$T_{a}-T_{b}$	$T_{b r e s}-T_{b}$
0°	108.94	108.63	-0.16	-0.47
10°	108.48	108.81	0.61	0.95
20°	104.78	105.12	0.62	0.96
30°	98.59	98.96	0.63	0.99
40°	89.92	90.26	0.66	1.00
50°	78.98	79.25	0.88	1.15
60°	66.75	66.11	1.44	1.40
70°	57.66	49.73	7.71	-0.21
80°	72.66	43.72	34.69	5.75

VERTICAL POLARIZATION

Incidence Angle	T_{a}	$T_{b r e s}$	$T_{a}-T_{b}$	$T_{b r e s}-T_{b}$
0°	108.98	108.67	-0.12	-0.43
10°	111.01	111.33	0.61	0.93
20°	115.11	115.39	0.66	0.94
30°	122.47	122.70	0.75	0.98
40°	134.09	134.22	0.90	1.03
50°	151.77	152.09	1.20	1.52
60°	178.44	180.00	1.57	3.12
70°	219.46	225.10	2.50	8.14
80°	268.90	272.60	-0.80	2.90

TABLE XXX
Restored Antenna Temperatures for Finite Wave Tank with Random Error, No Interpolation, and Three Restorations (Antenna $=1 \grave{2} \lambda$ horn, $\rho=13$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% \% 0$) HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$T_{b r e s}$	$T_{a}-T_{b}$	$T_{b r e s}-T_{b}$
0°	108.94	108.33	-0.16	-0.76
10°	108.48	109.38	0.61	1.52
20°	104.78	105.69	0.62	1.52
30°	98.59	99.52	0.63	1.56
40°	89.92	90.76	0.66	1.50
50°	78.98	79.58	0.88	1.48
60°	66.15	66.58	1.44	1.88
70°	57.66	47.60	7.71	-2.34
80°	72.66	46.79	34.69	8.82

Incidence Angle	T_{a}	T_{bres}	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$T_{\mathrm{bres}}-T_{\mathrm{b}}$
0°	108.98	108.37	-0.12	-0.72
10°	111.01	111.88	0.61	1.48
20°	115.11	115.93	0.66	1.48
30°	122.47	123.23	0.75	1.51
40°	134.09	134.62	0.90	1.43
50°	151.77	151.62	1.20	1.05
60°	178.44	177.66	1.57	0.78
70°	219.46	220.85	2.50	3.88
80°	268.90	284.78	-0.80	15.07

TABLE XXXI
Restored Antenna Temperatures for Finite Wave Tank with Random Error, No Interpolation, and One Restoration (Antenna $=8 \lambda$ norn, $\rho=13$ feet, $\mathrm{f}=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% \%$) HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\text {bres }}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\text {bres }}-\mathrm{T}_{\mathrm{b}}$
0°	109.21	108.74	0.11	-0.35
10°	108.51	108.62	0.64	0.75
20°	104.85	105.01	0.69	0.85
30°	98.76	98.86	0.80	0.89
40°	90.30	90.37	1.04	1.11
50°	80.46	79.40	2.37	1.30
60°	70.04	64.92	5.33	0.21
70°	73.17	53.15	23.23	3.21
80°	95.16	42.20	57.19	4.24

VERTICAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\text {bres }}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\mathrm{bres}}-\mathrm{T}_{\mathrm{b}}$
0°	109.26	108.79	0.16	-0.31
10°	111.04	111.15	0.65	0.75
20°	115.21	115.36	0.76	0.91
30°	122.71	122.83	0.99	1.11
40°	134.56	134.96	1.37	1.77
50°	152.86	154.28	2.29	3.71
60°	180.22	182.95	3.34	6.07
70°	222.10	225.88	5.14	8.92
80°	264.92	253.94	-4.78	-15.76

TABLE XXXII
Restored Antenna Temperatures for Finite Wave Tank with Random Error, No Interpolation, and Three Restorations (Antenna $=8 \lambda$ horn, $\rho=13$ feet, $\mathrm{f}=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% 00$) HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\mathrm{bres}}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\mathrm{bres}}-\mathrm{T}_{\mathrm{b}}$
0°	109.21	108.28	0.11	-0.82
10°	108.51	109.03	0.64	1.16
20°	104.85	105.36	0.69	1.20
30°	98.76	98.99	0.80	1.03
40°	90.30	90.38	1.04	1.12
50°	80.46	79.07	2.37	0.97
60°	70.04	63.29	5.33	-1.42
70°	73.17	54.00	23.23	4.06
80°	95.16	46.49	57.19	8.52

VERTICAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\mathrm{bres}}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\mathrm{bres}}-\mathrm{T}_{\mathrm{b}}$
0°	109.26	108.32	0.16	-0.78
10°	111.04	111.53	0.65	1.13
20°	115.21	115.56	0.76	1.11
30°	122.71	122.54	0.99	0.81
40°	134.56	133.81	1.37	0.62
50°	152.86	150.99	2.29	0.42
60°	180.22	177.83	3.34	0.95
70°	222.10	231.74	5.14	14.77
80°	264.92	275.36	-4.78	5.66

TABLE XXXII.
Restored Antenna Temperatures for Finite Wave Tank with Random Error, No Interpolation, and One Restoration (Antenna $=12 \lambda$ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% 00$)

HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\text {bres }}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\mathrm{bres}}-\mathrm{T}_{\mathrm{b}}$
0°	109.86	108.42	0.76	-0.68
10°	108.97	109.18	1.10	1.31
20°	105.37	105.56	1.21	1.40
30°	99.40	99.63	1.44	1.67
40°	91.13	91.25	1.87	1.99
50°	82.36	79.33	4.26	1.24
60°	72.97	65.68	8.26	0.97
70°	90.45	54.91	40.51	4.97
80°	135.40	44.67	97.43	6.70

VERTICAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\text {bres }}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\text {bres }}-\mathrm{T}_{\mathrm{b}}$
0°.	109.89	108.45	0.79	-0.65
10°	111.50	111.73	1.10	1.33
20°	115.65	115.94	1.21	1.49
30°	123.16	123.68	1.43	1.96
40°	134.96	135.99	1.77	2.80
50°	153.65	154.88	3.08	4.32
60°	181.24	184.15	4.36	7.27
70°	228.78	224.54	11.82	7.58
80°	279.24	245.46	9.54	-24.24

TABLE XXXIV

Restored Antenna Temperatures for Finite Wave Tank with Random Error, No Interpolation, and Three Restorations
(Antenna $=12 \lambda$ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% \% 0$) HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{b r e s}-T_{b}$
0°	109.86	108.10	0.76	-0.99
10°	108.97	109.39	1.10	1.52
20°	105.37	105.51	1.21	1.34
30°	99.40	99.36	1.44	1.40
40°	91.13	90.82	1.87	1.56
50°	82.36	77.12	4.26	-0.98
60°	72.97	62.85	8.26	-1.86
70°	90.45	56.27	40.51	6.33
80°	135.40	54.16	97.43	16.19

VERTICAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\text {bres }}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\text {bres }}-T_{\mathrm{b}}$
0°	109.89	108.14	0.79	-0.96
10°	111.50	117.89	1.10	1.49
20°	115.65	115.68	1.21	1.23
30°	123.16	122.86	1.43	1.13
40°	134.96	134.23	1.77	1.04
50°	153.65	150.22	3.08	-0.35
60°	181.24	178.93	4.36	2.05
70°	228.78	233.05	11.82	16.09
80°	279.24	285.24	9.54	15.54

TABLE XXXV
Restored Antenna Temperatures for Finite Wave Tank with Random Error, No Interpolation, and One Restoration
(Antenna $=8 \lambda$ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% 00$) HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\mathrm{bres}}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$T_{\text {bres }}-\mathrm{T}_{\mathrm{b}}$
0°	114.58	107.20	5.48	-1.90
10°	117.64	110.51	3.77	2.64
20°	108.52	106.92	4.36	2.76
30°	103.74	100.66	5.78	2.70
40°	97.33	91.56	8.07	2.30
50°	95.30	81.09	17.20	2.99
60°	92.65	68.25	27.94	3.54
70°	128.57	54.50	78.63	4.56
80°	174.54	36.31	136.57	-1.66

VERTICAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\text {bres }}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\text {bres }}-\mathrm{T}_{\mathrm{b}}$
0°	114.61	107.22	5.51	-1.88
10°	114.13	113.17	3.73	2.78
20°	118.61	117.73	4.16	3.29
30°	126.90	125.68	5.18	3.96
40°	139.70	138.12	6.51	4.93
50°	161.73	158.21	11.17	7.64
60°	190.37	185.58	13.49	8.70
70°	240.58	206.28	23.62	-10.68
80°	280.25	199.50	10.54	-70.20

TABLE XXXVI
Restored Antenna Temperatures for Finite Wave Tank with
Random Error, No Interpolation, and Three Restorations (Antenna $=8 \lambda$ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% \%$) HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{\text {bres }}-T_{b}$
0°	114.58	104.42	5.48	-4.68
10°	111.64	109.11	3.77	1.24
20°	108.52	104.91	4.36	0.75
30°	103.74	97.96	5.78	0.00
40°	97.33	88.17	8.07	-1.09
50°	95.30	78.67	17.20	0.57
60°	92.65	67.62	27.94	2.91
70°	128.57	62.23	78.63	12.28
80°	174.54	48.27	136.57	10.30

VERTICAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{~T}_{\text {bres }}$	$\mathrm{T}_{a}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\mathrm{bres}}-\mathrm{T}_{\mathrm{b}}$
0°	114.61	104.44	5.51	-4.65
10°	114.13	111.64	3.73	1.25
20°	118.61	115.13	4.16	0.68
30°	126.90	121.86	5.18	0.14
40°	139.70	133.10	6.51	-0.09
50°	161.73	155.95	11.17	5.38
60°	190.37	188.17	13.49	11.29
70°	240.58	233.06	1	23.62
80°	280.25	259.57	10.54	-10.13

8λ horn anternas and 13 foot, 26 foot supporting booms are 1 isted with one and three restorations. Figures 31 through 34 are graphs. using the $\beta=0$ points for each of the four cases and the optimum number of restorations. Tables XXXVII through XLIV and Figures 35 through 38 show data analogous to Tables XXIX through XXXVI and Figures 31 through 34, respectively, but with interpolation and smoothing provided by the subroutine ICSSMU.

With the 12λ horn and the 13 foot boom, the error that has been added is greater than the difference between the antenna temperatures and the brightness temperatures. Consequently, the restored brightness temperatures are not as good an approximation of the brightness temperatures as are the smoothed antenna temperatures. Multiple restoration makes the restored results inferior. For this antenna and boom length, these observations are valid for both the interpolated and uninterpolated data.

For the 8λ horn and the 13 foot boom data that contains the random error, multiple restorations are not desirable either with or without interpolation. When the antenna temperatures are not interpolated, some improvement at the larger incidence angles for horizontal polarization is achieved with one iteration. With interpolation, the smoothed antenna temperatures are more accurate than the restored results.

Using the 12λ horn 26 foot boom, and no interpolation; the three-restoration results are better than those for one interation. With this antenna and boom combination, and no interpolation.

Fig. 31. Restoration of the Finite Wave Tank Data with Random Error and No Interpolation (Antenna $=$ 12λ horn, $\rho=13$ feet, one iteration).

Fig. 32. Restoration of the Finite Wave Tank Data with Random Error and No Interpolation (Antenna $=$ 8λ horn, $\rho=13$ feet, one iteration).

Fig. 33. Restoration of the Finite Wave Tank Data with Random Error and No Interpolation (Antenna = 12λ horn, $\rho=26$ feet, three iterations).

Fig. 34. Restoration of the Finite Wave Tank Data with Random Error and No Interpolation (Antenna = 8λ horn, $\rho=26$ feet, three iterations).

