
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 

https://ntrs.nasa.gov/search.jsp?R=19770015903 2020-03-22T09:14:32+00:00Z



r

,.	 JPL PUBLICATION 77-4

s l Parallel Compilation: A Design
and Its Application to SIMULA 67

	

1b1^i1 -CE -1_ -cc EC)	 FAblilki CCtillilicn:	 A	 r77-«647
-.Lt^1CD ADi Ii: illilcclIct IC SitC11 0 ILct

	

IFICFcIm.ci Iat.l	 4t F tC AC:.itf )C1
CiCI	 LUC ld!i

^	 G^/bl Mal

i

onal Aeronautics and
ce Administration MAY 1977

Propulsion
bof

oniI
Institu te 	 Technology ,	 Npgp gTl FAC C

	
t

ade na, California 91103 -'	 %lip a^'



JPL PUBLICATION 77-4

Parallel Compilation: A Design
and Its Application to SIMULA 67
Richard L. Schwartz

February 1, 1977

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91103



77-4

PREFACE

The work described in this report was performed by the

Telecommunications Science and Engineering Division of the

Jet Propulsion Laboratory.

ACKNOWLEDGMENT

I would like to thank Dr. Daniel M. Berry of the

University of California for his help in improving the

original version of this paper.

0F

iii



Contents

1. Introduction	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 1

2. A Definition of Parallel and Serial Compilation 	 .	 .	 . .	 .	 3

3. A Survey of Present Compilation Mechanisms .	 .	 .	 .	 .	 . .	 .	 4

3.1 Parallel Compilation in FORTRAN 	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 4

3.2 Parallel Compilation in PL/1 	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 7

3.3 Serial Compilation in ALGOL 68 	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 8

3.4 Serial Compilation in SIMULA 67 	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 16

4. Philosophy of Design for Parallel Compilation 	 .	 .	 .	 . .	 .	 21

5. The	 Proposal	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 22

5.1 A Module Definition	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 23

5.2 Module Communication 	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 24

5.3 The Module Compilation Phase 	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 31

5.4 The Pre-Linkage-Edit Phase 	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 34

6. An Assessment of the Proposal	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 36

7. Application to Other Languages	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 40

8. Remarks	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 40

Bibliography	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 41

v



77-4

PARALLEL COMPILATION:
A DESIGN

AND ITS APPLICATION
TO SIMULA 67

Abstract

This paper presents a design for a parallel compilation

facility for the SIMULA 67 programming language. The proposed

facility allows top-down, bottom-up, or parallel develo pment and

integration of program modules. An evaluation of the proposal

and a discussion of its applicability to other languages are

then given.

1.	 INTRODUCTION

Since the early days of FORTRAN, the need to s?gment large

computer programs has been recognized. 'hhenever large programs

are developed, it is necessary to have some means for

considering only small segments of a. program at one time,

whether by top-down programming, bottom-up programming or some

other method of problem confinement.

I

1



77-4

It has been shown to be beneficial to segment the program

into "modules" containing segments of the program with high

intraconnectivity and low interconnectivity ([SMC, Mey]). These

segments can then be compiled and tested separately.

Conceptually, each module can be thought of as a separate

program, which, given certain input, performs a certain task.

As understanding in the field of computer language design

progressed, the need for providing a reliable interface between

communicating modules was recognized ([Den,LuE] and others), and

attempts have since been made to provide a computer verified

module interface.

Various languages have implemented	 schemes for	 allowing

separate compilation. Each scheme has attempted to provide some

means of secure communication between modules.

The notions of parallel and serial separate compilation are

introduced in this paper to further distinguish between methods

of separate compilation. A discussion of the separate

compilation facilities found in FORTRAN, PL/1, ALGOL 68C, and

DEC-10 SIMULA 67 explores the problems with present approaches.

A design for a new parallel compilation facility for the

SIMULA 67 programming language is then presented as an

illustration of how the facility can be incorporated into

existing languages. SIMULA was chosen for illustration because

of its wide range of module definition and communication

concepts.	 An evaluation of the proposal, a discussion of its

2



applicability to other languages and some general remarks about

programining environments conclude the paper.

77 -4

This paper assumes some knowledge of the design and

implementation of the general class of procedure-oriented

algcirithmic languages. Some specific knowledge of SIMIULA 57 is

also helpful.

2.	 A DE;FINI`I'ION OF PARALLEL AND SERIAL COMPILATION

For the purpose of this paper, the notion of separate

compilation has been further classified into the notions of

serial and parallel compilation, with the following definitions:

Parallel Compilation:

The ability to compile program modules in any order, or in

parallel, with the module interface not being resolved at

compile-time. That is, no knowledge of the other program

modules need be present at compile time.

,erial Compilation:

The ability to compile program modules separately in a

particular partial ordering which allows the resolution of

the module interfaces at compile-time. That is, knowledge

of other program modules may be required for compilation of

3



77-4

an individual module.

3.	 A SURVEY OF PRESENT C014PILATIOA MECHANISMS

This section presents a short chronological survey of the

methods for separate compilation currently used in FORTRAN,

PL/1,ALGOL 68C, and DECsystem-16 SIb1ULA 67.

3.1 Parallel Compilation in FOxTRAN

Program modularization is achieved in ANS FORTRAN ([FORS)

through the use of external subroutines. The program is

structured by dividing it into a number of separately compiled

subroutines.	 These subroutine modules communicate by means of

formal subroutine parameters, and through COMMON data.	 All

parameters must be listed in the the subroutine heading, and may

be explicitly declared. The declarations are used only to

determine the size and displacement for the formal parameters in

order to compile code to access the parameters.

In FORTRAN there need not be an explicit declaration of an

external subroutine. Any call to a subroutine for which no

subroutine body can be found is assumed to be a reference to an

external subroutine. In the case where the name of an external

subroutine is passed as a parameter, there must be an explicit

EXTERNAL declaration.

a



77-4

Non-parameter data are transmitted to the external

subroutines through the use of the COMMON declaration. This

declares the usage of a block of data, labeled or unlabeled,

which may be referenced by other program modules. Each module

using the COMMON data must contain a COMMON declaration.

FORTRAN rules state that there must be identity in type for all

entities defined in the corresponding storage position from the

beginning of the COMMON block.

The following program illustrates one method of

communication between separately compiled program segments. The

dotted lines delimit a separately compiled segment.

