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DEVELOPMENT OF FAR INFRARED ATTENUATION TO MEASURE
ELECTRON DENSITIES IN CW PIN DISCHARGE LASERS

R. V. Babcock
Westinghouse R&D Center

Pittsburgh, Pennsylvania 15235

ABSTRACT

A two beam attenuation technique was devised to measure
9 11 -3

electron densities of 10 - 10 cm , resolved to 1 cm, in a near-

atmospheric COFFEE laser discharge, using 496 vim and 1220 urn

radiations from CH F, optically pumped by a C07 laser. A far infrared

generator was developed which was suitably except for a periodic

intensity variation in FIR output deriving from frequency variation

of the pump radiation. Because the available pump laser could not

be stabilized in output frequencies to the required 4-̂ /2 MHz, the

planned electron density studies were not conducted.



DEVELOPMENT OF FAR INFRARED ATTENUATION TO MEASURE
ELECTRON DENSITIES IN CW PIN DISCHARGE LASERS

R. V. Babcock
Westinghouse R&D Center

Pittsburgh, Pennsylvania 15235

1. SUMMARY

The contract goals were to develop a two frequency, FIR

attenuation technique capable of measuring electron densities (in

typical COFFEE laser gas mixtures having high collision frequencies)

to 1 cm spatial resolution in the two dimensions transverse to the

optic axis of the Westinghouse cw COFFEE laser, to conduct parametric

studies of electron density in the 10 cm cubical COFFEE discharge

module at the Westinghouse CRL, and to apply the technique to the High

Power Laser Test Facility at the NASA Lewis Research Center. The

physical constraints corresponding to these goals dictated the use of

two FIR probe beams of sufficiently different wavelengths, within the

approximate range of wavelengths 500 \im - 1000 \im, which could be

generated cw with adequate intensity and beam quality to permit
4

measurement of attenuation to 1 part in 10 . Two transitions in

CH F were selected, at 496 ym and 1220 urn, which are optically excited

by the P(20) and P(32) lines, respectively, of the 9.5 um band from a

line selectable CO- pump laser. Attenuation was to be measured to the

necessary precision by chopping the FIR beam alternatively into

carefully matched test and reference paths, combining the beam at the

detector, and measuring the difference signal with a lock-in amplifier

system. This procedure called for a stable cw FIR source emitting a

few mW with a beam divergence <100 milliradians.



An open cavity, hole-coupled FIR generator was developed which

emitted 0.5 mW at 496 Vm, but had marginal gain, requiring an output

aperture ̂ 4 mm in diameter. Diffraction from such an aperture implied

excessive beam divergence. We decided that a hole-coupled generator

would not suffice.

A dielectric waveguide cavity FIR generator was built having

a 25 mm aperture, partially transmitting output. This configuration

emitted 1.6 mW at 496 vm, with satisfactory beam divergence. It would

suffice if the cavity length of the C0» pump laser could be stabilized

so that the frequency of the P(20) line could be held constant to a

few mHz. This stabilization, achieved by active piezoelectric length

tuning, had been successfully demonstrated in a very similar application

elsewhere.

With the contract termination date approaching, we found that

the inherent stability of our pump laser was so poor that we were unable

to stabilize the CCL output frequency during the contracted period.

Accordingly, after consulation with the contract monitor, the contract

was terminated on schedule, with some contract goals unfulfilled.



2. INTRODUCTION

2.1 Contract Goals and Approach

<
The goals of this contract were

1. To develop a technique for measuring electron density

in the presence of high collision frequencies within

the active discharge volume of the Westinghouse cw

COFFEE laser, capable of providing electron density

values spatially resolved to 1 cm or better in the

two dimensions transverse to the optic axis, and

averaged over the 10 cm path length along the optic

axis, in the existing Westinghouse 10 x 10 x 10 cm

COFFEE discharge test module.

2. To apply the technique to parametric studies of the

behavior of the COFFEE discharge, in the test module.

The behavior of the COFFEE discharge is not completely

* understood, and this is impeding the full development

of this very promising cw CO laser technology.

3. To adapt the technique to study electron density

distributions in the 1.5 meter High Power Laser

Test facility at the NASA Lewis Research Center.

In the fully developed, flow stabilized DC discharge of the

COFFEE laser, electron densities are roughly 3 x 10 cm . In order

to observe the growth and decay of these electron densities, one desires
9 3a measurement technique that is sensitive to the order of 10 electrons/cm .

To measure this range of electron densities in the presence of 0.5 - 1 atm

of neutral gas molecules is difficult. After examining the possible

techniques, we chose to measure the single-pass attenuation of a

diffraction limited beam of electromagnetic radiation.



This method had previously been employed with considerable

success at the Westinghouse Research Laboratories to measure electron
12 13 -3

densities in the range 10 - 10 cm , encountered in our pulsed CO

lasers, which are pumped by self-sustained electric discharges. In

Fig. 1, electron densities measured by the two-pass attenuation of a

337 ym beam of far infrared (FIR) radiation are compared with values

calculated from the electron drift velocity corresponding to the known

value of E/N in the discharge. The agreement is excellent. E/N is

the ratio of electric field strength to neutral gas density. In the

pulsed laser discharge, E/N is well understood, and we can reliably

calculate E/N from the applied voltage and the gas conditions, and thus

calculate electron drift velocity and electron number density (n ). In

the COFFEE discharge, however, we do not have adequate models to describe

the behavior of E/N, and cannot reliably calculate n from the observed

discharge parameters.

