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ABSTRACT

The effects of gravity-gradient torques during boom deployment
maneuvers of a spinning spacecraft are examined., Two different
configurations are considered:

(1) where the booms extend only along the hub principal axes.

(2) where one or two booms are offset from the principal axes.

For the special case of symmetric deployment (primcipal axes booms)
the stability boundaries are determined and a stability chart is
used to study the system behavior. Possible cases of instability
during this type of maneuver are identified. In the sec;nd
configuration an expression for gravity torque about the hub center
of mass has been develuped; The non-linear equations of motion

are gsolved numerically and the substantial influence of the gravity

torque during asymmetric deployment maneuvers ig indicated.
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NOMENCLATURE

Time varying coefficients in the equations of motion
for small out of plane Euler angles

Offset of the control boom with end wass oy from the
dz, d3 plane

Unit vectors in the orbiting reference frame

Unit vector along the geocentric position vector to
the hub center of mass for asymmetric deployment

Coefficient in the system characteristic equation
for a rigid spinning spacecraft

Offset of control boom with end mass m, from the
d3,dl plane |

Time varying coefficients in the equation for
hl,h2 for symmetric deployment

Vector basis defined after the first Euler angle
(el) rotation

Coefficient in the system characteristic equation
for a rigid spinning spacecraft

C1 -

[Cz] = Constant vector appearing in the amalytical
solution for the Euler angles without gravity-
gradient for symmetric deployment

Vector basis defined after the second Euler aagle
(62) rotation ‘

Extension rates along 1,2,3 principal axes,
respectively

Extension rate along 1,2 axes when inertia symmetry
about spin axis is maintained and extension rate
along all the three axes when they are equal

Principal axes of the spacecraft

Unit vectors along the body principal axes

-vii-
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i dm = Elemental mass
2
i Fl = B/28 j
.
F, c/sz.
| £(t) = I(t)/I(t)
| &g = @ravitational acceleration at the earths surface ‘mé
I hl,hz,h3 = Angular momentum components in the body axes ;
: 11,12,13 = Instantanious values of principzl moments of inertia f
% H
o Il*,I *,13* = Hub principal moments of inertia g
I = Il(t) = Iz(t) for symmetric deployment ?
' K = (IB-I)/I = constant for rigid spinning spacecraft
; k = (ravitational constant for earth
i T = Angular-momentﬁm of hub about point Q }
‘ L = Angular momentum of control mass with respect to
m,/Q
% i point Q
[ Ll,iz,ia = Boom lengths along the principal axes 1,2,3 E
. respectively i
! :
; M = Mass of main part of spacecraft :
]' m = Boom end mass g
ml,mz,ﬁ3 = Boom end masses along 1,2,3 principal axes ?
%' respectively ;
m, 53, = Control masses for asymmetric deployment ;
L a_ N = Gravity torque 5
:é Nl’NZ’NB = Gravity-Gradient torque components 3
E : 3 - 2 2 !
L P 2me +2m3c3 :
; 1 Py = Z2me ;
57t
-0 —riii=




i qo* = (Constant appearing i1n the solution for angular
: momentum for torque free system -
; R = Geocentric position vector to hub center of mass j
‘ R = |R] = Radius of orbit for symmetric deployment :
f §£ = Geocentrlic position vector of composite center of -
mass
T = Position wvector of control mass my referenced to
1
point Q
i ;é = Position vector of control mass m, referenced to
’ point Q-
;; = Position vector of composite center of mass
referenced to point Q
T = DPgsition vector to elemental mass dm referenced to
point Q
j s = Laplace Transform variable
t = Time
! b3 = Coordinate of the control boom end mass m, along the
' d, axis
1
i z = Coordinate of the control boom end mass my along the
: d3 axis
| i a = (mB«Q)/Q (spin factor)
Y = Nutation angle
_' i' Wy = Angﬁlar velocities about 1,2,3 axes respectively }
S (1=1,2,3)
S
3 l Q = QOrbital angular rate E
Y wo* = Counstant appearing in the solution for angular 2
i momentum for torque free system :
= % 1
: b*10,(0)
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u = 4mc? , F

ez
. r

= m1(M+m2)/M+zm)
f b = m, (m) )/ (M) .
: = -mlmZ/ (M+Zm) ~

l d = Moment of inertia dyadic of satellite for symmetric
) deployment

} D = Moment of inertia dyadic of hub for asymmetric
‘e deployment

f‘ . = Indicates differentiation with respect to t

(0 = Indicates initial conditiomns

l_ Subscripts

Q = reference point taken at hub center of mass
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1. INTRODUCTION

A number of spacecraft have long telescoping appendages. These
appendages might be on-board antennas which must be extended in
orbit after the initial injection segquence. The dynamics of such
spacecraft has been discussed in the recent literature in the
absence af exfernal disturbance torques.1 The purpose of this study
is to determine the effects of gravity-gradient torques during the
boom deployment maneuver.

The first part of the current study will examine the effect of
the gravity-gradient torque when the telescoping booms are deployed
in pairs along the spacecraft principal axzes. Passible use of such
a deployment maneuver for detumbling a spacecraft has been examined
in a recent paper.2 From an application of Lyapumov's second
method (using modified forms of the rotational kinetic energy as a
Lyapunov function) sequences of booq extension maneuvers can be
determined so that the spacecraft will approach either of the two
desired final states: close to 2 zero inertial angular velocity
state, or a final spin rate about only one of the principal axes.
This study did not comsider the effects of external torques.

For the special case of a gravitationally stabilized satellite
librating in the orbit plane, the effect of gravity-gradient
during the deploymert maneuver has been studied previously.3 An
approximate series solution has been obtained to simulate the dy-

namics and the results compared with those of numerical integrationm.
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In the current study the non-linear equations of motion for a
spinning spacecraft in:luding the effects of gravity-gradient
torques are developed and these are solved numerically. For the
special case of a symmetric spinning rigid spacecraft the stability
chart previously developed can be used to study the system
behavior.l"5 ‘ |

In the second configuration studied here, the system is E
?‘ assumed to consist of a central hub and one or two control masses é
offset from the principal axes. The dynamics of such spacecraft, i

. . 6-
in torque free space, has been discussed in the recent literature. 7 i

i Refersnce 6 has examined the feasibility of a movable mass control

St bkt 4 e ¢ 1 R

device, for detumbling a large space station where a single internal

"y

mass is constrained to move along a linear track. In Ref. 7 a

control law for the boom mass position is obtained such that a

LR b st 8

quadratic cost functional involving the weighted cowmponents of the

o demn,

Pl 299 2

angular velocity plus the control is minimized when the final time

is unspecified. 1In order to evaluate the gravity torque effacts

]— an expression for the torque based omasimilar procedure adopted in

ity 3o s e

LA

i Ref. 8 is developed. The complete non-linear equations of motion

with the gravity torque are obtained and the influence of the

Pz

PR

gravity torque due to asymmetry is illustrated.
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IT. SYMMETRIC DEPLOYMENT

A, Eulers Equations

In the first configuration the booms extend aloug the primcipal
axes of the spacecraft as shown in Fig. 1. It is assumed that the
booms are massless and perfectly rigid. Using vector components in
21d3 reference frame the Euler's moment equaticus with

time varying moments of inertia are

the dl,d

hl - wau, (IZ - I3) = Nl
h, - s, (T, - L) = N, (1)
£3 - wyly (Il - 12) = N,

where ‘ni = L, (1 = 1,2,3) = I = Ii(t) are the principal moments

of inertia, mi are the components of the inertial amgular velocity

in the dl’dz’d3 frame and Ni are the external torgque components
about the center of mass. In this analysis all the extermnal

torques of the system except the gravity-gradient torque are

neglected so that Ni represent the gravity-gradient torque components.

B. Reference Frames

Equations (1) will be expanded here in terms of the coordinates
and unit vectors defined by Figs. 2. and 3., which together

establish an orbiting reference frame and three attitude angles

8, relating body-fixed uuit vectors dl’dz’d to the unit

O30 955 O 3

1’ ©

~ -~ ~

vectors fixed in the orbiting reference frame al,az,aB.- 91’ 62, @3




;- correspond to three successive positive rotations about the vectors:

~

;s b2’ Cqs respectively. Specifically, unit vector alis directed

-~ ~

i, along the radial line from the earth to the satellite mass center O

(local vertical), unit vector aq is directed along the trajectory

PO

bipormal {(normzl to the plane of orbit) and az is defined to make

P 210 890 33

that the center of mass of the system moves in a circular orbit, so

a right-handed orthogonal triad. We further assume

-~

that a2, is along the path of the trajectory.

The transformation from the prinecipal body axes reference

frame to the orbiting reference frame with the chosen Gl, 62, 03

Euler angle sequence, becomes, after combining the three rotational

matrices,

t ) r 5
- 1 ! 3 :
al c92c03 rc62563 i sez d1 i
i ~ 3 ' -
; a, |=|c6,50,+s0,50,c0,] c6, c0,-58, 50,50, 1-50,¢6, |1 d, (2) :
~ 1 b ~ i
a3. selseg-c@lsechBEselc@3+cGISOZSOBE c@lcez d3 %

where positive angles correspond to rotations in the positive §
right-hand sense as illustrated in Fig. 3. "s" represents the sine f
i function and "¢" represents the cosine function.

By examination of Fig. 3, the expression for the inertial

! angular velocity, w, of the satellite im a circular orxbit, cau be

3. written down as E
o w = 83c3 + Ozbz + elal + Qa3 {3) T

; where  is the orbital angular rate. From consideration of the g
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individual Fuler angle rotations and Eq. (2) the following rela-
tionships between the various unit vectors can be developed:
:, -4,
gz = sg§1+ce3&2 iu
;l = c62c63&l~c62863&2+s@233
;3 = (861563~c91502c93)al+(selc93+cels@2593)éz+c®lC92&3 (&)

After substitution of Eqs. (4) into Eq. (3) the imertial angular

velocity components in the body axes can be expressed as follows:

wy = @2503+Q(s@lsG3*c61562c®3)+91c82c93
W, = 62c93+ﬂ(selc93+c61582563)~Glc@2563
w, = 6_+cO, co, -0 so (32

3 73 1772 1RV

C. Gravity-Gradient Torque

The gravity-gradient torque N about the satellite mass center

0 is given bys

= _ 3k * -
N==——a, % * a {6)
R3 1 1
where
2
k=gq RO

with g the gravitational acceleratiom at the earth's surface and

-~

RO the radius »f the earth. al

vertical,[] is the imertia dyadic about the satellite mass center

is the unit vector along the local

zand R is the orbit radius. TFor a satellite in a eircular orbit,

2

it et s gt it




ko= Q2 )
R

The expression for ;1 from Eq. (4) 1is substituted into Eq. (6) and
the body reference frame 1s chosen as a set of principal axes so
that[] is diagomal. Tﬁen the cowmponents of the gravity-gradient
torque in the body frame are:

N =2{_

1 3‘(12—13) cstG E={0)

273

N, = — (11—13) c62392c63

) 3 _ 2
N, = (Il IZ)(CGZ) c®3s@3 (8)

D. Non-Linear Egquations of Motion

Equations(5) can be solved 2s a set of three simultaneous

equations for @1, 62 and 6, to yield:

3

Gl = (wlc63—m2593+ﬁcels@2)/c62

Q, = (wls@3+m2c93-ﬂs®l)

(o]

= (m3ce 40,5050 _-w_ cO_s6 -Qcal)/cez (%)

3 272772773 173772

After substitution of Eq. (8) into Eq. (1) the following non-

" linear equations of mntion result.

o S 3k
w, = {m3w2(12-13) IlmliR3(12 I3)c@2562593}lll
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CGB}/Iz

E
[aV]
i

. 3K
{mlw3(13-Il) - Izmz +-;§(Il-13)c92592

i

. 3K 2
{wyuy (I1=1,) ~ Tquq + Rs(Il”Iz”‘:ez> c,50,}/1, (10)

Equations (9) and (10) are the complete non-linear equations of
motion for the system. These are solved numerically as a system of
six first order differential equations.