TABLE XXXVII
Restored Antenna Temperatures for Finite Wave Tank with
Random Error, Interpolation, and One Restoration
(Antenna $=12 \lambda$ horn, $\rho=13$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% \%$)
HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{\text {bres }}-T_{b}$
0°	109.42	109.28	0.32	0.18
10°	108.50	108.90	0.63	1.04
20°	104.87	105.18	0.64	1.01
30°	98.65	99.07	0.68	1.11
40°	89.99	90.57	0.73	1.31
50°	78.26	78.46	0.17	0.37
60°	63.50	62.34	-1.21	-2.37
70°	61.06	52.70	17.12	2.75
80°	77.78	50.57	39.81	12.60

VERTICAL POLARIZATION

Incidence Angle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{\text {bres }}-T_{b}$
0°	109.44	109.30	0.34	0.20
10°	117.03	111.42	0.63	1.02
20°	115.13	115.45	0.69	1.01
30°	122.51	122.80	0.79	1.08
40°	134.10	134.38	0.91	1.18
50°	157.30	151.52	0.73	0.95
60°	177.67	178.80	0.79	1.92
70°	220.44	226.19	3.48	9.22
80°	270.94	275.13	1.24	5.43

TABLE XXXVIII
Restored Antenna Temperatures for Finite Wave Tank with Random Error, Interpoiation, and Three Restorations
(Antenna $=12 \lambda$ horn, $\rho=13$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0^{\circ} \% 00$) HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\mathrm{bres}}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\mathrm{bres}}-\mathrm{T}_{\mathrm{b}}$
0°	109.42	108.73	0.32	-0.36
10°	108.50	109.44	0.63	7.58
20°	104.81	105.56	0.64	1.40
30°	98.65	99.41	0.68	1.45
40°	89.99	91.03	0.73	1.77
50°	78.26	79.13	0.17	1.03
60°	63.50	63.12	-1.21	-1.59
70°	61.06	47.93	11.12	-2.01
80°	77.78	54.91	39.81	16.94

VERTICAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\text {bres }}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\text {bres }}-\mathrm{T}_{\mathrm{b}}$
0°	109.44	108.76	0.34	-0.34
10°	111.03	111.94	0.63	1.54
20°	115.13	115.84	0.69	1.40
30°	122.51	123.14	0.79	1.42
40°	134.10	134.72	0.91	1.53
50°	151.30	151.10	0.73	0.53
60°	177.67	176.30	0.79	-0.58
70°	220.44	221.48	3.48	4.52
80°	270.94	287.72	1.24	18.02

TABLE XXXIX

Restored Antenna Temperatures for Finite Wave Tank with Random Error, Interpolation, and One Restoration
(Antenna $=8 \lambda$ horn, $\rho=13$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0^{\circ} / 00$) HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\mathrm{bres}}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$T_{\mathrm{bres}}-\mathrm{T}_{\mathrm{b}}$
0°	109.52	109.33	0.42	0.23
10°	108.55	108.85	0.68	0.98
20°	104.85	105.25	0.68	1.09
30°	98.65	99.01	0.69	1.05
40°	89.84	89.99	0.58	0.73
50°	79.00	76.96	0.90	-1.14
60°	69.13	62.87	4.42	-1.84
70°	76.63	.58 .06	26.69	8.12
80°	98.74	46.98	60.77	9.01

VERTICAL POLARIZATION

Incidence Angle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{b r e s}-T_{b}$
0°	109.54	109.36	0.44	0.26
10°	111.07	111.36	0.67	0.96
20°	115.19	115.55	0.74	1.10
30°	122.60	122.91	0.87	1.18
40°	134.22	134.65	1.03	1.46
50°	152.18	153.11	1.61	2.55
60°	180.20	182.76	3.33	5.88
70°	223.11	227.37	6.15	10.40
80°	265.05	253.82	-4.65	-15.88

TABLE XL

Restored Antenna Temperatures for Finite Wave Tank with Random Error, Interpolation, and Three Restorations
(Antenna $=8 \lambda$ horn, $\rho=13$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% / 00$) HORIZONTAL POLARIZATION

Incidence Ang7e	T_{a}	$\mathrm{T}_{\text {bres }}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\mathrm{bres}}-\mathrm{T}_{\mathrm{b}}$
0°	109.52	108.98	0.42	-0.12
10°	108.55	109.52	0.68	1.65
20°	104.85	105.91	0.68	1.74
30°	98.65	99.68	0.69	1.71
40°	89.84	90.60	0.58	1.34
50°	79.00	75.89	0.90	-2.20
60°	69.13	59.59	4.42	-5.12
70°.	76.63	60.00	26.69	10.05
80°	98.74	52.49	60.77	14.52

VERTICAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\text {bres }}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\text {bres }}-\mathrm{T}_{\mathrm{b}}$
0°	109.54	109.00	0.44	-0.10
10°	111.07	111.99	0.67	1.60
20°	115.19	116.03	0.74	1.58
30°	122.60	123.02	0.87	1.29
40°	134.22	133.84	1.03	0.65
50°	152.18	149.37	1.61	-1.20
60°	180.20	177.19	3.33	0.32
70°	223.11	233.63	6.15	16.67
80°	265.05	275.29	-4.65	5.59

TABLE XLI

Restored Antenna Temperatures for Finite Wave Tank with Random Error, Interpolation, and One Restoration (Antenna $=12 \lambda$ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0^{\circ} \% \mathrm{o}$) HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\text {bres }}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\mathrm{bres}}-\mathrm{T}_{\mathrm{b}}$
0°	109.08	107.33	-0.02	-1.77
10°	108.81	109.54	0.94	1.68
20°	104.80	105.18	0.64	1.01
30°	97.80	97.67	-0.17	-0.29
40°	88.18	87.22	-1.08	-2.04
50°	80.84	76.34	2.74	-1.75
60°	74.02	65.29	9.32	0.58
70°	97.44	62.98	47.49	13.04
80°	140.57	51.02	102.60	13.05

VERTICAL POLARIZATION

Incidence Angle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{\text {bres }}-T_{b}$
0°	109.09	107.34	-0.01	-1.76
10°	111.32	112.06	0.92	1.66
20°	115.12	115.58	0.68	1.13
30°	121.84	122.08	0.11	0.36
40°	132.72	132.90	-0.47	-0.29
50°	152.44	152.57	1.87	2.01
60°	181.29	183.41	4.41	6.53
70°	231.74	227.89	14.77	10.92
80°	283.17	250.76	13.47	-18.94

TABLE XLII
Restored Antenna Temperatures for Finite Wave Tank with
Random Error, Interpolation, and Three Restorations
(Antenna $=12 \lambda$ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=0^{\circ} \% 00$) HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\text {bres }}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\mathrm{bres}}-\mathrm{T}_{\mathrm{b}}$
0°	109.08	105.87	-0.02	-3.23
10°	108.81	110.29	0.94	2.42
20°	104.80	105.70	0.64	1.54
30°	97.80	98.19	-0.17	0.23
40°	88.18	87.47	-1.08	-1.79
50°	80.84	72.69	2.74	-5.40
60°	74.02	60.26	9.32	-4.45
70°	97.44	63.26	47.49	13.31
80°	140.57	59.61	102.60	21.64

VERTICAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\text {bres }}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\mathrm{bres}}-\mathrm{T}_{\mathrm{b}}$
0°	109.09	105.88	-0.01	-3.22
10°	111.32	112.72	0.92	2.32
20°	115.12	115.85	0.68	1.40
30°	121.84	121.86	0.11	0.14
40°	132.72	131.49	-0.47	-1.70
50°	152.44	146.93	1.87	-3.63
60°	181.29	177.35	4.47	0.47
70°	231.74	236.06	14.77	19.10
80°	283.17	290.88	13.47	21.17

TABLE XLIII

Restored Antenna Temperatures for Finite Wave Tank with Random Error, Interpolation, and One Restoration
(Antenna $=8 \lambda$ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% / 00$) HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\text {bres }}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\text {bres }}-\mathrm{T}_{\mathrm{b}}$
0°	113.88	107.11	4.78	-1.99
10°	110.04	108.22	2.17	0.36
20°	106.67	103.86	2.44	-0.30
30°	101.66	97.04	3.70	-0.92
40°	95.44	87.88	6.18	-1.38
50°	95.99	81.16	17.89	3.06
60°	95.64	71.76	30.93	7.05
70°	135.46	64.13	85.52	14.18
80°	180.96	45.97	142.99	8.00

VERTICAL POLARIZATION

Incidence Ang7e	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{b r e s}-T_{b}$
0°	113.94	107.16	4.84	-1.94
10°	112.58	110.96	2.19	0.57
20°	116.84	114.91	2.39	0.46.
30°	125.10	122.56	3.37	0.84
40°	138.18	135.18	4.98	1.98
50°	162.06	158.00	11.49	7.44
60°	191.71	187.00	14.83	10.12
70°	243.91	210.83	26.95	-6.13
80°	282.27	202.52	12.57	-67.19

TABLE XLIV

Restored Antenna Temperatures for Finite Wave Tank with Random Error, Interpolation, and Three Restorations
(Antenna $=8 \lambda$ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0^{\circ} / 00$) HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\mathrm{bres}}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\mathrm{bres}}-\mathrm{T}_{\mathrm{b}}$
0°	113.88	106.67	4.78	-2.43
10°	110.04	106.82	2.17	-1.04
20°	106.61	101.23	2.44	-2.93
30°	101.66	93.00	3.70	-4.97
40°	95.44	82.45	6.18	-6.81
50°	95.99	77.42	17.89	-0.67
60°	95.64	71.00	30.93	6.29
70°	135.46	73.84	85.52	23.90
80°	180.96	60.11	142.99	22.14

VERTICAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\text {bres }}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\text {bres }}-\mathrm{T}_{\mathrm{b}}$
0°	113.94	106.72	4.84	-2.38
10°	112.58	109.45	2.19	-0.95
20°	116.84	111.74	2.39	-2.71
30°	125.10	117.59	3.37	-4.13
40°	138.18	128.54	4.98	4.65
50°	162.06	154.77	11.49	4.21
60°	191.71	189.37	14.83	12.49
70°	243.91	238.35	26.95	21.39
80°	282.27	263.17	12.57	-6.54

Fig. 35. Restoration of the Finite Wave Tank Data with Random Error and Interpolation (Antenna $=12 \lambda$ horn, $\rho=13$ feet, one iteration).

Fig. 36. Restoration of the Finite Wave Tank Data with Random Error and Interpolation (Antenna $=8 \lambda$ horn, $\rho=13$ feet, one iteration).

Fig. 37. Restoration of the Finite Wave Tank Data with Random Error and Interpolation (Antenna $=12 \lambda$ horn, $\rho=26$ feet, one iteration).

Fig. 38. Restoration of the Finite Wave Tank Data with Random Error and Interpolation (Antenna $=8 \lambda$ horn, $\rho=26$ feet, one iteration).
there is enough difference between the antenna and brightness temperatures to prevent the error from dominating the process. Even at the incidence angles where the smoothed antenna temperatures are more accurate than the restored brightness temperatures, the restoration process does not yield results that indicate instability. When interpolation is used, there is some improvement in the horizontal polarization data but none in the vertical polarization with one restoration. Multiple iterations yield less accurate results. In addition to the random error, there is considerable interpolation error with the rapidly varying functions involved in the 12λ horn and 26 foot boom case.

For the 8λ horn and the 26 foot boom, improved results are obtained by restoring the smoothed antenna temperatures with and without interpolation. With no interpolation, the results with three restorations are much superior than those with one restoration. The inversion is stable even with the added error and the results are improved significantly through the restoration process. With interpolation, the three-restoration results are inferior to those with one iteration. The results obtained with one restoration are, however, a definite improvement over the smoothed and interpolated antenna temperatures. This is true for both polarizations and nearly all incidence angles.

To partially summarize the parametric studies for the NASA finite wave tank, four tables will now be presented to show the recommended number of restorations for the various antenna, boom
length, and data sampling combinations. Tables XLV, XLVI, XLVII, and XLVII summarize the 12λ horn and 13 foot boom, 8λ horn and 13 foot boom, 12λ horn and 26 foot boom, and 8λ horn and 26 foot boom cases. An "X", "V", or "H" indicate the recommended number of restorations for vertical-horizontal, vertical, or horizontal polarizations, respectively. Recommending no restorations indicates that the antenna temperature is a more accurate estimation of the true brightness temperature than the restored brightness temperature. These tables were based on the accuracy of the data from 0° to 60° incidence angle, since the data above 60° is of little practical concern. With these tables, one should be able to use the most effective number of restorations for the system under investigation.

