
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 

https://ntrs.nasa.gov/search.jsp?R=19770016110 2020-03-22T09:12:52+00:00Z



r 
~ 
t 

I 
t· 

[ 
I 

( 
r, 

( 

J-
--'" 

.• -- Ii r 
1 

(NASA-CR-151999) COMPUTATION OF VISCOUS N77-23054 
TRANSONIC FLOW ABOUT 1 LIFTING AIRFOIL 
(Numerical Continuum Mechanics, Inc.) 93 p 
He A05/MF AO 1 CSCL 0111, Unclas 

G3/02 28870 

MAY 1977 
RECEWEO 

NASA STI FACILITY ~ 
INPUT BRANCH ~ 

.. ~ 
.. -:~.~y 

r 

) 

P 

I 
1 
J 

. 11 
I 
j 

_l 



/' 

l--r 
NASA CR-151999 

NCMR-76-100 

COMPUTATION OF VISCOUS TRANSONIC FLOW 

ABOUT A LIFTING AIRFOIL 

Prepared by: 

L. Walitt 
C.Y. Liu 

for 

AMES RESEARCH CENTER 

National Aeronautics and Space Administration 
Moffett Field, California 94035 

The work reported herein was 
perfoL~ed under Contract NAS2-9052 

November 1976 

Numerical Continuum Mechanics, Inc. 
6269 Varie1 Avenue, Suite 200 

Woodland Hills, California 91367 

... 1 
'I 
I 

I 

I 
1 
1 

1 



J-'- -r----[-~r--r-l 

ACKNOWLEDGEMENTS 

The authors are pleased to acknowledge the contributions of 

Mr. L. S. King of NASA AMES Research Center and Ms. J. A. Enos of 

Computer Sciences Corporation to the work reported herein. Mr. King 

developed the original computer program, which was the starting point 

for this study, derived the characteristic boundary condition equations 

employed at the downstream boundary, and provided many helpful sug­

gestions and discussions in the course of this work. Ms. Enos vecto­

ized the computer code employed in this study, generated some of the 

plots used, and provided programming support throughout this develop­

ment effort. 

i 

/ 

! 

4 



r 

r 

Li~. _ .. 

J~ .. ·1 I 

TABLE OF CONTENTS 

SECTION 

ABSTRACT. 

NOMENCLA TITRE. 

. . . . . . . . . · .. 
PAGE 

. •. iii 

1. 

2. 

3. 

. . . . . . . . . . . .- . . . . 
INTRODUCTION •. 

THE STOKES CODE • 

. . . . . . . . . . 
2.1 
2.2 
2.3 

. . . . . . . . . . . . 
Swi tche d Axis Computation • • 
Vector Do Loops • . . • • . . • • • 
Multi-regional Timesteps •..••• 

· , . · . . · . . 
TURBULENCE AND TRANSITION MODELS •. 

3.1 
3.2 
3.3 

Turbulence Modelling. • • • . 
Algebraic Turbulence Models • 
Transition to Turbulence .•. 

· . 
I • • • 

· . . . . . . . 
· . 

.. 
4. BOUNDARY CONDITIONS FOR NON-LIFTING AND LIFTING 

6. 

7. 
8. 

AIRFOIlS. . • • • . • . • .... 
4.1 Non-Lifting Airfoil . · . . . 
4.2 Lifting Airfoil • . . . • • . • • . .. .,.. 
RESULTS OF NON-LIFTING CALCULATION. . . . 
5.1 Me~h Used and Initial Conditions •••••••••• 
5.2 Time-Histories of Pressure Coefficients • • • • • • 
5.3 Computational Time Reduction Factor .. · . 5.4 Velocity Vectors of Steady Flow Field • ~ . 
5 . .5. Surface Pressure. DistrlbutionCom:pa.risons •• 
5.~ Mach Number ContourS: '.... • • • • •. ;. ••••• 
RESULTS OF.:LIFTING CAWULATION. .• • • • • • • • • • 
6.1 Finite Difference Mesh ••••..••.. 
6.2 Initial Conditions ...•.•..•......•. 
6.3 Computational Time Reduction Factor . 
6.4 General Flow Field Structure. . .. . ... 
6.5 Calculated Lift and Drag .•.•••..• 
6.6 Integrated Inviscid/Viscous Calculatio~ 

6.6.1 General Flow Field Structure. •. • •. 
6 .6 .2 Calculated Lift and Drag. • .. .•• • 
6.6.3 Surface Pressure Distribution Comparison. 
6.6.4 Comparison of Mach Number Contours ..• 
6.6.5 Turbulence Characteristics for Airfoil. 

CONCLUSIONS AND RECOMMENDATION . . . . . . . . . . . . . 
REFERENCES •.•.......... · .. 

11 

. 

iv 

2 

6 

7 
8 
9 

12 

12 
14 
19· 

21 

2l 
23 
27 

27 
29 
30 
31 
32 
33 
J4 
J4 
35 
)6 
39 
40 
42 

43 
44 
46 
48 

'49 

51 
53 

/ 

l 

J 

1 
1 
',j 
i 

l 
1 

I 
I 

j 
., T;a;=;j 



r 

, 
\ 

ABSTRACT 

Results are presented from a numerical investigation of the; viscous 

transonic flow about a stationary body in free air. The geometry chosen 

was a symmetric NACA 64AOIO airfoil at a freestream Mach number of 

0.8, a Reynolds number of 4 million based on chord, and angles of attack 

of O· and 2 degrees. These conditions were such that, at 2 degrees 

incidence unsteady periodic motion was calculated along the aft portion 

of the airfoil and in its wake. This unsteady phenomenon has been 

experimentally observed for other airfoil geometr~sat transonic speeds. 

Although no unsteady measurements were made for the NACA 64AOIO air­

foil at these flow conditions, interpolated steady measurements of lift, 

drag, and surface static pressures compared favorably with corresponding 

computed time-averaged lift, drag, and surface static pressures. 
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NOMENCLATURE 

a Local Sound Speed 

A Surface Area 

~.l 
C)r Particle chord length i 

i 
I 

C Chord I 
! 
1 

CD Drag coefficient, d~ ~oree 
1 

CL, Lift coefficient, lift force j 

'tc 1 
C, Pressure coefficient, (P- PI1O)/~ 

C, Specific heat at constant pressure 

~ Specific heat arconstant volume 

D Area of airfoil section 

E, Specific internal energy 

H· Stagnation enthalpy 

~ Reduced frequency, we/Vol;) 

K Transonic Parameter, (I-M~)IM.od~ 

J1. Mixing length 

Wl Mass 

M Mach number 

N Cycle number 

A Pressure 

'& Dynamic Pressure t t ~Ul.. I 

I &. t -~)t. .... yo Transformed. radius, (2!" + ~ 
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R4 Reynolds number 

~e R~ynolds number based on momentum thickness 

Rlll'. Reynolds number based on x 

R~" Reynolds number based on chord 

S Entropy 

-t T1!Jle 

At T1mestep 

1f Temperature 

U Velocity component in x direction 

Uoa Freestream Velocity 

" Veloci ty component in y direction 

V Volume 

X Streamwise coordinate 

Non-dimensional coordinate, x/t.C/z..) 
" 

~ Normal coordinate 

¥. Non-Dimensional coordinate.) , -:;t/(~ ) 
... 
~ Scaled transonic parameter, c5'i M1 ~ 
eX Angle of attack 

i Ratio of specific heats 

r Circulation 

J ~oundary layer thickness 

VI 

J Airfoil thickness to chord ratio,~c 

€ Eddy viscosity 

~: Small disturbance parameter, ~~/MOtC) 
e Transformed angle.) reu;' (Ii J(-i:::j ~ ) 
~ Momentum thickness 

v 

1 
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~ Molecular viscosity 

~ Kinematic viscosity 

e Density 

r: Shear Stress 

r Maximum thickness of airfoil 

7:" Characteristic Time, t:.~/c. 

q> V eloci ty potential functi on 

J!..' ~ Transformed velocity potential function 

d\~ ~v Doublet potential 

( )00 Freestream condition 

C ) Non-dimensional coordinate 
"'"' 
"'" ( ) Scaled coordinate 

( )" Derivative with respect to parameter X -... 
( ))1 Derivative with respect to parameter W ..... ....... -( )i Derivative with respect to parameter !:t 
-( 1 Time-averaged property , J..v Wall quanitiy 
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SECTION' 1 

INTRODUCTION 

The principal objective of this research effort is to numerically 

calculate the viscous transonic flow field about a stationary lifting 

airfoil in free air. To our knowledge, this calculation represents 

the first-of-a-kind in transonic aerodynamics. 

Previous transonic lifting airfoil computations concerned steady 

inviscid flow ,wi th varying degrees of approximation to the Euler's 

equations. ,For example, Murman and Cole (Ref. 1), Krupp and Murman 

(Ref. 2), and more recently Murman, Bailey, and Johnson (Ref. 3) solved 

the transonic small disturbance equation for flow past thin airfoils 

including imbedded shock waves. Transonic small disturbance theory 

solves the small perturbation equation (Ref. 4) with an approximate 

tangency condition at the airfoil surface, and under the assumption 

of isentropic flow. Jameson solved the transonic full potential 

equation (Ref. 5) using an exact tangency condition at the airfoil sur­

face, and under the isentropic assumption (Ref. 6). Furthermore, 

Jameson's method permits computation of.imbedded shocks. 

Magnus and Yoshihara (Ref. 7) solved the unsteady form of the 

Euler equations through an explicit finite difference scheme. A numer­

ical solution of Euler's equations, including the possibility of embed­

ded shocks (through shock capturing), embodies no other assumptions but 

the inviscid flow assumption. Coincident with the inviscid assumption, 

all three methods cited above employ a Kutta condition to determine the 

magnitude of the circulation for lifting bodies. 

For a lifting transonic airfoil with little or no separation in 

the neighborhood of the shock, combination of turbulent boundary 

layer theory (Refs. 8 and 9) with any of the above inviscid methods 

yields useful predictions of the shock location, lift coeffiCient, and 

drag coefficient, provided tha:c a displacement thickness c.:orrection 

is made to the airfoil shape. However, when the shock wave boundary 

layer interaction induces considerable flow separation, 
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integrated inviscid-boundary layer theories are of dubious value 

in prediction of the shock location, lift, and drag of the system. 