E. Motion for Small Out of Plane Euler Angles

For an initially symmetric sgatellite, if the mass symmetry
(about the spin axis) is maintained during deployment, the

equations of motion reduce to:

. 2
_ .3
h1+h(t)h2 = -—ES— b{t)i 13c92s62563
. 392
hz_b(t)hl = - EE—»b(t)I 13c®2562c63 (11)
h3 = h0 = constant
where
Il(t) = IZCc) = I(t)
I,-I ’
b(t) = -I—;I—' hU (12)

To study the stability of the sysfgﬁ for small perturbations ahout
the spin axis we examine the equations of motion assuming that

[®l|, |@2| are smzll (but not @, which reflects the spin). It




L .
i
3 should be noted that the angle between the normal to the orbit
plane and the body 3 axis is a function of Gl and 62 (see Fig. 3).
Under these assumptions, the expressions for the inertial angular ‘
velocity components, Egs. (5), become: i ?
w; = (62+961)593+(61-962)c63 %
w, = (62+981)c@3-(@1~Q@2)563 ?
!‘ wy = 8540 (13)
l and the corresponding components of imertial angular acceleration: ?
‘ ml = (szel-eael-l-ﬂezes)593+(@l—-_962+6382+619163)c6 u
I w, = (@ +nel 636 +ﬂ@ e )ce (e 992+6392+ﬂe 6 )s@
i. Wy = @3 | (14)
N Substitution of Eqs. (12), (13), (14) into Eq. (l1) yields the
}, equations governing the motion in which le I, lGZ' remain small as:
i =
g. Al cos 93 + A2 sin @3 = {
1 4, sin 0, ~ A, cos 8, = O (15) |
i where
] A =8 - {9-63-b(t)}62 + f(t)(@l—ﬂ@?_) + 991{63+b(t)}
4, =0, + {Q—@B-b(t)}@l + £(c)(8,+00,) + 992{e3+b(t)}
o + -33 b(t)e, (16)
Lo ' “3
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and
£(t) = i(t)/I(t)

In general these coupled equations cannot be solved in closed form.

However the system behavior can be studied with the aid of the

stability chart previously developed for a symﬁetrical spinning'

satellite.4’5 |

F. Stability Chart

Since Egs. (15) and (16) represent the equations of motion
for a spinning spacecraft for which the prinecipal momenté of
inertias are functions of time, these equations would alsc represent
the equations of motion for a spinning spacecraft when the principal
inertias are not funections of time, provided the terms due to time
varying moments of inertia are modified so that:

I,-I

£(t) = 0, b(t) = b = =>—h. = constant
,T o

The modified equations are (under the requirement that AI=A2=O):
61+(b+@3aﬂ)@2+ﬂ(b+83)61 =0

y3

P - L] * 39
62 (b+93—9)61+ﬂ(b+@3)62+‘E;— bez =0 (17)

Observe that 63 is also a constant. We now define two important

parameters, K, an inertia ratio and , a, a spin factor as follows:

K= (I3-I)/I

o = é3/9 = (uy~2)/2 (18)




With the aid of Egqs. (18), the parameter b can be written as

b = Km3 = KQ(ot+l)
After introduction of these parzmeters Eqs. (17) become

8,40 {R(e)+(a-1)} é2+nz {R(et1)+a} 6, = 0

6,-2 {K(atl)+(a-1)} O +a” (K(a+l)+a} 6,+30%6, = 0 (19)

If we take the Laplace Transforms of these two equations, the

subsidiary equation can be arranged as follaows:

52+92 {E(a+1)+al QUR(e+1)+(a-1)}s ﬁi(s)
—{R(e+1)+(a=1) }s s240% (R(e+l)+a} + 3KQZ 3, ()
56, (0)+0, (0)+a{R (a1 )+ (a-1) }o,, 0) .
séz(0)+é2(0)—Q{K(oc+l)+(a-l)}91(0) 20)

where ﬁi(s), 5&(9) represent the Laplace Transforms of Ol and 62,

respectively, and 61(0), 62(0), el(O), 62(0) are the initial

conditions.

The stability of the system can be established by examining
the characteristic equation associated with Eq. (20) which is of
the form:

s4 - Bs2 +Cc=20

where

10
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1
B 1 2,3
— = -[{K(a+i)+a} + 5 {K(otl) + (a=1)}" + —?:K]
29 ' :
C 2
= = {(R(atl)+at” + 3R{K(crl) + al
Q
For stability, the roots of the characteristic equation
: 5 .
B B
s=iJ—2—i' ('?f) -Cc, (21)
must not have a positive real part. Two symbols Fl and Fz are
defined as:
Fl = —25 (22)
2Q
c
F, ==
2 94

& brief study of Eq. (21) indicates that the condition under which
there will be no positive real parts are:

&8 Fl<0'

(2 ¥,>40

2
3 @pi-F, >0

1 2
To obtain numerical results, the variation of the quantities

F,. FZ’ (Fl)2 - F2 were plotted in the o, K plane. The boundary

1

of the stable and unstable regions is established and the results

are illustrated in Fig. 4. The unstable regions are indicated by

the cross-hatch marks. This stability chart has been previously
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obtained by Thomson (Ref. 4) and Kane (Ref. 3).
G. Analytical Solution for Euler Angles for Symmetric Extension
Without Gravity-Gradient Torques
The équations of motion for a spinning symmetric satellite
with telescoping appendages in torque free space under the assump-
tion that !ell, IGZI are small are obtained from Eqg. (9) and (11)
as:
£1+b(t)h2 =0 (23.a)
hyb(t)h, = O | (23.b)
. hl hz
el—ﬂez = 069 cos 63 T3] sin @3 (23.c)
. hl h2
_92+ﬂel = 0 s%n 63 + ETET cos 63 (23.4)
o, = u 0 (23.e)
The solution to the first two of the above equations has been
previously obtained as:l
t
h, = q4* cos ( g b(t)dt + w0*>
. (24)
h, = qo* sin ( g b(t)de + y,*)

where qo* and wo* are constants depending on the initial conditions.

For linear extension rates and under the assumption that the masses

4
l
;
‘
..;'!;

b
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emanate from the center of mass of the spacecraft, the instantanious

moments of imertia for symmetrical deployment become (see Fig. 1):

where

)

2.2
1

2 2
=T %
IS(t) 13 + 4me’t

21 = 22 s ¢t,m, =@, =M

I
i

0

(x5

2 73

I, = 12 = I(t) = I* + 2mct~ -+ 2m3c

%  are the distances of the end masses m

1

s B

2

s I

3

(25)

(26)

from the

satellite: mass center 0, respectively, c the extension rate along

the 1, 2 symmetry axss, and Cq the extension rate along the 3 axis.

Lat
u = 4mc2
p = chz 4+ 2m3c32
s0 that
2
I(t) = I* + pt
I.(t) = I %+ utz
3 3
t t 13(t)—I(t)
S b(t)dt = J e h_ dt
0 0 IB(t)I(t) 0]

Equation (24) can be written:

(27)

(28)
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h h
hl(t) = qo* cos 0 tan_l \{«t )- 0 tan L = wo*
* % * %
L‘VI P I#/p ~/13 n g%/
\ [ 29)
h h
hz(t) = qo* sin 9. tan_l £ 0 tan‘l £\ wo*
. I¥p *[p 413*u I3lu
where the constants qo* and ¢0* are related to the initizl condi-
tions as follows: -
2. 2
® =
qq \ﬁll (0) + 1, (0)
(30)

b (0)
_ -1 72
Y* = tan B, (0

After integration of Eq. (23.c),

‘B
0,(8) = —2—tan™ [E—) g v 0,0 (31)
ﬁa*u 3*1 u

where 93(0) is the initial comndition at t = 0. Equations (31) and

(29) are then substituted into Eqs. (23.c¢) and (23.d) with the

result:
. q.* h : : 1
0 0 ~1 t
8,-Q0, = ——— |cos tan - QY *+0_(0)
L7720 qagpe? [ %VE*p Q%*/;) 03 i.
(32)
. g.* h
0 0 -1/t
6.0, = ‘e | sind —— tan — | Qty %40, (0)
21 I*-!"ptz[ %Vl*p ("’i*lp o 3

The variation of parameter technique for solving a system of
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first order differential equations is now applied to solve

Egs. (32). We seek a solution of the form

e(t) = ¥(c)ult)

where the fundamental matrix, y(t), is given by:

Y(t) = |cos Qt sin 9t

- sin Qt cos £t

and the vectors u(t) and 9(t) are

& a1
u(t) =/ ¥7(s) gs) ds + C

€}
1
o(t) =

o]

In Eq. (35), g(t) represemts the right-hand side of Eq.

C is a constant vector.

e a4y* By
cos fls -sinQJ 5 cos
I*+ps YI*p
u(t) =
5" By
sin Qs cosﬂs_ > sin{ — tan
0" L*+ps Yi*p
- Qs+¢€
ds +.g
~ fis+p
1

where

tan-

(33)

(34)

(55)

(36)

e L e ety
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L N 93(0) (37)
The solution for el, @2 can be obtained 'by first evaluating the
integral in Eq. (36) and then substituting this result into
Eq. (33).
- - r qTFfF * [ h -
Gl cosfit sinQt %9“ sin { 0 tan.l( £ )+ &}
' o | Yi%p VT* [
a.* | h _
9, ~-ginlt cosQt Eg—- cos { —2— tan ﬂ( t.)+ 9}
1 L 4% ] Vi%p */p
-gingq{ + Cl
J
’ (38)
-cosh + Cz‘

Cl’ 02 are constants which can be related to the initial conditioans

by
Cl = 61(0)
(39)
C2 = 62(0)
Froam conéideration of Eq. (38), the following conclusions can
be drawn:

(1) For small t/VI%/p , tan’l (¢/Y1#/p) can be approximated by:
t/VIi*fp , so that the frequency of oscillation is given by

hOII* =T *ws(O)/I*. This indicates that for high initial spin

3
rates oscillations will be characterized by z high frequency mode.
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h
(2) For t sufficiently large, L. tan-l

VI%p VI#/p

o e Vi
i i

can be approzimated g

- h ;
o by a constant: —EL-E-. @, and 0, are then periodic with a fre- i
P , 2 1 2 :
: VI#p 3
P : 4

quency of 2 (the orbital frequency). ¢

The analytical solution developed is plotted in Fig. 5.a and _ 5

is compared with numerical integration including the effect of

gravity~-gradient, for an initial spin rate of 3 rad/sec. The

behavior observed is a confirmation of the above two conclusions.

As time increases the analytical solution becomes less valid due
to the accumulated efifacts of the gravity-gradient torques.