---------------•-------------------
C MAIN PROGRAM
C THIS PROGRAM OPERATES ON A FILE OF INTEGERS

INTEGER IN,OUT,FILE(100),POINTR
COMMON/FILE/FILE(100),POINTR/
PTR=1
DO 20 I=1,160

READ(5,10)IN
20 CALL ADDFIL(IN)
10 FORMAT(I4)

END
---------------------------------

SUBROUTINE ADOFIL(ELEhI)
C THIS MUDULE ADDS AN INTEGER TO THE FILE

COMMON/FILE/FILE(160) ,P`i'tt/
INTEGER FILE(100),PTR,ELEN
FILE(PTR)=ELEM
PTR=PTR+1
RETURN

•
-------------------------

END	 a
------

The ANS FORTRAN definition requires that the type and order

of the parameters in a subroutine call exactly matcn that in the

subroutine declaration, and that the declarations for the the

5



0-

77-4

corresponding	 COMMOW storage positions in each module be

consistent.

since a parallel compilation mechanism is used, there can

be no checking of the module interface at compile-time. in

order to check the module interface it would therefore be

necessary to employ a type-checking linkage-editor, or to use a

pre-linkage-editor to do the type checking. Unfortunately, to

the author's knowledge, the linkage-editors used to bring

together FORTRAN modules do not have a type-checking capability,

and there is no ;Weans for checking the module interfaces. Post

linkayo-editors deal only with making the addresses of defining

occurrences known to each applied occurrence.

Thus, FORT" W has a primitive but effective method of

program segmentation and parallel compilation. Each segment of

the program can be develo ped separately, and later brought

together by the linkage-editor. with all im plementations known

to the author, there is no module interconnection verification

or type checking performed, although programs with erroneous

interfaces are rot included in the language.

These separate compilation decisions appear to be

consistent with the basic philosophy of FORTRAN and the usual

implementation of the language.

6

i



77-4

3.2 Parallel Compilation in PL/1

The parallel compilation mechanism in PL/1 ([IBM)) is

essentially the same as that used in FORTRAN. A module in PL/l

is a MAIN or an xternal procedure. A procedure must contain an

EXTERNAL ENTRY declaration for each external procedure it uses.

This EXTERNAL declaration contains the attributes of the

procedure (i.e., information from the procedure heading). This

declaration is used for checking the types of the parameters and

the returned value of calls to the external procedure, and for

genera.i• ing code for these calls.

The following program illustrates a multi-module program.

------------------------------
MAIN:PROCEDURE OPTIONS(MAIN);

/* THIS PROGRAM READS PAIRS OF INTEGERS X,Y
FROM THE INPUT STREAM AND OUTPUTS X MOD Y */

DCL MODULO EXTERNAL ENTRY(BIN FIXED,BIN FIXED)
RETURNS(BIN FIXED);

DCL (X,Y) BIN FIXED;
ON ENDFILE(SYSIN)STOP;
DO WHILE CI 'B) ;

GET LIST(X,Y) ;
PUT LIST(MODULO(X,Y));
END;

END MAIN;
-------------------------------

MODULO:PROCEDURE(X,Y)RETURNS(BIN FIXED);
DCL (X,Y)BIN FIXED;
DO WHILE (X>Y)

X=X-Y;
END;

RETURN(X);
END MODULO;

PL/l requires, and to the author's knowledge, never gets,

type checking of the nodule interface. while the language

specification states that the ENTRY declaration in the main

7



77-4

module must agree with the procedure declaration in the external

module, there is no verification of this condition. Thus, it

the number and/or type of parameters of the module interface do

not agree, the result will be undefined. Again as in FORTRAN,

the	 use	 of	 a	 parallel	 compilation	 facility requires

post-compilation interface checking. 	 Thus, in PL/l it is

possible to have parallel compilation, but with an implicit

warning of caveat programmus. 	 Unfortunately, this lack of

adequate interface error detection is consistent with the

overall lack of error checking in the widely available

implementations of the language (see [;4oW] for a PL/1 subset

with some nice error checking).

3.3 Serial Compilation in ALGOL 68

While ALGOL 68 ([vWil) has not yet adopted an official

modules facility at the time of writing this paper, various

modules facilities have been proposed and implemented.

ALGOL 68C ([BBW,KTU1), the ALGOL 69 compiler, developed at

Cambridge University in England, contains an ENVIRON mechanism

for serial compilation, allowing a module to be compiled in a

specified external environment. It is the ALGOL 68C facility

which will be briefly described (see [Cle) for a more complete

description) .

8

i



A module consists of module text and an environment, called

an environ, in which the compilation takes place.

A module is invoked by the use of an ENVIRON statement.

The ENVIRON statement is used to declare the block of code which

is to be separately compiled. The block must be in what ALGOL

68 calls a "strong position" and be "voided". This statement

causes all declarations visible at that point to be made

avai' : e to the invoked module (to be compiled later) in the

form .,f an environ table.

Each module contains a USING statement which specifies the

environment in which the module should be compiled. For the

main module, the standard environment containing all standard

declarations is specified. For a submodule, the environment

specified is that which surrounded the point of invocation (by

the corresponding ENVIRON statement). In the implementation

this means that the file containing the environment information

generated by the corresponding ENVIRON statement is read in at

compile time, prior to parsing. All the declarations visible at

the point of the LNVIRON statement are now visible to the

module. Thus, it is as if the invoked ;nodule were compiled in

the program at the point of the invoking ENVIRON statement.

9
i



77-4

The following program should clarify what has been said.

--------------------------------
main
USING MACHINE FROM "STANDARD" # std env#
BEGIN

BOOL fill;
CHAR y;
INT x:=5;
INT result;
ENVIRON CHARS;
ENVIRON SIGMA;
print (result,x)
print (y)

END main
-------------------------------

sigma
USING SIGMA FROM "main" #atr file from "main" #
BEGIN

INT i;
result:=O;
FOR i:=1 TO x

DO
result:=result+i

OD;
ENVIRON PI

END sigma
-------------------------------

pi
USING PI FROM "sigma" # atr file "sigma"#
BEGIN

INT t:=result;
result:=O;
FOR i:=2 TO t

DO
result:=result*i

OD
x:=O;
y:=11z"

END pi
-------------------------------

chars
USING CHARS FROM "main" # air i ,-'&, e from "main" #
BEGIN

Y:="all
END

-------------------------------

The above program is comprised of the four modules "main",
I

"sigma", "pi", and "chars". The accessing relationshi p between

the modules, given by the ENVIRON and USINu statements, is

10



77-4

illustrated by the following graph, where a--♦•b means module a

accesses the external module b.

