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ABSTRACT

Results are presented from a numerical investigation of the viscous
transonic flow about a stationary body in free air. The geometry chosen
was a symmetric NACA 64A010 airfoil at a freestream Mach number of
0.8, a Reynolds number of 4 million bésed on chord, and angles of attack
of 0 and 2 degrees. These conditions were such that, at 2 degrees
incidence unsteady periodié motion was calculated along the aft portion
of the airfoil and in its wake., This unsteady phenomenon has been
experimentally observed for other airfoil geometriesat transonic speeds,
Although no unsteady measurementsvwere made for the NACA A4A010 air-
foil ét thesevflowiconditions, interpélated steady measurements of 1lift,
drag, and surface static pressures compared favorably with corresponding

computed time-averaged 1lift, drag, and surface static pressures,
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NOMENCIATURE
Local Sound Speed

Surface Area

Particle chord length
Chord

Drag coefficient, d%&%o_gc_g

1ift coefficient, 11t éo:ce
Pressure coefficient, (P "ﬂO)/ @g@
Specific heat af constant pressure
Specific heat af constant volume
Area of airfoil section

Specific internal energy

Stagnation enthalpy
Reduced frequency, % Uw
Transonic Parameter, A-Ms)/) Mo d *
Hiking length
Mass

- Mach number

Cycle number

Pressure

Dynamic Pressure, % QU™

Transformed radius, (X “+ K ,"‘l“)i
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Reynolds number

Reynolds number based on momentum thickness
Reynolds number based on x

Reynolds number based on chord

Entropy

Time

Timestep

Temperature

Velocity component in x direction

Freestream Velocity

Velocity component in y direction
Volume

Stréémwise coordinate
bigh-dimensional coordinate, X/(G/2)

Normal coordinate

Non-Dimensional coordinate, V'ASVYgé_)
Scaled transonic parameter, §ME Y
"

Angle of attack

Ratio of specific heats

Circulation

Boundary layer thickness

Airfoil thickness to chord ratio,1Vk'
Eddy viscosity

Small disturbance parameter, éf%OMoa

e
Transformed angle | Fein '(? K / ?f )

Mpmentum thickness
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Molecular viscoslty

Kinematic viscosity

Density

Shear Stress

Maximum thickness of airfoil
Characteristic Time, Tlofc

Velocity potential function
Transformed velocity potential function

Doublet potential

( oo Freestream condition
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( Dy Derivative with respect to parameter

( )g Derivative with respect to parameter

()

Non-dimensional coordinate
Scaled coordinate
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SECTION 1

INTRODUCTION

The principal objective of this research effort is to numerically
calculate the viscous tranéonic flow field about a stationary lifting
airfoil in free air. To our knowledge, this calculation represents
the first-of-a-kind in transonic aerodynamics.

Previous transonic liftiﬁgvairfoil computations concerned steady
inviscid flow with varying degrees of approximation to the Euler's
equations. For example, Murman and Cole (Ref. 1), Xrupp and Murman
(Ref. 2), and more recently Murman, Bailey, and Johnson (Ref. 3) solved
the transonic small disturbance equation for flow past thin airfoils
including imbedded shock waves. Transonic small disturbance theory
solves the small perturbation equation (Ref. 4) with an approximate
tangency condition at the airfoll surface, and under the assumption
of isentropic flow. Jameson solved the transonic full potential
equation (Ref. 5) using an exact tangency condition at the airfoil sur-
face, and under the isentropic assumption (Ref. 6). Furthermore,
Jameson's method permits computation of .imbedded shocks.

Magnus and Yoshihara (Ref. 7) solved the unsteady form of the
Euler equations fhrough an explicit finite difference scheme. A numer-
ical solution of Buler's equations, inciuding the possibility of embed-
ded shocks (through shock capturing), embodies no other assumptions but
the inviscid flow assumption. Coincident with the inviscid assumption,
all three methods cited above employ a Kutta condition to determine the
magnitude of the circulation for 1ifting bodies.

For a lifting transonic airfoil with little or no separation in
the neighborhood of the shock, combination of turbulent boundary
layer theoxry (Rgfs. 8 and 9) with any of the above inviscid methods
yields useful predictions of the shock location, 1ift coefficient, and
drag coefficient, provided that a displacement thickness correction
is made to the airfoil shape. However, when the shock wave boundary

layer interaction induces considerable flow separation,

2
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integrated inviscid-boundary layer theories gre of dubious value

in prediction of the shock location, 1ift, and drag of the system.
Liepman and Roshko (Ref.lo) point out that transonic shock-wave

boundary layer interactions involve an interplay between strength and
position of shock waves on the body and boundary layer:character, i.e.,
separation. The complete equations of motion are thus needed to properly

account for these nonlinear interactions.

Numerical sclution of the time-dependent Naviei—Stokes equationé,
including turbulence and transition via models, yields predictions
of the shock location,lift coefficient,and drag coefficient of an air-
foil under conditions of considerable flow separation.  Thus,
for thick transonic airfoils at moderate angles of attack, or for thin
transonic airfoils at high angles of attack, numerical sclution to the
time-dependent Navier-Stokes equations is the only means for flow
field prediction. | |

A time-dependent Navier-Stokes calculation does not invoke a
Kutta condition at the airfoil trailing edge, and includes viscous
effects; hence, the possibility of vortex shedding, with attendent
periodic flow is within the scope of this computation. For example,
McDevitt, Levy, and Deiwert (Ref. 11) and Finke (Ref, '12) measured
unsteady periodic flow about transonic airfoils for a limited range of
Mach numbers and angles-of-attack. Finke's experiments on a symmetric
NACA 63l -012 airfoil at Mach .70,Reynolds number 1.25 x 106 based on
chord, and two degrees incidence, show periodic flow at the

airfoil trailing edge with a reduced frequency* X of 2.5 for the oscillating

. shock.  The amplitide of shock oscillation is about one percent 'of the. chora

at two degrees angle of attack and increases to 10% of the chord at eight

degrees incidence.

* The reduced frequenecy K is defined as the product of the angular
frequency and the chord divided by the free stream velocity.
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Finke (Ref. 12) also took interferogram pictures over one full
period of shock oscillation for a quasi-elliptical NRL-profile, at a

Mach number of .71, a Reynolds number based on chord of 1 x 106

, and
at 5 degrees angle of attack. These interferogram pictures, which
represent lines of constant density, are shown in Figure 1. The
pictures are depicted in intervals of 70Q/4s. In picture 3, the shock
is positioned at 40 percent chord, in picture 5 the shock degenerates
to a Mach wave and leading-edge separation determines the flow. Finally,
picture 8 is similar to picture 2 indicating periodic flow, 'Shedding
of vorticity is also indicated in the plctures of Figure 1.

- The geométry for thic investigation was a symmefric NACA 644010

airfoil at a freestream Mach number of .80, a Reynolds number of 4 x

' 106 based on chord, and at angles of attack of 0 and 2 degrees., At

2 degrees incidence unsteady periodic motion was calculated along

the aft portion of‘ihé airfoil and in its wake., Although no unsteady
measurements were made for the NACA 64A010 airfoil at these flow
conditions, interpolated steady measurements of 1lift, drag, and
surface static pressures compared favorably with corresponding

computed time-averaged 1lift, drag, and surface static pressures.

In order to solve for the unsteady viscous transonic flow field
about a 1lifting body in free air, research was conducted in three
principal areas. The are as follows:

1. A computer code, called "STOKES", was developed which
solved the Navier-Stokes equations with Multi-Regional Timesteps
(MRT) and Vector-Do-Loops (VDL). The MRT/VDL logic signifi-
cantly reduced computational time. o

2, Turbulence and transition models wWere incorporated
into the STOKES computer. code.



3. Boundary conditions were generated along the perimeter
of the region of calculation which simulated the lifting airfoil
immersed in a free airstream.

A discussion of the STOKES computer code is presented in Section
2, the turbulence and transitian models embodied in the STOKES code are
described in Section 3, boundary conditions are presented in Section b,
while results of the non-lifting (o= 8) and 1ifting (o= &) airfoil
calculations are discussed in Sectiong 5 and 6, respectively. Section

7 presents the conclusions reached in this research effort.



SECTION 2

THE STCKES CODE

A computer code has been developed, called "STOKES", for calcu-
lating viscous, compressible, time-dependent flow fields about two-
dimensional aerodynamic bodies. This code solves the Navier-Stokes
equations including turbulence, transition, and free air boundary
conditions along the perimeter of the domain of calculation. The
finite difference equations embodied in the STOKES code were originally
developed by Trulio'(Ref. 13). These finite difference analogs of the
equations of motion are such that their self consistency property is
maintained. That is, the finite difference equations for continuity,
momenta, and internal energy imply an exact finite difference equation
for total energy. The Trulio finite difference relations are second
order accurate in space and first order accurate in time according to
Taylor's series analysis.