Liepman and Roshko (Ref. 10) point out that transonic shock-wave 

boundary layer interactions involve an interplay between strength and 

posi tion of shock waves on the body and boundary layer: character"~ i. e. I 

separation. The complete e~uations of motion are thus needed to properly 
-account for these nonlinear interactions. 

Numerical solution of the time-dependent Navier-Stokes e~uations, 

including turbulence and transition via models, yields predictions 

of the shock locatioD"lift coefficient,and drag coefficient of an air-

foil under conditions of considerable flow separation. Thus, 

for thick transonic airfoils at moderate angles of attack, or for thin 

transonic airfoils at high angles of attack, numerical solution to the 

time-dependent Navier-Stokes e~uations is the only means for flow 

field prediction. 

A time-dependent Navier-Stokes calculation does not invoke a 

Kutta condition at the airfoil trailing edge, and includes viscous 

effects; hence, the possibility of vortex shedding, with attendent 

periodic flow is within the scope of this computation. For example, 

!~cDevitt, Levy, and Deiwert (Ref. "11) and Finke (Ref. 12) measured 

unsteady periodic flow about transonic airfoils for a limited range of 

Mach numbers and angles-of-attack. Finke's experiments on a symmetric 

NACA 631 -012 airfoil at Mach .70~Beynolds number 1.25 x 106 based on 

chord, and two degrees incidence, show periodic flow at the 

airfoil trailing edge with a reduced fre~uency* K of 2.5 for t0~ oscillating 

shock. The amplitide of shock oscillation is about one percent"of the chord 

at two degrees angle of attack and increases to 10% of the chord at eight 

degrees incidence. 

* The reduced fre~uency K is defined as the product of the angular 
fre~uency and the chord divided by the free stream velocity. 
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Finke (Ref. 12) also took interferogram pictures over one full 

pexiod of shock oscillation for a quasi-elliptical NRL-profile, at a 

Mach number of .71, a Reynolds number based on chord of 1 x 106 , and 

at 5 degrees angle of attack. These interferogram pictures, which 

represent lines of constant density, are shown in Figure 1. The 

pictures are depicted in intervals of 700~s. In picture 3, the shock 

is positioned at 40 percent chord, in picture 5 the shock degenerates 

to a Mach wave and leading-edge sepaxation determines the flow. Finally, 

picture 8 is similar to picture 2 indicating periodic flow. Shedding 

of vorticity is also indicated in the pictures of Figure 1. 

The geometry for thic investiGation was a symmetTic NACA 64AOIO 

airfoil at a freestream Mach number of .80, a Reynolds number of 4 x 

106 based on chord, and at angles of attack of 0 and '2 degrees. At 

2 degrees incidence unsteady periodic motion was calculated along 

the aft portion of the airfoil and in its wake. Although no unsteady 

measurements were made for the NACA 64AOIO airfoil at these flow 

condi tions, interpolated steady measurements of lift', drag, and 

surface static pressures compared favorably with corresponding 

computed time-averaged lift, drag, and surface static pressures. 

In order to solve for the unsteady viscous transonic flow field 

about a lifting body in free air, research was conducted in three 

principal areas. The are as follows: 

1. A computer code, called "STOKES", was developed which 

solved the Navier-Stokes equations with Multi-Regional Timesteps 

(lffiT) and Vector-Do-Loops (VDL). The MRT/VDL logic signifi­

ca~tly reduced computational time. 

2. Turbulence and transition models were incorporated 

into the STOKES compute~ code. 
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3. Boundary conditions were generated along the perimeter 

of the region of calculation which simulated the lifting airfoil 

immersed in a free airstream. 
A discussion of the STOKES computer code is presented in Section 

2, the turbulence and transition models embodied in the STOKES code are 

described in Section 3, boundary conditions are presented in Section 4, 
while results of the non-lifting (ol. = 0) and lifting (oi = 1) airfoil 

calculations are discussed in Sections 5 and 6, respectively. Section 

7 presents the conclusions reached in this re:search effort. 
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SECTION 2 

THE STOKES CODE 

A computer code has been developed, called "STOKES", for calcu­

lating viscous, compressible, time-dependent flow fields about two­

dimensional aerodynamic bodies. This code solves the Navier-Stokes 

e~uations including turbulence, transition, and free air boundary 

conditions along the perimeter of the domain of calculation. The 

finite difference e~uations embodied in the STOKES code were originally 

developed by Trulio (Ref. 13). These finite difference analogs of the 

e~uations of motion are such that their self consistency property is 

maintained. That is, the finite difference e~uations for continuity, 

momenta, and internal energy imply an exact finite difference e~uation 

for total energy. The Trulio finite difference relations are second 

order aCGurate in space and first order accurate in time according to 

Taylor's series analysis. 

Turbulence and transition are discussed in Section 3, while the 

free air boundary conditions are described in Section 4. This Section 

is concerned with the numerical method employed to solve the finite 

difference analogs of the e~uations of motion embodied in the STOKES 

code. 

The principal innovation embodied in this computer code concerns 

computational time reduction. A method has been developed which produced 

computational time reduction factors between five and ten. For a non­

lifting airfoil the flow field can be computed in less than 30 minutes 

on a CDC 7600 computer, while for a ,lifting airfoil' the calculation 

re~uires less than two hours. 

The STOKES computer code employs three prinCipal time-reduction 

methods. 

1. Writing the program to proceed along ~uasi-streamlines 

- rather than the conventional processing along­

potential-like lines. 
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2. Incorporation of special assembly language subroutines 

to take maximal advantage of the "pillelining" capa­

bility of the more advanced comlluters. 

). Setting up a procedure whereby the computational 

domain is automatically divided into several regions 

in which different timesteps govern numerical stability. 

2.1 Switched Computational Axis 

Let us consider computation of the flow field about a two~dimen­

sional body whose axis is parallel to the x coordinate axis, and 

immersed in an airstream moving along the x-axis •• The y-coordinate is 

considered the normal direction. The computation takes place on a finite 

difference mesh comprised of the intersection of quasi-streamlines, 

which are nearly parallel to the x-axis and extend upstream to downstream, 

and potential-like lines, which are nearly paralled to tne y-axis, 

and initiate below the body and end above the body. 

Due to computer storage limitations, computations were previously 

conducted along the potential-like lines of the mesh, starting from 

the line farthest upstream of the body and ending at the line farthest 

downstream of the body. This mode of computation is referred to as 

unswitched. Usually the potential-like lines are shorter than the 

quasi-streamlines; hence, they are comprised of fewer points. With 

fewer points to a calculational line the do-loops in the program are 

executed fewer times, and there are correspondingly more interruptions 

for data transfer between central and peripheral memory banks. Further­

more, most potential-like lines of the finite difference mesh pass through 

the body; hence, special branch point logic is required to account for 

the body aerodynamics. 
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The switched axis computer code performs, cOIll1'uta"cions along 

the streamline-like lines of the finite difference mesh rather than along 

the potential-like lines. For each c~lculational line the do":loops 

in the 'program are' execut'ed ~ gr~eater number of times ar:d'the number of 

data transfer interruptionS are reduced. Furthermore, the body 

geometry becomes two special streamlines of the mesh in the 

switched mode ,of.. computa.tion,' Through' most of, the'- 'streamline 

computational sweeps there is no branching·of .logic. For the above 

reasons, the switched axis mode of computation is more efficient 

than the unswitched mode (Ref. 14). 

2.2 .The Vector Do-Loop 

Recently at NASA-Ames Research Center, Dr. H. Lomax started devel­

opment of CDC 7600 assembly language subroutines to replace operations 

done in regular FORTRAN do-loops. These subroutine~ were designated 

"Vector Do-Lo'ops," 1. e., VDL*. The Vector-Do-Loop takes advantage of 

the instruction stack of the CDC 7600 computer and employs the concept 

of pipe ling in the computational sequence. In Reference 14, a simple 

vector do-loop is explained and an actual example is given showing the 

speed-up factor between a vector do-loop subroutine and the equivalent 

FORTRAN program. 

The Vector-Do-Loop substitutes computation during the waiting 

periods that normally. occur in FORTRAN do-loops. The case of the 

vector routine is a ,tight loop with computations going on at different 

stages of development, while the :FORTRAN Do-Loop is essentially a series 

calculation. The Vector-Do-Loop fits into the instruction stack 

and thus executes quickly. By making optimal use of the CPt! registers, 

the Vector-Do-Loop can do the work of a FORTRAN-Do-Loop faster and 

more efficiently. 

* The vector do-loops have also been referred to as the. SSPEEDY Codes. 
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2.3 Multi~Regional Timesteps 

The Multi-Regional-Timestep (11RT) logic divides the domain of 

computation into a set of concentric regions about the airfoil. In 

each concentric region a different timestep is employed, which is 

govel."Tled by the sta bili ty of that particular region. The time step 

generally increases by a factor of two as one moves from the inner 

concentric region towards the outer one. Thus, the inner regions are 

calculated frequently, while the outer regions a~e calculated in­

frequently. 

The MRT logic embodied in' the STOKES computer code is based on 

concepts developed by Magnus and Yoshihara (Refs. 7 and 15) and 

Trulio (Refs. 16 and 17). In solving for the inviscid field about an 

oscillating airfoil (Ref. 15), Magnus and Yosq~hara employed four con­

centric mesh regions about the airfoil. Three are employed in the 

vicinity of the airfoil nose and the fourth is a coarse cartesian mesh 

which contains the other three and covers the remainder of the domain 

of calculation. The three in the no.se region are a fine s~ewed mesh 

adjacent to the airfoil, a fine cartesian mesh containing the skewed 

mesh, and a medium cartesian mesh containing the other two. In their 

explicit differencing scheme the allowable timestep is limited by 

stability criteria to an amount which is directly proportional to the 

spatial mesh increments. For each explicit timestep advancing the 

solution in the coarsest cartesian mesh of the system, 8 are made in 

the medium cartesian mesh, 64 are made in the ~ine cartesian mesh, and 

256 are made in the s?ewed elliptic mesh around the nose. Thus, 

Magnus and Yoshiha"ra employed £o.ur. concentric regions in their compu­

tation of flow about an oscillating airfoil. 