"main"

1/	 N ^ Nsigm	 chars

11 p i N

This interdependence has imposed a partial ordering on the

compilation sequence of the four modules. The module "main"

must be coml''ed before the modules " sigma" and " chars", while

the module "pi" must be compiled after the module "sigma". The

four modules must be serially compiled in any order such that:

"main"	 "sigma" , 11 main" < " chars", and " chars" < 11Pi/1

where a < b means a is compiled before b.

The execution of the above four modules is defined to be as

though the following program were run.

------------------------------

main
USING MACHINE FROM "STANDARD"
BEGIN

BOOL fill;
CHAR y;
INT x:=5;
INT result;
BEGIN
Y. Nam

END
BEGIN

INT i;
result:=0;
FOR is=1 TO x

DO
result:=result+i

OD
END
BEGIN

INT t:=result;

11

r



77-4

result:-O;
FOR is-2 TO t

DO
result:=result*i

OD
x:=0;
y:= .. Z..

END
print(result,x);
print(y)

END main

As D. M. Berry pointed out in his assessment of the

ALGOL 68C separate compilation facility ([Ber]), it

1. appears to be a distinct improvement over that of PL/1.

2. supports the top-down programming and testing methodology

described by Mills ([Mil]) and by McGowan and Kelly ([McK]),

in that:

1. The top level calling code is written first.

2. This level can be tested with the use of stubs (null

procedures) in place of the not yet present separate

procedures.

r	 3. Each body can then be written (expanded) and tested in

the same manner.

The serial compilation in ALGOL 68C is an improvement over

the parallel compilation in PL/1, in that the module interface

is made both more flexible and more secure. Full type-checking

of the module interface is done at compile-time, with the

I

12



77 -4

linkage-editor required to resolve only the beginning address of

each module.

The module interface is more secure as a result of the

partial ordering of the compilation of program modules, which

requires that a submodule is compiled only after all declaring

modules have been compiled. This means that full type checking

of the interface may occur when the submodule is compiled.

The module interface is made 'more flexible in that the

interface no longer has to take Place at the program's global

level. The call to a separately compiled procedure does not

have to parameterize all the variables necessary for the calleu

procedure. A module, consisting of any block or procedure, is

compiled at the same nesting level as where the NVInON

invocation occurred, and it may access all objects visible at

the point of invocation as non-locals. This facilitates

dividing the program up into ;nodules with a minimum of interface

problems.

Unfortunately, this type of serial compilation has several

important disadvantages:

1. Since the submodule cannot be compiled until the

declaring environment is known, bottom-up programming is not

practical. The partial ordering of the modules dictates that

the "bottom" modules must be the last to be compiled. Bottom-up

programming can still be done through the use of dummy drivers,

but the module being tested must be recompiled when the test

13



77-4

driver is changed, and when the driver is replaced by another

module.

2. In order to com pile code within the .submodule to reference

data within the declaring environment, it is necessary for the

environment file generated by the declaring module to contain

information on how to access the object. The module then uses

this information to compile code to refer to the external

o*ject. If at a later time, a change in the declaring module's

environment causes a change in the location of any data

referenced by any submodule, then each affected module must be

recompiled. For an implementation using a run-time stack with a

display, such as ALGOL 68C, this means that if the i,j pair

representing the base and stack offset of a referenced datum is

changed by the addition, deletion or modification of any

variable with storage earlier in the activation record (see

[Weg] for a definition), then all dependent modules must be

recompiled. Thus, it is not only changes in the actual module

interface that force recompilation of the submodules. Any

changes to identifiers stored in an activat ion record at an

offset	 preceding an identifier which is referenced as a

non-local b	 the submodule, force	 recom ilation	 of	 the

submodule.

In the ALGOL 68C program previously given, this means that

if the declaration for the variable "fill" in module "main" is

taken out, then the dependent modules "sigma", "chars", and "pi"

must all be recompiled.

14



77-4

3.	 WA le the ability to link modules at a non-global

level simplifies the segmentation of the program, it can

introduce high module interconnectivity. The ability for a

module to access any of the variables statically visible at the

point of the ENVIRON statement can lead to confusion in both the

declaring module and the submodule as to which variables

constitute the interface. There is no explicit statement of the

module interface as there is in PL/1, where the only reference

to non-local variables is through the parameter interface. This

implies that a module is not necessarily understandable by

itself, but instead it can be understood only after determining

which non-local identifiers are used, and the types of the

identifiers. There is no type information in the submodule for

the non-local identifiers referenced. This information must be

obtained -by searching through the environment surrounding the

declaring ENVIRON statement, looking for the declarations.

This criticism stems from the author's riersvnal experience

working with the ALGOL 68C compiler which itself is written in

ALGOL 68C. It is virtually impossible to understand any

submodule without considering the invoking module. By the same

token, one cannot determine from the module containing the

ENVIRON invocation which of its variables will be referenced and

possibly modified by the submodules.

The sample ALGOL 69C program given earlier illustrates

these problems. It is not possible to tell from considering

only the module "main" whether the variable y is used in a

15

I



77-4

submodule. It may b;, that the programmer of the module "main"

was not aware that the variable y was modified in the module

"sigma" as well as in the module "chars". Also, looking at the

module "sigma", it requires careful examination to see that the

variables x and result are non-local references.

All of these interface problems are caused by the use of a

non-explicit module interface scheme. Enough information is

present for the compiler to generate correct code, but not for

the user to clearly see the ;nodule interdependencies.

4. Since the module interface is not made explicit, it is

not known during compilation of a :nodule which of its variables

and procedures will be referenced by its submodules. Because of

this, the environment file produced must include the attributes

of all variables visible, even though only a small percentage of

these variables will actually be referenced by submodules.

Another, similar but more complex, scheme ([Lin]) has been

proposed by Charles Lindsey as an ALGOL 68 standard.

3.4 Serial Compilation in SIMULA 67

The SIMULA 67 Common Base Language Definition ([DMIV)) does

not include semantics for a separate compilation facility. The

definition states that if an implementation permits user-defined

procedure and class declarations to be separately compiled, then

a program should have means of making reference to such

declarations as external to the program. Suggested syntax for

16



77 -4

an EXTERNAL statement is given, but without a 	 semantic

definition.

In 1971, Jacob Palme, of the Norwegian Computing Center,

proposed a system of Part Compi'.ation ((Pal)) similar to that

used in FORTRAN, but with full module interface verification.

This system has been introduced in the DECsystem-10 SIMULA 67

implementation ((BEOP)), and is the one that is described here.

t Serial compilation in DEC-10 SIMULA is a bottom-up partial

ordering of modules, rather than the top-down ordering found in

ALGOL 68C.