The above measurements used a beam of 337 um radiation from

an HCN laser, operating cw, which passed twice through the discharge

volume, and was detected by an InSb detector cooled to 4°K. When the

discharge was pulsed on, attenuation of 1% or more resulting from the

appearance of free electrons could be discerned. Although this sensitivity

was adequate for the above purpose, the range of n expected in the COFFEE

discharge provides much less than the 1% attenuation which we could

discern in a pulsed measurement. To obtain the needed sensitivity, one
4

must measure the electronic attenuation to one part in 10 . This we

proposed to do with the chopped dual beam measurement sketched in principle

in Fig. 2. First, with no discharge, the test and reference beams are

equalized by a variable external attenuation until the difference signal

from a phase-sensitive amplifier locked to the chopping frequency is

nulled. Then the discharge is established, and the difference signal

measures the electronic attenuation of the test beam. It was also

necessary to choose two probing wavelengths, both lying in a different

wavelength range from the 337 um used above. Two different wavelengths

are needed to separately determine n and v, the collision frequency, as

discussed below. '



2.2 Choice of Probe Wavelengths

The applicable range of FIR wavelengths is limited from above

by the requirement of 1 cm transverse spatial resolution over a 10 cm

path length, and from below by the need for high sensitivity, due to

the relatively low electron densities encountered in the COFFEE discharge.

Assuming diffraction limited beam divergence the longest wavelength

radiation which can be contained* within a tube 1 cm in diameter by 10 cm

long is about 1000 ym—this determined the upper limit. The lower

bound derives from the relation governing electromagnetic wave propagation

through a weakly ionized, collision dominated plasma, which reduces, for

our particular conditions**, to

a = 0.1059 vn /(v2 + u2), (1)
e

where a is the attenuation constant per cm, V is the collision frequency

for momentum transfer, and to is the radian frequency of the wave. For
-4the required sensitivity of a times 10 cm >10 at an electron density

9 -3of n =10 cm , given the approximately known values of v for the

COFFEE neutral gas conditions, Eq. (1) requires that to correspond to a

wavelength £500 urn.

Within this wavelength range, the two most suitable sources

were chosen as the 496 \im and 1220 ym emissions from CH F. Taking

calculated values of v for typical COFFEE laser gas compositions, we

show in Table 1 the values of minimum detectable electron density

*
A simplified calculation using relations valid in the far field goes
as follows: A lens of diameter d and focal length f is positioned
to focus the FIR beam at the center of the tube. By geometric optics
we require f/d 2 5 for the beam diameter not to exceed 1 cm at the
entrance to the tube. Since the diffraction half angle is 6 = 1.2 X/d
radians, the diameter of the focal spot will be D = 2f6 = 2.4 Af/d.
Therefore D 5 12A , and D = 1 cm implies A <_ 833 pm. The actual case
of a Gaussian beam in the near field is more complicated, and the
criterion given in the text is only a rough approximation.

* * 2 2
i.e., plasma frequency « v + co .
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corresponding to an attenuation of one part in 10 over 10 cm, for

these two probe wavelengths. Since we assume that an attenuation of

10 can be observed with a signal to noise ratio of 1, the minimum

detectable electron density is also the uncertainty in the measured

value of n , when v is known independently. Thus if n ^ 3 x 10 ,

it should be possible to determine relative values of n (i.e., assuming

\> is independent of position) to a precision of 2 to 5%, depending on

gas composition and pressure, by measuring the single pass attenuation
12 -1

of 1220 ym radiation (to.. = 1.5 x 10 sec ). For example, if n is

measured in a 1:7:20 mixture at 450 Torr, at the two positions A and
8 10

B, then each measurement has a precision of 3.04 x 10 /3 x 10 = 1%.

Then n at A is known, relative to n at B, to a precision of 2%.
G c

To obtain an absolute value of n with a useful degree of
e

accuracy is far more difficult. One must separately determine v and

n by measuring the attenuation at two sufficiently distinct FIR

frequencies, o> and cu . Then Eq. (1) can be applied twice to give

the ratio

p E (a1/oi2) = (v
2 + <o2)/(v2 + a>2), (2)

which depends only on v and the known probe frequencies. This dependence

is shown in Fig. 3. Clearly, if we wish to determine v with any precision,

we must choose to in the vicinity of v, where p is changing most rapidly.

This strategy becomes even more necessary when we consider the sensitivity

of Eq. (1) to the error in determining v. Taking the partial differential

of Eq. (1) with respect to v, the fractional error in n is seen to
e \

depend on the fractional error in v as

(An /n ) = (Av/v) (a)2 - v2)/(u>2 + v2). (3)
& C

One notes that when ui ^ v, the measurement of n will be relatively

immune from error due to the uncertainty in the measured value of v.



To examine the combined effect, one eliminates \> between

Eqs (1) and (2) to give explicitly An , the uncertainty in n which
e e 4

results from measuring a and a~ with signal to noise ratios of 10 ,

(r2-!) p|r2-2p+3|
An = - - {Acti + - 5 - (pAa +jAa), (4)

-1 2(p-l)(r-p)
5

e 12 -1

where r = u_/ai = 2.5, j = 1, and Ac^ = Aa = 10 , corresponding to a

measurement uncertainty of A (La) = 10 over a path length of L = 10 cm.

Equation (4) is given by the solid curve in Fig. 4. The two bars at

lower left indicate the calculated ranges of v for the two typical

COFFEE laser gas mixtures, as given in Table 1. The dotted curve

obtained by setting j = -1 when v > <*) , results from a cancellation

of errors which may not be experimentally realistic. The difference

is not important, because it occurs only in a region which is not

accessible to our measurement.

One sees from Fig. 4 that we made the proper choice of probe

frequencies, since u> is as small as possible consistent with 1 cm

spatial resolution (actually, a bit too small). Still, we fall short

of the rather sharp requirement that v ̂  u , which seriously degrades

the potential accuracy of the absolute measurement of n . The

quantitative effect is shown in the column labelled "v intrinsic" in

Table 1, which gives the uncertainty An in the absolute measurement of
e

n , if we apply the two frequency method to measure v separately at each

gas condition. Strictly, these values of An apply only when n » A n .