Turbulence and transition are discussed in Section 3, while the
free air boundary conditions are described in Section L, This Section
is concerned with the numerical method employed to solve the finite
difference analogs of the equations of motion embodied in the STOKES
code,

The principal innovation embodied in this computer code concerns

computational time reduction. A method has been developed which produced

computational time reduction factors between five and ten, For a non-
1ifting airfoil the flow field can be computed in less than 30 minutes
on a CDC 7600 computer, while for a lifting airfoil the calculation
requires less than two hours. ‘

The STOKES computer code employs three principal time-reduction
methods .

1. Writing the program to proceed along quasi—streamlines

- rather than the conventional processing along -

potential-like lines.

/\‘
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2., Incorporation of specialrassembly language subroutines
to take maximal advantage of the "pipelining" capa-
bility of the more advanced computers.
3., Setting up a procedure whereby the computational 7
domain is automatically divided into several regions f(

J in which different timesteps govern numerical stability.

2.1 Switched Gomputatiohal Axié'

Tet us consider computation of the flow field about a two-dimen-

sional body whose axis is parallel to the x coordinate axis; and

immersed in an airstream moving along the x-axis,. The y-coordinate is
considered the normal direction, The computation takes place on a finite
difference mesh comprised of the intersection of quasi-streamlines,

which are nearly parallel to the x-axis and extend upstream to downstream,

-r,

and potential-like lines, Wthh are nearly paralled to the y-ax1s,
and initiate below the body and end above the body.v

Due to computer storage limitations, computations were préviously
conducted along the potential-like lines of the mesh, starting from
the line farthest upstream of the body and ending at the line farthest
downstream of the body. This mode of computation is referred to as
unswitched. Usually the potential-like lines are shorter than the
quasi-streamlines; hence, they are comprised of fewer points. With

fewer points to a calculational line the do-loops in the program are

executed fewer times, and there are correspondingly more interruptions

for data transfer between central and peripheral memory banks. Further-
more, most potentlal-like lines of the finite difference mesh pass through
the body; hence, specilal branch poin£ logic is required to accéunt for

the body aérodynamics,




The switched axis computer code performs. computations along
the streamline-like lines of . the finite difference mesh rather than along
the potential-like lines. For each calculational line the do- -loops:
in the-prdgram are executed a greeter number of times and’ the number of
data traﬁsfer interruptions are reduced, Furthermore,‘the body
geometry becomes two special streamlines of the ‘mesh in the
switched mode .of computation. . Through most of. the sireamline
computational sweeps there is no branching -of logic. For the above
reasons, the switched axis mode of computation is more efficient
than the unswitched mode (Ref. 14).

2,2 .The Vector Do-Loop

Recenfly at NASA—AmQS Research Center, Dr. H. ILomax started devel-
opment of CDC 7600 assembly language subroutines to replace operations
done in regular FORTRAN do-loops. These subroutines were designated
"Vector Do-lobps," i.e., VDI*, The Vector-Do-Loop takes advantage of
the instruction stack of the CDC 7600 computer and employs the concept
of pipeling in the computational sequence. In Reference 1@ a simple
vector do-loop is explained and an actual example is given showing the

speed-up factor between a vector do-loop subroutine and the equivalent

FORTRAN program.

The VectoreDo-Loop substitutes computation during the waiting
periods that normally occur in FORTRAN do-loops. The case of the
vector routine is a ‘tight loop with computations going on at different
stages of development, while the FORTRAN Do-Loop is essentially a seriles
calculation. The’ Vector-Do-Loop fits into the instruction stack
and thus executes quickly. By making OPtimai use of the GPU registers,
the Vector—Do-Loop can do the work of a FORTRAN-Do-Loop faster and
more efficiently.
¥ The vector do-loops have also been referred to as the. SSPEEDY Codes.,




2.3 Multl-Reglonal Timesteps

The Multi-Regional-Timestep (MRT) logic divides the domain of
computation into a set of concentric regions about the airfoil. In
each concentric reglon a different timestep is employed, which is
governed by the stability of that particular region. The tlmestep
generally increases by a factor of two as one moves from the inner
concentric region towards the outer one. Thus, the inner regions are
calculated frequently, while the outer regions are calculated in-
frequently. |

The MRT loglc embodled in-the STOKES computer code is based on
concepts developed by Magnus and Yoshihara (Refs, 7 and 15) and
Trulio (Refs. 16 and 17).v>ih solving for the inviscid field about -an
oscillating airfoil (Ref. 15), Magnus and Yoshihara employed four con-
centric mesh regions about the airfoil., Three are employed in the
vicinity of the~airfeil nose and the fourth is a coarse cartesian mesh
which contains the other three and covers the remainder of the domain
of calculation. The three in fhe’nose region are a fine skewed mesh
adjacent to the airfoil, a fine cartesian mesh containing the skewed
mesh, and a medium cartesian mesh containing the other two. In their
explicitjdifferencing echeme the allewable timestep is limited by
stabilit& criteria to an amount which is directly proportional to the
spatial mesh increments. TFor each explicit timestep advancing the
solution in the coarsest cartesian mesh of the system, 8 are made in
the medium cartesian meeh, 64 are made in the fine cartesian mesh, and
256 are made in the skewed elliptic mesh around the nose, - Thus,
Magnus and Yoshihaie.employed four concentric regions in their compu-

tation of flow about an oscillating airfoil.

' The multi—regionalitimestip formulation employed herein 1s patterned

after that of Magnus and Yoshihara. A set of concentric regions is

developed'each of which extends from the upstream to the downstream

boundary and contains the airfoil. In this formulation, which takes
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place in the switched axis computer code , the variables of motion

are calculated for a given layer of zones as often as required by
considerations of stability of that layer bf zones and its immediate
neighbors, rather 'than the former method of updating dependent variables
for all zones.-as often as required for the least stable zone of the
finite difference mesh. Since the finite difference mesh is composed
of streamline-like linés finely spaced in the neighborhood of a surface
and coarsely spaced as one moves away from the surface, there are

many dlfferant timestep levels in a typlcal aerodynamic problem,
Therefore, a 'high percentage of the zones, i.e., those in the large
timestep levels, will be calculated very infrequently and great savings
is computational time-should occur, )

The finite difference mesh is broken up into a serie€s of regions
comprised of a group of streamline-like lines. The regions are determined
by stability for the least stable zone along a given streamline. The
timestep levels monotonically decrease as one approaches the aero-
dynamic body from below, and the timestep levels monotonically‘increase
as one moves away from the top surface of the aerodynamitc body, In the
multi-regional timestep approach, one-dimensional variable timestep
techniques are employed to sove a two-dimensional problem. Some of
the techniques published by Trulio (Refs.lé;r7) “are incorporated in
the multi-regional timestep approach considered herein, Particularly
the concept of haﬁing adjacent concentric regions differ in timestep
by a factor of twd. Trulio has stated that under these conditions
the conservation properties of the finite difference equations discussed
in the introduction to Section 2 can be preserved after the solution
is advanced 1n the coarsest region of the systemn,

Let us con51der an airfoil finite difference mesh with four
concentrlc regions, each differing by a factor of two in timestep,

and let At be the minimum timestep, a "microstep". It is required

_to update the variables of motion on this mesh through the total time

10




interval of 8 At, designated as a macro-step. The finest region will be
updated through 8 increments in At, or through 8 "microsteps", the |
next finest regién will be updated through L timesteps of 2 At, the
medium region will be‘updated through 2 timesteps of 4 At and the
coarsest region through the macrostep. '

Complexity is minimized relative to the generalized variable
timestep procedure of Trulio (Refs. 1% and 16), since all points along
a given streamline belong to the samé timestep level. Hence, since
the streamline spacing controls the timesteps in most two-dimensional
problems, the simple multi-regional timestep approach should yield
most of the benefits of a more complex general two-dimensional variable
timestep method. Development of the MRT logic is presented in much

more detail in Reference 18.

11
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SECTION 3

TURBULENCE AND TRANSITION MODELS

An algebraic turbulence model, originally formulated by Baldwin
and Rose (Ref.19 ), is selected for the computation of turbulent flow
over an airfoil at transonic speed. The model is, in effect, the
mixing length theory to which relaxation along a streamline-like
trajectory is incorporated. The simple algebraic model has been
recently examined by Baldwin and Rose (Ref.19‘),Deiwert (Ref. 20 ),
and others to be useful in shock boundary-layer interaction problems.
All versions of available algebraic models are discussed. A criterion

for boundary layer transition is also presented.

3.1 Turbulence Modelling

Numerical modelling of turbulence has become quite practical in
the past decade with the advancement of high-speed computers, Though
a universal model withwide range of applicability is far from reality,
there is ample evidence that existing models have served well even in
complex situations such as shock-wave boundary-layer interaction. All
models,of?tufbﬁlence are supposed to be general in scope, and until
recently, cross-comparisons between models (mainly studies ddne at
NASA- Ames, Refs. 19 ,ZdyyadeI) are few, For transonic flow, there
is no definitive conclusion as to the best turbulence model to employ.