The declaration of a class or procedure in SIMULA as

EXTERNAL indicates the use of a separately compiled module. In

any module, e.g., the main program, these declarations can be

put anywhere a procedure or class declaration is allowed. The

separately compiled modules will then be available anywhere

within the scope of the EXTERNAL declaration. According to

SIMULA rules, separately compiled prefix classes must be copied

into a program in the same block as their subclasses. This is

required to prevent dangling reference problems.

To use a separately compiled module "a" inside another

separately compiled module "b", the EXTERNAL statement for "a"

is placed before the beginning of the separately compiled ,nodule

"b".	 The EXTERNAL declaration for module "a" must then precede

that of module "b" in each module that uses b. 	 This will be

illustrated shortly.

17



77 -4

SIMULA 67 has a HIDDEN PROTECTED feature to increase the

reliability and security of large programs by controlling the

interface between submodules. Attributes of classes which are

declared PROTECTED are visible only at a prefix level equal to

or inner to the class containing the PROTECTED specification.

Attributes declared HIDDEN are invisible at a prefix level outer

to the class containing the HIDDEN specification. Thus,

attributes declared HIDDEN PROTECTED are visible only inside the

body of the class with the HIDDEN PROTECTED specification.

To implement serial compilation, the compilation of each

separately compiled class or procedure produces an attribute

file containing an entry for each externally accessible

attribute of a class module, or each parameter of a procedure

module. This entry lists the identifier and its type. when an

EXTERNAL statement or declaration is encountered, the attribute

file for that module is read in by the compiler. 	 Full type

checking is then. performed.

As a consequence, a serial bottom-up compilation sequence

r must be performed. Each separately compiled class and procedure

must be compiled before being referenced. Although the DEC-10

SIAULA handbook does not specify this, one ramification of this

seems to be that a separately compiled procedure can communicate

only through its formal parmeters since the environment of the

EXTERNAL statement, within each, is established later.	 This

also means that no GOTOs to external labels are allowed.

18



77-4

There is an additional requirement that when a class is

separately compiled, the block level of the place where it is

copied into the main program must be given as a parameter to the

compiler.

The following program illustrates the module communication:

------------------------------
CLASS order(account,color,quantity);

TEXT color;
INTEGER quantity,account;;

------------------------------
EXTERNAL CLASS order;
PROCEDURE changecolor(object);

REF(order)object;
BEGIN

IF object.color = "green"
THEN object.color:="blue";

END;
-------------------------------

EXTERNAL CLASS order;
PROCEDURE def late (object);

REF(order)object;
BEGIN
object.quantity :-object.quantity//2;

END;
-------------------------------

BEGIN COMMENT main program;
EXTERNAL CLASS order;
EXTERNAL PROCEDURE changecolor;
EXTERNAL PROCEDURE deflate;
REF(order)get;
get :- NEW order(411,"green",2);

changecolor(get);
deflate (get)

END;
-----------------------------

The	 above	 program	 comprises the four	 modules

consisting of: the CLASS order, the PROCEDUREs changecolor and

deflate, and the main program.	 The accessing relationship

19

0



77-4

between the modules is illustrated by the following graph.

"main program"

"changecolor"	 "deflate"

"order"

This interdependence causes a partial ordering of the

serial compilation sequence, namely

"order" < "changecolor", "order" < "deflate",

"changecolor" < "main", and "deflate" < "main".

Thus, the serial compilation mechanism in SIMULA is an

adaptation of the parallel compilation mechanism in FORTRAN. By

0-1 serially compiling the modules, full interface verification can

take place at compile-time, so that the linkage-editor need only

resolve the entry address of each module.

The scheme allows the security of declaring a procedure or

class at a non-global level, without the advantage of non-local

external reference found in ALGOL 68C. This gives a

well-defined interface, not present in ALGOL 6SC, but forces

more parameters to be passed to external procedures.

20



77-4

	

Just as separate compilation in ALGOL 68C was designed for
	 I

mainly top-down integration, separate compilation in SIMULA is

designed mainly for bottom-up integration. Top-down integration

is possible, but only with numerous recompilations of the

program modules during the testing stages as the stubs are

replaced by actual modules.

The attribute file is not as susceptible to module changes

as the ALGOL 68 environment file. In SIMULA, it would seen. that

the attribute file has to contain only the externally accessible

attributes of a nlass, or the parameter information for a

procedure. This would imply that no internal change to an

external class or procedure should change the attribute file.

Only actual interface changes should force recompilation. The

DEC-10 SIMULA compiler evidently has made some decision to alter

this, since the handbook states only that "in most cases no

other module need be recompiled". It may be that the temporary

locations for expression evaluation have been mixed into the

activation record. If so, it seems to be a design error.

4.	 PHILOSOPHY OF DESIGN FOR PARALLEL COMPILATION

As a result of considering the separate 	 compilation

facilities	 present in existing languages, a basic design

philosophy has been formulated regarding what the

characteristics of a separate compilation facility should be.

This philosophy, briefly stated, is that:

21



77-4

1. Modules compiled and/or developed separately shoul , :	 AV-,

only explicitly stated interfaces.

2. Each separately compiled module should be understandable by

itself, without reference to other modules.

3. The recompilation of one module should not force the

recompilation of any other module unless a change in the

actual module interface is made.

4. Complete type checking of the interface should be done.

5. Bottom-up and top-down programming should both be accom-

modated without undue overhead.

6. The	 module	 interface	 should	 not	 be	 unnecessarily

restrictive.

7. The overhead associated with providing enough information

for type checking and non-local reference should oc

low.

5.	 THE PROPOSAL

A proposal which has been designed using the philosonily

outlined in Section 4 is now given for the design of a parall°1

compilation mechanism for the SIMULA 67 language. This section

presents the proposal, and illustrates its usage. Sections <,

and 7 will then discuss the merits of the proposal, and how it

22

P_

►__



77-4

can be applied to other languages.

A note about word semantics: the word "object" is used to

mean a variable, procedure, or class, rather than the SIMULA

meaning ascribad to it. The word "praginate" is defined to mean

those attributes (in the PL/l sense, not the SIMUt:A sense) waich

define ti-e implementation of the object, thus leaving

"attribute" for its SIMULA meanin-I.

5.1 A module Definition

A module is a separately compiled entity of the forma

MODULE <module identifier> ,SAIN <1iodule body>)

MODULE <module identifier> [ <accessions> ) <module body>

where <module body> is a main program, an external procedure

declaration, an external class declaration, or an external

statement (including a block).