When An ^ n , then An is ̂ 3 times larger. This procedure is clearly

inadequate.

A more accurate procedure is to operate each gas composition

at the highest pressure and current density which permit a stable dis-

charge, and determine v via Eq. (2). If, as expected.v does not depend

significantly on current density or field, these values can be corrected

for their linear pressure dependence to obtain a value for v at any

discharge condition. The ng may be obtained from Eq. (1) by attenuation



measurements at 1220 Pm. As an example, if the two gas compositions in

Table 1 were measured at 450 Torr and an electron density n ^ 3 x 10
_3 e

cm , v could be determined with uncertainties of about 15.3% and 11%,

respectively. Assuming the same percentage accuracy for the corrected

values of v, a 1220 urn attenuation measurement would provide electron

density measurements having the uncertainties shown under "v measured"

in Table 1. The final column shows the.uncertainty in measured values
10 -3of n ^ 3 x 10 cm . If v can be measured at somewhat higher

e
pressures and/or electron densities, these errors would be correspondingly

reduced.

2.3 Generation of Probe Wavelengths

Both of the above transitions can be optically pumped using

the 9.6 \jti band of CO ; the 496 Urn by the P(20) line and the 1220 jm
2by the P(32) line. These were originally obtained cw by Chang et al. ,

who excited a 77 cm open, hole-coupled cavity with 6 mW of pump power.
3

Collirs further developed the systematics of these transitions, using

a 1.2 m open cavity with 2 mm hole-coupling and 30 watts of cw pump

power, an arrangement quite similar to our second FIR cavity design.

For use as a spatially resolved probe beam, the hole-coupled

outputs are severely limited by the diffract ton limited beam divergence

angle, which is inversely proportional to hole diameter. A 2 mm coupling

hole produces a 200 mradian divergence angle, which leads to intolerable

loss of intensity in our application. One needs a large diameter output

window which is partially transmitting at 496 pm and 1220 ym. This is

readily achieved using a wire mesh of appropriate grid spacing. The

difficulty is that the cross-section of the CH.F molecule for absorbing

the C02 pump radiation is rather small, requiring that the pump radiation

make many passes through the FIR cavity to produce an inversion. One

solution is to use intense pulsed optical pumping. At higher pumping

rates, greater rates of collisional deactivation can be tolerated. This

allows larger pressures of CH F with correspondingly shorter absorption
4

lengths. Thus Brown et al. used transverse optical pumping to obtain



500 W of pulsed output at 496 ym. Drozdowicz et al. used a similar

approach in an oscillator-amplifier configuration to obtain 6 kW of peak

output. However, pulsed output was of little use to us because of the
4

great difficulty of measuring attenuation to one part in 10 on a pulsed

basis. DeTemple and Danielewicz found a solution appropriate to low

power cw pumping. They developed a hybrid output mirror consisting of

a metal mesh photolithographically deposited on a Si substrate, over-

coated with a four layer dielectric coating. The FIR reflectivity could

be varied by changing the grid parameters; the dielectric coating was

transparent to the FIR radiation, while reflecting >98% throughout the

CO laser bands. Using this output window to terminate a 1.2 m by

22 mm diameter dielectric waveguide cavity, they obtained 3 mW of cw

output at 496 ym from 8 watt of C02 pump power, with a 28 mrad beam

divergence—essentially the diffraction limited spread for a 22 mm

aperture. Since this performance very closely matched our requirements

and equipment capability, we adopted this approach during the latter

part of the contract.

To obtain an FIR output having adequate stability for use as

a diagnostic measurement, DeTemple and Danielewicz found it necessary to

stabilize the frequency of the CO. pump laser. To appreciate this

necessity, we briefly examine the systematics of the 496 ym transition

in CH F. The lowest frequency vibrational mode of the CH F molecule,

corresponding to C-F stretching and designated v_ = 1, gives an

absorption band centered near 9.54 ym. The (XL P(20) line at 9.55 ym

overlaps the subband Q(12,2)(v3 = 0+1, J = 12+12, K = 2+2) of this

absorption spectrum, thus pumping FIR emission at 496 ym on the

rotational transition (v = 1+1, J = 12-KL1, K = 2+2). According to
7

Hodges and Tucker , this absorption subband is offset from the P(20)

line center by 43 MHz, and has a Doppler broadened FWHM of 67 MHz at

300°K.

The CO pump laser will oscillate, not at P(20) line center,

but at the axial cavity resonance frequency closest to line center. For

our cavity, the axial resonance spacing is 38 MHz. Thus, if the cavity

length is not dynamically tuned, a linear rate of change in either cavity



length or medium refractive index (affected by the intensity of electrical

excitation in the medium) will cause an offset in pump frequency from

P(20) line center which varies periodically between about -19 and +19 MHz.

Figure 5 illustrates the resulting variation in CH F excitation, assuming

a FWHM of 67 MHz for the pump beam (typical, but not measured for this

particular laser). The absorption spectrum of the CH,F, Q(12,2) branch

is shown on the right, and the CO. P(20) emission spectrum on the left.

In 5(a), illustrating the maximum negative offset of the P(20) emission,

the overlap product (proportional to CH F excitation rate), shown cross-

hatched, has a peak value of 0.31. In 5(b), drawn for maximum positive

offset, the overlap peak value is 0.84. Thus the CH_F, Q(12,2) excitation

rate may vary periodically by a factor of 2.7. Since the FIR oscillation

will be near threshold, the resulting periodic variation in FIR output

can be even more, making it unsuitable for the FIR attenuation measure-

ment.