H. Numerical Results

The non-linear equations of motion (9), (10) are solved
numerically. The numerical integration is carried out using a
; ; NOVA-840 computer, with RKGS subroutine.9 The subroutine RKGS

sblves the initial-value problem by means of a fourth-order

Runge-Kutta formula using the modification due to Gill. The

integration procedure is stable and self-starting; that is, only

the functional value at a single pravious point is required to
E . obtain the functional values ahead. For this reason it is easy to

change the step size at any step in the calculation. The entire

input of the procedure is: (1) lower and upper bound of the
B : integration interval, initial increment of the independent
variable, upper bound for the local truncation error; (2) initial

values for the dependent variable and weights for local truncation

et e S gt e ey SRR Y St g 44 b S 4 ot T3 143
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errors in each component of the dependent variables; (3) the number
of differential equitions in the system; (4) as external subroutine
sub-programs, the computation of the right-hand side of the system
of différential equations; for flexibility in output an output
subroutine. |

To study the system for which ]@l[, 1ezl remain small the
stability chart developed (Fig. 4) can be employed to analyze the
following cases of interest:

(1) Extension only along the '3' primcipal axis: A previous

study2 in the application of telescoping booms for detumbling a
spacecraft, to achieve a desired spin about one of the principal
axes has suggested (based on a modified form of kinetie energy as
a Lyapunov function) extension of booms along all three principal
agxes until the final desired spin rate is reached and then con-
tinuiné the extension of the set of booms along the nominal'spin
axis until the transverse components of the angular velocity

reach an acceptably small am.plitude.2 For extension of booms zlong
the spin gxis only and for a symmetrical spacecraft it is clear
that in the stability chart the spin parameter, ¢, will remain
constant during deployment, while the moment of inertia ratio, K,
decreases. The value of K at any instant of time for this case is
given by \

K= S

I*+plt2

(40)
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where starred quantities represent the initial values and

Py = 2me

m = end mass

¢ = extension rate
From consideration of Eq. (40) as t becomes large, K, tends towar@s
-1. In the upper-half of the stability chart, the stability

boundary, F2 = (0, tends toward K = ~1+0 asymptotically. This

implies that for 2z wide raunge of spiﬁ féﬁes commonly used, extension
only along the '3’ axis could result in the system eventually

being driven to an unstable state. Typical examples of such
deployment maneuvers have been simulated and the responses shown in
Figs. 5.b,c; 6.2,b; 7.a,b; 9.a,b; and 10.a,b.

In Fig. 5.b the response of the 6y and w, components of the
angular velocity with and without the gravity-gradient torque are
compared. The initial conditions, end masses, extension rate and
initial principal inertias are indicated in the figure. 'Fbéifﬁis
case an initizl (high) spin rate of 3.0 rad/sec is assumed.
Clearly, the envelope of Wy and Wy with gravity-gradient torque
present shows the growth in amplitude after 250 secs. For this
case the response of the nutation angle (Fig. 5.c) indicates the
potential instability during extension after 250 seconds. Since

3 . N . :
¢ = 2.9 x 107 here, this case can not be indicated in the regiomns

of the stability chart as plotted. However use of Eq. (40) shows

that for t > 12 secs, the value of K becomes less than -0.8.
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Figures 6.a,b and 7.a,b illustrate the responses of Wyy Wy

and nutation angle for two different extension rates: ey = 40
ft/sac and Cy = 0.5 ft/sec, respectively, both with the same

ipitial conditions. In either case, o = 1.0, and is a constant

during the extension maneuver. Initizlly K= 1.0. Figs. 6.2 and

7.2 show that with the gravitational torque included, the w, com-
ponent increases in amplitude after an initial tendency to decrease.
After 60 secs for the first case (Fig. 6.b) and 250 secs for the
second case (Fig. 7.b§, the nutation angle increases and almost
doubles its initial value within 280 secs and 500 sacs,
respectively. The time history of the slower extension case

(0.5 ft/sec) is indicated on a redrawn version of the stability

chart in Fig. 8. In this chart the horizontal dotted line parallel

to the K axis passing through « = 1.0 corresponds to the 0.5 ft/sec

extension rate discussed earlier in Figs. 7.a,b. The system

crossed the stability boundary at t = 39 secs, which corresponds to
approximatelj 20'feet of boom extension. It can be concluded from
Fig. 7.b that' although the system crosses the stability boundary
at t = 39 secs, the instability is not exhibited in the form of
the growth of the nutation angle during the extension maneuver,
until about 250 secs, when the nutation angle begins to grow in

an exponential fashion.

Two more cases of extension only along the '3' axis were

simulated, beginning in the unstable region in the right-half of




~ b w0 b b

S g
< :

L ZETP

[e——

Kiteiimsasn § B vy e
N ‘ M . - .

Poanivsm}
v

By
v .

21

the stability chart, that is the unstable region for positive K.
The responses for the two cases with extension rates of 4 ft/sec
and 0.5 ft/sec are shown in Figs. 9.a2,b and Figs. 10.a,b respec-
tively. The responses are similar to the cases of Figs. 6 and 7.
Even for the slower extension rate of 0.5 ft/sec, no appreciable
inerease in the nutation angle was observed as the system passes

through the unstable regiom for K > Q.

{2) Extension maneuver along all three axes

A previous studyz on detumbling a2 randomly spinning spacecraft
using telescoping appendages had cousidered zero inertial angular
velocity as a final desired state of the system. The authors
using the rotational kinetic enmergy as a Lyapunov function had
concluded that the necessary conditions for asymptotic stability in

torque free space are satisfied for positive constant boom extension

rates. When the dynamics for symmetric extension with the
gravity-gradient torque is coasidered, it is observed that the

parameter o = (ms-ﬁ)lﬂ eventually tends towards -1.0 for suf-

ficiently large time. If the same end masses and extension rates

were employed along all three prinecipal azes, the inertia ratio X

at aay instant of time would be given by

13*_1*

Thtut

where

2. .
4m ¢ ; m = end mass; ¢ = extension rate

u =
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Equation (41) suggests that for sufficiently large time, K tends
towards 0. Although the point (0, =-1) in the stability chart is a
boundary point, in practice, extension along all three axes with
the same end masses and extension rates could never result in the
system actually reaching this point.

Typical examples of such deployment maneuvers have been
simulated and the responses shown in Figs. 1l and 12.a,b. 1In
Fig. 11 the system is initially in the stable region with
2(0) = 5.0 and K(0) = 0.6. The initial conditiomns are indicated
in the figure. For this case the responses of the components of
the angular velocity and the nutation angle show negligible dif-
ference with gravity-gradient present or absent. The nutation
angle is observed to be a comstant. The time history for this case
has been indicated in Fig. 8. by the dash-double dot curve
beginning at the point (0.6,5). With the assumed extension rate of
4 ft/sec and end mass of 0.0l slugs, the system moves rapidly dowm
the stability chart. It enters the unstzble region for positive K,
at about 8 secs which corresponds to 32. feet of boom length.
However it stays ouly very briefly in this unstable region
reentering the stable region again in about 10 seconds. Clearly
any such deployment strategy should ensure that the extension of
booms is not terminated in this unstable region.

Figs. 12.a,b show the response of z aystem initially in the

unstable region with «¢(0) = 5.0 and K(0) = -0.6. Here a small
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difference in the respomse of w was observed with gravity-

1* Y27 %3
éradient present and then absent. Within 630 secs of response time
this difference is not noticeable within the scale shown in the
figure. However ;he response of the nutation angle (Fig. 12.b)
shows a slight growth for the case with gravity-gradient present
after about 430 seconds. The time history for this case is
indicated by the dash-dot curve begimning at the point (~0.6,3) in
Fig. 8. It is observed that the system tends to the point (0,-1)
from the left. The system briefly passes through the narrow strip
of the stable region close to the K axis In the left-half of the
stability chart, although never entering the stable region elsewhere
even for the slow extension rate of 0.1 ft/sec used.

(3) Extensiocn along the 1,2 principal axes

A number of spin-stabilized satellites have long appendages in
the pléne of rotation. Hughesl0 has studied the dynamics of the
sétellite during the deployment maneuver assuming torque free condi-
tions, For symmetric extemsion along the 1,2 principal axis only
the spin parameter, a = (93-9)/9, tends towards -1.0 for
sufficiently large time. The inertia factor K at any instant of

time during the deployment maneuver is given by

13*-!-ut:2-1*— 0 £2
I* + 5 t

where
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2
W =4m ; m~= end mass; ¢ = extension rate.

From Eq. (42) it can be concluded that, given sufficiently large

time the factor K tends towards 1.0. So one can expect that under

suitable conditions extension only along the 1,2 principal axes
would eventually drive the system to the peint (1,-1), which lies
in the unstable region for positive K in the stability chart

(see Fig. 4).

Two typica; extension maneuvers for this case have been
similated znd the responses presented in Figs. 13.a,b and 1l4.a,b.
Fig 13.a shows the response of the transverse components of the
angular velocity, for a system initially in the stable region;

K¢(0) = 0,4 and a(0) = 5.0. The initial conditions are indicated

in the figure. It is seen that the 8, coﬁponent for the case with

gravity-gradient torque, begins to increase after about 270 secs.

The nutation angle (Fig. 13.b) likewise begins an exponential type

growth at about the same time. The spin, Wqs is not affected since

the gravity—-gradient torque about the spin axis vanishes for
symmetric deployment and the responses with or without the gravity-
gradient torque are identical. The time history trajectory for
this case has been indicated in Fig. 15 by the dash-double cross
curve beginning at the point (0.4,5). For the assumed extension

rate of 0.5 ft/sec and an end mass of 0.0l slugs the system crosses
into the unstable region for positive K after 87 secs which

corresponds to azbout 44 feet of extended boom. Although the

gty
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system enters the unstable region after 87 secs, instability is not
exhibited in the form of growth in the nutation angle until about
270 seconds.

Another case of deployment along the 1,2 zxes beginning in
the unstable region {a(0) = 5.0, K(0) = -0.6) has been simulated
and the results presented in Figs. 1l4.a,b. A slow extension rate
of 0.1 ft/sec has been assumed for this case. Tig. l4.a shows
that with the gravity-gradient present the @, component becomes
positive at about 500 secs and continues to grow further, whereas
the response without gravity-gradient torque shows that w, tends
towards zero, Fig. 1l4.b shows that with the gravity-gradient
torque the nutation angle begins to grow after 360 seconds. The
time history for this case is indicated in Fig. 15. by the dash-cross
curve beginning at the point (-0.6,5). The system enters the
stable fegion at t = 74 secs, leaves it again and reenters the
unstable region for positive K at t = 179 secs. Although the
system is moving through the unstable region for t > 179 secs, it

takes about 360 secs before the instability is indicated as a

pronounced growth in the nutation angle.
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IIT. ASYMMETRIC DEPLOYMENT

’

A, Configuration

The system is assumed to consist of a rigid central hub
(Fig. 1l6.a) with center of mass at point Q and one or two extendible
telescoping booms with end masses my and mz,r53pectivaly. The mass
along the boom lengths is assumed negligible in comparison with the
end masses, 1t is assumed that, in general, the two booms will be
offset from the hub principal axes with the ;oordinates a, b, ¢, d
indicating the amount of offget. Previous studies have considered

6,7 It has

this type of configuration for detumbling a spacecraft.
been pointed out that for three axis optimal control more tham one
offset boom (orthogonal to each other) is required and that for wo

axis optimal contreol a sinzle offset boom is sufficient.7

B. Development of Gravity Torqua Components.

The general configuration of the two mass offset sys:ém is
shown in Fig. 16.b. Whenever there is an asymmetric (internal)
mass motion in a spacecraft system, the position of the composite
center of mass and the orientation of the system principal axes
will vary with time. The choice of the composite center of mass
of the system as the reference point in the body, leads to time
varying moments of imertiz in the rotational equations of motion.
This problem can be circumvented by cheoosing the vehicle (hub)
center of mass as the reference point and the hub principal axes

as the body reference frame. In Fig. 16.b,4d d?_,d3 represent the

l’
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hub principal axes; Q, the hub center of mass; f{-, the geocentric
position vector of the hub center of mass; i; “the geocentric posi-
tion vector of the composite center of mass, C; ml and m2 are the

control masses whose position vectors relative to point Q are

indicated by ?l and -1':2, respectively. ?c is the position vector

of the composite center of mass referenced to point Q.

