
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 

https://ntrs.nasa.gov/search.jsp?R=19770015638 2020-03-22T09:18:13+00:00Z



I iv	
_

JPL PUBLICATION 77-7

^^	 y

Transformations From an Oblate
Spheroid to a Plane and Vice
Versa —The Equations Used in
the Cartographic Projection
Program MAP2

F
^aaSi'Co-1^^ti5)	 IBAIl kctrlilCDs FrCt 1A 	 N77-Zi5E2
CJ:id11 sF11EC1l Z( 1 fill' )^L VICt YiE_I:
ZBF icu;7ICLS C:.ft 1D 2EF LA11CGEAFEIC
ErCJFC11Cb iF(CFit rA[i I'-Et 11C=U1:1C0	 DLcI as
tat.)	 c: L tC 1C;/!1 AC1	 CsCI CEE G3/43	 15144

11
National Aeronautics andC^%'110
Space Administration

Jet Propulsion Laboratory 	 o f NA N " 'A
California Institute of Technology
Pasadena, California 91103 r `tGf 6ZbZ^-^'^ : '



s

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No.	 77-7 T2. Government Accessions No. 3. Recipient's Catalog No.

4. title and Subtitle 5. Report Date
TRANSFORMATIONS FROM AN OBLATE SPHEROID TO A February 151, 1977

6. Performing Organization CodePLANE AND VICE VERSA -- THE EQUATIONS USED IN
THE CARTOGRAPHIC PROJECTION PROGRAM MpP2

7. Authors)	 Dr.nis A. Elliott, Arnold A. Schwartz 8. Performing Or3^sization Report No.

9. Performing Organization Name and Address 10. Work Unit No.
JET PROPULSION LABORATORY

11. Contract or Grant No.California Institute of Technology
4800 Oak Grove Drive NAS 7-100

13. Type of Report and Period CoveredPasadena, California 91103

JPL Publication
12. Sponsoring Agency Name and Address

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

This paper discusses the relationships between the coordinates of a point
on the surface of an oblate spheroid and the coordinates of the projection
of that point in several common map projections.	 Since several of the pro-
jections are conformal, some background material is presented which summarizes
the theory of conformally mapping an oblate spheroid to the plane. 	 Then, for
each projection considered, the equations which map the spheroid to the plane
and their inverses are given.

17. Key Words (Selected by Author(s)) 18. Distribution Statement
Theoretical Mathematics Unclassified -- Unlimited
Space Sciences ( General)
Lunar and Planetary Exploration

(Advanced)

19. Security Classif. 	 (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price

Unclassified Unclassified 24



iii

77-7

PREFACE

The work described in this report was conducted
in the Image Processing Laboratory of the Earth and
Space Sciences Division of the Jet Propulsion Laboratory.



__T

77-7

CONTENTS

I. Introduction and Basic Definitions 	 ..................... 1

II. Conformal Mapping From the Spheroid to the Plane	 ......... 6

III. Polar Orthographic	 ............................... 10

A.	 Direct Equations	 ............................. 10
• B.	 Inverse Equations	 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

IV. Oblique Orthographic	 .............................. 11

A.	 Direct Equations	 ................. .... ........ 11
B.	 Inverse Equations	 ... ............. .... ........ 13

V. Polar Stereographic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

A.	 Direct Equations	 ........ .. . . . . . . . . . . . . . . . . . . . 16
B.	 Inverse Equations	 ....... ......... .... ........ 17

VI. Oblique Stereographic 	 ............................. 17

A.	 Direct Equations	 . ..... ...... . . . . . . . . . .. ...... 17
B.	 Inverse Equations	 ..... .. .... ......... .. ...... 18

VII. Two-Standard Lambert Conformal Conic Projection 	 . . . . . . . . . 21

A.	 Direct Equations	 . . . . . . .. .. .. ..... .. .. .. ...... 21
B.	 Inverse Equations	 ............................ 22