The usage of numerical models naturally bypasées the more funda-
mental approach to turbulence studies via statistical theory, which
might be at timesﬁacademically'plasing but unrealistic in engineering
applications. In general, turbulence modelling is divided into two
categories: the algebraic models such as mixing length theory, and the
fransport models which are described by one:or more differential equa-
tions governing some quantity like turbulence energy, turbulence -

vorticity or shearing stress. The original work of Prandtl and its
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subsequent extension by Cebeci and Smith (cs) (Refs. 22 and 23),
Rose (Ref. 19), etc. are examples of the first class; the classical
Kolmogorov model (Ref. 24) (1942) and the Saffman model (1970) (Ref.25)
fall into the latter category.{ In adopting a transport model, one must
solve,'in addition to the basic comservation laws, other differential
equations from which turbulence stresses are determined. Transporf _models try

to depict the physics of turbulence traﬁsport, generation, dissipation
and diffusion. In addition, some models (such as Saffman's) show the
correct analytical behavior near the wall (as demanded by the law of
wall)., The predictive capabllities for incompressible boundary layer
flows by those models are convincingly established., Turbulent flows

in more,thén two spatial dimensions, inCIuding separation, compressi-
bility, rotational effects, and containing boundary layers interactihg
with shock waves have not been subject to examination by those models¥,
In short, the transport models, as promising as they are, have yet to

Be ° thoroughly tested by problems-more compléx than pléné“ﬁbundary
layer flows. ’

In view of the existing complexities in the unsteady transonic

flow problem, the desired economy in computation, and the added degree
of complicaﬁion in the nohiinear equations, we must see an alternative
to the formulation by turbulence model equations, The alternative should
be able to render a reasonably good descriptionbof the turbuient boundary

layer development without;g}disproportional amount of compitational tims,

*  Wilcox (Ref, 26), applying Saffman's model, has shown good resulis
in the study of turbulent boundary separation and reattachment
at moderate (2,96) Mach number, '

13



s

3.2 Algebraic Turbulence Models _

The mixing length theory, originated by Prandtl (Ref. 27), pro-
vides the foundation to all algebraic models. Modifications introduced
by van Driest (Ref. 28), Cebeci and Smith (Réfs. 22 and 23), and recently
Baldwin and Rose (Ref, 19), Shang and Hankey (Ref. 29), and Deiwert
(Ref. 20) all direct to improve the applicability of the model. Alge-
braic models bypass the necessity of solving additional differential
equations; From a computational standpoint, the eddy viscosity based
on an algebraic model is post processed from mean-flow information. Our
past application of the CS mixing length theory to internal flow
problems in an impeller has shown good qualitative results (Ref. 30),
Quantitative'cpmparison‘is not possible due to the complete lack of
experimental data. Hence, some version of an algebralc turbulence
model is prefered to thé more complex transport model, Despite the
mixing-length common ingredient, there are variations in each indi-
vidual formulation., The variations range from the unmodified theory
to a relaxation model incorporating special treatment for the separated
regions. The relaxation model was found significantly better than the
unmodified algebraic model, According to Shang and Hankey (Ref. 29),
it was significantly better than the Saffman's transport model for flow
over a flat platé. Since separation on the transonic airfoil is a real
possibility, incorporation of the relaxation effect becomes gquite
desirable., For a detailed comparison of various formulations, we
1list them in the following table.

W
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" The formulation we shall adopt in the trahsonic flow problem is
basically a hybrid relation primarily based on Rose's relaxation
model and the modification suggested by Deiwert, Ingredieht; of
the present algebraic model are blocked in heavy-linedvrectangles
in the preceeding table. The model for the turbulence stress'tij

can be summarized as follows.

- 2U; aﬁ,-_.&il‘ig..]-i‘(ea”g (1)
1&5 ='f>é [ D%ﬁ * IX; 3 53%* ¢ 3 3

- 5 . .17
with fes — 2 T&L | ” | w | (2)

The eddy viscosity € is estimated by the mixing length theory

which subdivides the shear layer into an inner and an outer region.

N P =+(32_1)"
€ = 41 (ax}- dX;
I klyD o

0.4

Inner region

R o
] i [

y = normal distance from the nearest wall

D = 1- exp (-y/A)

A=26vw/W

v. = kinematic viscosity coefficient at the
nearest wall

T = shearing stress at the nearest wall



Outer Region

2 [y (3?&
€ © zmax ;57;) * QX

20y = 0.098
6, - = boundary layer thickness
Se;ection €eq. = Min (egrey) | ( 3)

Relaxat:.on along a streamline-like trajectory

EG) = éCg-A§)+[£,, 3)- €(§-A§>] (1- e"F( ] (4)
{”’\ if  Eeq < E(§-53)

53\,, otherwise

where

And £ is a parameter defined along a étreamline‘._

\

‘

Two major components, due to Zeiwert ., are introduced into Rose's

formulation. One is the adoption of / au‘) ( ) in place

—_ — 2X
. au 4 ' J

QU + = to avoid the complete vanlshlng of € in a

a%J dX¢ :

recirculating zone. Another one is the modification of the

of

relaxation process in which e(£-Af) is used in place of a fixed ¢
evaluated at some reference station. Moreover, leiwert found that
relaxation over a streamline-like contour was more appropriate
particularly for flov-rs over a curved boundary, such as airfoil

or turbine blade. Both modificjakti’.»ckms, indeed mindr in nature, are
convenient to implement with our computer code in which the
‘scanni’ng is done along streamline-like trajectories. The necesSity

of incorporating the relaxation ef ffect has been substantiated by

Baldwin and Rose (Ref. 19), Deiwert (Ref 20), Shang and Hankey (Ref 29 ),

Its usefulness fg; flows in an unsteady transonic flow will be borne out in
our forthcoming computation, |
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3.3 Transition to Turbulence .

Laminar flow at large Reynolds nﬁmbers becomes unstable,
then the growth of disturbance in the boundary layer builds up
until transition to turbulence occurs. The point of transition
is strongly affected by the streamwise pressure gradient and the
turbulence level of the free stream. To account for these factors,
several empirical methods are available (for example, van Driest

aéd Blumer, Crabtree, Granville, Smith and Gamberoni, van Ingen,

Miéhel). It is not possible to give a thorough comparison for

those methods. 1In ouv blade~to-blade computation for flows in an
impeller passage (Ref 30), both/Gmnvi,llé. -(-Refﬁl)(’, and Michel's (Ref 32) formulations
were examined. We found that Michei's_simple algorithm provided

a clear-cut prediction of transition point and it was extremely

easy to implement. Since boundary layef transition is such a : !
dubious subject in numerical computation, our guideline in the

selection of a criterion is again "the simpler the better.” Unless

future experiments contradict our selection, we shall adhere to

Michel's criterion for the present applicatibn. The criterion

gives a transition Reynolds number, (Re based on the local

o) trans’
Reynolds number Re

X" 22400
(Re,) = M7 (/ + )A’ex (s)
i’mns. '?ex !
The local Ree can be estimated from the incompressible momentum
thlckness Qi. o —/f 2—(— (/—. .ZZ. )dy : (5)
< —_— . ~
o o umax ax
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If the local Ree is larger than (Ree)trans, transition to
turbulent'flow has taken place. Michel's criterion, resulted
from correlation of experimental data, is supposingly valid for

5 and 60 x 106. Criterion of

thé range of Rex between 0.1 x 10
this nature signifies that transition to turbulence occurs at a
point, rather than in a region, and relaminarization is not

possible. A.M.O. Smith had compared Michel's algorithm against

Granville's, Smith found the simple criterion of Michel quite

satigfactory in the description of transition to turbulence.

e
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SECTION 4

BOUNDARY CONDITIONS FOR SIMUIATION OF
FREE AIR FLOW ABOUT AN AIRFOIL

This research effort concerns flow about the symmetric NACA 64A010
airfoil, which has a thickness to chord ratio of 10%, at two different
angles of attack. At zero incidence the airfoil does not develop lift;
hence, the circulation of the system is zero, For the 2 degrees incidence
case the transonic field about this airfoil does contain circulation,
since 1ift is being developed about the body. In this sectlon boundary
conditions are prescribed which simulate far field free air flow

conditions for the non-lifting and 1lifting cases above.

L.,1 Boundary Conditions for Non-Lifting Airfoll

Figure 2a shows a schematic of the domain of calculation of a
symmetric airfoil having a chord C, a thickness 7, and at zero degrees
incidence, Let us consider inviscid, isentropic flow about this
airfoil. .For the case of a thin airfoil, the flow is governed by the

transonic small disturbance potential equation (Ref.l+h).

(M) Bex By = Mo D & Gy (7)
where:

X = ><)/(<242 ) (8)

Y= H(S> (9)

u= Ut &y (10)

v = ¢2 i . (11)
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Let us define a scaled parameter "fr‘ such that

)
=My (2

where:
5= e

Combination of Equations (7) and (12) yields

[K= ) by ] Oyx + P55 = 0 W)
where:
K = ('"M;‘)/Mooézé ()
Iy = "59»'/(},06 | (15)
O | d”g - Cbﬁ‘/(]ooé | (26
€= 3 M | (17)

Based on equations (10), (11), (15), (16), and (17), the streamwise

and normal velocity components are, respectively:
Uu = Uoo (H— € (Dg ) (18)

For the non-lif'bing sj;mmetric airfoil of Figure 2a the effective-
far field potential solution to Bquation (13) is a doublet.