It should be noted that the two-restoration data was investigated, but at no time did it yield the best results.

Appendix II contains a listing of the Fortran program that performs the three-dimensional inversion.

In addition to accounting for the non ideal pencil beam characteristics of the antennas, there is another major factor that needs to be compensated for in the restoration of measurements. This is the cross-polarization in the radiation characteristics of the antenna which was discussed in Section E of the theory. In practice, horns as well as other aperture antennas are not perfectly polarized even in the principal planes, but do possess a smaller orthogonal component to the principal field. Since the crosspolarized term is orthogonal to the principal component, it responds

TABLE XLV.
Optimum Restoration for the Finite Wave Tank
with the 12λ Horn Antenna and the 13 Foot Boom

Type of Data Sampling	Recommended Number of Restorations			
	i	i	2	3
No Error				X
SPLINE Interpolation		X		
Linear Interpolation		x		
Random Error - No Interpolation	X			
Random Error - Interpolation	x			

TABLE XLVI
Optimum Restoration for the Finite Wave Tank
with the 8λ Horn Antenna and the 13 Foot Boom

Type of Data Sampling	Recommended Number of Restorations			
	No Error			1
SPLINE Interpolation			2	3
Linear Interpolation				x
Random Error - No Interpolation	V			
Random Error - Interpolation	X			

TABLE XLVII

Optimum Restoration for the Finite Wave Tank
with the 12λ Horn Antenna and the 26 Foot Boom

Type of Data Sampling	Recommended Number of Restorations			
	0	1	2	3
No Error				X
SPLINE Interpolation				X
Linear Interpolation		X		
Random Error - No Interpolation				X
Random Error - Interpolation	V	H		

notimum Restoration for the Finite Wave Tank
with the 8λ Horn Antenna and the 26 Foot Boom

Type of Data Sampling	Recommended Number of Restorations			
	No Error		1	i
SPLINE Interpolation				3
Linear Interpolation				x
Random Error - No Interpolation				x
Random Error - Interpolation		x		x

to the polarization which is orthogonal to the principal wave for a given scan. As the incidence angle becomes larger and the difference between the horizontal and vertical emissions of the water get larger, the effect of this cross-polarization becomes more pronounced. To show the effect of cross-polarization on the measurements, antenna temperatures have been calculated for different assumed values of cross-polarization. The data listed in Table XLIX shows the effect of the different cross-polarizations for the 12λ horn antenna and the 13 foot boom. Similar results are shown in Table L for the 8λ corrugated horn and the 13 foot boom. Table LI shows the effect of cross-polarization for the 12λ horn and the 26 foot boom and Table LII lists the results for the 8λ horn and the 26 foot boom. From these tables, one can immediately conclude that cross-polarization becomes a very significant factor no matter how narrow the antenna pattern is or which boom is used. This is to be expected since the effect of cross-polarization is mainly a function of the difference between the orthogonal radiation characteristics of the environment.

To show how well this cross-polarization phenomenon can be compensated for in the restoration process, antenna temperature profiles have been calculated, for various α ' s, assuming $-20 d B$ cross-polarization and then restored to examine its importance. For the 12λ antenna and the 13 foot boom, the results, with three restorations, are listed in Table LIII. By comparing these results with those in Table V, it becomes clear how well the restoration process compensates for the cross-polarization. The antenna temperatures are

TABLE XLIX
Antenna Temperatures for the Finite Wave Tank with Cross-Polarization
(Antenna $=12 \lambda$ horn, $\rho=13$ feet)

$$
\left(f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{~S}=0 \% / 00\right)
$$

	$T_{a h}$	$T_{a h}$	$T_{a h}$	$T_{a h}$	$T_{a v}$	$T_{a v}$	$T_{a v}$	$T_{a v}$
	none	-25 dB	-20 dB	-15 dB	none	-25 dB	-20 dB	-15 dB
$\alpha=0^{\circ}$	109.15	109.15	109.15	109.15	109.15	109.15	109.15	109.15
$\alpha=20^{\circ}$	104.22	104.25	104.32	104.54	114.56	114.53	114.46	114.24
$\alpha=40^{\circ}$	89.36	89.50	89.80	90.71	133.55	133.41	133.11	132.20
$\alpha=60^{\circ}$	65.69	66.04	66.80	69.13	177.97	177.62	176.86	174.53
$\alpha=80^{\circ}$	69.54	70.17	71.50	75.62	267.99	267.36	266.03	261.91

TABLE L
Antenna Temperatures for the Finite Wave Tank with Cross-Polarization (Antenna $=8 \lambda$ horn, $\rho=13$ feet)

$$
\left(f=10.69 \mathrm{GHz}, \mathrm{~T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{~S}=0^{\circ} / 00\right)
$$

	$T_{a h}$	$T_{a h}$	$T_{a h}$	$T_{a h}$	$T_{a v}$	$T_{a v}$	$T_{a v}$	$T_{a v}$
	none	-25 dB	-20 dB	-15 dB	none	-25 dB	-20 dB	-15 dB
$\alpha=0^{\circ}$	109.37	109.37	109.37	109.37	109.37	109.37	109.37	109.37
$\alpha=20^{\circ}$	104.47	104.50	104.57	104.79	114.84	114.81	114.74	114.52
$\alpha=40^{\circ}$	89.96	90.10	90.40	91.32	134.22	134.08	133.78	132.86
$\alpha=60^{\circ}$	70.48	70.83	71.57	73.84	180.13	179.78	179.04	176.77
$\alpha=80^{\circ}$	92.20	92.74	93.90	97.46	263.84	263.30	262.14	258.58

TABLE LI
Antenna Temperatures for the Finite Wave Tank with Cross-Polarization (Antenna $=12 \lambda$ horn, $\rho=26$ feet) $\left(f=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% / 00\right.$)

	$T_{a h}$	$T_{a h}$	$T_{a h}$	$T_{a h}$	$T_{a v}$	$T_{a v}$	$T_{a v}$	$T_{a v}$
CROSS- POLARIZATION	none.	-25 dB	-20 dB	-15 dB	none	-25 dB	-20 dB	-75 dB
$\alpha=0^{\circ}$	109.70	109.70	109.70	109.70	109.69	109.69	109.69	109.69
$\alpha=20^{\circ}$	104.84	104.87	104.94	105.16	115.13	115.10	115.03	114.81
$\alpha=40^{\circ}$	90.68	90.82	91.12	92.03	134.52	134.38	134.08	133.18
$\alpha=60^{\circ}$	73.50	73.84	74.57	76.80	181.23	180.89	180.16	177.93
$\alpha=80^{\circ}$	129.16	129.63	130.63	133.71	277.43	276.97	275.97	272.89

TABLE LII
Antenna Temperatures for the Finite Wave Tank with Cross-Polarization (Antenna $=8 \lambda$ horn, $\rho=26$ feet)

	$\left(\mathrm{f}=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=0^{\circ} / 00\right)$							
	Tah.	$\mathrm{T}_{\text {ah }}$	Tah	Tah	Tav	$\mathrm{T}_{\text {av }}$	T_{av}	T_{av}
CROSS - POLARIZATION	none	$-25 d B$	-20 dB	$-15 \mathrm{~dB}$	none	$-25 \mathrm{~dB}$	-20 dB	$-15 \mathrm{~dB}$
. $\alpha=0^{\circ}$	112.92	112.92	112.92	112.92	112.91	112.91	112.91	112.91
$\alpha=20^{\circ}$	108.41	108.44	108.51	108.72	118.48	118.45	118.38	118.17
$\alpha=40^{\circ}$	97.85	97.99	98.27	99.15	140.03	139.90	139.61	138.74
$\alpha=60^{\circ}$	92.11.	92.42	93.08	95.11	190.08	189.77	189.11	187.08
$\alpha=80^{\circ}$	169.85	170.19	170.92	173.17	278.28	277.94	277.21	274,96

TABLE LIII
Restored Antenna Temperatures for Finite Wave Tank with -20 dB Cross-Polarization and Three Restorations
(Antenna $=12 \lambda$ horn, $\rho=13$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0 \% \%$)
HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\text {bres }}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\text {bres }}-\mathrm{T}_{\mathrm{b}}$
0°	109.14	109.08	0.04	-0.02
10°	107.95	107.88	0.08	0.07
20°	104.32	104.17	0.16	0.07
30°	98.26	97.98	0.30	0.02
40°	89.80	89.26	0.54	0.00
50°	79.16	77.96	1.06	-0.14
60°	66.80	64.52	2.09	-0.19
70°	59.74	50.26	9.80	0.32
80°.	71.50	40.10	33.53	2.13

Incidence Angle	T_{a}	$\mathrm{T}_{\text {bres }}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\text {bres }}-\mathrm{T}_{\mathrm{b}}$
0°	109.18	109.12	0.08	0.02
10°	110.44	110.41	0.04	0.01
20°	114.46	114.46	0.02	0.02
30°	121.69	121.75	-0.03	0.03
40°	133.11	133.17	-0.08	-0.02
50°	150.52	150.12	-0.05	-0.45
60°	176.86	176.20	-0.02	-0.68
70°	217.48	220.45	0.52	3.49
80°	266.02	282.85	-3.68	13.15

different for the two cases, but the restored brightness temperatures are almost identical. The effect of the.crosspolarization is therefore accurately compensated. In Table LIV, similar results are shown for the 8λ antenna and 13 foot boom which can be compared with those shown in Table VII. Table LV shows the results of the restoration process of antenna temperatures with -20 dB cross-polarization for the 12λ horn and the 26 foot boom. Comparing Table LV with Table IX, one can see that again the inversion process is able to remove the effect of the crosspolarization. The results of the inversion of the antenna temperatures with cross- polarization for the 8λ horn and the 26 foot boom are shown in Table LVI. Comparing Table LVI with Table XI yields the same conclusion that the effect of the cross-polarization has been removed. It is concluded that the restoration process removes the effect of the cross-polarization for any antenna and boom length combination.