VIII. The Mercator Projection	 . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

A.	 Direct Equations 	 ...... .. .. .. ....... .. .. .. .... 23
B.	 Inverse Equations	 ............................ 23

References	 .......	 0	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 24

FIGURES

1.	 Geodetic vs Geocentric Latitude .. .. .. ..... .. .. .. .. 3
2.	 The North Angle ^	 ............................ 5
3.	 Oblique Orthographic Projection on the Spheroid	 ....... 11
4.	 Oblique Stereographic Projection of a S phere .. .. .. .. .. 18

"WEDING PAGE 
BLANK N,)T FIB

v



^ ^	 I	 I	 l _ T 1-I -^ ---1--

Ob. go

77-7

ABSTRACT

This paper discusses the relationships between the
coordinates of a point on the surface of an oblate spheroid and
the coordinates of the projection of that point in several common
map projections. Since several of the projections are conformal,
some background material is presented which summarizes the
theory of conformally mapping an oblate spheroid to the plane.
Then, for eacz projection considered, the equations which map
the spheroid to the plane and their inverses are given
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I. INTRODUCTION AND BASIC DEFINITIONS

The map projection program MAP2 requires the equations relating
line and sample in some standard map projection to latitude and longitude
on the surface of planet. The program must go in both directions; that is,
given latitude and longitude it must be able to determine line and sample and
also given line and sample it must be able to determine latitude and longi-
tude. Equations for line and sample for many different projections from a
sphere to a plane abound in the literature. The inverse equations are hard
to find and in some cases are not easy to obtain via algebraic manipulation of
the direct (line-sample from latitude-longitude) set. Equations in either
direction for projections from the oblate spheroid to the plane are also rare
in the literature.

Reference 1 contains the equations in the inverse direction (obtain
latitude-longitude from line-sample) as they were used by MAP2 up until
recently. However, those equations are valid only for projections from a
sphere, except for the orthographic projection which properly handles the
spheroidal case. Also Reference 1 contains no direct equations for any
projection. The purpose of this document is to bring together in one place
the twelve sets of equations currently used by MAP2. These are the equa-
tions for the six projections currently implemented: Polar Orthographic,
Oblique Orthographic, Polar Stereographic, Oblique Stereographic, Two-
Standard Lambert Conformal Conic, and Mercator projections. Equations
for both directions are included. The equations are exactly correct for the
spheroidal case. Only the inverse equations (latitude-longitude from line-
sample) for the orthographic are identical to those in Reference 1. All the
other sets are either not in the reference (all direct equations), or have
been extended to correctly account for obla.teness. In addition, for the
oblique orthographic, the technique given in Reference 1 for the determination
of which of two solutions to a quadratic equation is the desired one has been
modified. The old technique failed if the pole appeared in the output
picture.

Before the equations are presented, some basic definitions and
standard notation will be given:

1
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Equation of a sphere of radius R:

X2 Y 2 Z2R2+R2+R2=1

A standard three-dimensional Cartesian coordinate system is fre-
quently used throughout this document. Its origin is at the center of the
planet. Its +z-axis points to the north pole and its +x-axis points to the
prime meridian. In such a system the equation of an oblate spheroid of
equatorial radius Req and polar radius RP is:

X 2 	Y2	 Z2
—7— +--2 +___T= 1

eq	 eq	 P

Throughout this discussion west longitudes will be used. East longi-
tudes are more natural but for historical reasons MAP2 deals in west
longitudes.

Latitude can be defined in several ways and on a sphere these defini-
tions are all equivalent. On the spheroid, however, they are not. The two
most commonly used latitudes are geocentric and geodetic. Geocentric is
defined to be the angle at the center of the planet between the plane of the
equator and the line to the point of interest. Geodetic latitude is 'che angle
between the plane of the equator and the local normal to the surface of the
spheroid at the point of interest. For clarity. west longitude will always
be denoted k; geocentric latitude 8; and geodetic latitude 4. MAP2 assumes
that geocentric latitude is always desired. That is, in the direct mode west
_ongitude and geocentric latitude are supplied and line and sample are desired.
In the inverse mode line and sample are given and we are asked to compute
west longitude and geocentric latitude. However, geodetic latitude and another
type of latitude, called conformal, will frequently be used during intermediate
calculations. Figure 1 shows the relationship between geocentric and geo-
detic latitude. Conformal latitude is discussed in Section II. It has no obvious
geometrical significance on the spheroid.