C_ D - S oS
% z/r.{z[zf‘d-m“l )
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where D is the area of the airfoil section. Egquation (20);indicates
that the doublet potehtial stiength;diminishes inversely wifh the
square of the transformed radius Z= g;z + Kiz)% from the origin of
the coordinate system, which”is located at the 50 percént~chord station
(Figure 2a). Thus, the effects of the non-lifting airfoil on the
périmeter of the system are small provided this perimeter is selected
far from the airfoil.
As a result of the above, the following boundary conditions wexe
imposed on the perimeter of the domain of calculation shown in Figure 2a,
(1) Along the upstream boundary the Murman-Cole inviscid |
solution (Ref., 1) is prescribed for all time.
(2) Frictionless flow is imposed along the lower horizontal
latéral boundary of Figure 2a. |
(3) Frictionless flow is imposéd on the dividing‘streamline
upstream and downstream of the airfoil surface.
(4) No slip flow is imposed along the airfoil surface.
(5) A two—dimensional unsteady method of characteristics,
including dissipation, is employed to determine the

velocity field exiting from the downstream boundary (Ref. 1),

At the upstream boundary the Murman-Cole solution‘is essentially
the doublet of Equation (20). The lateral boundary is far enough
away from the airfoil, so that any reasonable boundary conditibn will
work including frictionless flow. F inally, at the downstream boundary
the viscous egquations of motion are solved, via the method of charact-

eristiés, to provide a very realistic model of the exiting flow.

4,2 Boundary Conditions for Lifting Airfoil

A 1ifting airfoil develops circulation; hence, the boundary
conditions enforced on the perimeter of the system greatly influence
the flow in the neighborhoo of the body.‘ Qet us consider the airfoil
shown in Figure (2b).at an angle of attack vc(', and having the circu-
lation |'. The coordinate system (x, ) is located at the 50 percent
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chord station, the airfoil thickness is T, and its chord is C.
Krupp and Murman (Ref. 2) and Small (Ref. 33) have determined
the far field potential solution to Equation (12) for the Iifting case,

The resultant equation is as follows:

o= dy-L o+ PI(;fﬂ) %ﬁ Pl 0 - [ Ga30 ... ()

4K €

whero. ¢p is the doublet potential given by Equation (20) and, _
_l( K
.. © =_ ¢E7X) (22)

¢ = (XF K9) (23)

In Figure (2b) thé point P is shown;on the upper lateral boundary
hav1ng the scaled radius T and the angle 6, The second term of
Equatlon (21) is dlrectly dependent on the angle 6 and the circulation
[ ; hence, the effects of airfoil circulation are felt throughout the
domain of calculation for the 1ifting case., Therefore, circulation
must be properly accounted for far from the body to simulate free air
boundary conditions. ‘ | 7

In order .to preserve circulation;thtoughbut the domain of calcu-
lation, two sets of boundary conditions were investigated in this study.
In the remainder of this section these boundary condition sets are
described and their value ascertained.

In the first set of boundary conditions, the veloecity field on:
the upstream and lateral boundarles of the system shown in Figure (2p)
was calculated at each tlmestep from the far field small disturbance
Equatlons-(l8), (19), (20), and (21). The methed of characteristics,
which included dissipation, was utilized to compute velocities at the

downstream boundary (Ref. 14).

To obtain a more accurate‘ﬁelocity‘field;on;the upstream and lateral

boundaries‘of the system, the far field small disturbance equations
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(18), (19), (20), (21) were solved in conjunction with the TSFOIL
(Ref. 3) inviscid field, which served as the initial conditions
for the lifting éaICulation. The TSFOIL velocity fiéld was used
to numerically évaluateﬂthe time-independent doublet contribution to
the far field potential given by Equation (21). The numerically
determined doublet contribution to the far fiéld velocities, which
resulted from the initial’ condltlons, was then saved and employed in
Equation (21) at later times.

At each timestep of the calculation the 1lift force was computed
about the airf6i1 and the local 1lift coefficient Cf was determined,
Based on the local 1ift coefficient the circulation about the airfoil,
which was preserved along the perimeter of the system, was calculated
from the Tollowing equation.

ros ’;’fé o @
Equation (24) is consistent with the small disturbance theory approx-
imations. | , | :
- The boundary conditions defined in this first set did not work.
Vortices'shed from the airfoil, whose rotation produced local velocities
in the neighborhood of the upper lateral boundary (Figure (2b) )

oppbsite in sense to these prescribed at the lateral boundary from

-~ Equation (21). Material could not flow out of the system; therefore; the

pressure built up along the upper lateral boundary eventuallywiping
out the wake of the airfoil. |

. As a result. of the above, a second set of boundary condltlons was
prescribed in the far field. The velocity field on the upstream
boundary was computed at each timestep from the far field small dist-
urbance Equations (18), (19), (20), and (21) in a manner identical
to ‘that described above., However, along the lateral boundaries of the
systen (Figure 2b), far field small disturbance theory, via Equations
(18), (19), (20), and (21), and the TSFOIL solution, were used
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to comﬁute only the external static pressure field along these
boundaries. Based on the external far field theory pressures and the
interior stresses along the lateral bbundaries, the velocity field was
computed from the equations of motion. Finally, the method of charact-
eristics, described previously, was employed to compute velocities

at the downstream bouﬁdary.

The boundary conditions defined in the second set ﬁorked. During
the shedding process the pressure boundary condition permitted material
to flow out of the system at the upper lateral boundary. This per-
mitted the shed vortices to pass through the system and resulted in
a reaspnable description of. the flow field .for the wake of the airfoil.



SECTION 5
RESULTS :OF NON-LIFTING CALCULATION

Computations were first conducted for the NACA 64A010 airfoil
at zero degrees angle of attack. Although the Reynolds number was
L x 106, the computations were originally made with the turbulence
model turned off; a computation is now in progress with the model
turned on and with a finer mesh. The laminar problem was designated
"Problem 101.0"

The non-lifting airfoil numerical results for Problem 101.0 are
presented in the following format:

(1) Mesh used and Initial Conditions

(2) Time-Histories of Pressure Coefficients

(3) Computational Time Reduction Factor

(4) Velocity Vectors of Steady Flow Field

(5) Surface Pressure Distribution Comparisons

(6) Mach Number Contours

5,1 Mesh Used and Initial Conditions

The mesh employed to solve Problem 101.0 is presented in Figure 3,
This mesh is comprlsed of the intersection of 34 quas1-streamllnes
and 130 potential-1ike-lines. The streamline- ~-like-line spacing is
designed to provide about five points in the boundary layer downstream
of the leewafd airfoil shock.

The timestep levels of the mesh of Figure 3 were. investigated and
the speed-up factor between a multi-regional timestep run and a con-
stant timestep run was determined. Uniform freestream conditions were
assumed in the numerical investigation. The speed-up factor is the ratio
of the time it would take to do a macrostep (cover the total time :
increment of the coarsest region) without the multi-regional time-
steps to the time it would take to do the same computation with the
multi-regional timesteps. Multi-regional timesteps and their speed-up

factors are described in Reference 14, It was found that the minimum
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timestep for the mesh of Figure 3 was 1.33/us and the speed-up factor
was 2.15., Furthermore, it was found that the potential-like-line spacing
in the vieinity of the leading edge of the airfoil controlled the time-
step levels. N

A previous finite difference mesh was investigated, having the
same number of mesh points, but with finer potential-like-line spacing
in the vicinity of the airfoil leading;edge; With finer potential-like-
line spacing this finite difference mesh had a minimum timestep
of .684//5 and a speed-up factor of 1.69. Furthermore, this mesh 1is
still severely limited by the potential-like-line spacing in the
vicinity of the airfoil leading edge, rather than the streamline-like-
line spacing.

Further study is warranted to increase the speed-up factor even
further by spreading‘potential-like—lines near the airfoil leading edge.

The initial field for the solution of Problem 101.0 was generated
from the inviscid small disturbance solution from TSFOIL (Ref. 3).

The initial field generated from Murman's method was interpolated
onto the finite difference mesh of Figure 3 by a computer code written
especially for this purpose.

A computef code, called "INTER", was developed to interpolate a
flow field on a generalized finite difference mesh, termed the
"unprimed points” onto another generalized finite difference mesh,
termed the "primed points". The sequence of events in the interpol-
ation process are as follows:

1. A primed point is located in the unprimed zone that contains

it. ,

2. A firstborder double Taylor’s series expansion is employed

to interpolate the data at the four corners of the unprimed
quadrilateral onto the primed point.