The multi-regional timestip formulation employed herein is patterned 

after that of Magnus and Yoshir:ara.. A set of concentric regions is 

developed each of which extends from the upstream to the downstream 

boundary and contains the airfoil. In this formulation, which takes 
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place in the switched axis computer code , the variables of motion 

are calculated for a given layer of zones as often as required by 

considerations of stability of that layer of zones and its immediate 

neighbors, rather than the former method of updating dependent variables 

for all zones-as often as required for the least stable zone of the 

finite difference mesh. Since the finite difference mesh is composed 

of streamline-like lines finely spaced in the neighborhood of a surface 

and coarsely spaced as one moves away from the surface, there are 

many different timestep levels in a typical aerodynamic problem. 

Therefore,' a high percentage of the zones, i.e., those in the large 

timestep levels, will be calculated very infrequently and great savings 

is computational time should occur. 

The finite difference mesh is broken up into a series of regions 

comprised of a group of streamline-like lines. The regions are determined 

by stability for the least stable zone along a given streamline. The 

timestep levels monotonically decrease as one approaches theaero~ 

dynamic body from below, and the timestep levels monotonically increase 

as one moves away from the top surface of the aerodynamkbody. In the 

multi-regional timestep al'proach, one-dimensional variable timestep 

techniques are employed to sove a two-dimensional problem. Some of 

the techniques published by TrJllio (Refs.16,/7) are incorporated in 

the multi-regional timestep approach considered herein. Particularly 

the concept of having adjacent concentric regions differ in timestep 

by a factor of two. Trulio has stated that under these conditions 

the conservation properties of the finite difference equations discussed 

in the introduction to Section 2 can be preserved after the solution 

is advanced in the c'oarsest region of the system. 

Let us consider an airfoil finite difference mesh with four 

concentric regions, each differing by a factor of two in timestep, 

and let At be the minimum timestep, a "microstep". It is required 

to update the variables of motion on this mesh through the total time 
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interval of" 8 At, designated as a macro-ste:p. The finest region will be 

u:pdated through 8 increments in At, or through 8 "microste:ps", the 

next finest region will be u:pdated through 4 timeste:ps of 2 bt, the 

medium regi.on will be updated through 2 timesteps of 4 At and the 

coarsest region through the macroste:p. 
Complexity is minimized relative to the generalized variable 

timeste:p :procedure of Trulio (Refs. 14 and 16), since all :points along 

a given streamline belong to the same timeste:p level. Hence I since 

the streamline spacing controls the timeste:ps in most two-dimensional 

:problems, the sinl:ple multi-regional timeste:p a:p:proach should yield 

most of the benefits of a more com:plex general two-dimensional variable 

timeste:p method. Development of the MRT logic is :presented in much 

more detail in Reference 18 • 

• 
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SECTION 3 

TURBULENCE AND TRANSITION MODELS 

An algebraic turbulence model, originally formulated by Baldwin 

and Rose (Ref. 19 ), is selected for the computation of turbulent flow 

over an airfoil at transonic speed. The model is, in effect, the 

mixing length theory to which relaxation along a streamline-like 

trajectory is incorporated. The simple algebraic model has been 

recently examined by Baldwin and Rose (Ref. 19 ), Deiwert (Ref. 20 ), 

and others to be useful in shock boundary-layer interaction problems. 

All versions of available algebraic models are discussed. A criterion 

for boundary layer transition is also presented. 

3.1 Turbulence Modelling 

Numerical modelling of turbulence has become quite practical in 

the past decade with the advancement of high-speed computers. Though 

a universal model with wide range of applicability is far from reality, 

there is ample evidence that existing models have served well even in 

complex situations such as shock-wave boundary-layer interaction. All 

models of turbulence are supposed to be general in scope, and until 

recently, cross-comparisons between models (mainly studies done at 

NASA- Ames', Refs. 19 , 20', and. 21) are few. For transonic flow, there 

is no definitive .conclusion as to the best turbulence model to employ. 

The usage of numerical models naturally bypasses the more funda­

mental approach to turbulence studies via statistical theory, which 

might be at times academically pl~ing but unrealistic in engineering 

applications. In general, turbulence modelling is divided into two 

categories: the algebraic models such as mixing length theory, and the 

transport models which are described by one~or more differential equa­

tions governing some quantity like turbulence energy, turbulence 

vorticity or shearing stress. The original work of Prandtl and its 
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subsequent extension by Cebeci and Smith (CS) (Refs. 22 and 23), 

Rose (Ref. 19), etc. are examples of the first class; the classical 

Kolmogorov model (Ref. 24) (1942) and the Saffman model (1970) (Ref. 25 ) 

fall into the latter category.! In adopting a transport model, one must 

solve, in addition to the basic conservation laws, other differential 

equations from which turbulence stresses are determined. Transport models try 

to depict the physics of turbUlence transpor,t, generation, dissipation 

and diffusion. In addition, some models (such as Saffman's) show the 

correct analytical behavior near the wall (as demanded by the law of 

wall). The predictive capabilities for incompressible boundary layer 

flows by those models are convincingly established. Turbulent flows 

in more than two spatial dimensions, including separation, compressi-' 

bility, rotational effects, and containing boundary layers interacting 

with shock waves have not been subject to examination by those models*. 

In short, the transport models, as promising as they are, have yet to 

be " thoroughly tes ted 'by pro blems"more complex than plane-boundary 

layer flows. 

In view of the existing complexities in the unsteady transonic 

flow problem, the desired economy in computation, and the added degree 

of complication in the nonlinear equations, we must see an alternative 

to the formulation by turbulence model equations. Thp alternative should 

be. Cible to render a reasonably good description of the turbulent boundary 

layer development without a 'd~,sproportional amount of c;,)lI1I>ut:;I'\:.:..i..o"::'ll ti1..t3. 
' ... ". 

* Wilcox (Ref. 26), applying Saffman's model, has shown good results 
in the study of turbulent boundary separat~on and reattachment 
at moderate (2.96) Mach number. 
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3.2 Algebraic Turbulence Models 

The mixing length theory, originated by Prandtl (Ref. 27), pro­

vides the foundation to all algebraic models. Modifications introduced 

by van Driest (Ref. 28), Cebeci and Sciith (Refs. 22 and 23), and recently 

Baldwin and Rose (Ref.19), Shang and Hankey (Ref. 29), and Deiwert 

(Ref. 20) all direct to improve theapplicabili ty of the model. Alge­

braic models bypass the necessity of solving additional differential 

equations. From a computational standpoint, the eddy viscosity based 

on an algebraic model is post processed from mea~-flow information. Our 
past application of the CS mixing length theory to internal flow 

problems in an impeller has shown good qualitative results (Ref. ·30). 

Quantitative· comparison is not possible due to the complete lack of 

experim~ntal data. Hence, some version of an algebraic turbulence 

model is prefered to the m6re complex transport model. Despite the 

mixing-length common ingredient, there are variations in each indi­

vidual formulation. The variations range from the unmodified theory 

to a relaxation model incorporating special treatment for the separated 

regions. The relaxation model was found significantly better than the 

unmodified algebraic model. According to Shang and Hankey (Ref. 29), 

it was significantly better than the Saffman's transport model for flow 

over a flat plate. Since separation on the transonic airfoil is a real 

possibili ty, incorporation of thtJ relaxation effect becomes qui::'e 

desirable. For a detailed comparison of various formulations, we 

list them in the following table. 
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The formulation we shall adopt in the transonic flow problem is 

\ _ basically a hybrid relation primarily based on Rose's relaxation 

model and the modification suggested by Deiwert. Ingredients of 

the present algebraic model are blocked in heavy-lined rectangles 

in the preceeding table. The model for the turbulence stress "'C' .. 
~J 

can be summarized as follows. 

with _ ..L ".. •. .. - ~ " ...... 

The eddy viscosity E is estimated by the mixing length theory 

( I ) 

( .21 

which-subdivides the shear layer into an inner and an outer region. 

Inner region 

e: I = t 2 (~)"+(~) 
I 1) %J lJ%,; 

tI = klyD 

kl = 0.4 

Y = normal distance from the nearest wall 

D = 1- exp (-y/A) 

A = 26vw / J l--rwJ /p i 
v

w
= kinematic viscosity coefficient at the 

nearest wall 

T = shearing stress at the nearest wall 
w 
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Outer Region 

Selection 

Relaxation 

2 

€o = lmax 

= boundary layer thickness 

e:: = Min (€I'€O) eq. 

r 

(3) 

along a streamline-like traj~ctory ~ 

fCn = c(5-"~) -t- [~.cP -tlJ-APJ[ i - exp (- "')) (4) 

if cei, < E (~-.6~) 
where 

othenlise 

And ~ is a parameter defined along a streamline. 

-
Two major components, due to ~eiwert., are introduced into Rose's 

- 2. - 1-

( dU,i) + (" ()~) in place 
"% . ~%./" J -

formulation. One is the adoption of 

of I () 7lZ + d Uj' I 
";;~I ;;tt,; 

to avoid the complete vanishins of, € in a 

recirculating zone. Another one is the modification of the 

relaxation process in which E(~-~~) is used in place of a fixed € 

evaluated at" some reference station. Moreover, Deiwert found that 

relaxation over a streamline-like contour was more appropriate 

particularly for flows over a curved boundary, such as airfoil 

or turbine blade. Both modifications, indeed minor in nature, are 

convenient to implement with our computer code in which the 

scanning is done along streamline-like trajectories. The necessity 

of incorporating the relaxation effect has been substantiated by 

)3aldwin and Rose (Ref. 19), Deiwert (Ref. 20), Shang and Hankey (Re'f. 29 ). 