(1)

(2)

2
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Figure 1. Geodetic vs Geocentric Latitude

It i t easy to compute 0 from ¢ or vice versa:

R2
^ ( = 2 -a rctan - -^ cot 8	 (3)

R
e 

R2 n118 I	 arctan - Ri cot ( 1 $ 1 - 2 J

eq

sign of ^ = sign of 0 .

If 0 = 0, then 0 = 0. If 0 = n/2, 0 = n/2. For the remainder of this
document angles will be specified strictly in radians.

Two radii are of importance at an arbitrary poinr on a spheroid. One,
which will be called R, is the distance from the center of the planet to the
point.

R(0) =	 R  Reg	 (4)
R2 cos t 0 + RZ q sin 0

3
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The other, which shall be called N, is the local radius of curvature
of the surface in the direction perpendicular to the local longitude meridian.

R2
N =	 eq	 (5)

TRY--Y 2 sin 2eqcos	 + R

Note that geocentric latitude enters into the equation for R, whereas geodetic	 ..o

latitude is used in the equation for N. The vector from the center of the
planet to a point at ( A, 0 ) in our standard 3-D system is:

X = R(0) COs X Cos 0

Y = - R (0) sin x cos 0	 (6)

Z = R(0) sin 0

The minus sign in the equation for Y is due to our use of west
longitudes.

Whenever a radius, be it RP, Req, R(0), or N((^ ), appears in an
equation involving the output (projected) image, it will be assumed to be in
units of pixels, not kilometers. If F is the scale at the equator (Mercator),
standard parallels ( Lambert), or center of projection ( Orthographic and
Stereographic), in kilometers per pixel, then

R (pixels) = R (km)/F.	 (7)

The 2-dimensional system used to describe the projection plane follows
MAP2 1 s and IPL's conventions. Its origin is at line 0, sample 0. Its +x-axis points
to increasing sample ( right); its +z-axis points toward increasing line ( down).

In all projections some longitude will have special significance. In
Oblique Orthographic and Stereographic it is the longitude of the center of
projection. In the polar projections it is the longitude which points up
(decreasing line) as seen at the projection of the pole in the projection plane.
In the Lambert it is the longitude of the central meridian (which projects to
a vertical line and is the only such longitude). In the Mercator it is simply

4



In all cases the special longitude will be denoted X 0. In the oblique pro-
jections the latitude of the center of projection is 00 (or 40 for geodetic).
In addition, the oblique projections have associated with them an angle,
denoted +, which is the angle in the projection plane of north, measured at
the center of projection clockwise from up (See Figure 2).

-Z

+X

Figure 2. The North Angle ^

In each projection there is some special point whose projected coor-
dinates are XC, ZC ( sample, line respectively). For the oblique projections
the special point is the center of projection, so (X 09 80) projects to (XC,
ZC). For the Lambert and the polar projections the special point is the one
(the only one) pole which is visible on the projection. These projections
have associated with them a varia ble denoted by CAS.

CAS _ +1 if visible pole is north pole
(8)

CAS = -1 if visible pole is south pole

For the Mercator projection the special point is the point on the
equator at longitude X 0. Thus the longitude X0 will project to sample XC,
and the equator will project to line ZC. The various projections are
characterized by:

a) Polar Orthographic and Polar Stereographic: F, x 0, CAS,
XC, ZC.

b) Oblique Orthographic and Stereographic: F, X01' 8 0, 4+, XC, ZC.

5
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C) Lambert: © 1 , 8 2 (latitudes of standard parallels), F, XC, ZC,

X 0 (CAS is determined by 8 1 and 9 2 .. , the visible pole has the

same sign latitude as 8 1 and 82).

d)	 Mercator : X0, F, ZC, XC

For each projection the characterizing parameters are assumed to be
known in advance. In MAPZ they are either specified as parameters or,
if defaulted, Are pre-computed by special subroutines which set the param-
eters in order to center the input picture in the output picture and fill as much
of the output as possible without loss of data beyond the boundaries of the
output frame. Where applicable, %P is determined by minimizing the rotation
between input and output frames. In fact, it is only for determination of
default values of the characterizing parameters that MAPZ needs the direct
equations at all.

