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ABSTRACT

The effects of gravity-gradient torques during boom deployment

maneuvers of a spinning spacecraft are examined. Two different

configurations are considered:

(l) where the booms extend only along the hub principal axes.

(2) where one or two booms are offset from the principal axes.

For the special case of symmetric deployment (principal axes booms)

the stability boundaries are determined and a stability chart is

used to study the system behavior. Possible cases of instability

during this type of maneuver are identified. In the second

configuration an expression for gravity torque about the hub center

of mass has been developed. The non-linear equations of motion

are solved numerically and the substantial influence of the gravity

torque during asymmetric deployment maneuvers is indicated.
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NOHENCLATURE

A.i ,A2 =	 Time varying coefficients in the equations of motion
for small out of plane Euler angles

a =	 Offset of the control boom with end mass mi from the
d2 , d3 plane

A	 A	 A

al ,a2 ,a3 =	 Unit vectors in the orbiting reference frame
A r

al =	 Unit vector along the geocentric position vector to
the hub center of mass for asymmetric deployment

E =	 Coefficient in the system characteristic equation
for a rigid spinning spacecraft

b =	 Offset of control boom with end mass mi 
from the

d3 ,dl plane

b(t) =	 Time varying coefficients in the equation for
hl2 h2 for symmetric deployment

A	 n	 A

b i ,b2 ,b 3 =	 Vector basis defined after the first Euler angle
(01) rotation

C =	 Coefficient in the system characteristic equation
for a rigid spinning spacecraft

C [CC 21 1= 	 = Constant vector appearing in the analytical
solution for the Euler angles without gravity-
gradient for symmetric deployment

A	 A	 A

=	 Vector basis defined after the second Euler anglecl ,c22 c 3
(O2) rotation

c1 ,c 2 ,c3 =	 Extension rates along 1,2,3 principal axes,
respectively

c =	 Extension rate along 1,2 axes when inertia symmetry
about spin axis is maintained and extension rate
along all the three axes when they are equal

dl ,d2 ,d3 =	 Principal axes of the spacecraft
n	 w	 A

di ,d2 ,d3 =	 Unit vectors along the body principal axes

-vi;.-
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dm	 = Elemental mass

F1	 = B/222

C/o4F2	 =

f(t)	 = i(t)/I(t)

gC	 = Gravitational acceleration at the earths surface

h1 ,h2 ,h3	= Angular momentum components in the body axes

1121 2'13	 = Instantanious values of principal moments of inertia

I1*,12*,13	 =
Nub principal moments of inertia

I	 = I1 (t) = I2 (t) for symmetric deployment

K	 = (1 
3
-1)/1 = constant for rigid spinning spacecraft

k	 = Gravitational constant for earth

L	 = Angular momentum of hub about paint Q

=
mi/Q

Angular momentum of control mass with respect to
point Q

zV 12213	 =
Boom lengths along the principal axes 1,2,3
respectively

M	 = Mass of main part of spacecraft

m	 = Boom end mass

ml ,m29 m3	 = Boom end masses along 1,2,3 principal axes
respectively

m15 m2	 = Control masses for asymmetric deployment

N	 = Gravity torque

N12N2'%N3	 = Gravity-Gradient torque components

p	 = 2mc2+2m3c2

Pi	=
2mc2



I	 I	 ^	 I	 I	 i	 I

t
q0* =	 Constant appearing in the solution for angular

momentum for torque free system

R
i

-	 Geocentric position vector to hub center of mass

R Radius of orbit for symmetric deployment

Rc -	 Geocentric position vector of composite center of
mass

=	 Position vector of control mass ml referenced torl
Point Q

r =	 Position vector of control mass m	 referenced to
22 point Q .

rc =	 Position vector of composite center of mass
referenced to point Q

r =	 Position vector to elemental mass dm referenced to
point Q

s =	 Laplace Transform, variable

t -	 Time

x =	 Coordinate of the control boom end mass m2 along the
d1 axis

j	 z =	 Coordinate of the control boom, and mass ml along the
d3 axis

'-	 a:.	
^.

(m3-Q)/Q (spin factor)

Y =	 Nutation angle

w
i

=	 Angular velocities about 1,2,3 axes respectively
(i = 1,2,3)

SZ =	 Orbital angular rate

gy p* =	 Constant appearing in the solution for angular
momentum for torque free system

_	 ^0*+a3(0)

4

C.
 1=

i	 h

4'.	 I	 Y

^b



oi3 O2 , 03	 = Euler angles

u	 = 4mc2

ui	
= mi(M+m2)/M+Em)

42	= m2 (M+ml)/(M+E M)

U3	
- -m1m2/ (M+Em)

Q	 = Moment of inertia dyadic of satellite for symmetric
deployment

O0	 = Moment of inertia dyadic of hub for asymmetric
m	 deployment

•	 = Indicates differentiation with respect to t

(0)	 - Indicates initial. conditions

Subscripts

Q
	 = reference point taken at hub center of mass

^x^
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I. INTRODUCTION

A number of spacecraft have long telescoping appendages. These

appendages might be on-board antennas which must be extended in

orbit after the initial injection sequence. The dynamics of such

spacecraft has been discussed in the recent literature in the

absence of external disturbance torques. 1 The purpose of this study

is to determine the effects of gravity-gradient torques during the

boom deployment maneuver.