Its usefulness for flows in an unsteady transonic flow will be borne out in 
our forthcoming computation. 
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Transition to Turbulence 

Laminar flow at large Reynolds numbers becomes unstable, 

then the growth of disturbance in the boundary layer builds up 

until transition to turbulence occurs. The pOint of transition 

is strongly affected by the streamwise pressure gradient and the 

turbulence level of the free stream. To account for these factors, 

several empirical methods are available (for example, van Driest 

and Blumer, Crabtree, Granville, Smith and Gamberoni, van Ingen, 

Michel). It is not possible to give a thorQ~gh comparison for 

those methods. In o\;n,,· blade-to-blad.:.: computation for flows in an 

r--

i:ilpeller passage (Ref' 30), ooth Granville (Ref' 31)., and M:ichel's (Ref 32) formulations 

were examined. We found that Michel's simple algorithm provided 

a clear-cut prediction of transition point and it was extremely 

if easy to implement. Since- boundary layer transition is such a 
.( 

dubious subject in numerical computation, our guideline in the 

selection of a criterion is again "the simpler the better." Unless 

future experiments contradict our selection, we shall adhere to 

Michel's criterion for the present application. The criterion 

gives a transition Reynolds number, (Re~)t ,based on the local 
'Q rans 

Reynolds number Rex' 

( 
.z.z4oa ) 1).# 

(J(eo) == /.17 I -I- ~ - R~,.( 
t~n~ ~~' 

The local Ree can be estimated from the incompressible momentum 

thickness e .. 
~ 
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If the local Ree is larger than (Ree)t transition to rans, 
(~ . turbulent flow has taken place. Michel's criterion, resulted 

ff ' .. 

from correlation of experimental data, is supposingly valid for 

the range of Rex between 0.1 x 105 and .60 x 10 6 • Criterion of 

this nature signifies that transition to turbulence occurs at a 

point, rather than in a region, and relaminarization is not 

possible. A.M.O. Smith had compared Michel's algorithm against 

Granville's, Smith found the simple criterion of Michel quite 

satisfactory in the description of transition to turbulence. 
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SECTION 4 

BOUNDARY CONDITIONS FOR SIMULATION OF 

FREE AIR FLOW ABOUT AN AIRFOIL 

This research effort concerns flow about the symmetric NACA 64A010 

airfoil, which has a thickness to chord ratio of 10%, at two different 

angles of attack. At zero incidence the airfoil does not develop lift; 

hence, the circulation of the system is zero. For the 2 degrees incidence 

case the transonic field about this airfoil does contain circulation, 

since lift is being developed about the body. In this section boundary 

conditions are prescribed which simulate far field free air flow 

conditions for the non-lifting and lifting cases above. 

4.1 Boundary Conditions fo~ Non-Lifting Airfoil 

Figure 2a shows a schematic of the domain of calculation of a 

symmetric airfoil having a chord C, a thickness r, and at zero degrees 

incidence. Let us consider inviscid, isentropic flow about this 

airfoil. For the case of a thin airfoil, the flow is governed by the 

transonic small disturbance potential equation (Ref. 4 ). 

where: 

x= (8) 
..... 

(9) 

U= (10) 

v:::: (11) 
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vt Let us define a scaled parameter y such that 

. 11 t-if = J"l M(){) ~ (12) 

where: 

" 

Combination of Equations (7) and (12) yields 

(13) 

where: 

1(= (1- M';)/ MoO J~ (14) 

c:P '" - 4>! / UI10 €: (lS) -.... 

Q>~ -:::: dJ~ /UoIE (16) 

€:::: d~MD6 (17) 

;Based on equations (10), (11), (lS), (16), and (17), the streamwise 

and normal velocity components are, respectively: , 
lA =. Uao (J+ € d> ~ ) (18) 

V =' Uo(J/~) 4J~ 
For the non-lifting symmetric airfoil of Figure 2a the effective 

far field potential solution to Equation (13) is a q.oub1et. 

<t>;, == Zlr ~ f ~ .. ! K!j." j! (20) 
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where D is the area of the airfoil section. Equation (20) indicates 

that the doublet potential strength diminishes inversely with the 

square of the transformed radius ~ = (x2 + Ky2)"~ frOlll the origin of ,.. 
the coordinate system, which is located at the 50 percent chord station 

(Figure 2a). Thus, the effects of the non-lifting airfoil on the 

perimeter of the system are small provided this perimeter is selected 

far from the airfoil. 

As a result of the above, the following boundary conditions were 

imposed on the perimeter of the domain of calculation shown in Figure 2a. 

(1) Along the upstream boundary the Murman-Cole inviscid 

solution (Ref. 1) is prescribed for all time. 

(2) Frictionless flow is imposed along the lower horizontal 

lateral boundary of Figure 2a. 

(3) Frictionless flow is imposed on the dividing streamline 

upstream and downstream of the airfoil surface.: 

(4) No slip flow is imposed along the airfoil surface. 

(5) A two-dimensional unsteady method of characteristics, 

including dissipation, is employed to determine the 

velocity field exiting from the downstream boundary (Ref. 14). 

At the upstream boundary the Murman-Cole solution is essentially 

the doublet of Equation (20). The lateral boundary is far enough 

away from the airfoil, so that any reasonable boundary condition will 

work including frictionless flow. Finally, at the downstream boundary 

the viscous equations of motion are solved, via the method of charact­

eristics, to provide a very realistic model of the exiting flow. 

4.2 Boundary Conditions for Lifting Airfoil 

A lifting airfoil develops circulation; hence, the boundary 

condi-t,ions enforced on the perimeter of the ,system greatly influence 

the flow in the neighborhoo of the body. t.et us consider the airfoil 

shown in Figure (2b) ,at an angle of attack ot, and having the circu­

lation r. The coordinate system (x, ) is located at the 50 percent 
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cho:rd station, the, airfoil thickness is 7:'., -and its cho:rd is C. 

Krupp and Murman (Ref. 2) and Small (Ref. 33) have determined 

the far field potential solution to Equation (12) for the Iifting case. 

The resultant equation is as follows: 

d>': ~' -J! e t rt-(H) ~ ~)(uc 9 - r«-HJ Co.(3~ + ... 
D 2l1' I6T~ f (~Tfl'K. f ( 21) 

wher .i' ~ is the (20) and, doublet potential given by Equation 

e = ta~-I(~ k: lilt) 

-r ~ {t+ 't(. ,,).1;. (23) 

(22) 

In Figure (2b) the point P is shown 'on the upper lateral boundary 
.... 

haYing the scaled radius r and the angle Q. The second term of 

Equation (21) ia directly dependent on the angle Q and the circulation 

r ; hence, the effects of airfoil circulation are felt throughout the 

domain of calculation for the lifting case. Therefore, circulation 

must be properly accounted for far from the body to simUlate free air 

boundary conditions. 

In order to preserve circulation throughout the domain of calcu­

lation, two sets of boundary conditions were investigated in this study. 

In the remainder of this section these boundary condition sets are 

described and their value ascertained. 

In the first set of boundary conditions, the velocity field on 

the upstream and lateral boundaries of the system shown in Figure (2b) 

was calculated at each timestep from the far field small disturbance 

Equations (18), (19), (20), and (21). The method of' characteristics, 

which included disstpation, was utilized to compute velocities at the 

downstream boundary (Ref. 14). 

To obtain a more accurate velocityf'ield on the upstream and lateral 

boundaries of the system, the far field small disturbance equations 
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(18), (19), (20), (21) were solved in conjunction with the TSFOIL 

(Ref. 3) inviscid fi~ld, which served as the initial conditions 

for the lifting calculation. The TSFOIL. velocity fi~ld was used 

to numerically evaluate the time-independent doublet contribution to 

the far field potential given by Equation (21). The numerically 

determined doublet contribution to the far field velocities, which 

resulted from the initial' conditions, was then saved and employed in 

Equation (21) at later times. 

At each timestep of the caloulation the lift force was computed 

about the airfoil and the local lift coefficient Ci was determined. 

Based on the local lift coefficient the circulation about the airfoil, 

which was preserved along the perimeter of the system, was calculated 

from the following equation. 

(24) 

Equation (24) is consistent with the small disturbance theoryapprox­

imations. 

The boundary conditions defined in this first set did not work. 

Vortices shed from the airfoil, whose rotation produced local velocities 

in the neighborhood of the 'upper lateral boundary (Figure (2b) ) 

opposite in sense to these prescribed at the lateral boundary from 

Equation (21). Material could not flow out of the system; therefore, the 

pressure built up along the upper la.teral boundary eventually wiping 

out the wake of the airfoil. 

As a result ,of the above, a second set of boundary conditions was 

prescribed in the far field. The velocity field on the upstream 

boundary was computed at. each timestep from the far field small dist­

urbance Equations (18), (19), (20), and (21) in a manner identical 

to that described above. However, along the lateral boundaries of the 

system (Figure 2b), far field small disturbance theory, via Equations 

(18), (19), (20), and (21), and the TSFOIL solution, were used 
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to compute only the external static pressure field along these 

boundaries. Based on the external far field theory pressures and the 

interior stresses along the lateral boundaries, the velocity field was 

computed from the equations of motion. Finally, the method of charact­

eristiCS, described previously, was employed to compute velocities 

at the downstream boundary. 

The boundary conditions defined in the second set worked. During 

the shedding process the pressure boundary condition permitted material 

to flow out of the system at the upper lateral boundary. This per­

mitted the shed vortices to pass through the system and resulted in 

?-' reas()nable descp:pti9Il;of .. the flQw: field.for the wake .of the airfoil. 
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SECTION 5 

RESULTS: :OF NON-LIFTING CALCULA'L':rON 

Computations were first conducted for the NACA 64AOIO airfoil 

at zero degrees angle of attack. Although the Reynolds number was 

4 x 106 , the computations were originally made with the turbulence 

model turned off; a computation is now in progress with the model 

turned on and with a finer mesh. The laminar problem was designated 

"Problem 101. 0" 

The non-lifting airfoil numerical results for Problem 101.0 are 

presented in the following format: 

(1) Mesh used and Initial Conditions 

(2) Time-Histories of Pressure Coefficients 

(3) Computational Time Reduction Factor 

(4) Velocity Vectors of Steady Flow Field 

(5) Surface Pressure Distribution Comparisons 

(6) Mach Number Contours 

5.1 Mesh Used and Initial Conditions 

The mesh employed to solve Problem 101.0 is presented in Figure 3. 