All of the currently implemented projections except Orthographic are
conformal projections. In order to preserve conformality when the object
is flattened, a general theory of conformal mapping must be used. Section II
summarizes the important points of this theory. The results of Section II
are used repeatedly throughout subsequent sections. Throughout these sections,

AX = X - X U, AX = X - XC, and OZ = Z - ZC.

II. CONFORMAL MAPPING FROM THE SPHEROID TO THE PLANE

While it is theoretically possible to conformally project a spheroid
directly to a plane, the equations are much simpler (especially in the inverse
direct on) if the spheroid is first conformally projected onto a sphere. Then
the intermediate sphere is projected onto the plane in the usual way. The
"double" projections so produced differ from the direct projections only to
terms of fourth order or higher of c , where

R2

Req

6



77-7

For Mare this means "accuracy" to one part in 10 4 if you insist that
the direct method is better. Since both methods preserve conformality
exactly, there seems to be no reason to prefer-the direct method, and the
double projection via an intermediate sphere is used in MAP2.

In the first projection, from the spheroid to the sphere, Reference 2
shows that the transformation is given by:

X' _ X
(10)

$ I = 0 ' = X,

where the primed coordinates refer to the intermediate sphere (thus the
equality between geocentric and geodetic latitudes).

Thus the first projection preserves longitude, and latitude on the
sphere equals X, the so-called conformal latitude on the spheroid (this is the
third type of latitude mentioned in the previous section). Reference 2 gives
the relationship between conformal and geodetic latitudes as:

\	 e/2

tan (4 + 2 1 = tan (4 + 2 )) ( 1 + E sin 7)	 (11)

where a is given by Eq. 9. Throughout the rest of this document the Greek
letter CHI (X) is consistently used for conformal latitude. Obviously,
if ^ is known , X is easy to compute. If the right side of Eq. 11 is denoted
by Q, then:

X = 2 [arctan Q - 4]	 (12)

2
sin 

	

	 = Q - 1	 (13)
Q2 + 1

cosX =	 20	 (14)
^;	 Q2 + 1

k

7



(18)
1+E sir.
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Q2 = tan (4 +

f

77-7

Unfortunately the inverse problem, obtaining $ given X, is not so
simple. The equation is transcendental and cannot be solved explicitly for
^. MAP2 solves the problem numerically via a successive approximation
technique as follows:

First rearrange Eq. , 11:

tan (4+ 2) =	 tan ( 4 ' 2 )) l 1 - E six }	 (I5)

As a first guess, replace all appearances of 40 or. the right with X. Thus

Q= tan ((+X1 1+E sin X}E/2
1	 l4	 2/(1 -E sin X!

n1 = 2(arctan 
Ql - 4

Now use 40 1 as a guess for 0 and compute

(lb)

(17)

0'%- 1

2 = 2(arctan Q	 n2 - 4

Repeat this process until I
(o i+1 - 10 i ! `- some tolerance value, which

MAP2 has currently set at 10 -7
 radians. The process converges extremely

rapidly - on Mars, where E = 0. 1, 4 iterations are almost always sufficient.

An alternative which will converge even faster in some cases is to use
a Newton's method technique. This seems especially attractive since the
derivative cif the right side of Equation 11 has a surprisingly simple form,
namely

	

d C 
tan (w+ z )]	 (1 - ^) sec .

L	 J	 1 - E sin

(19)

(20)

8
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However, sad practical experience shows that this method fails near
the pole due to the fact that the second derivative of tan (n/4 + X/2) is
approximately sec 0 times the first derivative. Near w/2, sec ♦ approaches
infinity so the basic assumption of Newton's method, that the function is
approximately linear, fails. The successive approximation technique of
Eqs. 15-19 seems stable at all latitudes.

The generally inferior Newton's method technique is mentioned here
only because I%IAP2 actually uses it in the Lambert conformal conic pro-
jection. The code for this projection was the first to be written, before the
method's drawbacks were discovered. Since this projection is rarely
applied near the pole, it was not felt desirable to modify an already working
code.