Recently, some preliminary measurements have been made on the wave tank system at NASA Langley Research Center, Hampton, Virginia. It would then be fruitful to examine the restoration of the data even though it may not be very accurate but it is representative of the response of the system. The measurements were taken at a frequency of 10.69 GHz using a 12λ corrugated horn and the 26 foot boom. The values of α that were used were $0^{\circ}, 10^{\circ}$, $20^{\circ}, 30^{\circ}, 40^{\circ}$, and 50°. For the first three values of α, the measurement had to be adjusted to remove a contribution attributed mainly to the standing wave pattern produced between the antenna

TABLE LIV
Restored Antenna Temperatures for Finite Wave Tank with -20 dB Crosis-Polarization and Three Restorations
(Antenna $=8 \lambda$ horn, $\rho=13$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0^{\circ} \% 00$) HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\text {bres }}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\text {bres }}-\mathrm{T}_{\mathrm{b}}$
0°	109.34	109.13	0.24	0.03
10°	108.17	107.88	0.30	0.01
20°	104.57	104.12	0.41	-0.04
30°	98.64	97.80	0.68	-0.16
40°	90.39	89.01	1.13	-0.25
50°	81.03	77.83	2.93	-0.27
60°	71.60	64.69	6.89	-0.02
70°	73.29	51.66	23.35	1.72
80°	93.89	39.27	55.92	1.30

VERTICAL POLARIZATION

Incidence Angle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{b r e s}-T_{b}$
0°	109.39	109.17	0.29	0.07
10°	110.66	110.39	0.26	-0.01
20°	114.73	114.37	0.29	-0.08
30°	122.13	121.39	0.41	-0.33
40°	133.78	132.58	0.59	-0.61
50°	151.91	150.04	1.34	-0.53
60°	179.04	177.90	2.16	1.02
70°	219.91	229.94	2.95	12.98
80°	262.14	272.08	-7.56	2.38

TABLE LV
Restored Antenna Temperatures for Finite Wave Tank with -20 dB
Cross - Polarization and Three Restorations
(Antenna $=12 \lambda$ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{S}=0^{\circ} \% 00$) HORIZONTAL POLARIZATION

Incidence Angle	$\mathrm{T}_{\mathrm{a}}:$	$\mathrm{T}_{\text {bres }}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\text {bres }}-\mathrm{T}_{\mathrm{b}}$
0°	110.14	109.04	1.04	-.06
10°	108.43	107.74	.57	-.13
20°	104.94	103.88	.78	-.29
30°	99.13	97.55	1.17	-.41
40°	91.12	88.77	1.86	-.48
50°	83.39	77.74	5.30	-
60°	74.57	65.03	9.86	.35
70°	89.46	52.94	39.51	.32
80°	130.63	41.10	92.66	2.99

VERTICAL POLARIZATION

Incidence Angle	T_{a}	$T_{\text {bres }}$	$T_{a}-T_{b}$	$T_{b r e s}-T_{b}$
0°	110.18	109.08	1.08	-.02
10°	110.92	110.25	.52	-.15
20°	115.03	114.08	.58	-.37
30°	122.42	121.13	.70	-.59
40°	134.08	132.45	.89	-.74
50°	153.00	150.32	2.43	-.25
60°	180.16	179.33	3.28	2.45
70°	226.47	231.86	9.50	14.90
80°	275.97	280.98	6.26	11.27

TABLE LVI
Restored Antenna Temperatures for Finite Wave Tank with - 20 dB Cross - Polarization and Three Restorations
(Antenna $=8 \lambda$ horn, $\rho=26$ feet, $f=10.69 \mathrm{GHz}, \mathrm{T}_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{S}=0^{\circ} / 00$) HORIZONTAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\text {bres }}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\text {bres }}-\mathrm{T}_{\mathrm{b}}$
0°	115.43	106.80	6.33	-2.30
10°	111.38	107.24	3.52	-.63
20°	108.51	103.58	4.35	-.59
30°	104.13	97.63	6.16	-.33
40°	98.27	89.39	9.01	.13
50°	96.18	80.24	10.08	2.14
60°	93.08	67.60	28.37	2.89
70°	125.92	54.05	75.98	4.10
80°	170.92	38.14	132.95	.17

VERTICAL POLARIZATION

Incidence Angle	T_{a}	$\mathrm{T}_{\text {bres }}$	$\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}$	$\mathrm{T}_{\text {bres }}-\mathrm{T}_{\mathrm{b}}$
0°	115.45	106.82	6.35	-2.23
10°	113.82	109.81	3.42	-.59
20°	118.38	113.85	3.93	-.59
30°	126.75	121.47	5.03	-.26
40°	139.61	133.91	6.42	.72
50°	161.16	156.82	10.59	6.25
60°	189.11	188.17	12.23	11.30
70°	237.73	228.98	20.76	12.02
80°	277.21	253.54	7.50	-16.16

and observed surface. The inverted data, using one restoration, is shown in Figure 39. Since the $\beta=0^{\circ}$ points are the more accurate values on the restored brightness temperature profiles, curves were drawn through these points and are shown in the figure. For the larger incidence angles; the restoration process shows a significant difference between the restored brightness temperatures and the measured antennà temperatures.
B. Infinite Tank(Ocean) Data

The developed programs can be used to predict and/or restore data from observations made at oceans or other large bodies of water. In these cases, the dimensions of the finite wave tank can be adjusted to fit the particular need. In Table LVII and LVIII are lists of dàta obtained by calculating the antenna temperature profiles from the empirical brightness temperatures and then restoring them to recover the original brightness temperatures using the 12λ and 8λ horns, respectively. The restored brightness temperatures are almost exactly equal to the original profiles in these cases. The restoration process works better for the infinite tank case than in the finite tank case because the functions involved are smoother. All the finite tank cases involve a discontinuity in the water brightness temperature profile at the edge of the wave tank which c:auses high frequency content to be included in its spectrum. Since practical antennas can not detect this discontinuity (because of limited spectral resolution), the

Fig. 39. Measured Totai Antenna Temperatures and Restored Water Brightness Temperatures for the NASA LaRC Wave Tank,

TABLE LVII
Restoration of Error-Free Infinite Tank

$$
\begin{gathered}
\text { Data (Antenna }=12 \lambda \text { horn) } \\
\left(f=10.69 \mathrm{GHz}, T_{m}=284^{\circ} \mathrm{K}, \mathrm{~S}=0^{\circ} / 00\right)
\end{gathered}
$$

β	$T_{a h}$	$T_{b h}$	$T_{b r e s h}$	$T_{a v}$	$T_{b v}$	$T_{b r e s v}$
0	109.105	109.099	109.101	109.105	109.099	109.097
5	108.712	108.710	108.701	109.520	109.508	109.516
10	107.905	107.905	107.902	110.380	110.358	110.362
15	106.145	106.149	106.149	112.292	112.249	112.251
20	104.306	104.316	104.315	114.338	114.273	114.274
25	101.164	101.182	101.182	117.967	117.862	117.864
30	98.286	98.311	98.311	121.442	121.299	121.299
35	93.754	93.788	93.789	127.237	127.028	127.029
40	89.835	89.876	89.879	132.597	132.324	132.326
45	83.929	83.977	83.979	141.369	140.991	140.990
50	77.269	77.320	77.320	152.425	151.909	151.908
55	71.812	71.861	71.859	162.580	161.938	161.940
60	64.009	64.037	64.033	179.234	178.405	178.407
65	57.876	57.856	57.867	194.561	193.613	193.620
70	49.671	49.485	49.556	219.304	218.492	218.451
75	44.174	43.540	43.839	240.448	240.648	240.552
80	41.688	37.871	36.234	263.427	270.379	270.476

TABLE LVIII

Restoration of Error-Free Infinite

Tank Data (Antenna $=8 \lambda$ horn $)$

$$
\left(f=10.69 \mathrm{GHz}, T_{\mathrm{m}}=284^{\circ} \mathrm{K}, \mathrm{~S}=0^{\circ} / 00\right)
$$

β	$T_{a h}$	$T_{b h}$	$T_{b r e s h}$	$T_{a v}$	$T_{b v}$	$T_{b r e s v}$
0	109.112	109.099	109.101	109.112	109.099	109.099
5	108.719	108.710	108.701	109.531	109.508	109.519
10	107.910	107.905	107.898	110.401	110.358	110.367
15	106.145	106.149	106.146	112.336	112.249	112.253
20	104.303	104.316	104.315	114.408	114.273	114.276
25	101.154	101.182	101.184	118.083	117.862	117.864
30	98.269	98.311	98.312	121.603	121.299	121.300
35	93.728	93.788	93.787	127.476	127.028	127.029
40	89.805	89.876	89.880	132.910	132.324	132.329
45	83.890	83.977	83.975	141.804	140.991	140.997
50	77.234	77.320	77.330	153.013	151.909	151.926
55	71.784	71.861	71.856	163.296	161.938	161.949
60	64.028	64.037	64.087	180.098	178.405	178.370
65	57.981	57.856	57.951	195.427	193.613	193.444
70	50.069	49.485	49.231	219.419	218.492	217.892
75	45.496	43.540	42.715	238.464	240.648	240.690
80	44.689	37.371	33.979	252.473	270.379	272.900

exact brightness temperature profile can not be restored. With the smooth functions involved in the infinite tank case, one can obtain a very good approximation of the T_{b} 's.

At Cape Cod Canal, Massachusetts, measurements were made by Swift [15] over a body of water which can be modeled as an infinite tank in one direction and finite in the other. The antenna used was a horn operating at 7.55 GHz and whose principal plane power patterns are shown in Figures 40 and 41. These two patterns were combined to construct the total three-dimensional pattern by using (122) and (123). In Figure 42 the measured antenna temiperatures have been plotted along with the restored (two- and three-dimensional) and the empirical brightness temperature profiles. As can be seen, the restored thrée-dimensional and the empirical curves are very similar and different from the measurements. The three-dimensional restoration works very well and it is more accurate than the two-dimensional, especially for larger incidence angles.

As has been previously stated, a two-dimensional approximation of the wave tank system [7,8] has been used that takes advantage of the vector alignment in the $\theta=\frac{\pi}{2}$ plane. In this plane $\hat{\theta}$ and \hat{h} are aligned together as are $\hat{\rho}$ and \hat{v}. This means that for the vertical scan only the vertical brightness temperature is received by the antenna and similarly the horizontal brightness temperature for the horizontal scan. However, the vector alignment in the other planes is not perfect and the opposite brightness temperature will

Fig. 40 . E-plane f'ower Pattern of the 7.55 GHz Cape Cod Canal Antenna.

Fig. 41., H-plane Power Pattern of the 7.55 GHz Cape Cod Canal Antenna.

Fig. 42. Measured Total Antenna Temperatures, Restored and Empirical Water Brightness Temperatures for Cape Cod Canal Experiment.
also contribute. The effect of this cross-coupling can only be accounted for by the three-dimensional modeling which calculates the vector alignment and integrates over all values of θ.

The strength of the cross-coupling has been taken into account in the restoration process by the functions $\mathrm{WF}_{1}, \mathrm{WF}_{2}, \mathrm{WF}_{3}$, and WF_{4} in (144a)-(145b). In Figure 43 these functions have been plotted for the finite wave tank system and the 8λ horn antenna and for the Cape Cod canal and the 7.55 GHz parabolic dish. From the data shown in these two figures, it is clear that cross-coupling is significant and the three-dimensional inversion is essential.

Fig. 43. Cross-Coupling Functions in the Three Dimensional Analysis..

V. Conclusions

In the course of this investigation, the three-dimensional vector interaction between a microwave radiometer and a wave tank environment was modeled. With the computer programs developed one is able to predict the response of the radiometer to the known brightness temperature characteristics of the surroundings. More importantly, however, a computer program was developed that can invert (restore) the radiometer measurements. In other words, one can use this computer program to estimate the brightness temperatur profiles of a water surface from the radiometer response.

The three-dimensional modeling of the problem was accomplished using two different coordinate system geometries. In one formulation, the z-axis was taken perpendicular to the radiometer antenna aperture and in the other formulation the x-axis was perpendicular to the aperture. Computations were made to predict the radiometer response to the wave tank environment with both formulations and it was established that they both were accurate models of the three-dimensional vector interaction. The three-dimensional models were also compared to a previously used two-dimensional scalar approximation of the problem. From this comparison, it was established that, unless the antenna used has a high main beam efficiency, the three-dimensional vector formulation is necessary to achieve an accurate result.

With the x-axis formulation, it was shown that inversion (restoration). of the data was possible. Antenna temperature profiles for the wave tank system were computed and brightness
temperatures were restored with a very good approximation. Errors were added to the computed antenna temperature profiles and the restoration process proved to be fairly stable. The effect of cross-polarization on the radiometer response was demonstrated as well as the capability of the restoration process to account for its presence.

In addition to inverting (restoring) data for the wave tank system, it has been shown that the computer programs can be used to simulate the viewing of large bodies of water. In this situation the restoration process is extremely accurate with the smooth functions involved.

Preliminary measured data for the wave tank system, made available by NASA personnel, was restored taking into account the contributions from the surrounding earth and sky. Data taken at Cape Cod Canal, Massachusetts, by NASA was also considered and resulted in a very successful restoration.

With the restoration process and the future improved accuracy of the wave tank system, investigators should be able to experimentally verify the semi-empirical brightness temperature equations for various frequencies, salinities, incidence angles, and temperatures. The effect of surface roughness could then be experimentally measured with the controlled wave tank system. This knowledge could then be applied to analyze multiple frequency radiometer measurements received from satellites monitoring the ocean, in order to determine wind speed (surface roughness), water temperature, atmospheric conditions, and salinity.