This mesh is comprised of the intersection of 3~quasi-streamlines 

and 130 potential-like-lines. The streamline-like-line spacing is 

designed to provide about five points in the boundary layer downstream 

of the leeward airfoil shock. 

The timestep levels of the mesh of Figure 3 were. investigated and 

the speed-up factor between a multi-regional timestep run and a con­

stant timestep run was determined. Uniform freestream conditions were 

assumed in the numerical investigation. The speed-up factor is the ratio 

of the time it would take to do a macrostep (cover the total time 

increment of the coarsest region) without the multi-regional time-

steps to the time it would take to do the same computation with the 

multi-regional timesteps. Multi-regional timesteps and their speed-up 

factors are described in Reference 14. It was found that the minimum 
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timestep for the mesh of Figure 3 was 1.33~ and the speed-up factor 

was 2.15. Furthermore, it was found that the ~otential-like-line spacing 

in the vicinity of the leading edge of the airfoil controlled the time­

step levels. 

A previous finite difference mesh was investigated, having the 

same number of mesh points, but with finer potential-like-line spacing 

in the vicinity of the airfoil leading edge. With finer potential-like­

line spacing this finite difference mesh had a minimum timestep 

of .684~s and a speed-up factor of 1.69. Furthermore, this mesh is 

still severely limited by the potential-like-line spacing in the 

vicinity of the airfoil leading edge, rather than the streamline-like­

line spacing. 

Further study is warranted to increase the speed-up factor even 

further by spreading potential-like-lines near the airfoil leading edge. 

The initial field for the solution of Problem 101.0 was generated 

from the inviscid small disturbance solution from TSFOIL (Ref. 3). 

The initial field generated from Murman's method was interpolated 

onto the finite difference mesh of Figure 3 by a computer code written 

especially for this purpose. 

A computer code, called "INTER", was developed to interpolate a 

flow field on a generalized finite difference mesh, termed the 

"unprimed points" onto another generalized finite difference mesh, 

termed the "primed points". The sequence of events in the interpol­

ation process are as follows: 

1. A primed point is located in the unprimed zone that contains 

it. 

2. A first order double Taylor's series expansion is employed 

to interpolate the data at the four corners of the unprimed 

quadrilateral onto the primed point. 

3. The velocity components, density, and specific internal 

energy are interpolated. 
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The INTER computer code was employed to interpolate the 

inviscid flow field onto the 64AOIO airfoil mesh of Figure 3. The 

inviscid field developed by TSFOIL for the 64AOIO airfoil was generated 

for zero angle of attack at llJach .80. The inviscid field is developed 

on a rectangular mesh comprised of 50 horizontal lines and 89 vertical 

lines and considers the airfoil as a flat plate through use of the 

approximate tangency condition. The airfoil mesh (see Figure 3) is 

comprised of 34 streamline-like-lines and 130 potential-like-lines. 

The interpolated pressure field on the 64AOIO airfoil surface is 

presented in Figure 4. Measured pressure coefficients, (Gross and 

Steinle) Ref 34) at Reynolds number 4 x 106 , are also included for 

comparison purposes. It is seen from Figure 4 that the inviscid pres­

sure distribution is a good approximation to these data, except in 

the vicinity of the shock-wave-boundary-layer interaction, and at the 

trailing edge of the airfoil. 

5.2 Time-Histories of Pressure Coefficients 

Starting from an initial field generateo. from the inviscid 

small 'disturoance ) solution . :from'TSFOIL, the zero incidence 

case was run 1100 computational cycles to a characteristic time* ~ 

OI 3.62. The 1100 cycles required 28 minutes on the CDC 7600 computer. 

Pressure-time histories indicated that the field was near steady­

state at this characteristic time. 

In order to demonstrate that the airfoil flow field is approaching 

a steady-state, time histories of the pressure coefficient were monitored 

at five points along the surface of the airfoil. The pressure coeffi­

cient is plotted as a function of the characteristic time 1: in 

Figure 5. It is seen Irom Figure 5 that at a characteristic time z: 

* Unit characteristic time corresponds to the time it takes a free 
stream particle to travel one chord length. 
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of 3.62 the time-histories are nearly horizontal. Although time­

histories were not generated in other regions of the flow field, it 

is believed that at ,= 3.62 the remainder of. the field is also near 

steady-state. 

5.3 Computational Time Reduction Factor 

The STOKES Computer code employed to solve Problem 101.0 embodies 

three computational time reduction methods, namely: 

1. Switched axis 

2. Vector-Do-Loops 

3. Multi-Regiona·l Timesteps 

It is the purpose of this section to determine the speed-up factor 

afforded by each method, and the total speed-up factor. 

Let us consider the multi-regional timestep levels (MRT) first. 

Table I presents a tabulation of the timestep levels associated with 

the streamline-like-lines of Figure 3 at a characteristic time ~ 

of .6600. 

TABLE I 

Tabulation of Timestep Levels 
at a Characteristic Time r of .6606 

X-Line Timestep Timestep Number of 
Range Level us MicJ:'osteps 

per Macrostep 

30-33 1 .775655 8 

25-29 2 1.55131 4 

16-24 3 3.10262 2 

1-15 4 6.20524 1 

There are four timestep levels in Table Ii hence, the computation 

requires eight microsteps per macrostep of computation. Each streaw~ine-
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like-line is numbered with the index K, where K=l corresponds to the 

lower lateral boundary of Figure 3. It is seen from Table I that four 

K-lines are in Levell, five K-lines are in Level 2, nine K-lines are 

in Level 3, and fifteen K-lines are in Level 4. On this basis a speed­

up factor, SMRT' can be calculated, which is the ratio of the number 

of point-steps that occur if the smallest timestep gove:rns the compu­

tation to the number of point-steps that actually occur due to MRT. 

(33)(130)(8) 
SMRT = ~1~3~O .,-( -r( 4:'""'1i)""( 8:::""1)~+ -r( -="5 ),...".( ':"""'4 )~+ ""'(~9 '-')(""""2"'-) -""+--'l--'S""-) :: 3.Jo.,58 (2S) 

The speed-up factor computed above is not the maximum that could be 

achieved for Problem 101.0. 1be pot~ntial-like-lines limit the higher 

timestep levels. A revised mesh and a potential-line dropper in the 

STOKES code should give another factor of two. 

The switched axes of STOKES gives a factor of 1.S (Ref. 14) and 

the Vector-Do-Loops employed provides an additional factor of 1.S 

(Ref. 14). Therefore, the total speed-up factor is 

S = (loS) (1.S) (3.1058) ~ 7.00 (26) 

As was discussed in Section S.2,the STOKES code was run through 

1100 macrocycles to reach a near steady-state at r=3.62. The 1100 

macrocycles required 28 minutes on the Ames CDC 7600 computer. Based 

on Equation (26), an unswitched constant timestep version of STOKES 

would solve Problem 101.0 in three hours and fifteen minutes on the 

CDC 7600 computer. 

s.4 Velocity Vectors of Steady Flow Field 

Figures 6 and 7 present velocity vector plots of the steady flow 

field about the NACA 64AOIO airfoil. The vectors are proportional to 

the particle speeds and emanate from the mesh positions of Figure J. 

Figure 6 shows the leading edge flow field and the field in the 
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vicinity of the shock wave, while Figure 7 shows the trailing edge 

flow field. 

A deceleration along the dividing streamline of the airfoil is 

shown in the flow field of Figure 6. Furthermore, subsequent expansion 

about the forward portion of the airfoil is also indicated in Fig~e 6. 
The boundary layer must be thin on the forward portion of the airfoil 

since it is not descernible in the vector plot. 

Aft of the shock wave, which occurs at x=.74 ft, a thickening of 

the boundary layer is indicated in Figure 6. A boundary layer flow can 

be clearly seen at the axial station x=l.OI ft. 

A recirculation region is clearly indicated in the neighborhood 

of the airfoil trailing edge in Figure 7. This recirculation region 

is only calculable through the Navier-Stokes equations; such a region is 

not within the scope of inviscid methods which employ a Kutta condition. , 
The calculated surface pressures are compared to measurements 

in the next section.-

5.5 Surface Pressure Distribution Comparisons 

Surface pressure distributions obtained from the STOKES numerical 

solution, the .TSFOIL inviscid solution (Ref. J), and the measurements 

of Gross and Steinle (Ref. 34) are shown in Figure 8. It Is seen that 

the STOKES pressure distribution is nearly identical to these data, 

except in the vicinity of the shock and at the trailing edge. The 

calculated shock position, i.e., x/c = .475, appear correct; however, 

the shock transition is smeared out relative to these data; it is believed 

that the finer mesh computation now in progress will produce a sharper 

shock transition. The TSFOIL prediction produces a shock location 

aft of the experimental value, i.e., x/c = .525, but transition 

is sharper. Finally, at the airfoil trailing edge the TSFOIL prediction 
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shows an increase in pressurl3, while both the STOKES and experimental 

results indicate no such increase. The flattening of the trailing edge 

pressure distribution is dUEl to viscous effects. Differences between 

the calculated trailing edgf3 pressures and corresponding data may be 

attributed to an early numerical separation caused by the absence of 

turbulence. It is anticipated that the turbulent computation now in 

progress will greatly narrow differences between the calculated and 

measured pressure fields. 

5.6 Mach Number Contours 

Calculated local Mac:h number contours are shown in Figure 9. 
The freestream flow at a Mach number of .80 decelerates to a stagna­

tion point at the leading edge of the system, then accelerates past 

sonic flow to Mach 1.08, shocks down to subsonic conditions, and 

decelerates subsonically throughout the remainder of the airfoil chord. 

Furthermore, a low speed recirculation region exists in the nei'ghbor­

hood of the trailing edge of the airfoil. 