To summarize, all conformal projections from a spheroid are easily
handled by using the standard spherical equations with two easily imple-
mented modifications:

1) Replace all latitudes in the spherical equations with X, the
conformal latitude on the spheroid.

2) For the radius of the sphere in the equations use the radius
of the intermediate sphere. This radius, Rint' is given in
Reference 2 as

N cos
0	 0	 21Rint - cos X0	 ( )

where the zero subscript refers to the center of projection.

Equation 21 breaks down at $ = 0 = x = 0 and at $ = 0 = X = n/2. So

A
	if = 0,	 Rint = Req	 (22)

	

n	 R 2
	 E /2

	

e	 1 + Eif $= 2 , R int - R 1 1- E

The remainder of this document is a description of the equations on a
projection by projection basis. For all except the orthographic, the

9
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techniques of this section make the problem conceptually simple, though
algebraically complex. For the orthographic projection, which is not con-
formal, Section II does not apply. But the simple geometrical definition of
the orthographic projection saves us and allows the problem to be solved.

III. POLAR ORTHOGRAPHIC

A. Direct Equations

On the spheroid we define the orthographic projection to be one of true
perspective. . he plane of the projection is tangent to the spheroid at
the center of projection. The perspective point is at infinity, so the
perspective lines are all parallel to each other, perpendicular to the plane
of projectic ,s, and thus parallel to the local surface normal at the center of
projection.

The oblateness of the spheroid hardly raises any complications in the
polar case, although it causes considerable trouble in the oblique case. In
the polar case longitude meridians are straight lines radiating from the pole
at their true orientation. Latitude lines are circles having their true
radius. Thus we have

X = R(0) cos 0 sin dA * CAS + XC
(23)

Z = - R(0) cos 0 cos AX + ZC

B. Inverse Equations

The above equations are easily inverted algebraically to produce

RAD =	 ,&X2 + &Z 2	(24)

^.. = arccos (- OZ	
(25) RAD

10
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X= CAS *,&X -A0

2	 2

8 = CAS * arctan	 RP2 - 2P	 (26)
RAD Req

If the quantity under the radical is negative, the point specified is not
on the planet. Remember that the orthographic projection does not fill the
projection plane.

IV. OBLIQUE ORTHOGRAPHIC

A.	 Direct Equations

Consider Figure 3.

Figure 3. Oblique Orthographic Projection on the Spheroid

First compute the vector from the planet center to the point of interest in
our standard 3-D coordinate system.

X = R(6) cos A cos 6

Y = - R(A) sin A cos 6 	 (27)

Z = R(8) sin 0

11
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Next rotate these coordinates to a system whose z-axis is parallel
to the perspective lines, andwhose +x-axis points south (in the projection
plane, which is now parallel to the x-y plane). It should be clear that in
the new coordinate system the x and y coordinates are directly related to
line and sample in the projection plane. The required rotation is a double
one. First rotate by - X0 about the z-axis; then by Tr j2 - 4 1 0  about the new
y-axis. Note that the geodetic latitude of the center of projection is involved
here. Thus we obtain

X' sin 00 cos X0 - sin $0 sin X0 - cos $0	 X

Y' =	 sin X0	 cos x0	 0	 Y	 (28)

Z' cos ^ 0 cos X0 - cos ^ 0 sin X0	 sin dp 0	 Z

Multiplying out Eq. 28, substituting Eq. 27 into the result, ignoring Z',
algebraically simplifying, and renaming variables to conform more closely
to the MAP2 2-D standard X - Z system, results in

X" = - R(0) cos 0 sin &X

Z" = R(0) sin o 0 cos 8 cos AX - cos 0 0 sin 01
	 (29)

The double primes in (29) are there as reminders that we have not yet
reached our standard system in which X points to increasing sample, Z to
increasing line, with the center at (0, 0). Due to the rotation in (28), Z"
points south, not to increasing line. Also the origin is not (0, 0) or even the
center of projection, but instead is the intersection of the projection plane
and the perspective line passing through the center of the planet (point Q
in Fig. 3). First, translate so that the center of projection is at the origin:

X' = X"

(30)
Z' = Z" - R(0 0 ) sin (^ 0 - 00)

12
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Finally, rotate about an axis perpendicular to the projection plane by

-^+ and translate to (0, 0) as origin:

X = X' cos - Z' sin + XC
(31)

Z = X' sin +Z'cos +ZC

Equations 29, 30, and 31 suffice to compute X and Z for any specified
(X, @) in the oblique orthographic projection.