The <module identifier> rust be unique for the entire

program (throughout all the modules), and need not be distinct

from the normal program identifiers (because it is always

possible to distinguish them syntactically).

N program consists of one :tAIl; module and a series of

submodules containing external class and procedure declaration:,

and external statements. the modules may be compiled in any

order or in parallel. 	 The meaning of <accessions> will be

23



77-4

described in Section 5.2 .

5.2 L4odule Communication

In a given module, any procedure declaration, class

declaration or. statement which is to be compiled as a separate

module is replaced by a stub statement. Each stub statement is

of the form

STUB <stub identifier> <stub interface>

Each <stub identifier> must correspond to a <module

identifier> which identifies the segment of code to replace th`

STUB statement.

The STUB statement declares the presence of an external

segment of code which is to be log ally considered as being

compiled at that point in the program (sub-;act to interface

restrictions). This functions in the same manner :s the EDIVIRGN

statement in ALGOL 68C, or the EXTERNAL declaration in DEC-10

SIMULA 67. There may be more than one STUB statemr-it naming the

same external module, as long as each appears in an environment

providing the required interface (described shortly).

There are three kinds of STUB statements:

n DUGil :'_C ..
a

24



77 -4

1. a procedure STUB

2. a class STUB

3. a statement STUB

The form of the statement depends on the nature of the construct

the STU3 statement replaces.

The <stub interface> in each STU3 statement describes the

interface that the declaring module assumes is present with the

STUBbed module.

For a procedure or class STUB, the <stub interface>

specifies the objects, if any, which are released for use try the

S't'Ui3bed module, and the assumed pragmates of the STUBbed module,

which may be used within the declaring module.

The RELEASE clause of the <stub interface> specifies the

variables, procedures, and classes visible at the point of the

STUB statement which may be used by the STUBbed module. In the

case of a class, it is possible to RE L EASE; either the entire

class, or only individual attributes of the class. In this way,

it is possible to protect certain classes, procedures, or

variables from being used in the submodule.

The ASSUME clause of the <stub interface> s pecifies the

assumed externally accessible attributes of the STUBbed module.

For a procedure submodule, this is the heading of the procedure.

From	 :is, the parameter and return value types may be deduced.

25



77-4

For a class submodule, the ASSUIM,;, clause gives the class heading

together with a BEGIN-END-enclosed sequence of variable

declarations and procedure headings which may be referenced from

outside the class body (according to SI14ULA rules). Together,

these constitute the external attributes of the class.

In the case when a statement (or BEGIN block) S'2UU, is used,

only a RELEASE clause is included in the <stub interface>, since

SIMULA rules imply that there can be no new objects declared in

the STUBbed statement which will be visible in the declaring

environment.

In the <accessions> clause of the module specification, the

STU3bed module must declare all non-local objects referenced.

These objects, consisting of the non-local variables,

procedures, and classes referenced (including the use of prefix

classes) Rust be a subset of the objects RELEASEd by the

corresponding STUB statement in the declaring module (except for

system procedures and classes). For ACCESSed classes, it is

necessary to include in the declaration only those attributes

s which will actually be accessed by the submodule (i.e., class

attributes which will not be used by the submodule need not

appear within the class heading in the ACCESS declaration).

The use of GOTOs to labels outside a module has not been

included in this proposal since it violates the design

philosophy by forcing a high degree of module inter-connectivity

and decreases understandability of individual modules.

26



77-4

1-o illustrate what has been said, an example of each kind

of STUB and corresponding module replacement is now given:

1) Procedure STUB and module replacement

MODULE x MAIN
BEGIN

IN'T'EGER flagl,flag2;
TEXT options;
CLASS tree(val,lson,rson);

INTEGER val;
REF(tree)lson,rson;;

CLASS prog(input);
TEXT input;;

STI B parse[RELEASE flagl,flag2,options,tree,prog;
ASSURE

BOOLEAN PROCEDURE parse(source,output);
REF(tree)output,REF(prog)source )

END;.
------------------------------

MODULE parse
[ACCESS INTEGER flagl,flag2;

TEXT options;
CLASS tree (val ,I son, rson)

INTEGER val;
REF(tree)lson,rson;;

CLASS prog(input)
TEXT input;; ]

BOOLEAN PROCEDURE parse(source,output);
REF(tree)output,REF(orog)source;
BEGIN

IF flagl=OA fla92=0 THEN scan(options);

E[vD;
------------------------------

2) Class STUB and Module Replacement

27



77-4

---------------------------------
MODULE y MAIN
BEGIN

INTEGER x,y,z,w;
CLASS prefix(row);

INTEGER row;
BEGIN

REAL PROCEDURE width;
BEGIN

i

END;
BOOLEAN PROCEDURE; sturdy; 	 F

BEGIN

END
END

STUB	 classa [ RELEASE x,y,z,prefix;
ASSUME prefix CLASS board(col);

INTEGER col;
BEGIN
REAL PROCEDURE ler^
END

PEF(board) tray;
tray:-NEW board(5,6);
IF-itray.sturdy THEN tray.row:-tray.row-1

END

MODULE classa
j ACCESS INTEGER x,y;

CLASS prefix(row);
INTEGER row;
BEGIN

REAL PROCEDURE width;
END )

prefix CLASS board(col);
INTEGER col;
BEGIN

REAL PROCEDURE lenq;
BEGIN

END•
END

-----------------------------

3) Statement STUB and Module Replacement:

28



77-9

-----------------------------
MODULE z MAIN

BEGIN
INTEGER x,z,y;
CLASS classb;;

ST6B blocka [ RELEASE x,z,classb ];

END;
------------------------------

MODULE blocka
[ ACCESS INTEGER x,z;

CLASS classb;;]
classb BEGIN

END;
-------------------------------

More formally, the syntax for each MODULE and STUB

statement is given below. The productions are proposed as an

extension to the syntactic description given in the SI14ULA

Common Base Language Definition. Syntactic classes referred to

but not defined in this paper refer to syntactic definitions

given in [D14N] and [Nau] .

s
<module>::= MODULE <module identifier> MAIN

<module body>	 MODULE <module identifier>
[ <accessions> ] <module body>

<module identifier>::= <identifier>

<module body>::= <procedure declaration >1
<class declaration>1
<statement>

<accessions>::= ACCESS <external accessions declaration list>

<external accessions declaration list>::=
<accession declaration>l<accession declaration>
<external accessions declaration list>

29



77-4

<accession declaration>::-
PROCEDURE <procedure heading>)
<class attribute heading >1
<type declaration>1 <array declaration>