The gradual transition through the shock wave is indicated in the 

Mach number contours of Figure 9. The airfoil accelerates to Mach 1. 08 

at x = .74 ft, then gradually goes through shock transition to 

x = .94 ft where subsonic: flow occurs. This. smearing of the shock 

will be reduced in the finer mesh calculation now in progress. 
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SECTION 6 

RESULTS OF LIFTING CALCULATION 

Computations for the NACA 64AOIO. airfoil at two-degrees angle 

of attack were conducted with the turbulence and transition models 

operational. The turbulent lifting airfoil problem was designated 

"Problem 102.0". During the process of running Problem 102.0, it 

was found that an integrated inviscid/viscous calculation provided 

more realistic results t,han a complete viscous calculation. The 

principal reason for this was that the finite difference mesh employed 

was too coarse to define the thin boundary at the airfoil leading 

edge. The integrated inviscid/viscous calculation was designated as 

"Problem 102.i". 

The lifting airfoil numerical results of Problem 102.0 are presented 

in the following format: 

1. Finite Difference Mesh 

2. InitialConditions 

3. Computational Time Reduction Factor 

4. General Flow Field Structure 

5. Calculated Lift and Drag 

After the results of Problem 102.0 are described a discussion of 

Problem 102.1 follows. 

6.1 Finite Difference Mesh 

The mesh employed to solve Problem 102.0 is presented in Figure 10. 

This mesh is comprised of the intersection of 68 streamline-like-lines 

and 130 potential-like-lines. The streamline-like-line spacing is 

designed to provide about six points in the leeward boundary layer 

aft of the airfoil shock. 

The mesh of Figure 10 was developed from the half:mesh employed 

for the NACA 64AOIO airfoil at zero angle of attack (Figure 3). This 

half-mesh was reflected to produce a symmetric mesh about the full 
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64A010 airfoil at zero angle of attack. The airfoil and asso-

ciated mesh were then rotated through two degrees to produce a finite 

difference mesh at angle of attack. Horizontal lines were then imposed 

at the lateral. boundaries of the system and the potential-li~e-lines 

were forced to terminate at these boundaries. 

In the neighborhood of the airfoil leading edge the turbulent boun-­

dary layer thickness is much smaller than the thickness of the first 

layer of zones adjacent to the airfoil surface. Therefore, the mesh 

of Figure 10 is considered as a medium mesh. It is designed to 

provide a practical running time with sufficient accuracy to define 

the important airfoil fluid mechanical phenomena. 

6.2 Initial Conditions 

The initial field for the solution of Problem 102.0 was 

generated from the inviscid small disturbance solution from TSFOIL 

(Ref. 3) for the 64AOIO at M =.8 and 2 degrees angle of attack, 

and interpolated onto the mesh of Figure 10. 

Initial pressure distributions on the leeward and windward sides 

of the airfoil are shown in Figure 11. It is seen from this figure 

that the leeward flow undergoes a very rapid expansion at the airfoil 

leading edge -to supersonic flow, and then is shocked to subsonic 

conditions at a station along the airfoil of approximately 85% of 

the airfoil chord. 

The inviscid lift and drag coefficients are compared to inter­

polated measurements of Gross and Steinle (Ref. )4) in Table II. 
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TABLE II 

Comparison of Lift and Drag Coefficients for the NACA 64AOIO Airfoil 

Method of Generation 

Murman Inviscid 
Solution (Ref. 3 ) 

Measured Value (Ref. 34) 

Drag Coefficient 
CD 

.0413 

.047 

Lift Coefficient 
CL 

.8709 

.415 

It is seen from Table II that the inviscid theory overestimates the 

lift and underestimates the drag by a large factor. If the inviscid 

lift prediction were closer to measurements and the flow were steady, 

the Murman far field solution could be imposed on the upstream and 

lateral boundaries of the mesh and the problem run in this way. Due 

to the large discrepancy in lift and the possibility of unsteady flow, 

the boundary conditions described in Section 4.2 were employed on these 

boundaries. 

6.3 Computational Time Reduction Factor 

Starting from the initial field of Section 6.2, the two degree 

incidence case was run 2615 macrocycles to a characteristic time r 
of 9.05. The 2615 cycles required 1.88 hours on the CDC 7600 computer 

at -Ames Research Center. Since Multi-Regional Timestep (MRT) logic 

is employed, each macrocycle is comprised of many microcycles. There­

fore, the 1.88 hours of computational time is divided according to the 

timestep levels employed in the calculation. The timestep levels 

employed for Problem 102.0 are presented in Table III. 
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TABLE III 

Computer Time Division 

Macrocycles Timestep Levels 

4 

2615 

Computer T.ime 
(hrs) 

.85? 

1.023 

1.88 

The results of TableIII indicate that the first 965 macrocycles 

occurred at four timestep levels, i.e., 8 microsteps per macrostep, 

and the remaining 1650 macrocycles occurred at three timestep levels, 

i.e., 4 microsteps permacrostep. Furthermore, the first 965 cycles 

required/85? pours of CDC ?600 time, while the remaining 1650 cycles 
took 1.023 hours. 

Based on the results of TABLE III the speed-up factor afforded 

by the MET logic can be evaluated in a manner similar to that of 

Section 5.3. Through the first 965 macrocycles four timestep levels 

were employed. The MRT speed-up factor, SMRT' that results can be 
determined from Table' IV below. 

TABLE IV 

Tabulation Qf Timestep Levels 
for First 965 Macrocycles 

Timestep Level layers of Zones 
in that Level 

1 12 
2 15 

3 28 
4 12 
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= 2.392 

The switched axis gives a factor of 1.5 (Ref~,,13), and the Vector-Do­

Loops provide another factor of 1.5 (Ref. 13); therefore, the total 

speed-up factor' over the first 965 macrocycles is 

Through the remaining 1650 cycles three timestep levels were used. 

The MRT speed-up factor) 8MRT can be determined from Table V below. 

TABIE V 

Tabulation of Timestep Levels for 
Remaining 1650 Macrosteps 

Timestep Level Layers of Zones in the Level 

1 

2 

3 

14 

19 

34 

- (67)(4)(ltO~ _ 
8MRT - 130 (14)(4) + (19) 2 + 34) - 2.0938 

Accounting for the switched axis and Vector-Do-Loops yields a total 

speed-up factor of 

The overall speed-up, 8, is the cycle weighted average of 8
965 

and 

8
1650

, i.e., 

8 = 4.96 

Therefore, in the absence of a switched axis code, Vector-Do-Loops, 

and MRT, Problem 102.0 would require 9.3 hours on the Ames CDC 7600 

computer. 
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As was discussed previously, the timestep levels are limited 

by the potential-like-line spacing of the finite difference mesh in the 

vicinity of the airfoil leading edge, not the streamline spacing. 

Therefore, zone dropper logic, which drops potential-like-lines of the 

finite difference mesh away from the immediate neighborhood of the 

airfoil leading edge, would increase the number of timestep levels 

from four to five and decrease the number of computations required. 

It is believed an additional speed-up factor of two would result; 

hence, lifting airfoil problems could be solved within an hour. 

6.4 General Flow Field Structure 

In this section velocity vector plots are shown which illustrate 

the sequence of events as the viscous flow field develops from the 

inviscid initial conditions. Figures 12 through 17 present the velo­

city field of Problem 102.0 at various characteristic times ranging 

from zero to 8.62. 

Figures 12 to 14 indicate upstream movement of the leeward airfoil 

shock from its initial position to its farthest upstream location. 

Figure 12 shows the initial inviscid field with a leeward shock clearly 

indicated at the 85 percent chord station. At a characteristic time 

t of 2.10 (Figure 13), the leeward shock has moved to about the 40 

percent chord station with a separated flow trailing the shock. In 

fact a. clockwise vortex is seen about to shed at the trailing edge. 

A large clockwise vortex is shedding from the leeward side in Figure 

14 (~=3.75). Furthermore, the leeward shock has moved to the 30 per­

cent chord station, which is approximately its farthest upstream 

location. 

Downstream motion of the shock to a near equilibrium position is 

indicated in the velocity vector plots of Figures 15 through 17. 

Figure 15 shows the velocity field at a characteristic time ~ of 5.44. 

At this characteristic time the leeward shock is at the 35 percent 
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chord station. The shock has moved to approximately the 50 percent 

chord station atr=S.27 (Figure 16). Figure 17 at't:=S.62 also indicates 

a leeward shock position at about the 50 percent chord station. 

The main points of Figures 15 through 17 are that (a) the leeward 

shock seems to arrive at a near-equilibrium position, (b) vortex 

shedding appears to continue throughout the calculation, and (c) the 

wake of the airfoil assumes a sinusoidal pattern. 

6.5 Calculated Lift and Drag 

The main result of the velocity vector plots is that the flow at 

the airfoil trailing edge and in its wake is unsteady. To obtain a 

more quantitative description of this unsteadiness time-histories of 

the lift and drag coefficients are examined. 

The lift coefficient time history is presented in Figure IS. 

Starting from the inviscid lift coefficient of .S709 the lift coeffi­

cient generally decreases in a transient way until a characteristic time 

r. of 7.6 • For characteristic' times greater than 7.6, the lift-time­

history.is periodic, with a complete period of oscillation shown in 

Figure IS. According to inviscid small disturbance theory (Equation 

24), the circulation is proportional to lift; hence, the airfoil 

sheds vorticity in a transient way until ~ of 7.6 and then periodic 

shedding occurs. From Figure IS, the period of oscillation is about 

1.4 in characteristic time units~ 

A corresponding time history of the drag coefficient is shown in 

Figure 19. Starting from the inviscid drag coefficient of .0413, 

the drag coefficient increases to about .OS at a characteristic time 

rof 3.0, then decreases to about .03 at~=6.0, and finally becomes 

periodic after a characteristic time of 7.6. The period of oscillation 

of the drag coefficient appealS to be similar to that of the lift 

coefficient. 

The lift and drag coefficients of Figure 18 and 19, respectively, 

are time-averaged over the period of oscillation. The time-averaged 
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lift coefficient CL is .137 and the time-averaged drag coefficient 

~ is .038. A comparison of these values with the corresponding 

interpolated measurements of Table II indicates that the calculated 

values are low. The calculated drag coefficient is in the ballpark, 

but smaller than measured, while the lift coefficient is far less than 

measured. 