B.	 Inverse Equations

These equations are presented here in cookbook style for the sake of
completeness. They were originally derived by Arnie Schwarz and are
described in detail in Reference 1. The basic plan is to determine, using
analytic geometry, the point of intersection between the spheroid and the
perspective line passing through the given point on the plane of projection.

cost @ 0	sing 
@0

R 

2	 ^
S2 = @ 0 + arccos	 eq	 RP

	 1132)
cos t @0 sing 

@0
R4 	 + R4

	

eq	 P

	

L = @0 - Q	 (33)

S = + arctan -ax	 (Remember, 4 = north angle) 	 (34)

DD = 4 (,&X) 2 + (OZ) 2	(35)

13



77-7

Al = - sin b sin X 0 - cos b cos X0 sin 0

B1 = - sin b cos X0 + cos b sin X0 sin Q

Cl = cos b cos Q

D1 = - DD sin 2b + R(8 0 ) cos b sin Q cos 00 - R(80 ) sin 0 0 cos 0 cos b

-DD cos 2b cos 2 a0 sin 00 
sin 0 - DD cos t S cos2 Q	

(3b)
-DD sin 2 b Cos 2 b sing x0

A2 = - cos b sin 
1`0 

cos L + sin b sin 00 cos X0

B2 = - cos b cos 
X0 

cos L - ain b sin 0 0 sin X0

C2 = - cos 0 0 sin b

a = A2 • Cl - Al C2

R = A2 • B1 - Al B2

Y = B1 C2 - B2 Cl

C = - Y

G2 = R2 2

DRPSQ = R P y 2

Z1 = DRPSQ (a2 + y 2 ) + G2 • R 2

Kl = a • C2 - D1 • DRPSQ + 0 • B2 - D1 - G2
Z1

K2 = Z1

(37)

(38)

(39)

14
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K3 = [2c, • C2	 B2 • Re2q - (C2)2 DRPSQ - (B2) 2G2 - a2(B2)2Re2q

^ 2 (C2) 2R 2 (D1) 2 + G2 • DRPSQ+ R 2 (DRPSQ)a2
eq]	 eq

+ R22 P2 G2
eq

At this point check to see if K3 < 0. If it is, the point originally
specified is off the planet - there is no intersection between the spheroid
and the perspective line.

X1 = K1 + K2 VIKT

X2 = K1 - K2 K3

Yl = -D1 • C2 + a • X1
Y

(40)

Y2 = -D1 • C2 + a • X2
Y

Z1 = -B2 • D1 +	 X1
E

Z2 = -B2 • D1 + Q X2
E

You now have two vectors, (X1, Y 1, Z 1) and X2, Y2, Z2), which are
the lines from the planet center to the two points of intersection bemeen
the spheroid and the perspective line, expressed in our standard 3-D
coordinate system. Call the vectors V 1 and V2 respectively.

Next compute the vector P from the planet center to the center of
projection

P  = R(0 0 ) cos 0 0 Cos X0

15
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P  = - R (00 ) cos 00 sin X0	 (41)

P  = R (00 ) sin 00

Choose the vector from V 1 and V 2 which minimizes the quantity

I
V,  - P 

I 
and I V 2 - fl. Call the winning vector's components X, Y, and Z.

arctan (X)
X

8 = arctan	 Z

X2

V. POLAR STEREOGRAPHIC

A.	 Direct Equations

The equations in Subsection A are taken directly from Reference 3,
which used the principles of Section H. First compute p, the length in
pixels on the projection of the line from the pole to the point of interest.

p = 2 R(1 + E ) -
( 1-E ) / 2 ( l _ E )-( 1 +F) /2 tan(4 CA2''`Oeq 

E/2

1 + c sin (CAS" O)	
(43)1 - E sin (CAS-, )

X = CAS • p sin AX + XC
(44)

Z = -p• cosaX+ZC

(42)

16
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B.	 Inverse Equations

These equations follow from simple algebraic manipulation of the
equations of Subsection A, above.