<class attribute heading>::-
<prefix option> CLASS <class identifier>
<formal paramter part> ; <value part> <specification part>
<virtual part> <local attributes option>

<prefix option>::- <prefix>l <empty>

<local attributes option>::= <empty>	 BEGIN <local
attributes list> END

<local attributes list>::= <local attribute >1 <local attribute>
; <local attributes list>

<local attribute>::- <type declaration>)
<array declaration>> PROCEDURE <procedure heading>

<stub statement>:: = <procedure stub statement >1
<class stub statement> ' <statement stub statement>

<procedure stub statement>::= STUB <module identifier>
( <release declaration> ; <assumed procedure
declaration heading> ]	 '

<class stub statement>::= STUB <module identifier>
[ <release declaration> ; <assumed class attribute
heading> ]

<statement stub statement>::= STUB <module identifier>
( <release declaration> ]

<release declaration>::= RELEASE <visible list,

<assumed procedure attribute heading>::=
ASSUME PROCEDURE <procedure heading,

<assumed class attribute heading>::=
ASSUME <class attribute heading>

<visible list>::= <visible id >1
<visible id> <visible list>

<visible id>::= <variable identifier 1>I
<class identifier >1 <procedure identifier 1>

30

i



I

3
77 -4

5.3 The Module Compilation Phase

Each module is compiled independently, without knowledge of

the other program modules. The compilation takes place in the

standard system environment, with all system classes,

procedures, and identifiers visible within the module.

During the compilation, all objects which do not have

corresponding local declarations are checked for appearance in

an ACCESS or an ASSUME declaration. If so, compilation proceeds

using the ASSUMEd or ACCESSed declared attributes for the

missing external declarations. If the object does not appear in

an ACCESS or ASSUME declaration, then it is assumed to be an

unresolved external reference, and is reported as an error. A

dummy reference (a null (i,j) pair) to the external object is

generated-in the object code, which will later be filled in by

the pre-linkage-edit step (described in Section 5.4).

All variables, procedures, and classes which appear in the

RELEASE clause of a STUB statement are checked for visibility at

that point in the module. Any object appearing in the RELEASE

clause which is not visible at that point constitutes an error.

A pra2mmate file and an object code file are generated by

each compilation. The pragmate file contains:

1. The module name

31



77-4

2. the pragmates for each object which is RELEASEd by one or

more STUB statements within the module

3. For each STUB statement, the STUB name, the nesting height

within the module of the STUB statement, the name of each

object RELEASEd by the STUB, and the ASSUt+Ed oraq,nates of

the STUBBed module

4. The pragmates of each ACCESSed object

5. The pragmates of the procedure or class declaration if the

module being compiled is a class declaration or a procedure

declaration.

6. For each ACCESSed and ASSUMEd object, a list of its applied

occurrences.

While the exact amount of information that must be present

in the prag,nate file will depend on the actual implementation,

the pragmates for each object should include:

variable pragmates

1. variable name

2. type indicator

3. for RELEASEd variables , the (i,j) pair representing the

nesting height within the module of the block containing the

declaration, and the offset within the block (for a RELEASC6

32

s



77 -4

variable not local to the module, the offset is not known,

and an external tag should be used)

4. a HIDDEN/PROTECTED flag

procedure pragmates

1. procedure name

2. return type indicator

3. the type indicator and transmission type for each formal

parameter in the proper order

4. a VIRTUAL/non-VIRTUAL flag for class procedures-

5. a HIDDEN/PROTECTED flag

class pragmates

1. class name

2. prefix class name (if any)

3. the type indicator and transmission tyre for	 u_!, formal

parameter in the proper order

33



77-4

4. the pragmate for each attribute in the proper order:

a) for a variable attribute, a variable pragmate

b) for a procedure attribute, a procedure pragmate

5. a HIDDEN%PROTECTED flag

6. the location of any INNER statements

5.4 The Pre-Linkage-Edit Phase

In order to do complete type checking of the interface

between modules, and to handle non-local object reference, it is

necessary to have a linkage-editor preprocessor. This

preprocessor accepts all of the program object modules and their

pragmate files as input, verifies that the module interfaces are

consistent, and determines the (i,j) pair for the reference to

external objects so that it may be handled by a standard system

linkage-editor program, as described below.

The ASSUMEd class and procedure attributes in each

declaring .nodule are checked against the class and procedure

headings in the corresponding external class and procedure

submodules.	 The ASSUMEd attributes must exactly match the

actual attributes declared in the submodule, right down to

identifier names. The order of procedure and variable

declarations need not be the same in the ASSUME clause as in the

;module declaration.

34



77-4

The ACCESS	 declarations	 in	 each	 submodule	 are	 checked

against	 the	 corresponding RELEASE clause of the STUB statement

in the declaring module. 	 All objects ACCESSed	 must	 have	 been

FELEASEd	 by the declaring STUB.	 The order of appearance of the

objects in the RELEASE declaration need not match the	 order	 of

appearance	 in	 the	 ACCESS	 declaration,	 but	 the type of each

object RELEASEd must match the type of the object ACCESSed. 	 In

the	 case	 of	 an ACCESSed class, the attributes declared in the

ACCESS declaration need not be the complete set 	 of	 attribute,

but	 only	 the	 subset	 actually used, assuming it is consistent

- with the full set of attributes of the class.	 Thus, onl y	those

procedures	 and	 variables	 inside	 the class whiciz are actually

accessed need be declared.

The reference to non-local variables can be resolve.

without difficulty at this stage, since the prag.nate file for

each program module is available. 'The hierarchical structure of

the wnole program can be determined by the module nacre and stub

identfiers within each pragmate file. tiith the knowledge of the

overall structure of the modules, the declaration for each

external reference can be found, and the overall block nesting

height and storage offset within the Flock can then be l e•juceu.

This information can be inserted into the instructions within

the object code which reference the variable. For an

implementation using a run-time nesting height dis play, this

involves substituting the actual display level and offset within

the activation record for the dummy level and offset inserted

during compilation.

35



77-4

with the knowledge of the class hierarchy, the reference to

VIRTUAL procedures and split class bodies can be resolved, and

the dummy reference may be replaced by actual code. The actual

address determination will be done by the linkage-editor. Note

that this implies that the identification of the actual body for

a VIRTUAL procedure can vary with the use of different STUL's.	 I

The only addresses left unresolved are the beginning

address of each module, the procedure and class entry points, and

references to VIRTUAL procedures and split bodies. these can be

handled Uy a standard linkage-editor program.