The solution adopted by DeTemple and Danielewicz was to control

the cavity length piezoelectrically with a commercial lock-in stabilizer

which kept the pump frequency within about 2 MHz of P(20) line center.

The method is discussed in Section 3.1.2.

2.4 Choice of Equipment

i
The essential items of equipment are; a CO pump laser operating

cw on either the P(20) or P(32) lines of the 9.6 pm band, a suitable FIR

generation cavity including provision for axial length tuning, and a FIR

detector having adequate sensitivity to provide a S/N ratio >10 in the

final attenuation measurement.

Our pump laser was adapted from an existing Coherent Radiation

Laboratories Model 41 laser rated at 300 watt total cw output. With the

addition of a suitable grating, 65 watt of multimode output was available

at P(20), or a similar amount at P(32). Although the measured output

power appeared to be sufficiently stable in time, the resulting FIR

power generation was found to vary with time to an unacceptable degree

because of variation of the pump frequency. Attempts to eliminate this

10



variation (see Section 3.1.2) by active stabilization of the pump cavity

length were not successful. No suitable alternative pump laser was

available within the company. At the time this deficiency was established,

neither the remaining time nor the remaining contract funding were

sufficient to permit obtaining a frequency stabilized source from outside

the company. The use of a pump laser which could not be locked to a

stable (vt2 MHz) frequency was the principal cause of our failure to

meet the contract objectives.

For a FIR generator cavity, we adapted an existing Advanced

Kinetics model FIRML-475 HCN laser. This provided an Invar optical

bench with suitably adjustable mirror mounts, one of which afforded linear

motion at rates suitable for length spectroscopy at 496 um and 1220 urn,

plus an enclosure of sufficient flexibility to permit easy conversion

to different cavity lengths and mirror arrangements for both open cavity

and dielectric waveguide configurations. Although some difficulties

were experienced with vacuum integrity and mechanical problems with the

linear drive, these were overcome.

The detector system chosen for electron density measurement

was an InSb detector operated at 4°K, also from Advanced Kinetics. The

nominal system detectivity was adequate to provide S/N £ 10 at either

496 um or 1220 urn, for a 5 mW diffraction-limited FIR beam of 2.5 cm

generator exit aperture, after passage through the electron density

measurement configuration described in Section 3.2.1. During all of the

FIR generator development efforts described below, a pyroelectric

detection system (Molectron, type P3-00) was substituted which operated

at ambient temperatures, thus simplifying the experimentation.

11



3. EXPERIMENTAL WORK

i
3.1 FIR Generator Development

The sequence of FIR generator cavities investigated is

summarized in Table 2. Our initial approach consisted of open cavity,

hole coupled output resonators, discussed in detail in Section 3.1.1

following. This approach eventually provided 0.5 mW of output at 496 urn,

using 50 W of multimode pump power at P(20). However, the cavity gain

was apparently marginal so that;

1) the output hole-coupler diameter had to be 4 mm or less,

implying that the FIR beam divergence would be too great

to permit electron density measurements of the required

sensitivity, and

2) the FIR cavity length had to be so precisely controlled,

to stay above the threshold for oscillation, that it

was difficult to maintain an FIR output for any useful

length of time.

We decided that hole-coupled cavities were not likely to

satisfy the needs of this application, and pursued the use of dielectric

waveguide cavities with partially FIR transmitting output mirrors. This

work is detailed in Section 3.1.2. Our initial cavity design provided

1.6 mW output at 496 ym with quite acceptable beam divergence (determined

by the 22 mm output window diameter), and sufficient excess gain that the

FIR cavity length could be maintained within the limits required for

oscillation. These characteristics would have been suitable for the

planned electron density measurements, except that the FIR output intensity

varied periodically in time due to variation in P(20) pump frequency,

as discussed in Section 2.3. Our remaining efforts were directed toward

achieving a stable output, which we never obtained.

12



3.1.1 Open, Hole-Coupled Cavities

Our initial generator configuration is sketched in Fig. 6.

Sixty-five watts of multimode pump beam, at either P(20) or P(32) is

inserted into the FIR cavity through a 2 mm hole, by means of an

f = 50 cm focusing mirror, a triangular prism, and an f = 7.5 cm

collimating mirror. This optical combination permitted a convergent

input beam having sufficiently low power density at the ZnSe entrance

window to prevent damage, but with sufficiently small divergence

(̂ f/150) from its waist at the entrance hole to be trapped within the

3.1 m cavity. The FIR cavity was a stable resonator configuration

formed by two spherical mirrors of 7.5 cm diameter and 4.1 m radius of

curvature. The output mirror could be translated axially at appropriate

constant velocities for cavity length spectroscopy. It had a central

coupling hole of 1 cm diameter, which would have provided an output

beam divergence at 496 urn appropriate to f/8 optics. This output aperture

was chosen so that the full FIR output could be utilized in the electron

density measurement, because the greatest acceptance angle which can

afford 1 cm spatial resolution over a 10 cm interaction length is

approximately f/8. The detection system consisted of a 90 Hz chopper

and a pyroelectric detector directly viewing the FIR output through a

TPX window. The pyroelectric detector output was processed in a lock-in

amplifier, and displayed on an oscilloscope and chart recorder.

The FIR generator envelope, which was essentially unchanged

from the HCN laser cavity used previously, was found to leak badly.

The leakage rate had to be relatively low because the optimum CH.,F
2 -*

pressure for 496 um generation was expected to be 0̂.04 Torr. ^Generation

of 1220 ym radiation called for an optimum CH F pressure 0̂.4 Torr, and

presented little problem. The leakage rate was reduced to a level that

with continuous pumping permitted CH_F pressure of 0.04 Torr with about

8% impurity content, and negligible impurity at CH-F pressures

exceeding 0.09 Torr.