3., The velocity cqmponents, density, and specific internal

energy are interpolated.
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The INTER computer code was employed to interpolate the
inviscid flow fleld onto the 64AO10 airfoil mesh of Figure 3. The
inviscid field developed by TSFOIL for the 64A010 airfoil was generated
for zero angle of attack at Mach .80. The inviscid field is developed
on a rectangular mesh comprised of 50 horizontal lines and 89 vertical
lines and considers the airfoil as a flat plate through use of the
approximate tangency condition. The airfoil mesh (see Figure 3) is
comprised of 34 streamline-like-lines and 130 potential-like-lines.
The:interpolated pressure field on the 64A010 airfoil surface is
presented in Figure L, Measured pressure’coefficients;(Gross and
Steinle,vRef 34) at Reynolds number 4 x 106, are also included for
comparison purposes. It is seen from Figure 4 that the inviscid pres-
sure distribution is a good approximation to these data, except in
the viciﬁity of the shock-wave-boundary-layer interaction, and at the

trailing edge of the airfoil.

5.2 Time-Histories of Pressure Coefficients

Starting from an initial field generated from the inviscid
small ‘disturbance ;solution ..from TSFOIL, the zero "incidence
case was run 1100 computational cycles to a characteristic time* T
of 3.62.. The 1100 cycles required 28 minutes on the CDC 7600 computer.
Pressure-time histories indicated‘that the field was near steady-
state at this characteristic time.

Tn order to demonstrate that the airfoil flow field 1s approaching
a steady-state, time histories of the pressure coefficient were monitored
at five points along the surface of the airfoii. The pressure coeffi-
cient is plotted as a function of the characteristic time T in

Figure 5. It is seen from Figure 5 that at a characteristic time T

* Unit characteristic time corresponds to the time it takes a free
stream particle to travel one chord length.
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of 3.62 the time-histories are nearly horizontal,

Although time-

histories were not generated in other regions of the flow field, it

is believed that at T = 3.62 the remainder of.the field is also near

steady-state.

5,3 Computational Time Reduction Factor

The STOKES Computer code employed to solve Problem 101.0 embodies

three computational time reduction methods, namely:

1.
2. Vector-Do-Loops

3, Multi-Regional Timesteps

Switched axis

It is the purpose of this section to determine the speed-up factor

afforded by each method, and the total speed-up factor.

Let us consider the multi-regional timestep levels (MRT) first.

Table I presents a tabulation of the timestep levels associated with

the streamline-like-lines of Figure 3 at a characteristic time T

of .6600.

K-Line
Range

30-33
25-29
16-2k
1-15

TABLE T

Tabulation of Timestep Levels

at a Characteristic Time T

Timestep
Level

‘\A)NH

LL;

of .6606

Timestep
us

775655
1.55131
3,10262
6.2052L

Number of
Microsteps
per Macrostep

8

n
2
1

There are four timestep levels in Table I; hence, the computation

requires eight microsteps per macrostep of computation. Each streamline-
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like-line is numbered with the index K, where K=1 corresponds to the
lower lateral boundary of Figure 3. It is seen from Table I that four
K-lines are in Level 1, five K-lines are in Level 2, nine K-lines are
in Ievel 3, and fifteean-lines are in Level 4. On this basis a speed-
up factor, SMRT’ can be calculated, which is the ratio of the number
of point-steps that occur if the smallest timestep governs the compu-

tation to the number of point-steps that actually occur due to MRT.

_ (33)(130)(8) -
S = TR F () + O T § @

The speed-up factor computed above is not the maximum that could be
achieved for Problem 101.0. The potential-like-lines limit the higher
timestep levels, A revised mesh and a potential-line dropper in the
STOKES code should give another factor of two.

The switched axes of STOKES gives a factor of 1.5 (Ref. 14 ) and
the Vector-Do-Loops employed provides an additional factor of 1.5
(Ref, 14). Therefore, the total speed-up factor is

S = (1.5) (1.5) (3.1058) & 7.00 (26)

As was discussed in Section 5.2,tﬁe STOKES code was run through
1100 macrocycles to reach a near steady-state at T =3.62, The 1100
macrocycles required 28 minutes on the Ames CDC 7600 computer, Based
on Equation (26), an unswitched constant timestep version of STOKES
would solvé Problem 101.0 in three hours and fifteen minutes on the
CDC 7600 computer.

5,4  Velocity Vectors of Steady Flow Field

Figures 6 and 7 present velocity vector plots of the sieady flow
field about the NACA 64A010 airfoil. The vectors are proportional to
the particle speeds and emanate from the mesh positions of Figure 3.

Figure 6 shows the leading edge flow field and the field in the

1



vicinity of the shock wave, while Figure 7 shows the trailing edge
flow field.

A deceleration along the dividing streamline of the airfoil is
shown in the flow field of Figure 6. Furthermore, subsequent expansion
about the forward portion of the airfoil is also indicated in Figuie 6.
The boundary layer must be thin on the forward portion of the airfoil
since it is not descernible in the vector plot.

. Aft of the shock wave, which occurs at x=.74 ft, a thickening of
the boundary layer is indicated in Figure 6, A boundary layer flow can
be clearly seen at the axiai station x=1.01 ft,

A recirculation region is clearly indicated in the neighborhood
of the airfoil trailing edge in Figure 7. This recirculation region
is only calcuiable through the Navier-Stokes equations; such a region is
not within the scope of inviscid methods which employ a Kutta condition.

fhe calculated surface pressures are compared to measurements

in the next section.
5.5 Surface Pressure Distribution Comparisons

Surface pressure distributions obtained from the STOKES numerical
solution, the TSFOIL inviscid solution (RefQ 3), and the measurements
of Gross and Steinle (Ref, 34) are shown in Figure 8. It is seen that
the STOKES pressure distribution is nearly identical to these data,
except in the vicinity of the shock and at the trailing edge. The

calculated shock position, i.e., x/c = 475, appear correct; however,

the shock transition is smeared out relative to these data; it is believed

that the finer mesh computation now in progress will produce a sharper
shock transition. The TSFOIL prediction produces a shock location

aft of the experimental value, i.e., x/c = ,525, but transition

is sharper. Finally, at the airfoil trailing edge the TSFOIL prediCtion
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shows an increase in pressurs, while both the STOKES and experimental
results indicate no such increase., The flattening of the trailing edge
pressure distribution is due to viscous effects. Differences beiween
the calculated trailing edge pressures and corresponding data may be
attributed to an early numerical separation caused by the absence of
tﬁrbulence. Tt is anticipated that the turbulent computation now in
progress will greatly narrow differences between the calculated and

measured pressure fields.
5,6 Mach Number Contours

Caleulated local Mach number contours are shown in Figure 9.
The freestream flow at a Mach number of .80 decelerates to a stagna-
tion point at the leading edge of the system, then accelerates past
sonic flow to Mach 1.08, shocks down to subsonic condifions, and
decelerates subsonically throughout the remainder of the airfoil chord.
Furthermore, a low speed recirculation region exists in the neighbor-
hood of the trailing edge of the airfoil.

The gradual transition through the shock wave is indicated in the
Mach number contours of Figure 9. The airfoil accelerates to Mach 1.08
at x = .74 £t, then gradually goes through shock transition to
x = .94 ft where subsonic flow occurs. This smearing of the shock

will be reduced in the finer mesh calculation now 1in progress.
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SECTION 6

RESULTS OF LIFTING CALCULATION

Computations for the NACA 64A010 airfoil at two-degrees angle
of attack were conducted with the turbulence and transition models
operational. The turbulent lifting airfoil problem was designated
"Problem 102.0". During the process of running Problem 102,0, it
was found that an integrated inviscid/viscous calculation provided
more realistic results than a complete viscous calculation, The
principal reason for this was that the finite difference mesh employed
was too coarse to define the thin boundary at the airfoil leading
edge. The integrated inviscid/viscous calculation was designated as
"Problem 102.1".
The lifting airfoil numerical results of Problem 102.0 are presented
in the following format:
1, Finite Difference Mesh
2. Initial Conditions
3. Computational Time Reduction Factor
L, General Flow Field Structure
5. QGalculated Lift and Drag

After the results of Problem 102.0 are described a discussion of
Problem 102.1 follows. '

6.1 Finite Difference Mesh

The mesh employed to solve Problem 102.0 is presented in Figure 10,
This mesh is comprised of the intersection of 68 streamline-like-lines
and 130 potential-like-lines. The streamline-like-line spacing is
designed to provide about six points in the leeward boundary layer
aft of the airfoil shock.

The mesh of Figure 10 was developed from the half-mesh employed
for the NACA 64A010 airfoil at zero angle of attack (Figure 3). This
‘half-mesh was reflected to produce a symmetric mesh about the full



6LA010 airfoil at zero angle of attack. The airfoil and asso-

ciated mesh were then rotated through two degrees to produce a finite
difference mesh at angle of attack. Horizontal lines were then imposed
at the lateral boundaries of the system and the potential-like-lines
were forced to terminate at these boundaries,

In the neighborhood of the airfoil leading edge the turbulent boun-
dary layer thickness is much smaller than the thickness of the first
layer of zones adjacent to the airfoil surface. Therefore, the mesh
of Figure 10 is considered as a medium mesh. It is designed to
provide a practical running time with sufficient accuracy to define

the important airfoil fluid mechanical phenomena.