BIBLIOGRAPHY

[1] G.M. Hindy, et. al., "Development of a Satellite Microwave Radiometer to Sense the Surface Temperature of the World Oceans," NASA Contractor Report, Report CR-1960, North American Rockwell Corporation, Downey, California.
[2] D.H. Staelin, K.F. Kunzi, P.W. Rosenkranz, J.W. Waters, "Environmental Sensing with Nimbus Satellite Passive Microwave Spectrometers," California Institute of Technology (Contract 952568), Quarterly Progress Report No. 112, January 15, 1974, Massachusetts Institute of Technology, Research Laboratory of Electronics, Cambridge, Massachusetts.
[3] S. Twomey, "The Application of Numerical Filtering to the Solution of Integral Equations Encountered in Indirect Sensing Measurements," J. Franklin Inst., vol. 279, Feb. 1965.
[4] D.L. Phillips, "A Technique for the Numerical Solution of Certain Integral Equations of the First Kind," J. Ass. Comput. Mach., pp. 84-97, 1962.
[5] R.N. Bracewell and J.A. Roberts, "Aerial Smoothing in Radio Astronomy," Aust. J. Phys., vol. 7, pp. 615-640, Dec. 1954.
[6] J.P. Claassen and A.F. Fung, "The Recovery of Polarized Apparent Temperature Distribution of Flat Scenes from Antenna Temperature Measurements," IEEE Trans. Antennas Propagat., vo1. AP-22, pp. 433-442, May 1974.
[7] V.L. Fisher, "Fourier Transform Techniques for the Inversion of Radiometric Measurements," MSEE Thesis, West Virginia University, Morgantown, West Virginia, 1973.
[8] J.J. Holmes, "Application and Sensitivity Investigation of Fourier Transforms for Microwave Radiometric Inversions," M.S.E.E. Thesis, West Virginia Univ., Morgantown, West Virginia, 1974.
[9] J.R. Fisher, "Fortran Program for Fast Fourier Transform," NRL Report 7041, Apri1, 1970.
[10] F. Beck, "Antenna Pattern Corrections to Microwave Radiometer Temperature Calculations," Radio Science, vol: 10, No. 10, pp. 839-845, Oct. 1975.
[11] A. Stogryn, "Equations for Calculating the Dielectric Constant of Saline Water," IEEE Trans. Microwave Theory and Techniques, pp. 733-736, 1971.
[12] W.H. Peake, "The Microwave Radiometer as a Remote Sensing Instrument," Techinical Report 1903-8, Jan., 1969, ElectroSciences.Laboratory, The Ohio State University, Columbus, Ohio.
[13] S. Silver, Microwave Antenna Theory and Design, New York: McGraw-Hi11, 1949.
[14]. W. Squire, private communication, West Virginia University, Morgantown, West Virginia.
[15] C.T. Swift, "Microwave Radiometer Measurements of the Cape .Cod Canal," Radio Science, pp. 641-653, July, 1974.

Appendix I

Transformation of Coordinates

A right-handed orthogonal coordinate system x, y, z can be traṇsformed into any new right-handed orthogonal coordinate system $x^{\prime \prime \prime}, y^{\prime \prime \prime}, z^{\prime \prime \prime}$, with the same origin, by three rotations about at least two different axes. An example of this type of transformatior is shown in Figure I-1. This particular transform uses rotations about all three axes. The transformation of rectangular unit vectors for each rotation is described by the simultaneous equations shown below in matrix form. For the rotation about the .x-axis (Figure $I-1$)
$\left[\begin{array}{l}\hat{x}^{\prime} \\ \hat{y}^{i} \\ \hat{z}^{\prime} \\ z\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 \cdot & \cos \lambda . & \sin \lambda \\ 0 & \ddots & \sin \lambda\end{array}\right]\left[\begin{array}{l}\hat{x} \\ 0^{\prime} \\ \hat{x} \\ \hat{y} \\ \hat{z}\end{array}\right]=[A]\left[\begin{array}{l}\hat{x} \\ \hat{y} \\ \hat{z}\end{array}\right]$ about. the y - axis (Figure $I-1$)
$\left[\begin{array}{c}\hat{x}^{\prime \prime} \\ \hat{h}^{\prime \prime} \\ y^{\prime} \\ \hat{z}^{\prime \prime}\end{array}\right]=\left[\begin{array}{ccc}\cos \mu & 0 & -\sin \mu \\ \ddots \cdot & 1 & 0 \\ 0 & 1 & \\ \sin \mu & 0 & \cos \mu\end{array}\right]\left[\begin{array}{l}\hat{x}^{\prime} \\ \hat{y}^{\prime} \\ y^{\prime} \\ \hat{z}^{\prime}\end{array}\right]=[B]\left[\begin{array}{l}\hat{z}^{\prime} \\ x \\ \hat{z}^{\prime} \\ y \\ \hat{z}^{\prime}\end{array}\right]$
and about the z-axis (Figure I-T)
$\left[\begin{array}{l}\hat{\mu}^{\prime \prime \prime} \\ x^{\prime \prime} \\ \hat{y}^{\prime \prime} \\ y \\ \hat{z}^{\prime \prime \prime} \\ z\end{array}\right]=\left[\begin{array}{ccc}\cos v & \sin \nu & 0 \\ -\sin \nu & \cos \nu & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}\hat{x}^{\prime \prime} \\ \hat{x}^{\prime \prime} \\ y^{\prime \prime} \\ \hat{z}^{\prime \prime} \\ z\end{array}\right]=[C]\left[\begin{array}{l}\hat{x}^{\prime \prime} \\ \hat{x}^{\prime \prime} \\ y^{\prime} \\ \hat{z}^{\prime \prime}\end{array}\right]$

Fig. I-1: General three-dimensional rotation.

The unit vectors $\hat{x}^{\prime \prime \prime}, \hat{y}^{\prime \prime \prime}$, and $\hat{z}^{\prime \prime \prime}$ can be found directly in terms of the original unit vectors ($\hat{x}, \hat{y}, \hat{z}$) by combining (I-1), (I-2), and (I-3) leading to

$$
\left[\begin{array}{c}
\hat{n}{ }^{\prime \prime} \tag{I-4}\\
\hat{n}{ }^{\prime \prime \prime} \\
\hat{n}^{\prime \prime \prime}
\end{array}\right]=[C][B][A]\left[\begin{array}{l}
\hat{x} \\
\hat{z} \\
\hat{y} \\
\hat{z}
\end{array}\right]
$$

Although $\theta^{\prime \prime}$ and $\emptyset^{\prime \prime}$ can be found directly from θ and \emptyset by equating \hat{r} to $\hat{r}^{\prime \prime}$., it will be more illustrative to show the transformation for each rotation.

For the rotation about the x-axis we can solve (I-1) as

$$
\left[\begin{array}{l}
\hat{x} \tag{I-5}\\
\hat{y} \\
\hat{z}
\end{array}\right]=[A]^{-1}\left[\begin{array}{l}
\hat{x}^{\prime} \\
\hat{y}^{\prime} \\
y \\
\hat{z}^{\prime} \\
z
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & \cos \lambda & -\sin \lambda \\
0 & \sin \lambda & \cos \lambda
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x^{\prime} \\
\hat{y}^{\prime} \\
\hat{z}^{\prime} \\
z
\end{array}\right]
$$

The radial vectors \hat{r} and \hat{r}^{\prime} are

$$
\begin{align*}
& \hat{r}=\hat{x} \cos \emptyset \sin \theta+\hat{y} \sin \emptyset \sin \theta+\hat{z} \cos \theta \tag{I-6}\\
& \hat{r}^{\prime}=\hat{x} \cos \emptyset^{\prime} \sin ^{\prime} \theta^{\prime}+\hat{y} \sin \emptyset^{\prime} \sin \theta^{\prime}+\hat{z}^{\prime} \cos \theta^{\prime} \tag{I-7}
\end{align*}
$$

Using (I-5), (I-6) can be written as

$$
\begin{align*}
\hat{r} & =\hat{x}^{\prime} \cos \emptyset \sin \theta \\
& +\hat{y}^{\prime}(\cos \lambda \sin \emptyset \sin \theta+\sin \lambda \cos \theta) \\
& +\hat{z}^{\prime}(-\sin \lambda \sin \emptyset \sin \theta+\cos \lambda \cos \theta) \tag{I-8}
\end{align*}
$$

Equating (II-8) and (II-7) yields

$$
\begin{align*}
& \cos \emptyset^{\prime} \sin \theta^{\prime}=\cos \emptyset \sin \theta \tag{I-9}\\
& \sin \eta^{\prime} \sin \theta^{\prime}=\cos \lambda \sin \emptyset \sin \theta+\sin \lambda \cos \theta \tag{I-10}
\end{align*}
$$

$$
\begin{equation*}
\cos \theta=-\sin \lambda \sin \theta \sin \theta+\cos \lambda \cos \theta \tag{I-11}
\end{equation*}
$$

From (I-9), (I-10), and (I-11), we can find $\dot{\theta}^{\prime}$ and \emptyset^{\prime}
in terms of θ, \emptyset, and λ as

$$
\begin{align*}
& \emptyset^{1}=\tan ^{-1}\left\{\frac{\cos \lambda \sin \emptyset \sin \theta+\sin \lambda \cos \theta}{\cos \emptyset \sin \theta}\right\} \tag{I-12}\\
& \theta^{\prime}=\cos ^{-1}\{-\sin \lambda \sin \emptyset \sin \theta+\cos \lambda \cos \theta\} \tag{I-13}
\end{align*}
$$

For the rotation about the y-axis, (I-2) can be written as

$$
\left[\begin{array}{c}
\hat{x}^{\prime} \tag{I-14}\\
\hat{x}^{\prime} \\
\hat{y}^{\prime} \\
\hat{z}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
\hat{z}^{-1}
\end{array}\right]\left[\begin{array}{c}
\hat{x}^{\prime \prime} \\
\hat{\lambda}^{\prime \prime} \\
y \\
\hat{z}^{\prime \prime}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \mu & 0 & \sin \mu \\
0 & 1 & 0 \\
-\sin \mu & 0 & \cos \mu
\end{array}\right]\left[\begin{array}{l}
\hat{1} \\
x^{\prime \prime} \\
\hat{y}^{\prime \prime} \\
\hat{y}^{\prime \prime} \\
z^{\prime \prime}
\end{array}\right] .
$$

We can express the radial vectors as

$$
\begin{align*}
\hat{r}^{\prime \prime} & =\hat{x}^{\prime \prime} \cos \emptyset^{\prime \prime} \sin \theta^{\prime \prime}+\hat{y}^{\prime \prime} \sin \emptyset^{\prime \prime} \sin \theta^{\prime \prime}+\hat{z}^{\prime \prime} \cos \theta^{\prime \prime} \tag{I-15}\\
\hat{r}^{\prime} & =\hat{x}^{\prime \prime}\left(\cos \mu \cos \theta^{\prime} \sin \theta^{\prime}-\sin \mu \cos \theta^{\prime}\right) \\
& +\hat{y}^{\prime \prime} \sin \emptyset^{\prime} \sin \theta^{\prime} \\
& +\hat{z}^{\prime \prime}\left(\sin \mu \cos \emptyset^{\prime} \sin \theta^{\prime}+\cos \mu \cos \theta^{\prime}\right) . \tag{I-16}
\end{align*}
$$

Equating (I-15) and (I-106) yields

$$
\begin{align*}
\cos \emptyset^{\prime \prime} \sin \theta^{\prime \prime} & =\cos \mu \cos \emptyset^{\prime} \sin \theta^{\prime}-\sin \mu \cos \theta^{\prime} \tag{I-17}\\
\sin \emptyset^{\prime \prime} \sin \theta^{\prime \prime} & =\sin \emptyset^{\prime} \sin \theta^{\prime} \tag{I-18}\\
\cos \theta^{\prime \prime} & =\sin \mu \cos \emptyset^{\prime} \sin \theta^{\prime}+\cos \mu \cos \theta^{\prime} \tag{I-19}
\end{align*}
$$