13



Using this configuration we searched for FIR output over a

range of CH_F pressures, optical alignment refinements, etc. No output

was seen at either wavelength. The output mirror was then replaced by

a 4 m radius mirror having a 2 mm diameter coupling hole. Axial scanning

spectrograms now showed a hint of output at each of the expected wave-

lengths; so weak that it was hidden in the noise level of the detector.

By assuming the output wavelength and appropriately combining the data

from long axial scans, we were able to infer output of several tens of

pW at 496 pm and 1220 \im, respectively. Because the wavelength interval

was forced, these statistical data cannot properly be interpreted as

spectrograms, and are not reproduced here.

One probable contributing cause of this disappointing result

was a severe alignment problem which came to light while aligning the

following (1.4 m) cavity configuration. The problem was a mechanical

fault in the axial scanning linkage which caused gross variation in the

transverse alignment of the output mirror during axial scanning. Upon

inspection, this proved to be an original equipment defect which we had

been slow to suspect, because this drive had been successfully used by

T. V. George to tune the HCN laser used in his earlier electron density

measurements.

Reviewing the failure of this resonator configuration, we

recognized a number of deficiencies, as follows:

1. The original design had the pump beam entering with

rather small divergence (%f/150), on the assumption

that 10 or more passes would fill the FIR mode volume

with adequate uniformity of excitation. Considering
2

the absorption coefficients given by Chang et al.

one finds that at the apparent optimum CH F pressures

of 0.04 and 0.4 Torr, the CO beam is attenuated by

about 20% and 35%, respectively, per pass through the

3.1 m path length. This results in most of the pump

energy being absorbed in a narrow axial cone having

diameters of about 5 mm at one end, and about 2 cm

at the other, thus providing terrible excitation

uniformity over the FIR mode volume.

14



2. Geometric ray tracing of the pump beam shows that,

for any useful size output aperture, an excessive

amount of pump energy is lost through the coupling

holes on each end.

3. A problem related to 2) is an excessive intensity

of C0_ radiation falling on the IPX output window.

When using the 1 cm coupling hole, we were forced

to shield the central portion of the output window

to prevent melting. This severely distorts the FIR

output.

4. The leak rate of the original configuration was

still excessive.

We next built the hole-coupled generator configuration

sketched in Fig. 7, designed to surmount the above problems. The

pump beam enters through a 5.5 mm (transverse projected diameter)

hole in the plane mirror Ml and a 4 mm axial hole in the 4'm radius

spherical mirror M2. The 1.4 m cavity is closed with a plane mirror

equipped with axial scanning drive. The divergence of the entering

pump beam (with its waist at M2) is tailored to be contained within a

cylinder of 6 cm diameter, and to provide fairly uniform excitation

over a cylinder of 3 cm diameter, roughly corresponding to the FIR

mode volume. Simple ray tracing indicates that less than 6% of the

pump beam is lost through M2 per double pass for the first five double

passes. Due to diffraction at M2, over 90% of 496 urn radiation exiting

through M2 is reflected by Ml through the TPX window, but essentially

all pump radiation exiting through M2 also passes through Ml. During

the change to this configuration, the leakage rate was decreased to the

point that the impurity level was negligible, although continuous

pumping was still required when working at 496 ym.

*
TPX is the trademark of a methylpentene polymer having excellent
characteristics for use as FIR lenses and windows.

15



The first attempts to generate 496 urn with this cavity

provided generally negligible output with erratically timed transient

bursts of relatively high power as the FIR cavity length was scanned.

These resulted from accidental coincidence of an FIR cavity axial length

resonance of the C0? pump with temporary transverse alignment of the

wobbling mirror M3. Once the length scanning linkage was repaired,

we obtained 0.5 mW of output at 496 urn, using about 50 watts of multi-

mode pump power at P(20). Oscillation at 496 pm was obtained over a

range of CH~F pressures from 0.009 to 0.016 Torr. This pressure range
3

being lower (and narrower) than the 0.04 Torr optimum seen by Collins

under similar conditions would indicate either a lower pumping rate

or higher collisional deactivation rates. The latter could arise from

impurities. Figure 8 is a spectrogram of total FIR power emitted versus

cavity length, at a CH^F pressure of 0.012 Torr. One sees four geometric

modes, having identical wavelength (to 1 part in 300) of 494 _+ 3 pm.

The extreme narrowness of the resonant range in cavity length (-£0.02 '

wavelength) suggests that the gain is very close to threshold.

Because of the narrow resonant range in cavity length, it

proved very difficult to maintain the cavity on resonance for any useful

length of time. This could be done with piezoelectric feedback tuning

of the FIR cavity length, assuming a sufficiently constant pumping rate.

However, the apparently marginal gain indicated that the output coupling

hole could not be much enlarged over the present 4 mm diameter, which

produces excessive beam divergence for efficient use in the planned

electron density measurements. During this month, we had become aware

of a far superior cavity configuration developed by DeTemple and

Danielewicz at the University of Illinois. We consulted with them,

and decided to pursue their dielectric waveguide approach, discussed

in the following section.
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3.1.2 Dielectric Waveguide Cavity

The use of a cw source (to permit measuring a to one part
4

in 10 ), combined with the desire for 1 cm transverse spatial resolution,

virtually require an FIR output aperture >1 cm in diameter. We had

concluded from our open cavity studies that a hole-coupled aperture of

this size was not likely to be suitable. Clearly, a large aperture,

partially transmitting mirror was called for.

For any one FIR wavelength in this range, a conducting mesh

of appropriate grid spacing constitutes a suitable mirror having any

desired transmission. Unfortunately, such a mesh will not reflect

pump radiation at 9.6 pm. Several solutions are possible:

1. The cavity can be designed so that pump radiation

does not have to reflect from the FIR output mirror.