If T represents the vector from point § to an elemental mass

dm, then the torque applied by gravity about the hub center of

mass is

E‘s/?-x SRR D 4 43)

]E+?13

where k = gORDZ with &g the gravitational acceleration at the

earth's surface and RD the radius of the earth. Eq. (43) caﬁ be

expressed as:

N = ER T dm C4b)
Qg3 - =13
R
1+ 5
R

where R = ]'I'{-I and the integrationm is taken over the total mass.

Expanding the denominator of the integrand in a binomial series

provides the au,_:;;:'1:mc:l.mat:im:3.8
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T
)
_ §Q=5% x /T 1-3E2Rlg (45)
i R R
i,
5 in which terms above the first degree in (E"';YRZ) have been
i neglected in comparison with first degree terms. This approximation
i' is justified by the observation that the satellite dimensions are
spall in comparison with the orbital radius. The main body can
jA be treated as a continuum and the offset masses treated as discrete
i particles so that the integral im Eq. (45) can be divided into an
{
. integral over the main body and a summation for the end masses.
j Equation (45) can then be written as:
- & .81 &
i NQ ='E%'x T L= E"E—E—g dm + E%
R in R R
;’ body
o 2 _ 3%, + K .
7 x Z ri 1l - —5 mi ) (46)
] i=1 R

By definition of the center of mass of the hub [rdn is zero.

Eq. (46) then becoumes

= _ 3" Sk = 3
N, = == af x[] s af +=—a’x I mr, [l- =, - a’] (47)
Q R3 1 m 1 R; 1 =1 i~i E i il -

where

~

ai - unit vector along the geoceantric position vector of the

main body center of mass.

R - distance of the main body center of mass from the center

of the earth.
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[]m,' moment of inertia dyadi; of the wain body.
Here it is important to observe that in general the factor I mi?&
does not vanish. Equation (47) is an expression for tha grivity
torque about the hub center of mass for a system with two offset
control masses. Here it will be expanded to yield the gravity
torque components in the hub reference frame for the specific
configuration shown in Fig. 1l6.a.
i defined

above can be considered aquivaient to the unit vector along the

We now mezke the assumptions that the umit vector a

composite system local vertical and that the distance, R, as
defined above 1s equivalent to tﬁe orbital radius. These
assumptions are justified by the fact that for the choice of
control masses as one percent.of the satellite mass,6 the dis-
placement between the huﬁ center of mass and the composite center
of mass would be extremely small in cowparison with the orbit
radius., It is then possible to make use of the same set of Euler
angles (Fig. 3; as defined for the symmetric deployment in
Section II, now relating the orbiting reference frame (Fig. 2) to

the hub principal axes reference frame, d,,d,,d The traans-—

1772°73°
formation between these two reference frames is given by Eq. (2)

-

and the wvector a1

is obtained from Eq. (4) znd is given as follows:

[ = 0,00,d;-c0,50 4d,+58,d (48)

4 2593017059 3% 3
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For the two mass system shown in Fig. 153 the control mass position

vectors are given by:

r. =ad +bd2-{-zd

1 L 3
- - ~ - (49)
r2=xdl+cd2+dd3

Equations (48) and (49) are substituted into Eg. (47), resulting in

the following gravity torque components

= 3K - koo -
N 3_3 (I2 13) c€32562563 + Rz [ml{ 2c@,s0, bsez}

3

. Ik
+m2 {-dc62563-c362}] - R3 [ml(acf:)zc@ -ch2563

-!-zsez) (-zcezse3-bs@2) + mszcezces-cceszS

+d562) (-dceszB—csez)] (50.2)

= -3-..15. (T, - ..15—- -
Nz R3 kIl 13) C62562C93 + Rz [ml { ZC92C63+ES@2}

. 3k
+m2. {~dco c63+x562}] -3 [ml(acezce

R

=bcB,s50

2 3 2773

cO.,~cel, s0

+zs@2) (asez-zcezce3) + mz(xcﬁ)z 3 2504

+ds@2) (xsez—dcezce3)] ‘ (50.b)
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3k 2 k
N3 =3 (11_12) (cez) c63303 -+ ;7 [ml{bc62c63+ac62563}

3k
+m2 {ccezc@3+xcezse3}] - R? [ml(acezc@3 bc@2563

+ac@2393) +m2(xc62c63—cc92593

+zs@2) (bc@?cB3

+ds@2) (cc92c63+xc62563)] {50.c)

C. Equations of Motion

The complete equations of motion with telescoping type comtrol
boems in the presence of gravity torque are developed. The torque
fres equations of mofion.for the system have been previously -
developed7 and this development is briefly reproduced here, after
modification te include the gravity torque.

The generalized vector equation of motion for such a system

containing a ceuntral hub and moving connected masses can be

writteu:ll ‘
. - o — 8 I gy
= L 4+ I .
NQ q Z m, ( i/Q) x R (51)

where NQ refers to tha gravity torque, Q refers to the reference
point which 1s assumed to be at the center of mass of the hub,'E

is the inertial acceleration of the reference point and';AIQ is the
position vector of mass, L with respect to point Q (Fig. 16.b.)
It should also be noted that §; is the position vector of the com~

posite system center of mass whose position will change with

the movement of my and m, . The composite c.m. is assumed to move

b 0 I e v i
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"in a circular orbit, and it is assumed that coupling between orbital

(translational) motion and the attitude dynamics is a higher order

effect.

The angular momentum of the system measured with respect to

point, Q, has three components,

"= Bo/q Tl /o T Buy/q 2

where E%/Q describes the momentum of the hub, and Eﬁ /q describes
i

the momentum c¢i mass m, . The hub momentum may be expressed in

terms of the hub principal moments of inertia and angular velocity

componients as:

Lb/Q = Ilmldl + Izwzd2 + L3m3d3 (53)
where dl’ dz, d3'are unit vectors along the hub principal axes,
and

Lm-/Q = {ri x ri) s 1=1,2 (54)
where T, describes the position of m, relative to Q(ri/Q)'

We will now consider the inertial acceleration of the
reference point (Fig. 16).

R = Rc -z, . (35)
Under the assumption that coupling between translational and
rotational motion can be neglected, §£ = 0, and

R=-1, (56)

From the definition of the system center of mass we cam relate

simy b e et e e s
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where M represents the hub mass and

Im = ml + m2

After substituting Eqs. (53), (54) and (57) into Eq. (31) the

following rotational equation results:

—_—

g * ¥y (_r-l x -;_1) + '{1'2 (?2 x '7.:2)
(58)

|

oy (M + mz)/(M + Im)

(1

m, (f + m, )/ (M + Im)

My = = mlmzl(M + Im)

£q. (58) is then expanded using the familiar relationship,

N dL,

Lo/ = 3 |bedy T ¢ * /g (59)

and for the specific geometry of Fig. 16.a,

B

a.dl+'l;)c{2-i*-zd.3 (60)

, xdl+c§1+dd (61)

2 3

The acceleration terms ¥i (i = 1,2) may be calculated by using

33
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ri=wx(wxri)-*-wxri-*-me[ri]bodY
+ [7y)pedy
: together with Eqs. (60) and (61;.
5 I The complete nonlinear equations of motion are obtained by
) expansion of Eq. (58) and substitution for the gravity torque
: components from Egs. (50.2), (50.b), and (50.c¢). ?
R I é + (T,-I,) w , T u [(b2+zz) ; - ab; - az; - azw.w é
11 3727 7273 1 1 2 3 12 g
, 2 2 . 2 2 -
{ +{b™=2") wywg + abmlm3 + 2zz wy + bz‘(m3 0y ) + bzl é
2 2. " ' 2 2 )
? - iy [e™+d™) W ~CE, dme - dxmlm2 + (c"=d7) EPLR ?
. +oXm., B, ~ Zcéw - 2d;m + ed (w 2—m 2)] + u.l2(berdz) & 5
- 173 2 3 3 2 3 1 :
] ~ ={ac+bx) w, = (ad4txz) Wy = (ad+zx) ©iu, + 2(be-dz) Wy §
i
. - . - . . 2 2 4!
? +{act+bx) Wity + Zdzml - 2bxm2 - 2xzm3 + (bdtcz) (m3 —w, ) f
. + c;] . (I,~1.)co,.s0,s6 + & [m, {-2cH,s0,_-bs@,} g
IR A O M A T il 25737757
- +m, {-dec®,s0_.-cs0,}] —-3-1‘-[ (acO,cO.,-bel,s0 j
2 A R R T T T A ;
] f
| +zs®2) (—chZSGB-bsBZ) + o, (xc62c®3—ccezs@3 J
| |
) +d562) (-dc@ZSGS-csez)] (63.a) §
! |
i
| :
|
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L] y' 2 2 v -
Izmz + (11—13) Wl - By [a.?::m:L - {a"+z") w, + bzw3-bzmlmz

‘i-abwzm3 + (az—zz) Wy - Zzémz + az(m32—-m12) + a._z.] - uzfcm;.\l

-(dz-i-xz)t:sz + cdo. - cdw.w. + cxw.w. + (xz-dz)mBm

3 172 273 i

2% 2y _ ax] - u3[ac+bx)&l - 2(ax+dz)é2

2
.+ dx(m3 ~w,

2

+ (bd+cz)(:33 - (bd—f-cz)mlmz + (ac+bx)m2m3 + Z(ax—dz)m3ml
—2(a§:l-dé)m2 + (adt=xz) (m32—-m12) + x;-z;]

3k ' k.
3 (11-13)c62392c€33 + Rz {ml {-zcezce3 + as@z}

: Ik
+m, f~dcod,co, + xs@z}] - R3 [ml(acech:} ~bc®,s0,

2773 3 2

+dsez) (xs0 -dc@zces)] o (63.b)

2

. . . 2, 2,
Lyug + (I=Ip)wgu, = Wy [azw, + baw, - (a"™+b Yy

2 2 . . 2 2
+{b -2 )mlmz - azuwyg + bzm3ml + Zazml + szw2 + ab (ml —u, )]
—uz[dmﬁl + cdﬁ:z - (c2+x2)533 + (cz-xz)wlwz - dxmzms

. 2 2 - .
+cdm3wl - st + cx(wl -, ) + ex] ~ u3[(ad+xz)ml

-E-'(bc1+c:z)L.u2 - 2(bc+ax)1:33+2 (bc-ax)wlmz - (ad+xz)m2m3

2y

+ (bd+cz)m3ml + 2x;.ml + 2céu12 - Za.;cm3 + {actbx) (mlz--uu2
- 3k 2 k :
+ bx] R3 (Il—IZ) (cez) c93593 + Rz [ml‘[bc:.ezc(-)3

+ acezses} + m, {eco

- bc62563

- cce_,,_se3 + dsez) (cc@2c63 + xceszB)I (63.¢c)

2%%3
+ szZ) (bc@2c63 + ac@zsf33) + mz(xcazcez

3k
0., + xc@st)B}} - ;‘5 [ml(ac62c63
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Equations (9), which relate the Euler angular rates to the angular ;
] velocity components, together with the above Eqs. (63.a), (63.b)
- and (63.c) are the complete non~linear equations of motion for the %
. two mass asymmetric systzm. Due to their complexity, no attempt ﬁw%

f' has been made to obtain an analytical solutiom.