From (I-17), (I-18), and (I-19), we can find the relationships
between $\theta^{\prime \prime}$ and $\emptyset^{\prime \prime}$ and $\theta^{\prime}, \emptyset^{\prime}$, and μ as

$$
\begin{align*}
\emptyset^{\prime \prime} & =\tan ^{-1}\left\{\frac{\sin \emptyset^{\prime} \sin \theta^{\prime}}{\cos \mu \cos \emptyset^{\prime} \sin \theta^{\prime}-\sin \mu \cos \theta^{\prime}}\right\} \tag{I-20}\\
\theta^{\prime \prime} & =\cos ^{-1}\left\{\sin \mu \cos \emptyset^{\prime} \sin \theta^{\prime}+\cos \mu \cos \theta^{\prime}\right\} \tag{I-21}
\end{align*}
$$

For the rotation about the z-axis, (I-3) can be rewritten as

$$
\left[\begin{array}{l}
\hat{u n}^{\prime \prime} \tag{I-22}\\
\hat{y}^{\prime \prime} \\
\hat{y}^{\prime \prime}
\end{array}\right]=[C]^{-1}\left[\begin{array}{l}
\hat{x}^{\prime \prime \prime} \\
x \\
\hat{y}^{\prime \prime \prime} \\
\hat{z}^{\prime \prime \prime}
\end{array}\right]=\left[\begin{array}{lll}
\cos \nu & \sin \nu & 0 \\
\sin \nu & \cos \nu & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\hat{x} \\
\hat{y} \\
\hat{z}
\end{array}\right]
$$

The radial vectors are given by

$$
\begin{align*}
\hat{r}^{\prime \prime \prime} & =\hat{x}^{\prime \prime} \cos \emptyset^{\prime \prime \prime} \sin \theta^{\prime \prime}+\hat{y} \sin \theta^{\prime \prime} \sin \theta^{\prime \prime}+\hat{z}^{\prime \prime \prime} \cos \theta^{\prime \prime \prime} \tag{I-23}\\
\hat{r}^{\prime \prime} & =\hat{x}^{\prime \prime \prime}\left(\cos v \cos \emptyset^{\prime \prime} \sin \theta^{\prime \prime}+\sin \nu \sin \emptyset^{\prime \prime} \sin \theta^{\prime \prime}\right) \tag{I-24}\\
& +\hat{y}^{\prime \prime \prime}\left(-\sin v \cos \emptyset^{\prime \prime} \sin \theta^{\prime \prime}+\cos v \sin \varphi^{\prime \prime} \sin \theta^{\prime \prime}\right) \\
& +\hat{z}^{\prime \prime \prime} \cos \theta^{\prime \prime}
\end{align*}
$$

If we set $\hat{r}^{\prime \prime}=\hat{r}^{\prime \prime}$, we find

$$
\begin{align*}
\cos \emptyset^{\prime \prime \prime} \sin \theta^{\prime \prime} & =\cos v \cos \emptyset^{\prime \prime} \sin \theta^{\prime \prime}+\sin v \sin \varphi^{\prime \prime} \sin \theta^{\prime \prime} \tag{I-25}\\
\sin \emptyset^{\prime \prime} \sin \theta^{\prime \prime} & =-\sin v \cos \emptyset^{\prime \prime} \sin \theta^{\prime \prime}+\cos v \sin \theta^{\prime \prime} \sin \theta^{\prime \prime} \tag{I-26}\\
\cos \theta^{\prime \prime \prime} & =\cos \theta^{\prime \prime} \tag{I-27}
\end{align*}
$$

If we multiply (I-25) by sinv, (I-26) by cosv, and then add we find that

$$
\begin{equation*}
\sin v \cos \theta^{\prime \prime \prime}+\cos v \sin 9^{\prime \prime \prime}=\sin \eta^{\prime \prime}=\sin \left(\phi^{\prime \prime \prime}+\nu\right) . \tag{I-28}
\end{equation*}
$$

from (I-27) and (I-28) we find

$$
\begin{align*}
& \theta^{\prime \prime \prime}=\theta^{\prime \prime} \tag{I-29}\\
& \emptyset^{\prime \prime \prime}=\emptyset^{\prime \prime}-v \tag{I-30}
\end{align*}
$$

As can be seen, unless the rotation is only about the z-axis, the transformation of the spherical variables θ and \emptyset involve transcendental equations. If the new coordinate system has a different z-axis, these transcendental equations cannot be avoided.

Appendix II

Restoration Computer Program

ORIGINAL PAGE IS POOR

```
C}\mathrm{ CDPGPAM TI INVERT WAVF TANK NEASUREMENTS FROM THE NASA LANGLEY WAVE TANK.
    OIMFNSION TAH(25A), YAV(250),TBH(256),TBV(256);ANGA(256),ALPA(I7)
    ALPHA S AND THEN CIMBINES THEM TC FORN GCNTINUOUS ARPAYS TYAT VARY WITH
    INCIDEMOE ANGLEE IT YIELDS FHE FCLLCWINCO:
            TAV=VFRILGNTAL ME ASURT S ANHENNA TEMFERATURES.
            YHH=HOR ITGNTAL RESTINFS BRIGHTNESS TEMPERATURE.
            TGV=VFR TICAL GCSTTRED BRIGHITNFSS TEMPERATURES.
            ICOUNT=ANE INTEGESPGNTINGGINCIDENCE ANGLESOGETVES IHF LENGTHOF THF ARRAYS *
        NPEST=1
        NUMALP=12
        C [ THE SURROUTINF VALUES MUST PE SUPPLIFO WITH THE FOLLOWING GATA THRIUGH 
        4 CONTINUF
            IVOATA=AN INTFGLH SPECIGYING THE TYPE GF DATA PROSSESSTNG TO BE ISED.
```



```
            IS LSFOALIF INNDATAING IF INDATA = SHE 2SG SAMPLFLPCINTS HILLS BE SNONTHED
```



```
                    PRINTS MUSTGBF REA
        FFFF=?.
        PBCRRK=-100
        4H=12.
        W=14.
```



```
    THE MFASURED AIITENHA TEMPERATIRES APF REAG FROM SUBROUTINE INVERT THE
    NEASUPFMFNTS AFF REAV IN FOP THE CATIRE SGONDGGRESSCAN STARTINGWITH
```



```
    ANE TAYH IS THF HIVVILIJNTAL SET.
    DN I I= I,NOMALP
    *)
    RFSTIIFATIDN PFREFSS FOR FACH ALPHA
    100 FOOMATO
100 F()RMAT(&̧FI2.3)
```

IV GLEVEL $21 \quad$ MAIN 19/33/08
C SUBPIJUTINF VAIUESALSO USES THE FRURI FR TRANSFIRM OF THE GAIN FUNCTIONS fROM A GISK OR TAPF. THESE TRANSFGFNS NUST BE READ ON TO THE CISK OR TAPE

 1 ISTATF, NBCCNS,ALPA,RHF,W,TK,TE,INDATAS

CDNTIMUF
STIP
END

```
G LFVEL 2
        IFFFF,LSTATF,OBCRRCS,ALPA,RIM,h,TK,TE,INDATAI
        UINENSION TAH(756), AV(256),ANGAL256),
        1 ALPA (17), NSTART(2,17),NSTHP(2,17)
        DIMFNSION YBH(256),TBV(2561,TAAWH(256),TAANV(256), TAAESH(256),
        THIS SURPGUTINF EXTFACYS THE NEEDED NATA FCR EACH VALUE OF ALPHA FROM THE
```



```
        THF INTFGFR ARPAYS NSTART AND ASTCP DEFINE THE CUTOFF LIMITS DF THE
        RESTIPED TR'S FOR THE 17 PISSIRLE ALPHA VALUES.
        DATA NSTMP/130,131,129,131,129,131,128,131,128,13,1,128,131,129,
        A&TA N|STGRT/I20,120,127,126,126,124,126,124,125,124,125,124,125, WVU9900
        1 124,125,124,125,124,127,126,126,124,126,124,125,124,125,124,125,
        *)
        NDP221=NDP/2,+1.001
        NRRR=1
        ICOUNT=
        OEL=360./FLOAT(NOP)
        OC f, IA=1,NUMALP
        ALP=ALPAlIAI
    CALL INVERT (TAAWH,TAAHV,TIAESSH,TAAESV,TBPESH,TYBRESV,NREST .
    I WFNTRP,FFFF,LSTATF,ORCROS,FHO,W;TK,ALP,TE,TNOATAS)
        OO 2 J=100 200
        OHG=(J-NRP!1)*REL
        HFITE(G, IOO) TAALH(J),TA\E'H(J),TERESH(J),J,TAANV(J),TAAESV(J),
    FORMLT (: ',3F10.3,110,4C1[.03
```



```
        IALP=.2*AGF+1, ODI,
        IF(AA CO.NBMMALP)TOG TC
        ALP1L=ALFA(IA-1)
        ALP1M=ALPA (IA+I}
        GC! TO 5
        ALPPILM=-5:O
        Gn Tn =aLPA(IA+1)
    ADPIL=ALPA(1A-1)
    ON1M=85.
    | START=1
    1STAR T=1
    IF(ALP-ALPIL.GT.7.S) ISTAQ*=2
    AF{ALPIM-A!PPGT:7SJ)
    N%=NSTART(ISTADIAIALD
    rm}7\textrm{I}=\textrm{Nj
    TAH(1COUNT:=THAWH(1) +TAAESS,(I)
    TRH(ICOUNT)=TRRESH(I)
    TRVIICOUNT!=TBRESV(I)
    ANGACICCINTI=AL
    IrIMNT=1
    CNNTINUE
    I COUNT=ICOUNT-I
    ENO
```



```
Iv G LEVEL 2I
            PI=3-1415n
        CEL=? *PI/FLGAT(NOPI
        RAD=EI/18O.
        QELTHE=OEGCOV*TAD/FL'TATON
        RYAC(S,10RC (RANDONGIS),J=
    100
        CORMAT (RF10.4)
        ALD=ALDO*DAN
        PHIL=ATAN2(W/2.+OHOASIN(ALP); RHO*COS (ALP))-ALP
    C THEVARIARLFSKNPHII AND NPHI? DEFINE THE WATFR-EIRTH BOUNOAPIES IN THE
        NPHIT=PHIP/OEL
        NPHII#PHIINOEL
        DELTHF=OEGG(OV*RAI)/F LJUT(NDT)
        STHF(I)=SNGT THFDIS(I))*WF (1)
        CUNTINUE NEN IMPHII
        CALL PEPCEN (NPHII,NDHI2,FFEF,PPFHP, PEPHC,PERVP,PFFVC,LSTATE,RHD)
    *
        FCスMAT (7F10.3)
    THF MFASUPEO ANTFNNA TEYPFRARUPES ARF PEAD HFPFF. TAPPV CONTAINS THE
    T,
    NDEAD= 2* (ALPR-ALP1Li+.001
    0876
    FORMA Y(BFIO;3)
    REAO(5;GP76) (TAPPV( ), J=1, YDP)
        If (NOATMA (TAPPH(J),J=1, NOP)
```



```
        CNHTIANE
        I=1
        DNNTAOM=1,NOP:4
        TINTFV{I}=TAPPYV(J)
        I=I+1
        CONTINUE
        TINTQ V(1)=TAPPV(1)=TAPPH(1)
        ON 110 J=1.65
    110 CONTINUE
        CALL SPIINA (ANG,TINTRV,65)
        0% 11 J=1,NOP
        CALL T:FR&A {ANGLE,YYI
        TAPDV(J)=YY
    111
    CALL SPLINA (ANG,TIV:PH,65)
    013 1l2 J=1,NDP
    ANGLEOOFL*(J-1), (ANE,YY)
    TARPHYJS=YY
    112
    CNATIMUE
    1302 GONTONUE
    GO INMDATA-EO.3) GN TC 1303
    1343
    \=1
    TMTRJ=1,NDP&,&
    TINTFH(I)=TAPPV(J)
    I=1+1
    CONYINUE
    TINTOV(I)=TAPPV(1)
    TINTFHIIG=TAPPH{I}
```



```
    APOVIIII=TINTFVI
    TAPCH(II)=TINTPH(J)
    I= T T +1
```