6.	 AN ASSESSKLNT OF THE PROPOSAL

1,he proposal outlined in the previous section appears to be

an improvement over the current schemes for separate compilation

found in the languages surveyed. The scheme given here allows

the full power of a verified non-global interface with global

object reference 'found in ALGOL 63C, but with an explicit

interface specification. The development and compilat-.on of

program modules may oroceed in parallel, with no imposed partial

ordering of the compilation sequence. This allows bottom-up,

top-down, or any other sequence of program development and

testing. In addition, the recompilation of a module only forces

recompilation of other modules if a change in the actual module

interface is made.

F

36



i

77-4

By postponing the resolution of the (i,j) pair for each

non-local	 object	 from	 the	 compilation	 phase	 to	 a

pre-linkage-edit phase, there is no direct dependence	 on

information obtained during the compilation of the other

modules. This allows complete type checking of the variables,

procedures and classes being used for the communication between

modules, but without the forced top-down or bottom-un testing

order imposed in ALGOL 68C and LEC-10 SIMULA. This achieves ti,c

less restrictive module interface obtained with the top-down

serial compilation in ALGOL 69C, but without the partial

ordering of the modules and the resulting high sensitivity of

the environment file used to resolve external references. At

the same time, it achieves the insulation of the praimate file

from internal changes to a module, found in the DEC-1 SI:ULA

scheme, but without sacrificing the ability to 	 reference

non-local	 variables, necessitated by the strict botto,n-up

ordering of SILAULA program modules.

Using this scheme, it is possible to have multiple

invocations to a given nodule. 2'he only restrictions are that a

procedure or class submodule may not be invoked twice in the

same range, and the module interface must be consistent with all

STUB statements. Briefly stated, the i 1 se of multi ple STUBs to a

single submodule must be such that a consistent program is

obtained by replacing each STUB statement by the submodule body.

The ability to have multiple invocations allows a

compile-time-like macro substitution, but with the resolution

being	 done	 at	 pre-linkage-edit time. 	 Effectively, this

1.

37

Y



77-4

functions as a macro substitution where the macro need not be

known at ^:ompile-time.

All assumptions about the outside environment inust be

explicitly	 stated	 within	 a module.	 The 5TU-^ statement

explicitly states which objects are RELHSEd, and may be changed 	
r

by the submodule.	 'rids, coupled with the HIDDLN/Pi-'0 LCTC'0

attributes allows a well protected and more easily verifier

interface.	 The ASSUME clause of the STUB statement and the

ACCESS clause of the MODULE heading together give the

specification of each external object which is used in the

.nodule. rnis information assures that there are no objects

referenced	 in	 the module which do not have local type

information.

The overhead required to implement -Ine proposed scneme is

less than that in ALGOL 681-, and is comparable to that in DEC-10

SIMULA. In ALGOL 68C, the pragmates of all objects visible at

the point of the E;NVIRON statement must be placed in the

environment file, since it is not known during compilation, which

of the objects will be accessed by submodules. In the tiro posed

scheme, it is known at compile time which objects are RELEASEd

for use by the submodule. Only the pragmates of these objects,

together with the procedure or class pragmates for a procedure

or class module need be included.

The total overhead for program development usin g the

proposed parallel compilation scheme should always be

approximately less than or equal to the total overhead using the

W,

38



77-4

ALGOL 68C serial compilation scheme. If a change in an

ALGOL 68C module doe s not cause a change in the environment

file, then only that module must be recompiled, and the set of

object modules must be linkage-edited again. If the change does

cause a change in the environment file, then all submod ules must

be recompiled, and the set of object 	 modules	 must	 be

linkage-edited again.	 Using the parallel compilation scheme,

t any change not affecting a submodule interface causes only the

recompilation of that module, another pre-linkage-edit run and

another linkage-edit run. For a change that affects a submodule

interface, the affected module and submodule have to be

recompiled, and another pre-linkage-edit and linkage-edit step

must be run.

As Berry noted ([Ber]), the STUB-replacing ;nodule facility

supports top-down development and testing of programs, since

each STUB statement may be compiled as:

I. an empty construct of its kind, returning the default value

of its type

2. a call to the	 interpreter, which executes intermediate

level code for the replacement module

3. calls to the user via the interactive console, for she/he to

plug in values of the required type.

39

r"



77-4

7. APPLICATION TO OTH£IR LANGUAGES

while the proposal for a parallel compilation scheme has

been designed for the SI,'-iULA 67 programming language, it can be

applied equally well to any other procedure-oriented language.

The overhead will vary from language to language, and from

implementation to implementation depending on scoping rules,

run-time organization, etc.

8. REMARKS

A few philosophical comments appear to be in order. tviany

people ([Pal, ber, BBw] and others) have advocated complete

compile-time resolution of the module interface through serial

compilation.	 Jacob	 Palme	 stated	 ([Pal])	 that	 usin3

post-compile-time type checking of the module interfaces

requires that "the loading (linkage-editing) programs must be

modified, which is something you want to avoid since these

programs are commonly used system programs".

one solution to this dilemma is to have a special purpose

language-specific pre-linkage-editor do the type checkinj. This

avoids making changes to a commonly used system grogram, and

provides useful language-dependent features that a general

purpose system program can not provide.

This alludes to a more general concept.	 the should be

developing	 total	 programming	 environments.	 Instead	 of

developing general purpose 	 text-editors,	 language-specific

44

..

i



debuggers, we should be developing a programming environment

designed for the programming language. The text-editor should

be intelligent, with features designed to aid in the coding of

programs written in the language. The linkage-editor

(collection program) should include facilities for resolving

more of the interfaces than just the addresses. There should be

a run-time system that includes an intelligent interactive

debugger and tester.

In short, we should not develop compilers for programming

languages, and then rely on gcn eral purpose system processors,

which normally handle only the ,.o*:Amon subset of all language

needs, to provide the uses support. There's a great deal more

we can do to aid in the production of reliable software.

Bibliography

[Berl

	

	 Berry, U.M., "Separate Compilation", Internal memorandum,
No. 147, UCLA, Computer Science Department, February 1976.

[BEOP] Birtwistle, G., L. Ender in, M. Ohl in, J. Palme,
DECsyst e- 10 SIt_ IULA Language Handbook Par t 1, Report No.
C8398, Swedish national Defense Research Institute, ;larch
1976.

[BBW]

	

	 Bourne, S.R., A. Birrell, I. rialker, "ALGOL 68C Reference
Manual", University of Cambridge, 1975.

[Cle] Cleveland, J.C., "The ENVIRON and USING Facilities of
ALGOL 68C", Modeling and ;Measurement Note, No. 33, Computer
Science Department, UCLA, April 1975.