6,2 Initial Conditions

The initial field for the solution of Problem 102.0 was
generated from the inviscid small disturbance solution from TSFOIL
(Ref. 3) for the 64A010 at M = .8 and 2 degrees angle of attack,
and interpolated onto the mesh of Figure 10.

Initial pressure distributions on the leeward and windward sides
of the airfoil are shown in Figure 11, It is seen from this figure
that the leeward flow undergoes a very rapid expansion at the airfoil
leading edge to supersonic flow, and then is shocked to subsonic
conditions at a station along the airfoil of approximately 85% of
the airfoil chord.

The inviscid 1ift and drag coefficients are compared to inter-

polated measurements of Gross and Steinle (Ref. 34) in Table II.
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TABIE IT

Comparison of Lift and Drag Coefficients for the NACA A4A010 Airfoil

Method of Generation Drag Coefficient Lift Coefficient
c C
D L

Murman Inviscid

Solution (Ref.3 ) 10413 .8709

Measured Value (Ref, 34) 047 ; RSL

It is seen from Table II that the inviscid theory overestimates the
1ift and underestimates the drag by a large factor. If the inviscid
1ift prediction were closer to measurements and the flow were steady,
the Murman far field solution could be imposed on the upstream and
lateral boundaries of the mesh and the problem run in this way. Due

to the large discrepancy in 1ift and the possibility of unsteady flow,
the boundary conditions described in Section 4.2 were employed on these

boundaries,

6.3 Computational Time Reduction Factor

Starting from the initial field of Section 6.2, the two degree
incidence case was run 2615 macrocycles to a characteristic time r
of 9.05. The 2615 cycles required 1.88 hours on the CDC 7600 computer
at -Ames Research Center. Since Multi-Regional Timestep (MRT) logic
is employed, each macrocycle is comprised of many microcycles. There-
fore, the 1.88 hours of computational time is divided according to the
timestep levels employed in the calculation., The timestep levels

employed for Problem 102,0 are presented in Table IIT,




TABIE III

Computer Time Division

Macrocycles Timestep Levels Computer Time
- (hrs)
965 L 857
1650 3 1.023
2615 1.88

The results of TableIIT indicate that the first 965 macrocycles
occurred at four timestep levels, i.e.,,8bmicrosteps per macrostep,
and the remaining 1650 macrocycles occurred at three timestep levels,
i.e., &4 microsteps per macrostep. Furthermore, the first 965 cycles
required,857 hours of CDC 7600 time, while the remaining 1650 cycles
took 1.023 hours.

Based on the results of TABIE III the speed-up factor afforded
by the MRT logic can be evaluated in a manner similar to that of
Section 5.3, Through the first 965 macrocycles four timestep levels
were employed. The MRT speed-up factor, SMRT’ that results can be
determined from Table IV below.

TABLE IV

Tabulation of Timestep Levels
for First 965 Macrocycles

Timestep Level Layers of Zones
in that Tevel

12
15
28
12

FEw N
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_ (67)(13)(8) :
Syre = T30 (12)(8) + (15)(4) + (28)(2) iz ) ~ =%

The switched axis gives a factor of 1.5 (Ref..13), and the Vector-Do-
Loops provide another factor of 1.5 (Ref. 13); therefore, the total

speed~up factor over the first 965 macrocycles is

Sgg5 = (1:5)(1.5)(2.392) = 5.38

Through the remaining 1650 cycles three timestep levels were used.

The MRT speed-up factor, Sygpp ., can be determined from Table V below.

TABLE V

Tabulation of Timestep Levels for
Remaining 1650 Macrosteps

Timestep Level Tayers of Zones in the level
14
19
H
5w (67)(4)(130) - 2.09%

MRT 130 ((1%)(4) + (19)(2) + 3%)

Accounting for the switched axis and Vector-Do~Loops yields a total

speed-up factor of

' The overall speed-up, S, is the cycle weighted average of 8965 and

81650’ 1.e.7

S = 4.96
Therefore, in the absence of a switched axis code, Vector-Do-Loops,
and MRT, Problem 102.0 would require 9.3 hours on the Ames CDC 7600

computer.
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As Was,diséussed previously, the‘tiﬁestep levels are limited
by the potential-like-line spacing of the finite difference mesh in the
vicinity of the airfoil leading edge, not the streamline spacing,
Therefore, zone dropper logic, which drops potential-like-lines of the
finite difference mesh away from the immediate neighborhood of the
airfoil leading edge, would increase the number of timestep levels
from four to five and decrease the number of computations required.

It is believed an additional speed-up factor of two would resulti;

hence, lifting airfoil problems could be solved within an hour.

6.4 General Flow Field Structure

In this section velécity vector plots are shown which illustrate
the sequence of events as the viscous flow field develops from the
inviscid initial conditions. Figures 12 through 17 present the velo-
city field of Problem 102.0 at various characteristic times ranging
from zero to 8.62.

Figures 12 to 14 indicate upstream movement of the leeward airfoil
shock from its initial position to its farthest upstream location.
Figure 12 shows the initial inviscid field with a leeward shock clearly
indicated at the 85 percent chord station. At a characteristic time

T of 2.10 (Figure 13), the leeward shock has moved to about the 40
percent chord station with a separated flow trailing the shock. In
fact a clockwise vortex is seen about to shed at the trailing edge.

A large clockwise vortex is shedding from the leeward side in Figure
14 (T=3.75). Furthermore, the leeward shock has moved to the 30 per-
cent chord station, which is approximately its farthest upstream
location.

Downstream motion of the shock to a near equilibrium position is
indicated in the velocity vector plots of Pigures 15 through 17.

Figure 15 shows the velocity field at a characteristic time T of 5.44.

At this characteristic time the leeward shock is at the 35 percent



chord station. The shock has moved to approximately the 50 percent
chord station at T=8.27 (Figure 16). Figure 17 atT=8,62 also indicates
a leeward shock position at about the 50 percent chord station.

The main points of Figures 15 through 17 are that (a) the leeward
shock seems to arrive at a near-equilibrium position, (b) vortex
shedding appears to continue throughout the calculation, and (c) the

wake of the airfoil assumes a sinusoidal pattern.

6.5 Calculated Lift and Drag

The main result of the velocity vector plots is that the flow at
the airfoil trailing edge and in its wake is unsteady. To obtain a
more quantitative description of this unsteadiness time-histories of
the 1lift and drag coefficients are examined,

- The 1ift coefficient time history is presented in Figure 18.
Starting from the inviscid 1ift coefficient of .8709 the 1lift coeffi-
cient'geneially decreases in a transient way until a characteristic time

T of 7.6, For characteristic times greater than 7.6, the lift-time-
histbryiis periodic,fwith a complete period of oscillation shown in
FPigure 18, According to inviscid small disturbance theory (Equation
24), the circulation is proportional to 1lift; hence, the airfoil
sheds vorticity in a transient way until T of 7.6 and then periodic
shedding occurs. From Figure 18, the period of oscillation is about
1.4 in characteristic time uhits,: -

A corresponding time history of the drag coefficient is shown in
Figure 19. Starting from the inviscid drég coefficient of .0413,
the diag coefficient increases to about .08 at a characteristic time

T of 3.0, then decreases to about .03 atT=6,0, and finally becomes
periodic after a characteristic time of 7.6, The period of oscillation
of the drag coefficient appearsto be similar to that of the 1ift
coefficient.

The 1ift and drag coefficients of Figure 18 and 19, respectively,

are time-averaged over the period of oscillation. The time-averaged
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1ift coefficient Ei is ,137 and the time-averaged drag coefficient
CD is .038. A comparison of these values with the corresponding
interpolated measurements of Table IT indicates that the calculated
values are low. The calculated drag coefficient is in the ballpark,

but smaller than measured, while the 1lift coefficient is far less than
measured.

The numerical solution was examined to determine the reasons for
the low 1ift and drag predictions. The principal reason found was |
that the finite difference mesh in the vicinity of the leading edge
of the airfoil was too coarse to define the thin boundary layer there.
The thin leading edge boundary layer is contained within the first
layer of zones adjacent to the airfoil on both its leeward and wind-
ward sides, As a result the high suction pressures near the nosc were
not obtuined numerically and the supersonic region was much srallex than

that observed experimentally.

A thin leading edge boundary layer, whose thickness is smaller
than the width of the first layer of zones of the finite difference
mesh, has the following two numerical effects:

1. Calculated airfoil leading edge shear stresses are
smaller than actual shear stresses; therefore, the
predicted drag is less than the actual drag.

2. GCalculated average Mach numbers in the first layer
of zones about the airfoil leading edge are less
than they should be, These lower Mach numbers
permit the periodic flow aft of the leeward shock
to erode away the expansion region on the leeside.