First, compute

C = 2 Req ( 1 + E) -(1- E )/2 (I - E)-(1+s)/2	
(45)

and

P =	 (4,X) 2
 + (& Z)2	 (46)

Then

CAS*AX= arctan	 -OZ	 , + X0
	

(47)

CAS [ 4 arctan t C ^]	 (4 8)

Use the equations of Sections I and II to obtain 0 and 0 from X.

VI. OBLIQUE STEREOGRAPHIC

A.	 Direct Equations

The spherical equations were taken from Reference 3 and modified

according to the principles of Section II. First compute line and sample in a

coordinate Eystem centered at the center of projection and which has north

at the top.

- 2Rint cos X sin AX
X' - ( 4 9)1 +sin XD sin X t cos X D cos X cos OX

17
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- Z Rint 
Icoo X 0 sin X - sin X 0 cos X Cos Ax

Z' 1 + sin X0 sin X + cos X0 cos X cos OX

Now rotate so north is at the desired angle and translate to the usual
or ig in:

X = X' cos - Z' sin 4; + XC	 (50)

Z = X' sin 41 + Z' cos 1̂  + ZC

B.	 Inverse Equations

Direct algebraic inversion of the equations of Subsection A is very dif-
ficult so explicit advantage of the existence of the intermediate sphere is taken.
Analytic geometry is used to find the intersection of the given perspective line
of interest and the intermediate sphere. The latitude of the point of inter-
section on the sphere is the conformal latitude of the point of interest on the
spheroid. The method works because the stereographic projection from a
sphere is a true perspective projection with plane of projection tangent to the
sphere and perspective point on the opposite side of the sphere from the center
of projection, at coordinates (X 0 + Tr, - X 0 ). See Figure 4.

Figure 4. Oblique Stereographic Projection of a Sphere
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Phase 1 — Translate the given projection plane coordinates to a new
origin at (XC, ZC) and rotate so north is at the top (X' points east, Z' south)
from the origin. For ease in conversion to our standard 3-D system, the Z'
axis will be renamed Y'. This rotation is by +4J.

X' = 4X cos ^+ + AZ sin ►V
(51)

Y' = - 4X sin + AZ cos

Phase 2 — Now consider X', Y' to be two of thethree coordinates in a
non-standard 3-dimensional system whose origin is the center of the inter-
mediate sphere. From the definition of X' and Y' above, and in order to
obtain a right-handed system, the Z' axis of this system points to the
anticenter of projection (see Figure 4).

Thus, the coordinates of the projection of the point of interest in this
new system are:

Xl = X'

Y l = Y'	 (52)

Z 1	 - Rint

Similarly the coordinates of the anti-C. P. are:

X 2 = 0

Y 2 = 0	 (53)

Z 2 = + Rint

We wish to find the intersection of the perspective line of interest,
which passes through (X i , Y l , Z 1 ) and (X 2 , Y Z , Z 2 ), and the intermediate
sphere. Equation of the sphere is

X2	Y2	 Z2
2	

+	
2	

+	
2	

= 1	 (54)

R int	 R int	 R int
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	 1

The equation of a line in 3-space is

X-X l 	 Y-Yl	 Z- Z1

or, in our case,

X - X'	 Y - Y,	 Z + Rant
	

.M

- — r - Tl— - 2 Rint	
(56)

There are two intersections of the perspective line and the sphere.

One is just the anti-C. P. and is not of interest. Simple but tedious algebra

shows that the coordinates of the interesting intersection are:

i X12 + Y12 - 4 It nt

Z = Rint 
X12 +Y12+4Rint

X = 2 R i	 (Z + Rint) + X'
	 (57)

nt

Y - 2R i'
	(Z+Rint)+Y1
nt

Phase 3 —Rotate the coordinates just foimd to our standard 3-D sys-

tem with +z-axis pointing to the north pole. This involves first a rotation

about the x-axis by n/2 + X00 then about the new z-axis by X 0 - n/2. Thus

X F. = X sin % + Y sin X0 cos X 0 - Z cos X 0 cos X0

Y F, = X cos X 0 - Y sin X 0 sin X 0 t Z cos X 0 sin X 0	(58)

Z F, = - Y cos X 0 - Z sin X0
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(XF., YF, ZF.) are our desired coordinates, and the latitude ar.d
longitude follow immediately.