The numerical solution was examined to determine the reasons for 

the low lift and drag predictions. The principal reason found was 

that the fin:.te difference mesh in the vicinity of the leading edge 

of the airfoil was too coarse to define the thin boundary layer there. 

The thin leading edge boundary layer is contained within the first 

layer of zones adjacent to the airfoil on both its leeward and wind­

ward sides. As 9. result the hiGh suction pressures near the i1050 we::e 

not obt:.ined numerically and the supersonic rer:ion was much slT.alle::.:' t.han 

that observed experimentally. 

A thin leading edge boundary layer, whose thickness is smaller 

than the width of the first layer of zones of the finite difference 

mesh, has the following two numerical effects: 

1. Calculated airfoil leading edge shear stresses are 
smaller than actual shear stresses; therefore, the 
predicted drag is less than the actual drag. 

2. Calculated average Mach numbers in the first layer 
of zones about the airfoil leading edge are less 
than they should be. These lower Mach numbers 
permit the periodic flow aft of the leeward shock 
to erode away the expansion region on the leeside. 

An alternate way of explaining the smaller calculated supersonic 

region is to introduce the concept of displacement thickness*. A 

coarse finite difference mesh at the airfoil leading edge is similar 

to adding a large displacement thickness to the airfoil which inhibits 

the leeward expansion. 

* The authors are indebted to Dr. Gary T. Chapman of NASA Ames for 
suggesting this concept. 
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The calculated flow field contains a leeward supersonic region 

and a shock wave; however, the magnitude of the pressure drop du.e to 

the leeward expansion, and the shock strength are reduced below the 

actual expansion pressure drop and shock strength. 

There are two methods of correcting this numerical problem. 

1. Re-calculate the flow field with a finer mesh on the 

forward portion of the airfoil solving the full 

Navier-Stokes equations. 

2. Employ another technique, which does not require 

a very fine mesh, to solve for the leeward supersonic 

region, and integrate this solution with the Navier­

Stokes solution everywhere else. 

It is believed that a fine mesh Navier-Stokes solution is imprac­

tical at this particular time. The finite difference mesh required is 

about ten times finer than what we are now using. This means that 

the problem will take about 20 hours to solve on the CDC 7600 computer. 

This computer expenditure makes Navier-Stokes computations about 

lifting transonic a.i:cfoils too costly for most applications. 

In this research program a numerical experiment has been conducted 

to investigate the results of integrating another solution with the 

medium mesh Navier-Stokes solution of Problem 102.0. The forthcoming 

section describes ,this numerical experiment. 

6.6 Integrated Inviscid/Viscous Calculation 

The inviscid steady field from TSFOIL, employed 

as the initial conditions, has a much more accurate supersonic region 

than the medium mesh periodic Navier-Stokes solution of Problem 102.0. 

Furthermore, the leeward steady supersonic regi.on compub3d in Problem 

102.0 during the early stages of motion, i.e., at a characteristic 

time of 1. 6, is a more accurate prediction than the TSFOIL field. 
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This is because the airfoil sr~pe is properly accounted for and some 

viscous effects are included. The TSFOIL solution, which employs 

the approximate tangency condition, is interpolated to account for the 

body shape (see Section 5.2). 

The calculated leeward supersonic field of Problem 102.0 at a 

characteristic time of 1.6 was integrated with the Navier-Stokes 

solution everywhere else in two steps. 

1. At characteristic times between 7.6 and 9.05 in its 

period of oscillation, the periodic flow field computed 

in Problem 102.0 was patched together with the steady 

leeward supersonic region computed atr =1.6. 

2. The interface region between these solutions, which 

contained the leeward shock, was recomputed by running 

the STOKES code through a characteristic time interval 

of .025. 

After the STOKES run, an integrated solution resulted ,,,hich had a 

proper supersonic region, a leeward shock wave-1Joundary layer inter­

action, and a separated trailing edge region. l'he int,egrated inviscid/ 

viscous calculation was designated as Problem 102.1. 

In the remainder of this section the results of Problem 102.1 are 

presented. The format for presentation is as follows: 

1. General Flow Field Structure 

2. Calculated Lift and Drag 

3. Surface Pressure Distri butlon Comparisons 

4. Comparison of Mach Number Contours 

5. Turbulence Characteristic for Airfoil 

6.6.1 General Flow Field Structure 

Shedding of vorticity from the lee side of the airfoil is indi­

cated in the velocity vector plots shown in Figures 20. 21, 22, and 23. 

Figure 20 presents the velocity field at ""t:' =7.831. A leeward vortex 

is forming at approximately the 50 percent chord station, while a 

43 

_. 

I 
1 
I 

"I 

j 
1 

1 

1 



I 
! 
r 

! 
,-
, 

li 

~~·l-~·~T--I-r·l 

/1 

a vortex rotating counter-clockwise is shedding at the airfoil trailing 

edge. The counter-clockwise shed vortex induces clockwise circulation 

about the airfoil; thus, lift is enhanced. At a characteristic time of 

8.204 (Figure 21), the eye of the leeward vortex of Figure 20 has,-moved 

to about the 65 percent chord station and the counter-clockwise shed 

vortex has moved further downstream. Figure 22, at a characteristic 

time of 8.649, shows the leeward vortex of Figure 21 at the airfoil 

trailing edge and in the process of shedding. Furthermore, the sense 

of' this vortex is now clockwise. This shed clockwise vortex induces 

a counter-clockwise circulation about the airfoil; hence, the lift 

is reduced. At a characteristic time of 9.052, the velocity field shown 

in, Figure 23 no longer has the clockwise leeward vortex in it; however, 

a counter-clockwise vortex appears to be shedding from tbe trailing 

edge. In fact, the velocity fields of Figures 20 and 23 are somewhat 

similar, suggesting a periodic flow. 

The velocity vector plots of Figures 20 to 23 are similar to the 

interferogram pictures taken by Finke (Ref. 12) and shown in Figure 1. 

Shedding of vortiCity is clearly indicated in both the interferogram 

pictures and velocity vector plots as well as a sinusoidal wake pattern. 

Finally, the alternate shedding of counter-clockwise and clockwise 

rotating vortices in Problem 102.1 indicates that the instantaneous lift 

coefficient should fluctuate with time. Lift and drag are presented in 

the next section. 

6.6.2 Calculated Lift and Drag 

The periodic nature o~ this flow is quantitatively confirmed in 

calculated time-histories of the lift and drag coefficients shown 

in Figure 24. It is seen from Figure 24 that the instantaneous 

lift curve has a period of about 1.4 in characteristic time units. 

This period converts to a frequency of )66 hertz, or to a reduced 

frequency* ~ of 4.49. The drag coefficient time history curve 

* The reduced frequency K is defined as the product of the angular 
frequency and the chord divided by the freestream velocity. 
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.... aD".:" to> exhibit the same ..• frequency. As is shown in the velocity 

vector plots above, during the period of oscillation of the lift 

coefficient alternate shedding of counter-clockwiSe. and clockwise 

vortices occur. 

Independent. experiments on a .. symmetric NAC'A 631-012 airfoil at Hach 

number .70, aeyno1ds number 1.25 x 106, and two degrees incidenc~ 
described in Section 1, show a periodic flow at the trailing edge with 

a reduced frequency K of 2.5 for the OSCillating shock. The dis­

crepancy in the reduced frequency between the two cases can be attri­

buted to differences in airfoil geometry, Reynolds number and Mach number._ 

The calculated instantaneous lift and drag coefficients of Figure 24 
were time averaged and compared to (a) steady lift and drag measurements 

of Gross and Steinle (Ref. 34) and (b) lift and drag predictions of 

small disturbance inviscid theory (Ref. 3). The calculated time-averaged 

lift and drag coefficients of Problem 102.1 are compared to correspon-~ 

ding data. in Figure 25. The predicted time-averaged lift coefficient 

is close to the faired experimental curve while the predicted drag 

coefficient is lower. 

A quantitative comparison of predicted lift and drag with inter­

polated data of Gross and Steinle (Ref. 34), and inviscid predictions 

of TSFOIL are shown in Table VI. 

TABLE VI 

Comparison of Lift and Drag. Coefficients for the NACA 64AOIO Airfoil 

Method of Generation 

Murman Inviscid Solution 
(Small Disturbance) 

Measured Value 
(Gross and' Steinre, . 
Interpolated, TMX-62468) 
STOKES Numerical Calculation 
(Problem 102.1) 

Drag Coefficient Lift Coefficient 
CD CL 

.0413 .8709 

.047 .415 

.034- .384 
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It is seen from Table VI that the calculated lift coefficient is within 

seven percent of the measured value, while the inviscid prediction is 

greater by a factor of 2.1. Furthermore, the calculated drag coefficient 

is somewhat lower than measured, while the inviscid prediction is closer 

to the, data point. 

The lower calculated drag coefficient is a result of the coarse­

ness of the finite difference mesh at the leading edge of the airfoil. 

The leeward and windward boundary layers on the NACA 6J~A010 airfQil are 

much thinner than the thickness of the first layer of zones adjacent 

t9 the airfoil. Thus, the numerically determined shear stress at :.the 

airfoil leading edge is greatly underestimated, and results in a lower 

drag coefficient prediction. It is believed that for thin boundary 

layers at the airfoil leading edge, boundary layer theory must be inte­

grated with Navier-Stokes computation everywhere else to produce 

correct drag coefficients. 

6~6.3 Surface Pressure Distribution Comparisons 

Instantaneous calculated pressure distributions on the leeward 

and windward sides of the NACA 64AOIO airfoil are shown in Figures 26 

and 27, respectively. The curves of these'figures correspond to the 
characteristic times 7.831, 8.204, 8.64~, and 9.052, which are identi­

cal to the characteristic times of the velocity vector plots of Figures 

20 to 23. The leeward instantaneous pressure distributions (Figure 26) 

depict the periodic shedding of vortices when compared to the velocity 

vector plots of Figures 20 to 23. 

Let us examine the leeward pressure distributions of Figure 26. 