;
i
i
|

D. Numerical Results

The equations of motion developed are solved numerically

using the RKGS subroutine outlined earlier iam section II. In

Ref. 7 2 control law has been obtained for the boom end ﬁass

g k0 ot P8 B O g B

position such that a quadratic cost functional involving the
weighted components of angular.velocity plus the control is
minimized when the final time is unspecified, assuming torque free
- conditioﬁs.
As an illustrative example the system parameters and initial
conditions are selected from Ref. 7 for a large space statiom. It
is to be noted that the satellite mass and the control mass here

are 32 times larger when compared with.those used in Ref. 6.

I,=I,=1I=10.5zx lO6 slug—ft2 (L.42 % lOYkg-mz)

1 2

—
f

15 x 10° slug—fcz (2.03 x 10'kg-n?)

1.37 x 10° slugs (6.21 x 10% keg) ]

=
]

i

m = 1800 slugs (26112 1bm)
a = 65 ft (19.8m), b = 0 £t (Om) ;

ml(O) = 0.391 rad/sec, mZ(O) = 0.0 rad/sec, m3(0) = 0,314 rad/sec.
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In all the cases in this study only a single boom (Z boom) offset
from the spin axis has been considered. A specific example has

been chosen from Ref. 7 for which the Z boom contrel law is stated
as follows:

zZ + (0.314)2 z=- 0.314 x 17.72 {kclm +kc2m2} (64)

i

and kc_ are constants chosen based on optimal

where kc 2

1
control theory.7 In this case:

kcl = - 3,92, kcz = 9,56. .

The solution to Eq. (64) with the initial conditions z(0) = O,
z(0) = 0 for the torque free case is given in Ref. 7 as:

z{ty = 17.72 {0.655 sin 0.314t + 0.417 cos 0.314t
(63)

~o70-34%0.318€ 4 417 cos 0.428x0.314t+2.056 sin 0.428x0.314t)}

In the first part of the numerical study the effectiveness of
the above control law in the presence of gravity to;que is deter-
mined. Two cases of interest have been identified aﬁd the system
behavior for these two cases are coumpared with the behavior for
the torque frees system.
Case.l: where the comntrol law as zivea by Eq. (64) employs the
actual components of the angular velocity Wy Woy Was in the

presence of gravity torque.

Case.2: where the Z boom motion is according to the idealized

control, the controller using the angular velocity compcnents for
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the torque free system. For this hypothetical case the Z bhoom

motion is input into the program as given by Eq. (65).

Figure 17.a shows the Z boom motion for Case.l by the dash-

cross curve, and for Case.2 by the solid line. It is seen from

Eq. (63) that the boom will experience a steady state oscillation

3 s g, B | g gt I

after the initial transient for Case.2. Observe that for this
case within 10-15 seconds the transient part of this motion is
removed leaving a remaining steady state oseillation. For Case.l

the Z boom motion amplitude increases after 40 secs and would

reach displacements of nearly 300 feet in 60 seconds (assuming

3o s s -

S T

that much boom length could be extended).

Fig. 17.b shows the respbnée of the w, component of the

1
angular velocity. When gravity torque 1is neglected the amplitude

of wy decreases with time and becomes close to zero in about 20

geconds of response time, wheréas for Case.l. and 2. the response

shows a markedly different variation with w., becoming as high as

1
-0.12 rad/sec and -1.5 rad/sec respectively within 60 seconds of
response. Figs. 17.c shows a similar behavior for the w, com-

ponent. For the case without the gravity torque |m2[ becomes

close to zero as apposed to the large amplitude motion for Case.l

and Case.2. TFigure 1l7.d indicates that wq is constant when 3

gravity torque 1s neglected, whereas for Case.Z the motion is

periodic over a mean value of 0.6 rad/sec. For Case.l, correspond-

ing to the actual Z boom motion, the w_, response is somewhat

3
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similar to Case.2 until about 40 seconds after which it suddenly
increases rapidly. This sudden increase corresponds to the high
amplitudes of the Z boom motion. Fig., 17.e. shows the response of

the nutation angle. For all cases there is an initial tendency to
reduce this angle. However after 8 secs, with gravity-gradient present
there is a definite tendency to exceed the initial value.

For a single boom offset system in Eq. (58) the term ul(fl X %l)
can be identified as the reaction torque due to the coatrol, while
ﬁQ is the gravity torque. The magnitude of the reaction torque for
the actual Z boom motion in the presence of gravity torque is compared
with the magnitude of the gravity torque in Fig. 17.f,

From these responses it can be concluded that the gravity torque
has a profound influence on the system behavior. If the controller senses
the actual angular velocities with the gravity torque present the very
high amplitudes of the Z boom motion would force the spacecraft to a
larger amplitude nutational state. If the idealized control is used
even though the response is a little better than the previous case the
results are clearly undesirable. These results indicate that with
gravity-gradient present this method of control could be used for
only a very limited time period, after which the Z boom motion would
have to be terminated.

It was thought thgt the presence of a counter mass, such that the
composite center of mass would coincide with the hub center of mass for
the zero position of the Z boom, might improve the system response.

To study this configuration the X boom mass, my, was chosen equivalent
to the Z boom mass and placed so as to maintain the symmetry of the

spacecraft initially when z = O (see Fig. l16.a).

e T g G O
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Identical initial conditions and satellite parameters as used in
Fig. 17 were employed. The Z boom motion was assumed to be the
ideal motion based on the control law for the torque free system.
The Z boom motion and the nutation angle response are shown
in Fig. 18.a. It is observed that with gravity torque even in the
presence of a counter mass the satellite would achieve a very
large nutation angle reaching as high as 80 degrees after 39
seconds. When the gravity torque is neglected the nucation angle
decreases initially and has almost a constant value of 2 degrees.
after 20 seconds. Fig. 18.b shows the response of the components
of angular veloeity. The decrease in the magnitude of the w

3

component and increases in the magnitudes of the g and w, com-
ponents explain the high value of nutation angle at 39 seconds
observed with the gravity torque. The respomses without the
gravity torque show a periodic motion for wy and w, after the

initial transient, while w, remains nearly constant. Thils example

3
with a counter mass points out the undesirable response in the
presence of gravity gradient for the choice of parameters and
initial conditions used.

It has been pointed out in Ref. 7 that there is z residual
oscillation in the Z boom after the spacecraft has been detumbled

using the control sequence. To study the respounse of the system

in the presence of gravity torque, when the Z boom executes a sinu-

soidal motion the following equation is chosen to rzpresent the




while w

motion of the Z boom:

z = 4 sin 0.3L4t
The responses with and without the gravity torque are shown in
Fig. 19.a,b. In Fig., 19.a we see the Z boom moti;n and the
corresponding nutation angle response. The initial conditions are
indicated. The nutation angle response with the gravity torque
shows periodic peaks reachiné 2 maximum value of 9 degrees, while
intermittently ;eaching.a winimum value of about 2 degrees. When
the gravity torque is absent the nutation angie is periodic over a
mean value of 5.5 degrees. The corresponding responses of the
angular velocity compoments are shown in Fig. 19.b. In the presence

of the gravity torque w. and w, have intermittent peaks and troughs

1 2

3 is oscillatory over a mean value of 0.55 rad/sec. The

responses without the gravity torque show that Wy and w, are
sinusoidal while W remains a constant. The adverse effect of the
gravity toréue during the boom motion is clearly seen.

A close study of Eq. (47) explains the substantial effect of
the gravity torque observed in'all the cases described above. The
presence of the term Zmizi results in the gravity force on each
control mass exerting a torque about the hub mass center. Clearly
the torque resulting from this is an order of magnitude in r/R
larger, than that which would result if the torque were taken

about the composite center of mass. Here it would be inappropriate

to call the torque as gravity-gradient torque since it is usually

I T R ATy
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understood to mean the torque about the satellite composite mass %
* center due to differential gravity force acting on each element
of the bady. - )

In Eq. (47) if we isolate the term

B i)
A '

B
m
-]
H
..l.
)
W
H

1 we see that even in the presence of the counter mass the vector

addition of r, and ¢, (if T represents the position of the Z boom

| 1 2 1
: b rass and ;é the position of the counter mass) for the maximum z ;
i displacement would be such as to make the asbove mentioned term

quite appreciable. This explains the undesirable response in the
!‘ presence of the counter mass. - ;

From the previous cases studied it was concluded. that to improve

% the.performance of the system in the environment of the earths® gravity

[ either the control mass and/or the amplitude of the Z boom oscillations :

have to be smaller. Further, the initial tendency of the nutatiom angle

|
%
1
|
% to decrease even in the presence of the gravity torque suggests that 4
- the presence of suitable damping in the boom mechanism would serve to %
diminish the undesirable large amplitude‘residual oscillations of the i
i Z boom, while maintaining the initial beneficial effect of the comtrol. i
v a

Consequently two changes were made in the satellite parameters listed

on page 363 the new mass of the satellite M = 4258 slugs (6.21::104 kg)

and the mew Z boom conmtrol mass m = 55.95 slugs (816 kg). Introduction

of damping in the boom motion would result in the control Equation (64)

being modified as:
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2+ ¢ (0.314) % + (0.314)2 z = ~0.314 x 17.72 {kejoythequ,}  where
¢ is the damping constant. The constants key and ke, can be determined
for the modified satellite parameters as suggested in Ref, 7. They
were calculated to be: ‘
ke, = -3,3188, keyp = 31.366.

The response of the system for this case has been plotted im
Figs. 20.2 and 20.b under the same set of initial conditions and boom
offset coordinates as used in Figs. 17. Figure 20.2 shows Z boom motion
for three different cases. The Z boom motion is indicated by the solid
line in the absence of gravity torque and damping; by the dash-dot line
in the preseﬁce of the gravity torque but no damping; by the dash-cross
line in the presence of the gravity torque and in the presence of boom
damping. The damping comstant for this example was chosen to be, ¢ = 0.4,
which represents leég than critical damping in the absence of control.
The corresponding response of the nutation angle is shown in Fig., 20.b.
In the absence of gravity torque and damping the nutation angle approaches
zero within 175 sec. With damping in the boom motion the improvement in
the response of the gystem in the presence of gravity torque is clearly
seen. Lt should be mentioned here that the damping constant, ¢, must be
chosen carefully to obtain the best results.