-YFarctan ^
F

(59)

X = aresin ZF
. Riri;t

As usual, 10 and 0 must then be computed from X. To summarize, the
given X and Z plus the characterizing parameters of the projection allow
Eq. 51 to be used to determine X 1 , Y 1 . Tiien Eq. 57 determines X, Y, Z.
Equation 58 determines X F„ Y F„ Z. and finally Eq. 59 gives X and X.

VII. TWO-STANDARD LAMBERT CONFORMAL CONIC PROJECTION

A.	 Direct Equations

These equations come directly from Ref. 3. First. compute K, the

constant of the cone, as follows:

K =

L j I	 .in (CAS` 0 i ) ) f
stn .A I

In t N I con ♦ I ) . In CN, cos 0

b, 11l	 1 + sin ((CAS E ' " Z	
g - 

CAS' *z
tan 1* CAS-'

_ __^
JJ - in 1 - •in 1 A z ) tan=  ^--^

(60)

+	 where subscripts 1 and 2 refer to the latitudes of the standard parallels.

Next, compute C, the distance in pixels on the projection from the

visible pole' to any point on the equator.

N
l 

cos '0
C=	

E 2 1	

K	
{bl)

1 + E sin (CAS* 0 1 )	 ^ CAS' 
1K	

1- E sin (CAS' 1)	
tan 4 -	 2
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Next, get p = d' fan-_ e on projection from visible pole to point of

interest:

K

C	 1 + E sin CAS*^ EI2 
tan 7 - 

CAS =¢	 (62)P	 1 -E sin( A	 4	 2[(

Finally:

X= -p sin ( K- AX) +XC
(63)

Z = CAS* p cos (K - A X) + ZC

B.	 Inverse Equations

These follow from direct algebraic manipulation of the equations of
Subsection A.

	

P	 (aX) + (AZ ) 2 .	 (64)

If p = 0, you are at the visible pole.

Check to see if

arctan	 a X

	

Z =	 ( CAS*AZ /	 (65)K

has an absolute value greater than n.

If it does, the point of interest is not on the planet (the Lambert pro-
jection does not fill the plane). If it does not, then

x= k0- Z
(66)

cot	
+ CASE'X	

11K

(4	 2	 ^C]

Compute 0 from Y in the usual way.

M

22



77_7

VIII. THE MERCATOR PROJECTION

A. Direct Equations

These were obtained from Reference 3.

X = - R • O X + XCeq

E/2
r

Z = - Req In I (1
1	 sin

 + E Sin ;F) 	 tan r: + Z J + ZC

B. Inverse Equations

These are obtained by inversion of Eq. 67:

-RX +XO
eq

\	 -OZ/R
tan(4 +2 1 = e	 eq

Compute 0 from X in the usual way.

Care must be taken in the Mercator projection to insure that the pro-
jection, which does not fill the plane, is not accidentally repeated indefinitely
by ignoring this fact. The absolute value of oX must never be allowed to
exceed n. Thus in Eq. 67, if I X - X 0   = J AX 1 is greater than ir, add or sub-
tract 27r to it to ensure that JAXI < n. In Eq. 68, if the quantity JAX I/Req
> n, the point specified is off the planet. If these precautions are taken,
the longitude X 0 becomes the central meridian, with exactly half the planet
on its left and half on its right. Alternatively, you could restrict AX to
the range - 27r s AX < 0 in Eq. 67, and have the off-planet criterion for
Eq. 68 be: XC = 1 at all times, OX < 0 or AX > 2n R eq. If this route is

(67)

(68)
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taken, k 0 becomes the longitude at the extreme left edge of the picture
(sample 1). This latter technique is used by MAP2.
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