Upstream of the 40 percent chord station the pressure field is steady. 

Curve 1, at a characteristic time of 7.831, has a high pressure point 

at the 50 percent chord station followed by a rarefaction whose minimum 

is at the 58 percent chord station. This correlates with the velocity 

vector plot of Figure 20 at 1:" =7 .831. Figure 20 shows a stagnation point 

at the 50 percent chord station followed by an expansion about the separated 
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region. At a characteristic time of 8.204 (Curve 2 of Figure 26), 

the hi€;h pressure point is at the 60 percent chord station followed 

by & r.arefaction; this correlates with the velocity vector plot of 

Figu~: 21, which shows that the stagnation point is at the 60 percent 

chord. station followed by an expansion about the separated region. In 

other words, a separated region has formed at the .50 percent chord 

stai~ion at ,""7.831 and has moved to the 60 percent chord station at 1:"=8.204. 

Curve 3 of Figure 26 ('t"~.649) shows that the stagnation point has moved 

to the 80 percent chom station with the minimum rarefaction pressure 

at the 90 percent chord station. The velocity vector plot of Figure 

22 (r.=8.649) shows that the vortex has moved to the bailing edge of 

the airfoil. Finally, Curve 4 of Figure 26, at a characteristic time 

of 9.0.52, has no stagnation point followed. by a rarefaction. 'I'he' 

results of Curve 4 indicate that the vortex has shed. at r=9.0,52. 

The instantaneous windwam pressure distributions of Figure 27 

oscillate near the trailing edge of the airfoil. For percentage chord 

less than 50 percent the flow is steady on the windward side. For 

percentage chord greater than .50 percent oscillations are indicated. 

These windward trailing edge oscillations are a result of the periodic 

vortex shedding process that occurs on the leeward side of the airfoil. 

Instantaneous calculated pressure distributions on the windward 

and leeward sides of the NACA 64A010 airfoil (Figures 26 and 27) 

were time-averaged over the period of oscillation. A comparison of 

the calculated time-averaged pressures With·co~sponding steady measure­

ments and with predictions from inviscid small disturbance theory are 

presented in Figure 28. On balance the time-averaged calculated 

pressures compare well with corresponding cia ta, although these data. 

are interpolated wi th angle of attack. The inviscid theor'J predicts 

a shock location at the 85 percent chord station while the STOKES 

calculated shock location and the data indicate that the shock is at 

the 45 percent chord station. 
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6.6.4 Comparison of Mach Number Contours 

Mach number ,contours about the NACA 64A010 airfoil are compared 

in Figures 29 and 30. Figure 29 presents the TSFOIL inviscid 

solution, while Fig~~~ ~O represents the STOKES prediction at a charact­

eristic time of 8;65. The most striking differences between the two 

figures a~ the extent of the leeward supersonic region and the locus 

01' the leeward shock. The inviscid flow field expands about the leeward 

side of the airf6il to a supersonic Mach number of 1. 3 and then goes 

through shock t.:!'allsition a.t the 8; percent chord station. In contrast, 

the viscous field at r=8.6; b~s a supersonic expansion to Mach 1.2 

anc. goes through shoclt transition at about the 4; percent chord station. 

The results of Fi.gures 29 and )0 are similar w;.th respect to the 

thickness of the shock transition region. Both fields have a leeward 

shock layer approximately 5 percent of a chord thick. The finite 

shoc:k layer of Figure 30 is C\ resul t of the STOKES numerical method 

and the finite difference me'sh employed in the shock region. If shock 

f1tt.L~g is not employed, shock transition usually takes place across 

four zones of the finite dlfference mesh. Hence, the spacing of these 

four zones defines the tldckness of the shock layer. In this particular 

case the layer is approximately; percent of a chord thick. A finer 

mesh in the shock region can reduce the thickness of this layer. 

The viscous wake of the airfoil is also indicated in Figure JO. In 

fact, at a. station x of a.bout 2.80 the eye of a yortex can be seen 

in the ~Ach number contour plot. At approximately this station a closed 
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M&ch .80 contour contains a closed Mach .90 contour, indicating a 

decrease in velocity as one moves away from the eye of the vortex. 

Finally, it 1s pointed out that the Mach number contour plot of 

Figure jO represents a snapshot of the field at a characteristic time 

of 8.65. The leeward ~hock actually oscillates and vortex shedding 

occurs. From an examination of the instantaneous leeward pressure 

distributions of Figure 26, it is seen that the amplitude of the 

oscillation is sma1~, .. i. e., about one percent of a chord. This is 

consistent with the data of Finke (Ref. 12 and Section 1) for the 

NACA 63,1-012 airfoil at Mach .70 and Reynolds number 1.25 x 106 • 

Finke found that the shock amplitude was about one percent of a chord 
o Q 

£01: 0<. =2 and increased to 18% of a chord at ol.. =8. Thus, as the angle 

of attack is reduced towards zero the leeward shock approaches an equi­

librium position and steady. flow is achieved. 

6.6.5 Turbulence Characteristics for Airfoil 

Due to the transient ~Ature of the flow aft of the leeward shock 

wave. it is difficult to assess the validity of the Rose turbulence 

model employed in this numerical investigation. However, numerically 

determined eddy viscosity profiles upstream and downstream of the lee­

ward shock qualitatively compared with corresponding profiles on 

a flat plate undergoing a shock-wave boundary layer interaction. 

Profiles of the ratio of the eddy viscosity E to the molecular 

viscosity p are presented in Figure 31 at two chord stations along 

the leeward side of the NACA 64A010 ai:r:f'oil. These data correspond 

to a characteristic time ~ of 8.65. The profile on the left hand 

side of the figure, which is at the 31.4 percent chord station. is 

upstream of the shock, while the profile on the right hand side of the 

figure, which is at the 61.1 percent chord station, is downstream o£ 

the shock. Upstream of the shock the E(}A. profile is nearly linear 

through the laminar sublayer and a portion of the turbulent boundary 

l 

.... 

! 
• I 
1 

I 
1 

i 
I 
I 

.' I 
I 

I 
I 
l 

I 
i 
I 

I 
I 



r 

I 
I 
L, 

~- . r r 

layer, constant through the remainder of the boundary layer and then 

rapidly decays as the local freestream is approached. Downstream of 

the leeward shock the velocity profile is separated in the vicinity of 

the wall. The separated velocity profra,a causes the eddy viscosity to 

approach zero near the wall and results in a nearly linear E ~ profile 

in the shear layer above the wall. The lineare~ region is~£o11bwed by 

a constant value throughout the remainder of the boundary layer and then 

a rapid decay to local freestream conditions. A comparison of the calcu­

lated ~ ~ profiles upstream and dmvnstream of the shock indicates that 

the turbulence intensity increases thr.ough the shock transition. 

The qualitative behavior of the calculated STOKES E~ profiles is 

similar to corresponding E profiles calculated by Baldwin and Rose 

(Ref. 19) on a flat plate. Baldwin and Rose used a relaxation eddy coef­

ficient model to investigate a shock wave-boundary layer interaction 

on a flat plate at Mach 2.39 and Reynolds number per meter of ;.7 x 107. 
The Baldwin and Rose profiles upstream of and downst~~am of the shock 

are presented in the upper right corner of Figure 31. It is seen 

from Figure 31 that the Baldwin and Rose .E profiles upstream of and 

downstream of the flat plate shock are similar in shape to corresponding 

NACA 64AOIO ~Ip. profiles upstream of and downstream of the leeward 

shock. 
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SIOOTION 7 

CONCLUSIONS AND RECOMMENDATION 

The present investigation has 4emonstrated that the STOKES computer 

code is an accurate, practical tool for solving vis~ous. compressible 

lifting and non-lifting airfoil problems at transonic Mach numbers 

.- and for Reynolds numbers ranging from the laminar to turbulent regimes. 

Applicability to the turbulent Reynolds number regime was achieved by 

employing the Baldwin-Rose mixing length theory to which relaxation , 
along a streamline-like trajectory is incorporated. 

The numerical method embodied in the STOKl!.S code offers a complete. 

accurate description of the viscous flow field about a transonic air­

foil, including the important fluid mechanical effects of 

1. shock wave-boundary layer interactions. 
2. transonic buffet and 
3. circulation for the'lifting case. 

Furthermore, a Kutta condition, whose formulation for unsteady flow 

is quite uncertainJis not required in this method. 

Accuracy of the numerical method was demonstrated in numerical­

experimental com:p&risons for two transonic airfoil cases. The three 

fluid mechanical effects defined above were computed and verified 

experimentally. At zero degrees angle of attack a shock wave-boundary 

layer interaction was successfully computed and verified for the 

NACA 64AOIO airfoil. At two degrees incidence periodic motion (trans­

onic Duffet) was calculated along the aft portion of the airfoil and 

in its wake; this periodic motion has been observed for other airfoil 

geometries at transonic speeds. Although no measurements for the un­

steadiness of the flow field were made for the NACA 64A010 airfoil at 

these conditions, steady measurements of lift. drag and surface 

I?tatic pressures compared favorably with corresponding computed. time­

avemged lift, drag, and surface static pressures. Finally, at two 
degrees incidence the flow field was computed with far field boundary 
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conditions that simulated the free air case and preserved the airfoil 

circulation throughout the flow field. 

Practicality of the STOKES computer code was demonstrated by the 

Ames CDC 7600 computer time requirements for the two cases solved. 

For the non-lifting case the steady flow field was computed in 28 

minutes, while for the lifting case the periodic flow field was 

computed in 1.88 hours. 

The major cri ticisJI of the present method of solution is perhaps 

the accuracy with which the shear stresses are computed at the leading 

edge of the airfoil. Due to the coarseness:of the leadin~~edge finite 

difference mesh relative to the boundary layer thickness there. the 

calculated leading edge shear stress distribution and hence, the drag, 

was lower than measured. Therefore, it is .re':'!ommended that in the 

neighborhood of the airfoil leading edge, boundary layer theory be 

integrated with Navier-Stokes computation everywhere else. This will 

produce correct drag coefficients with a minor increase in computational 

time. 
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