[DMN]	 Dahl, 0., B. Myhrhaug, K. Nygaard, Common Base Languag e,
Publication No.	 S-22, Norwegian Comnutina Center, October

41

d

le



77-4

1970.

[Den] Dennis, J . , "Modularity", Computation Structures Grout.
1140.	 7,J, Project MAC, NIT, June 1972.

	

[FOR]	 Engel, F. (comm) , "draft proposed ANS FORTRAN", x3J3/76,
SIGPLAN .Notices, Vol 11, No. 3, :larch 1976.

[IBM] IBA Syst em/360 Oerat ing Syste ,,^ rL /1 ( F) La ng u ag e R e_ fe re_nce
.1anual, ForaT^ \il'GCj -32i^1 — , I^ii.i Corp., 4vhite Plains, [New POCK,
June 1977.

	[KTU]	 Kearns, N., A.	 Tanenbaum, R.	 Uzgalis, UCLA ALGOL %;C
Programmer s Guide, Com puter Science De partment, UCLA', ."ay
1976." 	-

	

[I,in]	 Lindsey, C.H.,	 "Proposal for a	 •iodules	 Facility	 in
ALGOL 68", Algol bulletin, A339.4.2, February 1976.

	

[McK]	 McGowan, C.L., J.R. Kelly, Top-down Structured Program,:ain;
Techniques, Petroceili/Charter, tew York; 1975.

	

[Mey]	 f4eyers, G.L., "Composite Design:	 Tne Design of :1cJu1ar
Programs", Technical Report, Ti,aD.2406, ILA, Poughkeepsie,
New York, January 1973.

	

[Mil]	 Nills, h.D., "I`op-down Programming in Larac Syste:as	 in
i:ustin, R.	 (ed.) ,	 Deb ug3in g 'Technique s in Larg e S_yste: r, s,
Prentice-hall, Englewoo, Cliffs, Now ' Jersey,	 1971sT
41-55.

	

[ Mow]	 Morgan, h.L., R.A. Magner, "PL/C: 	 T:he Design of a I,i ii
Performance Compiler for PL/I", Research Re port 70-33,
Computer Science Department, Cornell Univ., October 1917y).

	

[Nau]	 Naur, P.	 (ed.) , "Revised Report on the Algorithmic Language
ALGOL 60", Communication s of the ACI-1, ACI, , January 11953.

	[Pal]	 Palme, J.,	 "Part Compilation in high Level L,7i-7ua3es",
Report No.	 FOA-P-C-8346-:-;3(L5), Sweaisn National Defenses
Research Institute, Nov 1971.

^[sMC) Stevens	 W . , G.	 my ers, L.	 Constantine,	 "structure:
Design" , IBM Systems Journal , No. 2, 1074.

	

[vwi]	 van ,oijngaarden, et al., "Revised Re port on the A1rjorith-ic
Language ALGOL 68", Technical Report 1R 74-3, University of
Alberta, Miarch 1974.

[Weg]	 cvegner, P., Prog rammi ng Lang uage s,	 In forna_tion '-tructures,
and :^;achin e Or ganiza tion, (McGraw- g ill, :yew fork	 6R.

NASA —JPL—Coml., L. A. Calif,	 42

i



JKTUI Kearns, 4., A.	 Tanenbaum, R.	 Uzgalis, UCLA ALGOL 6gC
Fro rammer's Guide, Computer Science Department, UCLA, :jay
1976.

[Lin]	 Lindsey, C.H., "Proposal for a	 Modules	 Facility	 in
ALGOL 68 0 , Algol Bulletin, Aa39.4.2, February 1976.

[Mcx]	 McGowan, C.L., J.R. Kelly, Top-down Structured Pro_q ammin,
Techniques, Petrocelli/Charter, New York, 1975.

[Meyl Meyers, G.L., "Composite Design: The Design of Modular
Programs", Technical Report, TkOO.2406, IB1, Poughkeepsie,
New York, January 1973.

[Mill	 gills, H.D., "Pop-dawn Programming in Large Systems", inRustin, R.	 (ed.) , Debugging 'Techniques in Large	 stems,
Prentice-Hall, BnglewooTCliffs, New Jersey,
41-55.

[MOW] Morgan, K.L., R.A. Wagner, "PL/C: The Design of a high
Performance Compiler for PL/I", Research Report 70-83,
Computer Science Department, Cornell Univ., October 1970.

[Naul	 Naur• P. (ed.), "Revised Report on the Algorithmic Language
ALGOL 60", Communications of the ACM, ACM, January 1963.

[Pall	 'Palme, J., "Part Compilation in High Level Lai3uages",
Report No.	 FOA-P-C-8306-11.2(E5) , Swedish National Defense
Research Institute, Nov 1971.

[SMCI	 Stevens, W., G.	 Myers, L.	 Constantine,	 "Structured
Design", IBM Systems Journal, No. 2, 1974.

[Vwil van wijngaarden, et al., "Revised Report on the Algorithmic
Language ALGOL 68", Technical Report TR 74-3, University of
Alberta, March 1974.

[Weg)	 Wegner, P., Programming Langua ges, Information Structures,
and .Machine r^aniz^atiion, McGraw- y il ,, NewTYorR, ^., .

NASA-01.—Coml., L. A. Calif. 	 42


	GeneralDisclaimer.pdf
	0012A02.pdf
	0012A02_.pdf
	0012A03.pdf
	0012A03_.pdf
	0012A04.pdf
	0012A05.pdf
	0012A06.pdf
	0012A07.pdf
	0012A08.pdf
	0012A09.pdf
	0012A10.pdf
	0012A11.pdf
	0012A12.pdf
	0012A13.pdf
	0012A14.pdf
	0012B01.pdf
	0012B02.pdf
	0012B03.pdf
	0012B04.pdf
	0012B05.pdf
	0012B06.pdf
	0012B07.pdf
	0012B08.pdf
	0012B09.pdf
	0012B10.pdf
	0012B11.pdf
	0012B12.pdf
	0012B13.pdf
	0012B14.pdf
	0012C01.pdf
	0012C02.pdf
	0012C03.pdf
	0012C04.pdf
	0012C05.pdf
	0012C06.pdf
	0012C07.pdf
	0012C08.pdf
	0012C09.pdf
	0012C10.pdf
	0012C11.pdf
	0012C12.pdf
	0012C13.pdf
	0012C14.pdf
	0012D01.pdf
	0012D02.pdf
	0012D03.pdf
	0012D04.pdf
	0012D05.pdf
	0013D05.pdf