Figures 21.a and 21.b show the response of the system for sinuscidal
Z boom motion with the reduced mass. A comparison of this with the
responses shown in Figs. 19.a and 19.b clearly points out the diminished

effect of the gravity torque when smaller masses are employed.
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IV. CONCLUSIONS
For deployment maneuvers during which the inertia symmetry
about the spin axis is maintained the stability chart for
symmetrical spinning bodies can be used to study the
system behavior.
For various extension maneuvers the bounds for boom
lengths can be determined so that the system does not
enter an unstable region.
For extension along all three axes with the same end
masses and extension rates, if the satellite is initially
stable, there is negligible difference in tha respomnse of
the system with gravity-gradient present or absent.
For all the cases where the extension maneuver is performed
through an unstable region although the nutation angle
does not increase as soomn as the system enters the unstable
region, there is an exponential type growth in the nutation
angle after a certain length of boom has been extended.
The analytical scolution obtained for the out of plamne
Euler angles for symmetric extension in torque f£ree space
can be used to study the system behavior with gravity
torque for a limited time period.
For the asymmetric deployment the expression for the
gravity torque developed shows that a first order gravity

force on the asymmetric mass exerts a torque about the
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hub mass center. This torque is an order of magnitude in

(r/R) larger than the gravity-gradient torque for the

symmetric deployment.

For smaller control masses the controlled (asymmetric) offset
boom system may be used effectively in the presence of the
gravity-torque to reduce nutational motion when there is

damping present in the offset boom system. The amount of boom
damping required must be carefully selected for best results.

For large control masses with gravity torque present the offset
{asymmetric) system can be controlled so as to reduce the nutation
angle only for the first few seconds, suggesting that the control
should be terminated after that.

The effect of other perturbations such as due to solar radiation
pressure, aerodynamic e%fects etc., have not been considered
here but should be investigated especially for the case of large

boom lengths.
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FIG. 2. ORBITING REFERENCE FRAME
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- rad/sec

Ws

1.C: ~;:1(0)-0.0391 rad/;ec
w9 (0)=0.0 rad/sec
w3(0)=0,314 rad/sec

' 67(0)=0.1 rad
62(0)~63(0)-0.0 rad

M=1.37 x 105 slugs
b =0 ft m, = 1800 slugs
m, - 0.0 slugs

Altitude - 500 naut. miles

+=—— «—— Without Gravity Torque
— % —xWith Gravity Torque - Actual Z Boom Motion (Case-1)

With Gravity Torque - Ideal Z Boom Motion (Case-2)

T v L T T
10 20 30 : 40 50
TIME (secs)

FIG. 17.c. DYNAMIC RESPONSE OF SYSTEM —Wy COMPONENT
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2.0

s w—+—  Without Gravity Torque
—4%—x With Gravity Torque - Actual Z Boom Motion (Case-1)
With Gravity Torque — Ideal Z Boom Motion (Case-2)

1.5791.C: w0y (0)=0.0391 rad/sec

wp (0)=0.0 rad/sec a = €5 ft

wy(2)=0.314 rad/sec ' b= 0 ft 5

61(0)=0,1 rad M =_li§gox 10 slugs
g 8,(0)=84(0)=0.0 rad ﬁ; - 5.0 siuzgs

wg = rad/sec
[
-
=

Altitude - 500 naut, miles

000 . ¥ 1|
0 10 20 30 40 50

TIME (secs)

FIG. 17.d. DYNAMYC RESPONSE OF SYSTEM ~g COMPONENT
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With Gravity Torque - Ideal Z Boom Motion (Case-2)

¥—p—— With Gravity Torgue - Actual Z Boom Motion (Case-1)

—+ —+ Without Gravity Torque

I.C: wy(0)=0.0391 rad/sec

H

_ 37, 5 m2(0)=0.0 rad/sec /\
00 w4(0)=0.314 rad/sec .
S 81(0)=0.1 rad | X
- 8,(0)=0,(0)=0.0 rad "
| *
E? 25/ & = 65 ft. .
& ’ b =0 ft, 5 I
o M= 1.37 x 10~ slugs o %
E m, = 1800 slugs M *
3 m, = 0.0 slugs ‘F\ !
E 12,5] / /1 \J

~l T

0 b ' ~— Altitude - 500 naut, miles
" S * v N .
0 10 20 30 40 50

B o e

TIME (secs)

FIG. 17.e. DYNAMIC RESPONSE OF NUTATION ANGLE
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90~? — — With Gravify Torque Altitude ~ 500 naut. miles .
Without Gravity Torque e — T e
. " 1.C: T
5 /x/' w1(0)=0.03911rad/sec 61(0)=0.1 rad )

: ﬁgo . m2(0)=0.0 rad/gec 32(0)ﬁ83(0)=0.0 rad
? Z=o 45 -~ ———
; §‘“ -// w4(0)=0.314 rad/sec
; > 'A/’
; E //r a = 65 ft, ¢ = 0,0 ft, x =-65 ft.
i b = 0.0 ft. d = 0.0 ft.
f ,,ﬂw=7==#,¢:"‘\.4/ -
| 0 4 ] T J ' y —
: 0 10 20 . 30 : 40 50 60
! 20 1 TIME (secs)
5 M= 1.37 x 10° slugs —
| m, = 1800 slugs ’
: ” m, = 1800 slugs ///

[

ha 0 e ; ’

1 —

) \/ \/

-20 | T 1~

0 10 Jo 30 40 50 60
TIME (secs)

FIG, 18,a. DYNAMIC RESPONSE OF SYSTEM WiTV COUNIER MASS
RESPONSE OF NUTATION ANGLE FOR SHOWN Z BOOM MOTION
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0.314 T,
-——.— With Gravity Torgue
. Without Gravity Torque
2 . w; (0)=0.0391 rad/sec
o \
o 0.157 4 \ m2(0)=0.0 rad/sec
! ‘W Wa(0)=0.314 rad/sec
3 N ©
3 " i -
\\-/-.—-——"-
TIME (secs)
0.0 1 T T '
0 15 30 45 60
0.03 .
0 ~ vm“"‘ﬁ.—‘
\ 8,(0)=0.1 rad
Q ’ = =0
2 a = 65 fr 32(0) 93(0) 0.0 rad
3 b = 0,0 ft \ e
N 0,234 ¢ =0.0 £t A e
‘ d = 0.0 £t ’//"
o~ x = =63 ft \\ 7~
a N q
\xﬁ_ﬁ‘“/f
TIME (secs)
"'0.5 T ) LI i
0 15 30 45 60
0.1 -+ Altitude - 500 paut, miles
o
@ .
-g .\.K\ \ o /-"'"-...__,/
- 0.0 ~Y 4 T =~
! ﬁ’/ )
g 70.05 4 / M= 1.37 x 10° slugs
/ m, = 1800 slugs
\J/- mé = 1B00 slugs
TIME (secs)
-0.2 1 [ I !
0 15 30 45 60
FIG. 18.b. DYNAMIC RESPONSE OF ANGULAR VELOCITY COMPONENTS
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e Without Gravity-Torque
we-s+ —- With Gravity-Torque

I.C: wy(0)=0.0391 rad/sec 81(0)=0.1 rad
v, (0)=0.0 rad/sec 8, (0)=85(0)=0.0 rad

25(0)=0.314 rad/sec M = 1.37 x 10° slugs
Setru - 00 e, sites 51 7 100 iue
a = 65 ft, w, = 0. g
b= 0 £,
10 _
: \
5~ / ,
28 :
zZ 5 / .
R v Ya¥4
S
jam]
=
TIME (secs)
0 T . |
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4.0 30 45 60
N _
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L
]
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15 30 45 50

TIME (secs)

FIG, 19,a, DYNAMIC RESPONSE OF SYSTEM WITH SINUSOIDAL
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M = 1.37 x 10° slugs
m, = 1800 slugs
ml = 0.0 slugs
2
1.0 -
I.C: wy (0)=0.0391 rad/sec m3{0)=0.314 rad/sec
Wy (0)=0.0 rad/sec
J. /\ /\ /'/\
] .
m . L 3 -
~ . .
3 0.5 / ‘ \//\\/ _ \/ 2
™ : . ]
VAN
= Without Gravity Torque
v+ == With Gravity Torque.
TIME (secs)
0.0 I éo 4, p ,
0.09 - 3 60
. ei(O)=O.l rad
/ ez<o)n93<0);o.o rad v(
o e\
2 / \ /\ /N
30 Ve A
: N
5 / \)/
-0.0.ré l TIME (s'ecs) _
0.09 15 30 45 Qp
a=65 feet, b=0 feet
Altitude = 500 naut. miles
‘8 7N\
2] B
~— \ ’ .
w0 i
3 \ .
—
3 \ .
~— ~ |
-0-09 ~] o — P — _!
15 30 45 60
TIME (secs)

FIG., 19.b. DYNAMIC RESPONSE OF ANGULAR VELOCITY

COMPONENTS WITH SINUSOIDAL Z-B0OM MOTION
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z(0) = O ft
I.C ml(O) = (0.0391 rad/sec 8,(0) = 0.1 rad z(0) = 0 ft/sec
w,(0) = 0.0 rad/sec 85(0) = 83(0) = 0.0 rad M = 4238 slugs
w3(0) ='0.314 rad/sec a= 65 ft my = 55.95 slugs
b =0 ft my = 0.0 slugs
Without Gravity Torque (No Damping)
—— With Gravity Torque (No Damping)
110.0 My —wy With Gravity Torque (With Damping)

/{\ /1 Altitude = 500 naut. miles /P\ /\ :

z - feet
e
o
>

130.04

T ¥
TIME (secs)

FIG. 20.a. DYNAMIC RESPONSE OF SYSTEM -Z BOOM MOTION
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I.C: wp(0) = 0.0391 rad/sec 81(0) = 0.1 rad 2(0) = O £t /..
w,(0) = 0.0 rad/sec 0,(0) = 83(0) = 0.0 rad 2(0) = 0 ft/sec
w3(0) = 0.314 rad/sec a = 65 ft M = 4258 slugs
b =0 ft my = 55.95 slugs
m, = 0.0 slugs
10.0 - - SO - I
] Without Gravity Torque (No Damping) ——

cme s mme»  With Gravity Torque (No Damping)
¥——X——x With Gravity Torque (With Damping)

Altitude = 500 naut. miles

NUTATION ANGLE -y(deg)

N N -
AV AN -

100 150 200

v8

TIME (8ecs) -

FIG. 20.b. DYNAMIC RESPONSE OF NUTATION ANGLE
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s ~— » With Gravity-Torque
Without Gravity-Torque

I.C: wy(0) = 0.0391 rad/sec = 4258 slugs
2(0) = 0.0 rad/sec l = 55.95 slugs
3(0) = 0.314 rad/sec m, = 0.0 slugs
(0) = 0.1 rad
B (0) = 63(0) = 0.0 rad

=65 ft b =0 ft

Altitude = 500 nrut. miles

NUTATION ANGLE

TIME (secs)

On

———b

45 60

WA

AVAVE

B DEN Wy e e e

1

45 7 60

¥IG. 21.a. DYNAMIC RESPONSE OF SYSTEM WILTH
SINUSOIDAL Z BOOM MOTION:z = 4 Sin 0.31l4t
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¢ emee s e With Gravity Torgque
Without Gravity Torque

1.0
I.C: ml(O) = 0.0391 rad/sec
mz(G) = 0.0 rad/sec
m3(0) = 0.314 rad/sec
g 61(0) = 0.1 rad
= 0.5 82(0) = 83(0) = 0.0 rad
@
¥
! —t T " o e T g — " e
341
3
TIME (sacs)
0.0
, 15 30 45 60
0.09
65 ft