An alternate way of explaining the smaller calculated supersonic
region is to introduce the concept of displacement thickness¥*., A
coarse Tinite difference mesh at the airfoil leading edge is similaxr
to adding a large displacement thickness to the airfoil which'inhibits

the leeward expansion.

% The authors are indebted to Dr. Gary T. Chapman of NASA Ames for

suggesting this concept.
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The calculated flow field contains a leeward supersonic reglon
and a shock wave; however, the magnitude of the pressure drop due to
the leeward expansion, and the shock strength are reduced below the
actual expansion pressure drop and shock strength.

There are two methods of correcting this numerical problem.

1, Re-calculate the flo% field with a finer mesh on the
. forward ?ortion of the airfoil solving the full

Navier-Stokes equations,

2. 'Employ another technique, which does not zeguire
a very fine mesh, to solve for the leeward supersonic
region, and integrate this solution with the Navier-
Stokes solution everywhere else.

It is believed that a fine mesh Navier—Stokes solution is imprac-
tical at this particular time. The finite difference mesh required is
about ten times finer‘than what we are now using., This means that
the problem will take about 20 hours to solve on the CDC 7600 computer.
This computer expenditure makes Navier-Stokes computations about
1ifting transonic airfoils too costly for most applications.

In this research program a numerical experiment has been conducted
to investigate the results of integrating another solution with the
medium mesh Navier-Stokes solution of Problem 102.0. The forthcoming

section describes this numerical experiment,

6.6 Integrated Inviscid/Viscous Calculation

The inviscid steady field from TSFOIL , émﬁloyed
as the initial conditions, has a much more accurate supersonic region
than the medium mesh periodic Navier-Stokes solution of Prcblem 102.0.
Furthérmore, the leeward steady supersonic region computed in Problem

102.0 during the early stages of motion, i.e., at a characteristic

"time of 1.6, is a more accurate prediction than the TSFOIL field.
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This is because the airfoil shape is properly accounted for and some
viscous effects are included, The TSFOIL solution; which employs
the approximate tangency conditlon, is interpolated to account foi the
body shape (see Section 5.2). |
The calculated leeward supersonic field of Problem 102.0 at a
characteristic time of 1.6 was integrated with the Navier-Stokes
solution everywhere else in two steps.
1. At characteristic times between 7.6 and 9.05 in its
period of oscillation, the pericdic flow field computed
in Problem 102.0 was patched together with the steady

leeward supersonic region computed at T =1.6.

2. The interface region between these solutionms, which
contained the leeward shock, was recomputed by running
the STOKES code through a characteristic time interval
of ,025. ‘
After the STOKES run, an integrated sclution resulied which had a
prbper superscnic region, a leeward shock wave-toundary layer inter-
action, and a separated trailing edge region. The integrated inviscid/
viscous calculation was designated as Problem 102.1,
In the remainder of this section the results of Problem 102.1 are
presented. The format for presentation is as follows:
1. General Flow Field Structure
2, Calculated Lift and Drag
3, Surface Pressure Distribution Comparisons
L, Comparison of Mach Number Contours
5. Turbulence Characteristic for Airfoil

6.6.1 General Flow Field Structure

Shedding of vorticity from the lee side of the airfoil is indi-
cated in the velocity vector plots shown in Figures 20, 21, 22, and 23.
Pigure 20 presents the velocity field at T=7.831, A leeward vortex
is‘forming at approximately the 50 percent chord station, while a
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a vortex rotating counter-clockwise is shedding at the airfoll trailing
edge. The counter-clockwise shed vortex indiaces clockwise circulation
about the airfoil; thus, 1lift is enhanced. At a characteristic time of
8.204 (Figure 21), the eye of the leeward vortex of Figure 20 has.moved
to about the 65 percent chord station and the counter-clockwise shed
vortex has moved further downstream. Figure 22, at a characteristic
time of 8.649, shows the leeward vortex of Figure 21 at the airfolil
trailing edge and in the process of shedding. Furthermore, the sense
of this vortex is now clockwise, This shed clockwise vortex induces

a counter-clockwise circulation about the airfoil; hence, the 1ift

is reduced. At a characteristic time of 9.052, the velocity field shown
in Figure 23 no longer has the clockwise leeward vortex in it; however,
a counter-clockwise vortex appears to be shedding from the trailing
edge. In fact, the velocity flelds of Figures 20 and 23 are somewhat
similar, suggesting a periocdic flow,

; The velocity vector plots of Figures 20 to 23 are similar to the
interferogram plctures taken by Finke (Ref. 12) and shown in Figure 1.
Shedding of vorticity is clearly indicated in both the interfercgram
pictures and velocity vector plots as well as a sinusoidal wake pattern,

: Finally, the alternate shedding of counter-clockwise and clockwise
rbtating vortices in Problem 102.1 indicates that the instantaneous 1lift
coefficient should fluctuate with time., Lift and drag are presented in
the next section. '

6.6.2 Calculated Iift and Drag
| The periodic nature of this flow is quantitatively confirmed in
calculated time-histories of the 1ift and drag coefficients shown
in Figure 24, It is seen from Figure 24 that the instantaneous
14t curve has a period of about 1.4 in characteristic time units,
This period converts to a frequency of 366 hertz, or to a reduced
frequency* K of 4,49, The drag coefficient time history curve

* The reduced frequency K 1is defined as the product of the angular
frequency and the chord divided by the freestream velocity.
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appesars. to. exhibit the same.frequency. As is shown in the velocity

vector plots above, during the period of oscillation of the 1ift
coefficient alternate shedding of counter-clockwise and clockwise
vortices occur,

Independent.experiments on a.symmetric NACA 631’012 airfoil at Mach
number .70, Reynolds number 1.25 x 106. and two degrees incildence,
described in Section 1, show a periodic flow at the tralling edge with
a reduced frequency K of 2.5 for the oscillating shock. The dis-
crepancy in the reduced frequency between the two cases can be atiri-
buted to differences in airfoil geometry, Reynolds number and Mach number, .

The calculated instantaneous 1ift and drag coefficients of Figure 24
were time averaged and compared to (a) steady 1ift and drag measurements
of Gross and Steinle (Ref. 34) and (b) 1ift and drag predictions of
small disturbance inviscid theory (Ref. 3). The calculated time-averaged
1ift and drag coefficients of Problem 102.1 are compared to correspon--
ding data in Figure 25, The predicted time-averaged 1ift coefficient
is close to the faired experimental curve while the predicted drag
coefficlent 1s lower,

A quantitative comparison of predicted lift and drag with inter-
polated data of Gross and Steihle (Ref, J4). and inviscid predictions
of TSFOIL are shown in Table VI.

TABLE VI

Comparison of Lift and Drag Coefficients for the NACA 644010 Airfoil

Method of Generation Drag Coefficient 1ift Coefficient
_— ' c, c,
‘Murman Inviscid Solution L0413 .8709

(Small Disturbance)

Measured Value
(Gress and Steinle, 047 ; A41s
Interpolated, TMX-62468)

STCKES Numerical Calculation
(Problem 102.1) | 034 .8l
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It is seen from Table VI that the calculated 1ift coefficient is within
seven percent of the measured value, while the inviscid predictlon is
greater by a factor of 2,1, Furthermore, the calculated drag coefficieént
is somewhat lower than measured, while the inviscid prediction is closer
to the data peint.

The lower calculated drag coefficient is a result of the coarse-
ness of the finite difference mesh at the leading edge of the airfoil,
The leeward and windward boundary layers on the NACA 64A010 airfall are
much thinner than the thickness of the first layer of zones adjacent
to the airfoll., Thus, the numerically~determined shear stress at -the
airfoil leading edge is greatly underestimated, and results in a lower
drag coefficient prediction, It is believed that for thin boundary
layers at the airfoll leading edge, boundary layer theory must be inte-
grated with Navier-Stokes computation everywhere else to produce
correct drag coefficlents.

6.6.3 Surface Pressure Distributlon Comparisons

Instantaneous calculated pressure distributions on the leeward
and windward sides of the NACA 643A010 airfoil are shown in Figures 26
and 27, respectively. The curves of these figures correspond to the
characteristic times 7.831, 8,204, 8.649, and 9.052, which are identi-
cal to the characteristic times of the velocity vector plots of Figures
20 to 23. The leeward instantaneous pressure distributions (Figure 26)
depict the periodic shedding of vortices when compared to the velocity
vector plots of Figures 20 to 23.

let us examine the leeward pressure distributions of Figure 26,
Upstream of the 40 percent chord station the pressure field 1s steady.
Curve 1, at a characteristic time of 7,831, has a high pressure point
at the 50 percent chord station followed by a rarefaction whose minimum
is at the 58 percent chord station. This correlates wlth the velocity
vector plot of Figure 20 at7=7.831. Figure 20 shows a stagnatlon point
at the 50 percént chord station followed by an expansion about the separated
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region. At a characteristic time of 8.20k (Curve 2 of Figure 26),

the high pressure point is at the 60 percent chord station followed

by a rarefaction; this correlates with the velocity vector plot of
Figure 21, which shows that the stagnation point is at the 60 percent
chord station followed by an expansion about the separated region. In
other words, a separated region has formed at the 50 percent chord
station at T=7.831 and has moved to the 60 percent chord station at T=8.204,
Curve 3 of Figure 26 (T=8.649) shows that the stagnatlon point has moved
to the 80 percent chord station with the minimum rarefaction pressure
ai the 90 percent chord station. The velocity vector plot of Figure

22 (r=8.649) shows that the vortex has moved to the trailing edge of
the airfoil. Finally, Curve 4 of Figure 26, at a characteristic time
of 9.052, has no stagnation polnt followed by a rarefaction. The’
results of Cuxrve 4 indicate that the vortex has shed at 7=9.052.