Several workers have successfully utilized such schemes*,

but none of them appeared suitable for our particular

conditions.

2. An overlay could be added to the conducting mesh which

was transparent to FIR and reflective at 9.6 urn.

3. In principle, a sufficiently thin metal film would be

totally reflective at 9.6 IJITI, and partially transmitting

at the FIR wavelengths.

We inquired of outside suppliers, and within these laboratories

about these possibilities. Although some investigation of the third

possibility had been done outside Westinghouse, the results did not

appear promising. We believed that the Westinghouse CRL had the

capability to develop a hybrid mirror with a partially FIR transmitting

mesh structure and an IR reflecting overlay, but that the development

could not be done within the limits of this contract.

*
Most such schemes apply to high power pulsed pumping, where the large
excitation rates permit greater CH~F pressures (and correspondingly
faster collisional deactivation); thus the linear absorption
coefficients are larger, permitting single pass excitation. Pulsed
pumping was not appropriate to our requirements. However, the use
of off-axis CO reflection in Ref. 4 can be adapted to cw excitation.
The additional optical complexity did not seem appropriate for our use.
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During November, R. A. Hoffman of these laboratories brought

to my attention that the hybrid mirror development had been elegantly

achieved at the Electro-Physics Laboratory of the University of Illinois,

under Professor Coleman. We immediately contacted him and received

excellent cooperation, entering into a consulting agreement whereby

they would advise us in the design of an FIR generator very similar to

the design which they had successfully used at 496 ym, and would supply

us with the needed hybrid output mirrors.

The University of Illinois generator consists of a 1.2 m

long dielectric waveguide cavity constructed of 22 mm ID pyrex tubing

terminated by two plane mirrors; a metal mirror with an axial entrance

hole for the focused pump radiation and a hybrid output mirror. The

hybrid mirror partially transmits the FIR energy, and totally reflects

the 9.6 ym C0_ pump energy. This is achieved by using an inductive

metal grid photolithographically deposited on a Si substrate to partially

transmit the FIR. A four-layer dielectric mirror is deposited atop this

grid, which reflects >98% throughout the CO laser bands. Using this

system, the Illinois group had already demonstrated an output at 496 ym

from CH F of 3 mW, with 26 mr divergence. That performance would be

entirely suitable for our electron density measurements. The pump

radiation frequency was stabilized at P(20) line center by active

peizoelectric length tuning of the CO cavity using a Lansing Model 80.214 \

lock-in stabilizer, which maintains line center frequency by actively

maximizing the P(20) output intensity.

We converted the Advanced Kinetics HCN laser envelope into a

dielectric waveguide cavity similar to the University of Illinois

configuration, and initiated the purchase of a Lansing lock-in stabilizer

and piezoelectric translator. Figure 9 is a sketch of the dielectric

waveguide cavity generator. Pump radiation enters through a 3 mm

axial hole in the left hand plane mirror. The hybrid mirror was

designed to reflect >98% at 9.6 ym, and to transmit ̂ 45% at 496 ym and

% at 1220 ym, over a 38 mm active diameter.
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Following initial alignment of this cavity, 1.6 mW of output

was obtained at 496 urn, using 50 watt of multimode pump power. The
/

length tuning spectrogram is shown in Fig. 10. Note that strong

oscillation now occurs over >10% of an incremental wavelength range,

rather than <2% as in the hole-coupled open cavity. Thus it proved

relatively easy to manually tune the cavity length to peak output.

With the FIR cavity length fixed at peak output, the output power was

found to vary cyclically between 1.6 mW and about 1/5 this power, with

a period of about three minutes, as shown in Fig. 11. This behavior

did not correlate with any observable changes in total pump power, mode

structure or pump beam alignment. The spectrum analyzer indicated that

the full pump output remained on the P(20) line. It was assumed that

the P(20) oscillation frequency was following the resonant frequency

of the CO laser cavity, which was varying cyclically with an amplitude

of 38 MHz due to thermal drift in the cavity length at the rate of about

10 pm per three minutes. This would produce a three minute oscillation

in the CH F excitation rate due to the changing overlap between pump

frequency and the CH_F absorption spectrum, as outlined in the

introduction. Similar behavior had been noted at the University of

Illinois (less seriously, because their CO laser was inherently more

stable), and had been solved with the Lansing stabilizer system. Clearly,

our time varying 496 ym output was not suitable for the planned electron

density measurements; the pump laser frequency would have to be

stabilized.

Shortly thereafter, the hybrid mirror apparently deteriorated.

We saw the peak 496 mm output decline gradually from the value shown to

essentially zero in the course of an afternoon, with no change in

measured pump laser parameters. Variation over the full range of FIR

cavity parameters, CH-F pressure, etc., could not restore any significant

FIR output. Subsequent examination of the output mirror showed a faint

cloudy spot covering exactly the area corresponding to the waveguide

diameter. The transmission and reflection of the mirror were measured

at 9.6 pm and 496 pm. The mirror was cleaned, first with detergent

solution, which had little effect, and then with chloroform followed by
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distilled water, which appeared to remove the cloudy spot. Following

cleaning, the FIR reflection and transmission values were unchanged.

The results are roughly consistent with the nominal design values, and

do not show any evidence of damage. Not being certain whether this

mirror was in fact functionally degraded, we arranged to obtain two

more hybrid mirrors from the University of Illinois. These had 333 and

500 mesh per inch, respectively (the original mirror was 500 mesh), and

active areas of 50 mm diameter, for possible use in a 48 mm waveguide

for 1220 ym generation.