Y
[

0 ft

S
\\ //'/_Q
= 4258 sl ’
g gg_gg :%igs \EEQ:\\\H_44¢¢>////
_

0.0 slugs

wy ~rad/sec,
o
\
- o
1

L

TIME (secs)
""0. 09 ¥ Y T
15 45 60
0.09 0 30

Altitude = 500 naut. miles

N T

2 g
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TN N
H
I -\\h_.’///
Y
TIME (secs)
-0.09
[] T -
0 15 30 45 6

FIG. 21.b. DYNAMIC RESPONSE OF ANGULAR
VELOCITY COMPONENTS WITH
) - SINUSOIDAL Z BOOM MOTION
. z = 4 Sin 0.314t
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i COMPUTER PROGRAM
W SYMMETRIC DEPLOYMENT

i 2/10/77 21227241
1Jud [READ IN AT 21:5233:2%])  MAHESH RAJAM
VFURT/ZA/U/E/P/S FORTLLS/L
e LLISTING _ : .
CASE-T ALFAS=0.5  FAST EXT = N
DYRAMICS OF SYSTEYM DURING NOMINAL DEPLOYMENT
FUR SPIN PRINCIPALLY AB0UT %-AXIS AND SYMMETRIC tYTFMSIGN
. IMCLUDING GRAVITY GRADJENT EFFECTS - BRE1.0 Y
ALTIUDE =300 NAUTICAL MILES.
EXTERNAL RGSOL,RE802
. DIMEMSIUN PARM(S),Y(&),DY(6),H0RK(8,6), 512&(53
CREAL T310,120,130,%1,M2,M53,11,12, 13
COMMAN Y, ALF A
COMMON 110,120,130, Ix,zz,ts M1, M2,43,C1,02,C3%
tGUIVAL%NC‘(Y(;];N13'€Y(2),N2J,(Y(51 WSJ:(YCﬂJ Ai)p(Y(S) AaJ,
Y (), AZ) -
CCALL INOUTC2,5%) _ .
CalL UHFN(1,’RAJAN’,S , TER)
IF (IER.NE,1)STOP UMABLE TO OPEM. FILE
TMAX=490.0 '
STEP=2,0
S T0L=0.0L SR
HL:AD(.? ql)Ml MR,MB
READ(2,91)110,120,130
CREAD(2,91)C1, ca,Ls
READ(2,92}Y .
HEAD(2,92)812E ,
CWRITE(S,93)M{,M2,M3
WRITE(S,94)110,120,150
WHITE(S,951C1, 65,05 o
CWRITE(S,961Y .
WREITE(S,97)5T7E
WRITE(S,98)
 PARM{13=G.0
-PﬂhM(E) '[Mby
Nz '
 PARM{3)=STEP . e
CALL RKSCLIN,SIZE,DY,TOL,PARM) :
caLL RK&bﬁPnkM Y, DYsN, IHLF, H&Sﬂi kaaoafwunx)
HHITF (95,92)IHLF -

eNeRESEeRe

Faty

- .:.1.1

v
3

]
!
i
]
!

T T S T e

91 kUHMAF£5F10.G)
L 92 FUMMATIAFR1G.0) T e
93 FURMAT(UX, "MIS’,F10.6,5X,"M2=7,F1G.6,5%,"M3=",F10,86)
Q4 FORMAT(IX."T10=,F10,6,5%,"120=",F10.6,59%,"1350=",F10,6)
99 FURMAT(LX,"C1s*,Fi0.6,5%,'C2=",F10.6.5%,°C3=",F10,5)
9b  FURMAT(EX, Y ", 3%, 6F1a,9) S
Q7 FUBRMATI{3X%, "S1/k*,6F14.9) ' .
98  FURMAT( 1, TR, "7, T17,"WL*, T30, %2, T43, 535,155, THETA=1", ,
Rtbq,'TH&rn 2" T8, "THETA- 3',T9br'ALFA';Illn 'IHLF’rKJ ;
99 FUHﬂAT( GIHLF=",13) - - - _ : ‘L o "i
i
:

i
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o

JhKﬂBMu;PAGDIS
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-PROGRANM

 DI=4, 0% (M24L2+C2+M3*L3ACE)

. KB=3, O*K*BB/ (Rxx3)
CO1=COSCAL)

CDYL2) = (WL A3 (I3-T L) ~DI2 X2 +KBx (L1 ~131%CO2XS02%C03) /12

DY (S)= (W) +803+w2xCA3=2x801)
DY ()= (wS*cn?-wl*cos*boa+w9*bua*sms Z*CUIJJLUB

| P T AR AR S S

JTITL - LMAIN

FOR1/A/M/E/B/S FUPT LS/L
ILISTING

SUHROUT INE RGSOILT,Yy, DY)

VDIMENSION Y(e),DY(R)

REAL 710,120,130, 1,L2,L5,01,82,823,11,12,]13,K,KH
CUMMOM Wl , W2, W3,81,A2,A3,48LFA

COMMON T10,120,130,11,72,13,M1, M?pmsrri LE:Cﬁ

Li=CixT
L2=C2xT
Li=03x1

Cel=Mixlisll o e

E2=M2xL2xL 2
E3=43xl %L 3

L1=110+2. 0% (E2+E3)

12=120+2.0%{EJ+EL)
I3=130+2.0%{E1+E2)

Di2=4, 0% (MI1«L1*xC1+M3 %L 32C3)

' Dls=ﬂ,Ok(ME*LE*CE+M1*L1*C1J ‘ ,
RS A0TS2845010.0%% 163 L e

H22,39506%(310,0%%7)
BB=1.,0

Co2=C0s5¢a2) - .
EUS=CO5CA3Y S
SUI=SIN(AL)

Hu2=sIn(az) ' , - : _ AR
SO3=8IN(AT) e e e e
Z=SART(K/(R#%3)) ‘ ' '

DY (1) =(w3xwW2x(12= Iﬁ)-DTikw1+KH*(IE I3)#%CO2+«502%5033/11

DY (3)=(w2%ml*(I1=12)=DI3*N3+KBx (11~ 12)*cua*coa*cu3*sosuki3 R
DY {(8)=(W1*CO3-W2*S03+2%001%502)/C02

1= 309T((II*WIJ**E+(12*W2)**?) _
LY=I%xa3% . T
ALFASATAND(ZZ,2Y)%57.2958

HETURN

. __E..ND e ‘_.;v_..__u ._'__ — O B B gy SO S

IS5 RELOCATAMLE L s
JTITL ReSO1 . ol

.IFURT/A/H/t/P/S FURT LS/L

ILISTING o R

‘““ w4 WE v *. WA % MY mE wmi W My ‘1.

)

_ﬂ 

CHETTE s1Maky (1) T,Y01),Y(2),ALFA

SUSROUT INE PLSD2prY DY,IHLF PN, P)

LOGICAL RRNXT.

CUMMON w, w2, 03,81, Az Az, aLEA

Cusm»ON T10,120,130,11,12, I5rﬂ1nM?rM5 Cl:C? LQ'

DAMEMSION Y(6),0Y{6),DUMMY (5) _ ;

CALL RGSO1(T,Y,DUvMY

IP=T

CLECLNOT L RKNXT (IRLE) Y GO TO 8

WRITE(S,1)TP, Y (1), YC2),Y(8),YC8),Y(5),Y(8), nLFa IMLF

FURMAT (12, F7,.3:;6(1%, 815,88}, 1%, F10.7,1%,13) !J“ﬁhu.RAFP'r
OF‘PJOR QUAJ 1Ty

CUNT [NUE | i
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; O INITISL VALUES
; - READ(2,91)Y | : : ' , ‘ : g
;.. .. READ(2,91)817E. e e e
: READ(2,911)11, 12 13 ' ’ '
: READ(2,911)MB, ML, M2 ' ,
e B READ (2 91IVAAL BB GO DD e e
g s 91i{ FORMAT(4FR0O, n} TR
J : N=p
i = M=z TSR Dl R . . —
_ . WRITE(5,92)TMAX,STEP,TOL.
] . WPITE(S,93)11,12,13 S
RS e L WRITEL(S QUYMB MY M2 e
_ » ; . &‘JQITE(S:QS]ﬂﬁrBBrCCrDD '
T COWRITE(S(96)Y o
' J;m,. 7. BBRITE(S, 9738128 . B m
- : . WRITE(5,98) , . .
ey ;92  FORWAT(1X, TMAX=",F10.A,S5X,*STEP=*,F10.6,5%, "TOL=",F10.6)
T 30930 FUORMATLA, "TAE  E15.4,5%, 122", E15,. 4,54, 113" ,E15,4) .
ubs = 98 FOLMAT(LX,'MB=’,E{19_.4,8%, " M1=°",F15.4,5%,™2=",E15,4) e
' ' s 95 FORMAT(IX,7AB=",F10.8,2X » 7BB=’,Fi0. &,EX:'FE"',Fiﬂ by ax,'Dn-'
-aﬂwu, . R 11 G B 1 Y- SO e e e e
v s Sh FORMATCSX, YT, 3, 6F15,6) S e T _ _ o ‘
s 97 FURMAT(3X, "SIZE’,5F15.8) S ' ' IR
P g 98 FOSMAT(ILY TR, T, TAT, Wl T30, 0827 TAS, "3, TSS, ' THETA-L? .
J:. : o 2T69, ']HFTA~2‘,TF1,'TH:TA z',Tqﬁp'ﬁLFﬂ';Tllo,’IHLF',/) '

' + O : : S : . e
o CBLEL SASCLAw,SIZE, DY, TOL, PARM) [.,m_.A__j,u;;,ﬂ;i
1: ; CALL RKGS(RARN,Y,DY,N, IHLF, P&SUi,QGbOE,WDPKJ e TET AN o

' 3 . MKRITE(S,99)IFLE e TR
e 3..8G FQRMATCNIRLF=,T3) el _ N
m . CelL ExIT

:
B

R o L

18]
1 \ COMPUTER PROGRAM
ASYMMETRIC DEPLOYMENT
. ] _ 2/26/17  1a:154:22 , %
e AJ0B (REATY IN AT cAet839AR) L MAHESH RAJAN e
LFORT/8/6/E/8/5 FORT.LLS/L . AU - ST T
] LISTING
- : C CEFFECT OF GFAVITY TORQUE L ASYMMETRIC, APPENDAGES
: : C ALTIUDE =900 LAUTICAL MILES. -
]‘ : C INCLUNTNG GRAVITY=GRADIENT EFFECTS RG=1.0
1 : EXTERMAL RESUL,HES02. R -
: DIMEASTON PARM(SY,Y (&), DY(b),WﬂPK(S 5) #SITE (6) o
o & . REAL T1,12,13,~8,M1,M2,K . , - S : ,
1 3 CoMMON Y I ,"i
: : S TN Il IE 1;:“3;“1 M2 : .
- s . COMMON aA,88,CC, D0 _ » o ‘ i
_-_*W¢““u;LEHMLLﬂLmEQW;;Wg;“WW;;;;“~QMW4*MWWW_“_WQ
w : COMMOMN N, b ‘ | g
i ’ romvum £(3,3) ;
S DR S EQUIVALENCELY.L(1), WIJ,(Y(B),WE} CLL3).03), (Y(ﬂ):AllrLYCSJfAEJp_.j
ok : 3(¥(6),43) ' S o
- . CALL INDUT(2,5) : R
e e CALL_OPEM(1, RAJAN,Z,LIERY . ._H.ﬂ“_;m““wwh;j@@mfw_M«T;¢
]?- : IF(IER,NE,1)STOP UMABLE TO OPEN FILE S o
- . READ(2,91)TMAX,STEP ,TGL ’ T
e 3 L 9L FORMATCAFL0,0Y L e
] _ H PARM(1)=0,0
= PARM(2)=TMAY
B e — L PARMLBNESTER | e e i L