The instantaneous windward pressure distributions of Figure 27
oscillate near the trailing edge of the airfoil. For percentage chord
less than 50 percent the flow is steady on the windward side, For
percentage chord greater than 50 percent oscillations are indicated.
These windward trailing edge oscillations are a result of the periodic
vortex shedding process that occurs on the leeward side of the airfoil;

Instantanecus calculated pressure distributions on the windward
and leeward sides of the NACA 64A010 airfoll (Figures 26 and 27)
were time-averaged over the period of oscillation, A comparison of
the calculated time-averaged pressures with' coz‘responding steady measure-
ments and with predictions from inviscid small disturbance theory are
presented in Figure 28. On balance the time-averaged calculated
pressures compare well with corresponding data, although these data
are interpolated with angle of attack. The inviscid theory predicts
a shock location at the 85 percent chord station while the STOKES
calculated shock location and the data indicate that the shock is at
the 45 percent chord statlon.
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6.6.4 Comparison of Mach Number Contours
Mach number contours about the NACA 64A010 airfoll are compared
in Figures 29 and 30, Figure 29 presents the TSFOIL inviscid
solution, while Flgure 30 represents the STOKES prediction at a charact-
eristic time of 8.£5, The most striking differences between the two
figures are the extent of the leeward supersonic region and the locus
of the leeward shock. The inviscid flow fleld expands about the leeward
side of the airfoil to a supersonic Mach number of 1.3 and then goes
through shock transition at the 85 percent chord station. In contrast,
the viscous field at T=8.65 has a supersonic expansion to Mach 1.2
and. goes through shock transition at about the 45 percent chord station.
The results of Figures 29 and 30 are similar with respect to the
thickness of the shock transition regilon, Both fields have a leeward
shock layer approximately S percent of a chord thick, The finite
shock layer of Figure 30 is a result of the STOKES numerical method
and the finite difference mesh employed in the shock region. If shock
fitting is not employed, shock transition usually takes place across
four zones of the finite difference mesh. Hence, the spacing of these
four zones defines the tnickness of the shock layer. In this particular
case the layer is approximately 5 percent of a chord thick. A finer
mesh in the shock region can reduce the thickness of this layer,

The viscous wake of the airfoll is also indicated in Pigure 30. 1In
fact, at a station x of about 2,80 the eye of a vortex can be seen
in the Mach numbex contour plot. At approximately this station a closed
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Mach .80 contour contains a closed Mach .90 contour, indicating a
decrease in velocity as one moves away from the eye of the vortex,
Finally, it is pointed out that the Mach number contour plot of
Figure 30 represents a snapshot of the fleld at a characteristic time
of 8.65. The leeward shock actually oscillates and vortex shedding
occurs. From an examination of the instantaneous leeward pressure
distributions of Figure 26, it is seen that the ampllitude of the
oscillation is small, .i.e., about one percent of a chord. This is
consistent with the data of Finke (Ref. 12 and Section 1) for the
NACA 63,-012 alrfoil at Mach .70 and Reynolds number 1.25 X 108,
Finke found that the shock amplitude was about one percent of a choxrd
for K =2" and increased to 18% of a chord at o(=8°. Thus, as the angle
of attack is reduced towards zero the leeward shock approaches an equi-
librium position and steady flow is achieved.

6.6.5 Turbulence Characteristics for Airfoil
Due to the transient nature of the flow aft of the leeward shock
wave, it is difficult to assess the validity of the Rose turbulence
model employed in this numerical investigation., However, numerically
determined eddy viscosity profiles upstream and downstream of the lee-
ward shock qualitatively compared With corresponding profiles on
a flat plate undergoing a shock-wave boundary layer interaction.
Profiles of the ratio of the eddy viscosity € to the molecular
viscoslity ju are presented in Figure 31 at two chord stations along
the leeward side of the NACA 64A010 airfoil. These data correspond
to a characteristic time T of 8,65, The profile on the left hand
aide of the figure, which is at the 31.4 percent chord station, is
upstrean of the shock, while the profile on the right hand side of the
figure, which is at the 61,1 percent chord station, 1s downstream of
the shock. Upstream of the shock the Eép\profile is nearly linear
through the laminar sublayer and a portion of the turbulent boundary
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layer, constant through the remainder of the boundary layer and then
rapidly decays as the local freestreém is approached, Downstream of

the leeward shock the velocity profile is separated in the vicinity of
the wall. The separated velocity profila causes the eddy viscosity to
approach zero near the wall and results in a nearly linear € AA& profile
in the shear layer above the wall. The linear‘élpz region is followed by
a constant value throughout the remainder of the boundary layer and then
a rapid decay to local freestream conditions. A comparison of the calcu-
lated Géu profiles upstream and downstream of the shock indicates that

the turbulence intensity increases through the shock transition.

The qualitative behavior of the calculated STOKES QJZ(profiles is
similar to corresponding € profiles calculated by Baldwin and Rose
(Ref. 19) on a flat plate. Baldwin and Rose used a relaxation eddy coef-
ficient model to investigate a shock wave-boundary layer interaction
on a flat plate at Mach 2.39 and Reynolds number per meter of 5.7 Xx 107.
The Baldwin and Rose profiles upstream of and downstream of the shock
are presented in the upper right cormer of Migure 31. It is seen
from Figure 31 that the Baldwin and Hose € profiles upstream of and
downstream of the flat plate shock are similar in shape to corresponding
NACA 64A010 Géu_profiles upstream of and downstream of the leevward

shock.
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SECTION 7
CONCLUSIONS AND RECOMMENDATION
The present investigation has demonstrated that the STOKES computer

code is an accurate, practical tool for solving viscous, compressibdle
1ifting and non-1ifting airfeil problems at transonic Mach numbers

“and for Reynolds numbers ranging from the laminar to turbulent regimes,

Applicability to the turbulent Reynolds number regime was achieved by
employing the Baldwin-Rose mixing length theory to which relaxation
along a streamline-like trajectory is incorporated.

The numerical method embodied in the STOKES code offers a conplete,
accurate description of the viscous flow field about a transonic air-
foil, including the important fluid mechanical effects of

1. shock wave-boundary layer interactionms, ‘

2. transonic buffet and
3, circulation for the 1ifting case.

Furthermore, a Kutta condition, whose formulation for unsteady flow
is quite uncertain is not required in this method. '
Accuracy of the numerical method was demonstrated in numerical-
experimental comparisons for two transonic airfoil cases, The three
£1uid mechanical effects defined above were computed and verified
experimentally. At zero degrees angle of attack a shock wave-boundary
layer interaction was successfully computed and verified for the
NACA 64A010 airfoil. At two degrees incidence pericdic motion (trans-
onie Tuffet) was calculated along the aft portion of the airfoil arnd
in its wake; this periodic motion has been observed for other airfoil
geormetries at transonic speeds. Although no measurements for the un-
steadiness of the flow field were made for the NACA 6LAO10 alrfoil at
thése conditions, steady measurements of 1ift, drag and surface
static pressures compared favorably with corresponding computed time-
averaged 1ift, drag, and surface static pressures, Finally, at two

degrees incidence the flow field was computed with far field boundary

51



conditions that simulated the free alr case and preserved the alrfoll
circulation throughout the flow field.

Practicality of the STOKES computer code was demonstrated by the
Ames CDC 7600 computer time requirements for the two cases solved.

For the non-lifting case the steady flow field was computed in 28
minutes, while for the lifting case the periodlc flow field was
computed in 1.88 hours. '

The major criticism of the present method of solution is perhaps
the accuracy with which the shear stresses are computed at the leading
edge of the airfoil. Due to the coarseness.of the leading-edge finlte
difference mesh relative to the boundary layer thickness there, the
calculated leading edge shear stress distribution and hence, the drag,
was lower than measured. Therefore, it is recommended that in the
neighborhood of the airfoil leading edge, boundary layer theory be
integrated with Navier-Stokes computation everywhere else. This will
produce correct drag coefficlents with a minor increase in computational -
tine.
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Figure 1. Interferogram pictures of the time-dependent flow field
over the NRL 0,1025-0,6750-1.300 airfoil at M =,71,
& =5, and Re., = 1x106; pictures depict one full period
of leeward shock oscillation at intervals of 700 micro-
seconds,
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Figure 2. Schematic of far field boundary conditions for
1ifting and non-1ifting airfoils.
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