During March, the Lansing stabilizer system was received and

installed. The output mirror of the CRL 41 pump laser was replaced

with a window, and the piezoelectric translator carrying the output

mirror was mounted externally, allowing enough space to insert a

circular iris to force oscillation in fundamental mode. In this

configuration, we could obtain 50 watt multimode at P(20), and 8 watt

in fundamental mode with the iris in place.

The Lansing stabilizer works as sketched in Fig. 12. xThe C0«

cavity output mirror is held by a piezoelectric assembly of twelve

elements in series. A 520 Hz AC voltage impressed across two elements

produces a 520 Hz cavity length excursion of up to 2 pm peak to peak.

As the cavity length passes through a resonance with the center frequency

of the spontaneous P(20) CO emission, the emitted power passes through

a maximum. The resulting 520 Hz modulation of the pyroelectric detector,

after passage through a tuned amplifier, is compared with the original

520 Hz signal. The difference in phase measures the magnitude and sense

of the piezoelectric extension necessary to produce a cavity length

resonance equal to the spontaneous P(20) emission frequency. This phase

difference produces an error signal which determines the rate of increase

(or decrease) of the DC voltage applied to the remaining ten piezoelectric

elements. Thus the DC value of piezoelectric extension maintains the

cavity length resonance at the P(20) center frequency. When the DC

extension reaches its' maximum of 12 ym, the 'DC voltage is automatically

reduced an amount equivalent to 1/2 wavelength, and the cavity length

is locked to the adjoining axial resonance.
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When the stabilizer system was applied to our CO laser, the

detector output resembled Fig. 13. The 520 Hz modulation in output

power, though well developed, was accompanied by longer variations at

120 Hz and at lower, ill-defined frequencies. The 120 Hz must derive

from gain changes due to discharge current supply instability. The source

of the lower frequency variation is not known. The stabilizer was not

able to determine a definite phase relationship between the 520 Hz output

modulation and the reference signal, and thus could not lock on to the

desired cavity length. We attempted to recondition the pump laser

current supply as well as possible in the time available, but were never

able to achieve frequency stabilization of the pump laser.

Early in May, the new hybrid mirrors were received, and the

500 mesh mirror was installed. The cavity was excited, first with 8 watt

of P(20) fundamental mode, and then with 50 watt of multimode power at

P(20). No 496 ym output could be obtained, at any CH.F pressure, or

through any refinement of cavity alignment. We then substituted the

original hybrid mirror, with equally negative results.

3.2 Planned Electron Density Measurements

3.2.1 In 10 x 10 x 10 cm COFFEE Discharge

The optical configuration for measuring electron densities

within the Westinghouse COFFEE discharge module is indicated schematically

in Fig. 14. The optical design was based on a 5 mW diffraction limited

output from the 22 mm aperture of the dielectric waveguide cavity.

Briefly, the FIR radiation is focused onto a 180 Hz mirrored chopper which

alternately directs the radiation into a test path or a reference path.

The test beam can be translated to pass through any desired location

within the discharge volume. The translating mirrors M6, M7 and M8 are

so mounted and articulated that the test beam path length remains

constant during translation, and no re-alignment is required. The test

and reference beams contain identical lenses, at identical distances.

The total beam path length, from dividing chopper to the center of the

COFFEE module, equals 84 cm for each beam. After exiting the test chamber,

21



the two beams are combined in a condensing cone, and pass to a liquid

He cooled InSb detector. The detector response is amplified through

a two channel lock-in amplifier, and recorded. In operation, the

variable wedge attenuator is adjusted so that test and reference beam

powers are equal at the detector, producing a null in the 180 Hz

difference signal; then the discharge current is ignited and stabilized

and the resulting electronic attenuation is read directly in the 180 Hz

channel. A 10 Hz chopper in front of the collector is used optionally.

When it is in use, the 10 Hz channel records beam power at the detector.

The 10 Hz chopper is normally left open to maintain maximum S/N ratios

in the difference channel.

With the lock-in amplifier gain held constant, the signal V

observed in the 10 Hz channel is proportional to the beam power at the

detector. If the null was exact, the signal V.on in the 180 Hz channel
loU

is exactly the power decrease at the detector due to electronic

attenuation over the 10 cm path length, times the same constant of

proportionality. Then a = 0.1 V-ior/V-in- To determine v, one simply

repeats the measurement at the other wavelength, thus obtaining «1 and cu.

Then a1 and a are substituted into Eqs. (1) and (2) to give n and v.

The critical requirement on this experiment design is to

minimize differences between the test and reference beam losses, which

might arise from uncontrollable changes in FIR mode structure, vagaries

in atmospheric attenuation, etc. The safest way to have done this would

have been to use oversize optics, which intercepted all of the beam at

all points along the path. This was impossible because of the required

spatial resolution, mechanical constraints, and the degree of diffraction

at these wavelengths. We chose the next best alternative, to keep the

two beams optically identical. Subject to this requirement, the beam

path was minimized, in order to maximize power received at the detector.

The resulting estimated losses from all causes imply detected powers of

I /360 at 496 ym and I /1200 at 1220 ym, where I is the power emitted

by the FIR generator. For 5 mW FIR output, the resulting S/N ratios
5 4

should be 3 x 10 at 496 ym and 1 x 10 at 1220 ym.
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The required IPX lens were procured, and detailed design of

all necessary parts was complete. Fabrication of parts continued until

mid-May, when it became apparent that the electron density measurements

would not be carried out.