$\mathrm{I}=\mathrm{I}=1$

COMTITHE
Col TM 1333
1304
If (INDATA. FO.4) GO TO 1305
.1305
CTNTTAIUE
$011010=1, N O D$
ANG(J) =DE(+ $\mathrm{J}-1)$
CONT $=10$
CALL ITSSCU (AME, T/PRV,DY,SASSS, AOP, $A, R, C, O, W K)$
$0011 \quad j=1, \operatorname{din}$
TAPDV(J) $=\Delta \dot{A}(J+1)$
CONTINDI
CALL IC SSGU(ANC, TAPPH,DY,SSNSS,NDP, A,B,C,O,WKI
$0012 J=1$, NaP
TAPPH(J) $=A(J+1)$
COPTINUF
1306
CONTINUE
IF (INIDATA.FQ. 51 gO TC 1307
1307 CJNTINUF
$\begin{array}{ll}1=1 \\ \text { OO } \\ 200 & J=1, N D P, 4\end{array}$
$I N_{1} T P V(1)=T A P P V(J)$
TMNTPH(I) $=$ TAPPH(J)
$\mathrm{I}=\mathrm{i}+1$
209
TJNTNV(I)=TAPPV(1)
TAM 210 $=1$,NOP

210
CALL ICSSSU (AHG,TIHITPV,OY, SSSSS, A5,A,B,C,D,WK)

TARPV(ITI) $=1\left(D(!+1) * h_{1}+C(I+1 \cdot) * H+B(I+1)\right) * H+\Delta(I+1)$
CONTINIGFSGU (ANG,TINTGH,DY, SSSSS, $65, A, B, C, O$,WK)
Bn 212101064

H=ilr-ljxतनL -

.2123
CONTINU:
IFILSTATF,EO. 5)
1.CALLSNE!SKY (NDHI1, TPHII2,TIESV,TAESH,TK,TE, DHO,FFI

- \mathcal{A} CALL TBEART I TRZV, TQPH, PER:IP, PERHC, PERVP, PERVC)

1 CALI EAFSKY INPHIL, YPHIZ, TAESV,TAESH,TREV,TRBH,LSTATE,FFFF,RHOS
C
c
6
HIS LOBP SUPTRACTS THE SAンTI AND SKY CONTRIBUTIGNS FPCM THF YFASUREYENTS.
$00134, J=1$, ivDF
TAPQV(J)=YAPPV(J)-TAE SV(J)


```
iv G LEVEL 21
PERCEN
SULRAUTIUE, \(P E F C E N\) (NPHII, NPHI2,FFFF, PFKHP, PERHC, PFRVP, PFRVC,
```

```
THF ANTENNA TFMFEPATURF FOR ANY ALPHA AND BETA WILL HE COMPRSEN OF
```



```
PEFGFNTAGF TF THF ANTENHA TE YPENATURE DF THE WATER TAME FRGA THF HOPIZONTAL
PGLAPITATION INS WHAT PEPRENTAGE FPOM THE VERTICAL. YHESFPERCENTAGES FOR
ALLSCAN AHIFLE S IEFTAI AND FJR THE ALPHA RECUFSTED AOF THE RFSULTS OF THIS
SURROUTINF PERHP =FPACTICNAL CENTRIRUTITN CF TEH TO TAWH PFRHCFFRACTIONAL CONTRIBUTIDN OF TBV TO TAHH DRQVE-FISACTIANAL CCNTRIBUTINN OF TBV TO TANV
PERVC=FOACTIMAL GCNTRIBUTION OF TRH TC TAWV
CCMMON/B1/TAPRV, TAPPH,STHE, NOT, NDP, DEL, DFLTHF, ALP
COMMGN/BLDC TJIHP, TIHC, TIVP, TIVC, CTIHP, STIHC, TIVCRG,TIHCR
CTMHOII/BLOC?/S, MNV
CIMPIN/BE/GTHEH, GPHIH,GTHEV,GTHIV,GCRCH, GCROV
COMPLEX TIVCRC(256) TIHCRO(256)
CGMPL F ST1HP 256 , STIHC (254), ST1VP (256), ST1VC(256), CMPLX,CP
CीMPLEX T1HP(256), T11G(256), TIVP(256), YIVC(256)
C CMPLFX GCROH (256), GRPRV(256), GTHFV(256);GPHIV(256)
DIMENSIGN PERHP (256), PERHC (256), PERVP(256), PFFVC
DIMENSICN TIH(256), TIVI256)
UIMENSISA TAPPV(256),TAPPH (256), STHE (65)
OIMENSICN THEDIS(32), WF(32)
\(\mathrm{PI}=2\)
\(\mathrm{HAN}=\mathrm{P}\)
I
1150
80
RA1)=PI/180:
\(N A L P=A L P / D F L+.5\)
\(N D P 2=N D P / Z+. O C 1\)
NDP2=NDP/2+.0N1
NOP4=NDP/4+.001
NDP \(4=N D P / 4+i\)
\(N D P 21=N R P 2+1\)
NDP 4 I NOP 46
\(\mathrm{NI}=\mathrm{NOD} 21+\mathrm{NPHII}\)
\(\mathrm{N} 2=\mathrm{MOP} 2 \mathrm{I}-\mathrm{NDH} 5\)
\(C \mathrm{CR}=\mathrm{CMPLX}(1,+0\).
CALP=COS(ALP)
I \(1 \mathrm{H}(J)=1.0\)
\(1 \vee(J)=1\)
STIHP \((J)=C M P L X(0,0\).
STIVP \((J)=C M P L X(G ., C\).
\(S T I V C(J)=C M P L X(0.0, ~\)
CDNT Isulif
```



```
READR 1\(\}\) (GTHEV\{J);J=1,NOP)
```



```
Dr \(13 \mathrm{~J}=1\),NOP
\(1 H P(J)=C M P L X(C,+0\).
\(T H C(J)=C M P L X(C ., C\).
\(\operatorname{TIVC}(J)=C M \rho L \times(0,0,0\)
```



```
T1HCPD \((\mathrm{j})=\mathrm{CMPL} \times(0,0,0,1\)
CRNTINUE
OR \(4 \mathrm{~J}=\mathrm{N}\) ? , 111
PHI =FICAT(JEBS\{ J-NDP2I+NALP))*DEL+.090I
THFニPI-THEDIS(I)
\(T \mathrm{PHI}=\mathrm{T} \Delta \mathrm{A}(\mathrm{PHI})\)
```



```
YHEEW = THEFh+PI/2.
```



```
SRHI = SIN P PIII)
GAMMA SRHI SPHI / SSTHI*STHI*SMHI*SPHI * CTHE*CTHE)
1 /SQR K SIN(PHI) \&IN(PHI)+C, TAN(THE)*CETAN(THE))
```

NGAMMA $=$ GAMMA $/$ DE $^{2}+.5$
NGAMMA=GAMMA NEEL-5
NCANPA
IFITHUP $T 1-N A L P+N G A M M A ~$

Y IHC $(J)=T 1 H(N G A M M A) *(1,-F N O W * C R$
TIVP(J) $=$ TIV NGAMMA) *FFNOW\&CD

5 4

CONTINUF

GALL HAPM(TIVCRH,M,INV,S, 2 , IFERR)

$1 \begin{gathered}\text { STHCRCRO } \\ 1\end{gathered}$

STLVC $(J)=S T 1 V C(J)+(T 1 H P(J) * \zeta T H E V(J)+T 1 H C(J) * G P H I V(J)$
1 *STHEEI
CONTINUR
CFAIND
CALL HAF

100 FgOMAT(: PPFPH, FEFHC, PER UP, PEPVC, INOEX')
FilpMAT(; "4F13.6,15)

UENVER=RFAL STIVP(J)+STIVC(J))

$P F Q V C\{J\}=\{R E A\{(S T L V C\{J\})\} A)=N V E R$
$\rho X I=P E Q H P(J)$
$\rho \times 2=0 E Q H C(J)$
$\rho \times 2=0 E R H C(J$
$P X 2=P=4 V F(J$
$P \times 4=P F R V C(J$