I . E : - 91 :
- PRUGKAM 15 WELOCATARLE = :
: o LTITL - ™alw ) L AR
; Jﬁ YFORT/A/R/E/P /S FOPT L3/l - . : - R . :
’ CLISTING :
- : SUARGUTIME RGS01(T,Y,0Y) . - I :
. : IMENSION Y(&),DY(B).C(3,3) :
bt e REAL T1,12,T3,M3,%1,5M2,K
. 3 COMMan - "1!"‘22!“"3:#\1;_‘12!1*3
- : CUSHDN T1,12,13,MB,81,42
‘s H Clvyny ha,88,CC, DR
_ H CCOMMON 2,07,D02 .
- : CCRMMOA N,
B : COWMON C : » ,
o = €. CAL,_OF COEFF, DF L,t,S, OF MATRIX EQM,
- 2 BisMia (MB+MR) 7 {MBEMY +M2) - g
1H ; Jz= MZ*(MH+M1)/(P5+M1+ME)
LRI BT ,u3-941*ma/(ma+m1+ma) . . o e
I H X=9, 0.
T : . DX=0. 0
we el e DX O O
: TT=0,3t4%xT o
™ . SRI=SINCTTY
- .- B ORI o € O 0 I A S T
i : ET=EXP(=0,54%TT) ' o )
- :  CH2=C0S(0,428%TT)
U L BUHRESTINCOLARRATTY
e : (1=0,655*SRA140, ﬂl?*CQl
. ¢ H2=ET+(0,417%xC02+2,056%3492)

.”_ﬁ_mﬁ*wn,nAmwﬂnnﬁs =ETAC-0, 41720, uaax&&aiaLQSéﬁn.qaa*caalAuw,ﬂumuwyﬂw.,Mmph,.,dw
BT 1= 17 7:*02 . o
s GNI=0,.655%C0R1-0, ﬂl?*&ﬂ1~03+0 e B A T S
Jf._-; DZ=0,314%17,72*00Z2

' BDOZ=~01i~ETw(~0 U1 7*0, UEM*D HER*C@P 2.086*0, HEB*G UPB£SH2)+2, 0%
- NS S =1 ¢ D1 L IS I RGO 1 ] N U O
! B

pra

=

DDZ=0,318%0,314%17,72%G00Z

Gy, 1]-I1+J1*(uB**2+7**23+U2*(CL**2+DD**2)+2 *US*CBB*CC+DD*Z)

L, )=~ RAAXBE -2 X CLAX~UI* (ARXCCHBREX) .
CULy )= n ANXZ=U2*DD*X=UZx (AAXDD+X*Z)
Ci{2,11=C(1,2)

Cl2r2)= t2+u1*(AA132+Z*+21¢Q_3(DD#tzfx**EJ+aJQ*U3*(nA*X+DD*Zl
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B
f

CBUE=sINCAZY L L

C(2y3)==U)*BR*Z~ UP*LC*DD U:*(HR*DD+CC*Z)

C(3,1)=CC1,3)

CE(3,21=0(02,3) -

C{3:,3)= IS+U1*(&5**2*B&**P}+U2*(CC**2+X**?]+2 O*U%*(BB*CC+AA*X)
CalL, OF R,H.5 UF MATRIY EQUATTON :

=1, ﬂn7sﬁﬁ*ch,Q**1b1“..ﬂ&m_wﬂm_mm,W,_m¢_uw,‘"w,;um_”mgm“L_W;Lk

R=2. 3a506+(10, Q**?J

CBGR=ion

R2GT8G. L
ez aﬂHT(&T/(P**u)) ' o
Coi= Cﬂq(ﬁl).

G CO2=EOSCA2Y o omiGINAL PAGEIS

COZ=CNS(A3)Y : . QUALERL
SU{=8TH(ALY . o OF, POOR

BU3=STH{AT)

»»98:3»Q*F/P+13
LRIK=RK Y l*(ﬁﬁ*rUB*COE RQ*COZ*Q09+Z*302) e -
THERZRLAN2 X (YACD2+C03~CCAC02+503+D0*302)

k‘ﬁ P



A N T A A

I0A=Z4M]4$DD#M2 , 92
A R A A A R D )
ROMaRB+MT+CC +MQ2 . ' /
BIO={I3-12)xn2# i} 2
CA =UL R (-ADXZ AN *viZ2+ (BERx 42~ Z**a)*wekv3+AA*Bq*w1*w3+2 YA DY TEE S
FESF 2 (MR x k2w 2%k 2 1488 XDNZ)
A12=U* (~DD*X % 1 %02+ (COx*2=DD*22) %W 2x W Z+CCHN 2WIxWImw2 *CCADX %2
a2, *D.)*f‘)x,kl;n’4+f'|:*[)|')-k(‘.*:3**?-'“?*&2)) B ) o
ATIRUZR((=ARXDD~Z+#X ) kWi xwi2+2,x{(B58%CC~ DD*?)*WE*W3+(AA*CC+BB*X)

t

3 : N
Y We B VE ME WA N kY g

ClisUl*((BR*&k2= AA**EJ*w1*wzwnAﬂi*wa*w3+BB*Z*w3*w1+2 KAAXDZ M+
A XBRADZXWP+AAXBEX (Wi k*2=WZx%2)]) :
L Ci2=Ux ((CLr*2~ X*tg)*Wi*hanDﬁ*X*WE}N3+CCtDD*W3*W1 P AXXDXAWS
AFCCHXx (M1 *52=02*%21+CCx0DDX) -
Cl3=U3% (2, % (BB*CC~AA*X)xW14*W2= {AA*DD+X*Z}*WE*W3+(BB*DD+LC*Z)*WE*Wl
CAitg, *(X*ﬂZ*h1+CCxDZ*N2 " AAXDXANI L (AAXCCHBR* AR (WLAX2=WAx*2) +BB%
P:L)[)x ]
Cld= RK*(II IE)*CDB*CGB*CDS*%DE : : : : :
CLSS(K/Rer2)x (CORESOIXAAMICORCOINBCNT S
Clo=RiK«(AAXC024SOT+BB*CO2+C03) ‘ ‘ o S g S
. Ci17=82K%x(CC*COP*CO3I+X*CO22503) :
L DY(3)==(C10-Ci1mC12-C13-C14-C154CL64C17) _ . S
VY (4)=(d1+CO3~n2x803+0M*C01x502) /C02 -
CY(BY=(a1+S03 402+ LU3=-0MA501) - : .
DY(el= (NBtrﬂ?—wl*Cﬁi*SﬂP+‘E$SQE$SBS DM*CQLL/LDaﬁhu___ﬁww;m__LMWq“m
CALL SIMR(C,DY, M,KS)
CIF(KS)3,2,3 5 o
RETURN e e

H A xw 342, *DDAD2Fw =2 (XBBEADNAN2=2 kDX X 2503+ (BR¥DDICCHZ )+ {(WTaxk2.
o : o2 k% 2y +CCHRDE) . _ P o .
. : AJUSREK* {12~ IS)*EU?*&U?*SDS
2t | ; AR (K/Rxx2)*x{~CO2*%503+25M=302%8BCM)
I AB=RIKK (Z*CO2¥8N3+BAXI02)
T : A17=R2ZK+(CD*CO2*503+CC*502) '
1} . DY(Ly=~{A10+A11+A12+A13-A1 Y~ AlS Ale=ALT7)
N L B1O=(T1-I3)xwEkn] e : -
o H Blizuyl*(~ Rﬁ*ziﬂi*a2+pﬁ*R4*u2*w3+(AA**2 Z**E)*W‘*Wl 2 *Z*DZ*NH :
: s DFAAR 7 (WEr 2= ik kP +2AxDDZ)
o ._._.Biz= uaﬁC~CGrQL#thﬂZiﬁﬂ_j*wgﬁmﬁiLXj*?-DD**aliUB*Hl_aL*X*DX*W&_
. . H+DX*(ﬂ§*#2ewi**&) DD*DOX)
:” : B13=U3x (- (RB*DD+CC*ZI*W i %W+ (AAXCCH+BR*Y)xW2*W3+2 ¥ (AA#*X=DD*Z)
b : L BEAE RN =2 K (BARDXEDDADZ) %2+ (ARAXDD+XXT I X (WIAk#2mM14%2) +X*DDZ=Z%D0OX)
? B814=RKx (I1-13)*8502+C02%C032
T H Bi1S2 (K/R%x%2)*x (~CO2*C O3+ ZDM+S02%xAXM) '
by BLOFRIRA(ZxCH2¥CO3=80%302) . e e e :
H - BLl7=R2K*(DD*CO2%xC03~X*C02) o . |
ry : DY(2)}=~(R10~B11=B12=813=~R1d= 815 Blbo- Bl?} i
xt“" 2 L C10=(I2=11)*wiRewz2 R e j
‘ i
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2 .
3 WRITE(S,4)
4 FURMAT(//*SIKGULAR EQUATIONS®)
T S _RETUBN S A S R SO
END

CpROGRAR T8 RELOCATRELE T U ST

l LTITL  RGSOY : oACE T8

“_,MiFD?T/ﬁ/R/ELP[S.FGEI‘LS/L,W.‘m. e e TN AT B ASE BRI,
1LISTING JRI QUALITY

ik Seetei, e

SUBRNDUT INE KESOZ(T,Y,0Y, IHLF,N,P)
CLUSICAL FEREYT e o
DIMENSTOw Y(ﬁ),bY(h) DUMAY (B}
COREAL T1,12,13%,88,M1,M2,K
CLOME0N w2, Vi, i, 02,03
CO=A0YN T1,12,13,88,M1, 0
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Cuma0n ap,uH,CC,00 : 93
SCavsny L, 07, N0

CALL RGSQILT,Y.,DuUwY)
H1=T 1 xii
HezT12%42
FHE=13%xa%

MA WG WE wE wE WP ME MUY NI e NE N hE N Na h

ALFA=ATANP(SNRT(HI*H)+HP*H2) ,HEY %57 ,2958
Te=T
IF(,H0T.RRMXT(IPLFY) 60 TO 8
A WRITE(S,1)TF,Y,2,22,ALFA, IHLF
1 FORMAT(1%,F5,. 1,8 01X, F12.5),1%X,F7.4,1%,12)
WRITE RINARY (1) T,7
8 CUONTINUE
' RETURN
END
PROGRAM 18 RELQCATARBLE
e . aTITL  RBSOZ2
IRLDR/M TMP/S 001 Q02 U03 DPO:SSP,.LB FORT,.LB
LEXEC _ :

S TMAX= p0.000000 . STEP= _31,000000 . T0L= 0.010000 . .
Ti=. 0.1050E & 12= 0.,1050E 8 13= 0.1500E 8
MB= U 0L1370E 6 M1z 0.1800E 4 MP= 0,0000E O
AAz= 65,000000 _8R= 0.000000 £C= _0,000000 0OD= 0,000000

Y 0.039100 0000000 0.214000 - 0.100000
SIZE 1.5006000 1.500000 2.000000 2.200001
T Ty T T T e, 000000 “o.000000
 SIZE £.000000  42.000000
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