3.2.2 Application to the High Power Laser Test Facility at NASA-Lewis

One goal of the contract was to apply the developed measure-

ment technique to measuring electron densities in the 1 m wide cavity

of the High Power Laser Test Facility at NASA-Lewis. Clearly, the

wavelengths chosen to obtain the required sensitivity over a 10 cm path,

cannot give 1 cm spatial resoltuion over a 1.5 m path. To obtain a

rough estimate of the spatial resolution possible over a 1.5 m path

length, using 496 pm radiation, we again apply the far field relationship

6 = 1.2 X/d. A lens of diameter d and focal length f is positioned to

focus the FIR beam at the center of a tube 1.5m long and of diameter D,

where D is the spatial resolution to be determined. Then geometric

optics requries f/d £ 75/D. The diameter of the focal spot is then

s = 2f6 = 2.4 Xf/d >, 9/D. That is, sD >. 9 cm . Requiring s $ D, the
2 2

spatial resolution is given by D £ 9 cm , implying D 2 3 cm. The

actual case of a Gaussian beam in the near field is more complicated,

but the above conclusion will be roughly correct.

To confine a beam to 1 cm diameter over a 1.5 m path length

requires a wavelength ^70 um. In this region of the spectrum, appropriate

FIR sources are rare. However, a 118 um emission from CH OH would provide

a good compromise between spatial resolution and electronic sensitivity.

This emission can be excited optically by CO laser with efficiency

comparable to CH-F. A 118 pm beam can be confined to about 1.4 cm

diameter over a 1.5 m path. The attenuation factor would be less than
2

for 496 pm by a factor of u> "» 18, but since the path length would be

15 times greater, the sensitivity to electron number density would be

almost as good as the values should in the earlier table.
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The available options for measuring electron number density

in the High Power Laser Test Facility are:

1. Use 496 urn technique over 1̂.5 m path length to

achieve spatial resolution to 3 cm.

2. Replace CH F with CH OH, and use 118 nm radiation,

to give 1.4 cm resolution, and 18 times poorer

sensitivity.

3. Study a 10 cm transverse section of the laser

volume, with better than 1 cm spatial resulition.

The first of these three options was pursued during this

contract.
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ĉfl
ex
^

ro CM
CM

CO
CO

0
in

O

co
ro

CO
m

CO

o
in

co

X X O
in

o
m

43
x_x

vO

CM

r-1

H

cj

H
en

CO

o
M
H

fn

O
U

Oi
u
3
a

rl

CO
O

C
OJ
ex
o

m o
m

CO
v^/

in
o

4-1

o
3
M

m

CM CM m XXX

v o c o c M O m X X X

*n
VD

in
vO

m
^o

CJ
H
4J
cfl
)_l
}_)
[jj

c«
1—4
0

CD
t?

1
1

cu c
o o
C iH
0) 4J
00 cfl
1-1 rH
CU rH
> -H

•H O
13 W

O
0
cfl >,
01 U

43 C
0)

CU 3
> cr

•H CU
CO to
CO <4-l
cu
o ex
X E
cu 3

ex
CO
3 0

ex
cu

« 3
•a -a

,

0

cu
i-i
3
00
•H
fe

^6
43
4-1

00
c
cu
J

4̂J
H
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Fig. 3 - Ratio of attenuation constants for probe radiations
at 1220 Mm

frequency (v/u,)

and 4% \im (u ) versus normalized collision
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Curve 687922-A

10

2
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0.3 10

Fig. 4- Uncertainty in measured value of n , using two

probe frequencies to eliminate v, as a function of u. The
horizontal bars indicate the expected range in v for the gas
mixture specified, u, x 1.5 x lo1? sec"1
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Curve 687927-A

(a)

0

1

0

_ C02 Emission
FWHM = 67 MHz

(h)

-J24 MHzU—
CH F abs.
FWHM = 67 MHz

Fig. 5 - Overlap (crosshatched) between CCL, P (20) emission

andCH3F, Q(12,2) absorption for; (a) -19 MHz offset of CCL

emission from line center and (b) + 19 MHz offset.
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Dwg. 6398A21

T™ I.,- .i PI*— Pyroelectrlc DetectorIPX Window^ LT J

, ^ "i Axial
P20or rf\ ^ H—^-""Translation

P32 in. *" >H \ \ MV~~^ ! Drive

/ i M1M2 ' M3 ',
ZnSe Window LIJ iH

U rk i. 4 m »| [
CH3FOutJ 'scm ' I—CH3F in

Fig. 7 - Open, hole-coupled FIR cavity. Ml is plane with 5.5 mm
(projected) hole. M2 is 7.5 cm dia. with 4 mm dia. hole and
r = 4 m. M3 is a 7.5 cm dia. plane mirror.
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Curve 687926-A

1 0.4

CD

Q.

'E
LU

0
J_ 1 J 1

1

1 | al

0 247 494 741
Change in Cavity Length, urn

Fig. 8 - Emitted power at 496 |im versus cavity length.
Recorder time constant equivalent to 1.2|Jim of scan.
Cavity configuration of Fig. 7.
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Dwq. 6398A20

A- 1
\
\
\

C02 Laser

P(20) or P(32)

\
xy I Ml 22 mm Pyrex

1.2m

Cavity Length
Scan

Fig. 9- Dielectric waveguide cavity FIR generator. Ml is a
plane mirror with a 3 mm diam. hole. M2 is a hybrid
mirror transmitting ~ 10% at 1220 jam, or -28% at 496 |Jm,
and reflecting >98% at 9.6 |Jim.
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Curve 687923-A

1.6

OL
*—'

O

f o
FIR Cavity Length

Fig. 10- Cavity length tuning spectrogram of 4% urn
output from dielectric waveguide cavity sketched in
Fig. 9.
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Curve 687924-A
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20

Fig. H — Temporal variation of 496 lam output
with all controlled parameters held constant
for cavity of Fig. 9.
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Curve 687925-A

520 Hz
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'Hz L
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Time (ms)

Fig. 13 - Observed modulation of C0? output

power with 520 Hz cavity length modulation at
maximum.
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