PERVC $\{J\}=P \times 4 \times D O$ INCF+VX3*CRÓSSF
11 ConTiriu

6 CONTINUE
FETLUR

```
IV G LEVEL 21 DATEP DATE = 76122 19/33/0月
SMHRNUTIN'F WATFZ(NPIIII,NPIII:,TALV,TAWH,LSTATE,FFFF,OHOI
C THIS SUKKNUTINE CALCUIATFS TUE ANTENNA TEMPERATURF CCNTPIPUTIDN FROM THE
    MATER AS A FUNCTIUN DF bETA TOF EACH PCLARIZATION USING AN ESTIMATE OF
    THF hE IGHTNLSSSTMPEFATUPE
            TAGV=VFP TIGAL WA WAR ANT.NNA TFMPERATURE CONTRIGUTION 
        CDMMCN/BI/TLPPDV,TA&P1, STHE,NDT,NCP,DEL,OELTHE,NL.P
        CJMMON/BLOCI/TRHP,TRHG,TRVP,T8VC,STAWH,STAWV,TIVCPG,TIHCRO
        COMMCN/BLNC2/S,M, INV
        GOMMON/BG/GTHEH,GPHIM,GTHEV,GGHIV,GCRCH,GCPCV
        GNMDLEX TIVCPI(256), IIHCPDS(56)
```



```
        COMPEEX STAWH(256), SAWV(255),TAUP(256),TBVC(256)
        JIMCNSION TEWH (256), TBWV(25%), TAMV(256),TAWH(256)
        OIMFNSION INV(128),St128),M(3), STHN(65)
    UIMENSION THEDISI32);MFT32)
    PI=3.14150
    KAD=DI/1éC
    NA1P=ALP/DFL+.5
    MCP?=NDP/?+.CO
    NDO4}=NDP/44+C
    NDP21 =NDP2+
    M1 4DPNIN
    M2=NDO2I-NPHIT
    C2=NMDIXCl.,C.
    CALP=CDSNAIP
    OR 3 J=1,NDF
    TRWP(J)=RAPPH(J)
    IF(IJ.LT.NDP21 -IMPHI ?).DR.(J.GT.NDP2I +NPHIl)| GO TR I
    GH In ?
    TPWF(j)i=0.9
    CONTIVUF
    STAWHY(J) =CMPLX(U.,O.)
    STAWV(J) =CMPLX(G.,0.)
    CONTINHF
    OO 1O f=1,NgT
    READO(l) ({YHEH(J),J=2,NDP)
    READ(1) (GPHIH(J);J=1,NDP)
    FEAD(1) (GPHEVV(J),J=1,NDP)
```



```
    &EAN(1) (GCPNV (J),J=:,NDPP
    TBHP(J) =CMPLX(u.,N.).
    TRPL(J) =CNPEXXU.:NO
    T1VCFS(J)=CMPL\times(U.:O.
    T1HCDO(J)=CMPL X{U.;0.)
    CONTINUF
    OTHE=D J=12, N1
    TPE=D:THEDIS(I)
    TPHI=TAN(PHIS
    THEFW=ATAN(FFFFF/FHO+CALP*SORT(I.+TPHHETPHI)\)
    THFTW= THFFW+PI /2.
    THI=SIN(THE)
    STHF= COS(THF
```



```
    T \DHI=TAN:{PHI}#TAN(PHIT
    CT2THE=1.1(TAN(THE) #TAN(THF)
    G^MMA=ATAM(SOPTTTNPH!+CT2THE+CT2 THF*T2PHIH)
    GAYMA=GAMNG/OFt
    HGAMA\A=GAMYA
    OELGAM=GAMMA -NG AMMMA
    NGAMMA =NOP2I-NALP+NG \MMA
```

```
IV GLEVEI 2l MATER
DATE = 76127
19/33/08
TGH=TBWH{NGAMMA ) CELGAM*{(TBNH (NGAMMA+1)-TBWH(NGAMMA)
    IF(NGGAMMA.GF.NI) TBH=TBWH(NI)
    F(THE.GT.THEEW) THH=0.0
    TRHP(Jj=TRHHOFNOW T&V=0.0
    TBHC(y)=TRHH*FNOW*CR
    TBVP(J)=TBV*FNOW*CF
    BVC(J)=T@V*&1,-rNUW) *CP
    T1HCQO(J)=2.*THH*SORT(HNCH*(I.-FNCW)!*CR
    4 CONTINUE
    COLI HAP:M (YRHF,M,INV,S,I,I FFRRO
    CALL HAOM (TBVA,M,INV,S,?2,IGERP)
    CALi HARP(TIVCRO,M, NNV,S,i, LERP)
    CALG HAFM(T1HCFO,M, INV,S,2,IFERRR)
    STAWHHCJ)=STAWH(J)+{TBHD(J)*;THFH(JI +TBHC(J)*GPHIH(J)+TBVC(J)
```



```
    S*STHF(I))
    * STHE(1
12 COITINUE
    CUMTINUE
    CALL HAFN (STAWH,M,INV,S;-Z,IFFORI
    DOWII J=1, MOP (STALV(J))
    TAWH(J)=PEAL(STAWH(J))
    TX1=TAWV(J)
    TAWV(J)=TX1*PP.INCF+Y*2*CROSSF
    11
    DO 12 J=1, NTJP
    1*GTHEV (J)+IBFC(J)*GPMIV(J) +T1HCRO(J)*GCFAV(J)-T IVCRO(J)*GCRON(j)
    LETUP
```

```
IV GLFVFL ?I
NGSSKY DATF.= 7612?
19/33/38
SGBPTIGIINF NEWSKY (N'HIL,NP-II2,TAESV,TAESH,TK,TE,FHR,FFFF)
```



```
        CO SMON/BL/TADPV,TAPPII,STHE,NDT,NOF,OEL,DFLTHE,ALD
        l CDMPFINCF,CROSSF,THEHISS,WF,
            CTMMON/BLOC2/S,M,INV
            CTMMON/RG,/GJHFH,GPGIH,GTHEV,GSHIV,GCRCH,T,CRCV
            GMP EX.GTHEH(256},GPPIH(255),GTHEV(256),GPHIV (256)
            CNMPLFX GCPOH(256), CCPNV(25,j), TBEXT(256),GNHV(256)
            COMPLFX TASS(256), 伿LX,CR,TB(256),STESSH(256),STAESV(256),
            AAAL(4,256)
                DIMFNSION INVI12B),S{128),M(3)
            OIMENSIGNN TAESV(256),TAESH(356), STHE(65)
            OIMENSION-THFOISIZO, TAP(3N(?
            PI=3.1415G
            CALP=COS(ALP).5
            NON4=N0P/4.+.001
            NDIMM=NOP-NOP4+
            - NOPK1=NDP/>*+1%CO1
            N1DP41=NDPJ4, +1%00
            N1=NnP21+NPH1L
            N二=NDP2I-NPHIL
            CR=C:HPLX{1,
            TR(J)=CNDLX(TF,0.0)
            STAESV(J)=CMP(Cioc.)
            STAESV(J)=CMPLXXO.,C.)
    3 CONTINUF
C
    TG IS THL GALACTIC JPICHTNESS TEMPERATUFE.
        TG=7.
        TEFF=1.12*TK-50.
        TAHOZ./TC+F
        TAJO=-aLGG(1, -PTC)
        Dt,4 J=1,NTO41-PTL)
        CTM=CTSS(DEL*(J-1))
```



```
        GOT: 3%
        TB(J)=TEFFNC.
        COMTINJIE
```



```
        CMmTNNUF
        I!(J.50.1) tonTR 5S
        C(INTINIE
        IF\NALP.EO.O) 6,C TU z
        On 13,JI,NOP
```



```
    13 cresT sMyE
        AALPL=NALF+1,
        MrP la J=NA(P1, NOP
        C(BINJNALP)=TBEXT(J)
        0%15}J=1\mathrm{ ,NALR
        TP(NOP-NA[P+J]=TE& XT(J)
    <1 CONTINUF
        OC 10 I=1,N!OT
        THEG=PGTHFOTS(I)
        #FAD(I) {GTHFH(J),j=1,NDP)
```


CONTMAJ! $=$ C
0612 II 1,4
CALL HAFM (TAESH,M,INV,S,2, YFFRF)
GALL HARM (TRFSV;M,INV;S; ; :FEPP
g\% I? $\mathrm{I}=1,110 \mathrm{~T}$
PEAD (1) (GTHEH(J), J=1, NDP)
PFAD (1) GPHIH J),$J=1$, NOP
READD 1 (GFPHEV(J), $J=1$, ANPP)
RGAD (i) GCFAH(J), Jこ1,NOP)

```


```

 CINTINUF
 CALL HAPM (STAESH,M,INV,S,-T,IFEPR
 CALL HARM (STAESV,M;INV:S;-S,IFTRRI
 On \(11, j=1\), NDD
 TAFSH(J)=DFAL(STAESH(J))
 TAFSV(J)=PrAL(STAESV(J))
 Tx \(=\) TASSH 5)
 TX) TAESVI \(J\)
    ```


```

 TBFH: J)=TATYH(J)-TAFSM (J)
    ```

```

 TBFSH (J) \(=\) CMPLX TBBH (J), O. O)
 THESV(J) =CMPLX \(\operatorname{TBBA}(J), 0.0)\)
 12 COMTMNUF

```



DATE \(=76172 \quad 19 / 33 / 09\)

35 TBESH(J) \(=\) TMPLX(G., Q.)
t 5 SV (J) =CMPLX(O.:
36 GONTINUF



30
10
CONTINUE
CONTINDF
FFNIND
CALL HAPF: (STAESH, M, IMV̈, S, - ? , IFEPR


TACSVPJt=PFAL(STAESV
\(T \times 1=J \Delta E S 14\)
\(T \times 2=\) TAE SU
\(T \times 2=r a F_{j} S V\{\)
\(T A C H(J)=T X 1\)
TAESH(J)=TX1*PRINCF+TX2*CR2SSE
11
TAFSV(J)=TXZ\#PRINCF+TXI*CRCSSF
CONTIS:
EA!
iv g

SPI.INA


CASC ENDING ORNER
CYI=OEPFNDENT VARIABLE OF INPUT תATA
\(C N=N U M B E D S\) BF IPIPUT OATA


\(\times 111=x=1, N\)
11 continue
1

m \(2 \mathrm{NM} \mathrm{N}=\mathrm{N}=2 \mathrm{NH}\)
W \(\mathrm{J}=\mathrm{W}(1)\)


ajs iso
ZA=1:


\(S(M)=C(N N\}=(1-+A(M H))\)
\(S(N M)=S(N)\)
\(\mathrm{N} M \mathrm{M}=\mathrm{A}=7\)
\(\operatorname{mon}^{2}=\mathrm{N}=\mathrm{J}=1\), N4M
\(J=\) NuM

Cn.

consinir


\(00^{7}\) J \(J=2,4\)

7 cintinue
ccalcillate function



RETUFN



5 CONTINU



EITRY GFFATA(XV,YV)
CINTFGRATICN-HINY FOE SUOINTERVAL


- Cink Tithio.

IV G LEVEL
SPLINA
DATE \(=76122\)
\(19 / 33 / 08\)
CCALCULATE INOFFINITE INTERGOAL

3 = 0 0 2 5 w W * W
YV= \(2(J-1)+0.5 * W J *(0) *(Y(J)+23 *(01-2) * S.(J))+(1 .-D 2) *(Y(J-1)\)
\(1+\Gamma\)
\(5 \times(0) 2-1) * S.(J-1)\)
FFTUP
ENO
\(\begin{array}{ll}\text { CHAP } 930 \\ \text { RHAR } & 940\end{array}\)
CHAR 94C
CHAR \(97 C\)
OHAR 9 G
OHAR 9 名
OHAD
\(97 C\)
DHAR 100
OHAR 1010
DHARIO2C
DHARIO
OHARIO30
DHAR 105
DHAR 106
CHAR 107
DHAR 108 C
DHAR 1090
CHAR 110
OHAR 11
OHARII
DHAR 1140
OHAR 1150
OHAR 1160
CHAR 160
CHAR 17 C
CHA 180
OHAR 1190
CHAR 1200
DHAR
DHAR 121
OHAR 122
CHAR \(12 ?\)
OHAR1240
DHAR 1260
DHAR 1270
CHAR 1280
CHAR 1240
EHAR
CHAR 1300
DHAR 1312
DHAR 1320
DHAR 1320
DHAR 1330
DHAR 1340
DHAR 1340
DHAR 1350
DHAR 1360
OHARI 37
DHAR 1370
CHAR 1380
DHAR 1390
DHAR 140
OHAR 1410
OHAR 141
CHAR 142
DHAR 143
OHAR I
DHAR 1440
DHAR 1460
CHAR 1450
CHAR 145
DHAR 1470
DHAR 1480
CHAR
OHAR 148
DHARI 50
DHAR 1510
DHAR 1570
DHAR 530
DHAR 15
DHAP 15
CHAR 1
QHAR
HHAR15RO
DHARI590
DHAR \(16 C C\)
CHAR 610
CHAR 1610
DHAR 1620
HAR
```

 * SHEPNUTIAF HAFP (A,M,INV,S,IFSFT,IFERRI
 * SHEPNUTIAF HAFP (A,M,INV,S,IFSFT,IFERRI
 WVU15000
 WVU15000
 C
 C
 I)YENSION A(512),INV(128),S(128),N(3),N(3),NP(3),W(2),W2(2),N3(2)
 I)YENSION A(512),INV(128),S(128),N(3),N(3),NP(3),W(2),W2(2),N3(2)

, (1),
, (1),
IF({=SQPT(?.CEC)
IF({=SQPT(?.CEC)
13 IFEPE=1 MT 14,14,13
13 IFEPE=1 MT 14,14,13
4 RFTVGR =0
4 RFTVGR =0
4 \FrOR=0
4 \FrOR=0
M1=N(1)
M1=N(1)
M 3 =M(3)
M 3 =M(3)
112=2**M2
112=2**M2
N N=苂**M3
N N=苂**M3
| IF, IFSET, 18,18,20
| IF, IFSET, 18,18,20
FN=N1*N2*N3
FN=N1*N2*N3
@fin利 I = = NX
@fin利 I = = NX
A(2*I.)}==A(2*I)/{N/=N
A(2*I.)}==A(2*I)/{N/=N
20NP(1)=N1*?
20NP(1)=N1*?
NR(2)=NP(-1)\not=N2
NR(2)=NP(-1)\not=N2
NP(3)=NP(2)\pmN3
NP(3)=NP(2)\pmN3
OG 250 IQ=1,3
OG 250 IQ=1,3
II (im) (SEC
II (im) (SEC
MEIFNO(D)
MEIFNO(D)
IF{(\#1-MFV
IF{(\#1-MFV
40
40
MO=
MO=
MLA ST=KLi,
MLA ST=KLi,
K0=K+KGIT
K0=K+KGIT
c DOGNES STEP WITH L=1,J=0
c DOGNES STEP WITH L=1,J=0
A(K)=A(K)+AGKO),
A(K)=A(K)+AGKO),
-T=AlKD)
-T=AlKD)
A(KD)=A(K)-T
A(KD)=A(K)-T
T=^{人D+1}
T=^{人D+1}
A(KD+1)=A(K+T)-T
A(KD+1)=A(K+T)-T
AF(N+1)=A(K+1)+T
AF(N+1)=A(K+1)+T
i
i
= LEIRST=3
= LEIRST=3

C
C

70 \0n 240 L L=LFIFST,MI,2
70 \0n 240 L L=LFIFST,MI,2
KNIT=K日GI/4
KNIT=K日GI/4
C
C
L=KBITー2
L=KBITー2
OO FOR J=r (ILI,IDIF
OO FOR J=r (ILI,IDIF
Drj 80 K=I,KLAST,2
Drj 80 K=I,KLAST,2
MI) 80 K = I,KLAST,2
MI) 80 K = I,KLAST,2