The first part of the current study will examine the effect of

the gravity-gradient torque when the telescoping booms are deployed

in pairs along the spacecraft principal axes. Possible use of such

a deployment maneuver for detumblin.g a spacecraft has been examined

in a recent paper. 2 From an application of Lyapunov's second

method. (using modified forms of the rotational kinetic energy as a

Lyapunov function) sequences of boom extension maneuvers r_aa be

determined so that the spacecraft will approach either of the two

desired fia:Lal states: chose to a zero inertial angular velocity

state, or a final spin rate about only one of the principal axes.

This study did not consider the effects of external torques.

For the special case of a gravitationally stabilized satellite

librating in the orb::t plane, the effect of gravity-gradient

during the deployment maneuver has been studied previously. 3 An

approximate series solution has been obtained to simulate the dy-

namics and the results compared with those of numerical integration.

z
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: I i

in the current study the non-linear equations of motion for a

spinning spacecraft •;nzluding the effects of gravity-gradient

torques are developed and these are solved numerically. For the

special case of a symmetric spinning ri gid spacecraft the stability
CD

chart previously developed can be used to study the system

behavior.4'5

3.n, the second configuration studied here, the system is

assumed to consist of a central hub and one or two control masses

offset from the principal axes. The dynamics of such spacecraft,

in torque free space, has been discussed in the recent literature,6-7

r	 Reference 6 has examined the feasibility of a movable mass control

devise, for detumbling a large space station where a single internal.

S

mass is constrained to move along a linear track. In Ref. 7 a

control law for the boom mass position is obtained such that a

quadratic cost functional involving the weighted components of the

3	 angular velocity plus the control is minimized when the final time

is unspecified. in order to evaluate the gravity torque effects

an expression for the torque based on asimilar procedure adopted in

Ref. 8 is developed. The complete non--linear equations of motion

with the gravity torque are obtained and the influence of the
{

gravity torque due to asymmetry is illustrated.

tl
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I1.	 SYMMETRIC DEPLOYMENT

a.
A.	 Eulers Equations

In the first configuration the booms extend along the principal

axes of the spacecraft as shown in Fig . 1.	 It is assumed that the

booms are massless and perfectly rigid.	 Using vector cou •?onents in

the dl ,d 2d 
3 
reference frame the Euler's moment equations with

time varying moments of inertia are

Ta	 W W	 (I	 N
1	 3 2	 2	 3	 1

h	 I	 N
2	 1 3	 3	 1	 2

h3
	

W 2 W I (11 	I2) 	 N3

where hi	 I W	 (1	 1,2,3)	 1,	 1 (t) are the principal moments

of inertia, W are the components of the inertial angular velocity
i

in the d d d Niframe and	 . are the external torque components
V 2' 3

about the center of mass.	 In this analysis all the external

torques of the system except the gravity-gradient torque are

neglected so that N	 represent the gravity-gradient torque components.

B.	 Reference Frames

Equations (1) will be expanded here in terms of the coordinates

and unit vectors defined by Figs. 2. and 3., which together

establish an orbiting reference frame and three attitude angles

O1 relating body-fixed uiiit vectors dl ,d
2 d3 to 

the unitO1, 02, 03 

vectors fixed in the orbiting reference frame a,,a
21 

a
3'	 P l" 02' 03

-3-
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correspond to three successive positive rotation$ about the vectors:

a1 , b 2' c 3 , respectively. Specifically, unit vector a l is directed

along the radial line from the earth to the satellite mass center 0

(local vertical.), unit vector a 3 is directed along the trajectory

binormal (normal to the plane of orbit) and a 2 is defined to make

al, a
2 9'
	 a right-handed orthogonal triad. We further assume

that the center of mass of the system moves in a circular orbit, so
^

that a2 is along the path of the trajectory.

The transformation from the principal body axes reference

frame to the orbiting reference frame with the chosen 0l , 02' 03

Euler angle sequence, becomes, after combining the three rotational

matrices,
i

a1 c0 2 c0 3	 7c02s03	 s02	 d1

^	 r

a2 = cC1s03+SOIso2c03 :cO1c03-s{3ls02s0 3 :_selc42 d2	 (2)

^	 l	 4

a3	 sOls0 3-c01s02c03 's01c0 3+c01s02s0 3 ' c0 1c02 d3

where positive angles correspond to rotations in the positive

right-hand sense as illustrated in Fig. 3. "s" represents the sine

function and "c" represents the cosine function.

By examination of Fig. 3, the expression for the inertial

angular velocity, m, of the satellite in a circular orbit, can be

written down as

W = 03c 3 + 02b2 + 01al + SZa3	(3)

where n is the orbital angular rate. From consideration of the

4

^m
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5

(4)

(5)

S '

f

individual Euler angle rotations and Eq. (2) the following rela-

tionships between the various unit vectors can be developed:

c3 = d3

b2 = sOdl+c03d2

al = CO2co3d1-c02se3d2+so2d3

a3 = (so 1SO3--c01so2CO3)dl+(s01c03+C01so2so3 ) d2+ceICO2d3

After substitution of Eqs. (4) into Eq. (3) the inertial angular

velocity components in the body axes can be expressed as follows:

^1 = 0
2s03+S2 (so Iso3--cO1SO2co3)+01CO2c03

w2 = a 2 co34Q (so 1ce3+cOlso2so3)-O1co2s03

m3 = 03iQC01 CE) Z-01s02

C. Gravitv-Gradient Torque

The gravity-gradient torque N about the satellite mass center

0 is given by 

N= Lk
3 al x0 a-

where

k = g0 R02

with g0 the gravitational acceleration at the earth ' s surface and

R6 the radius of the earth. al is the unit vector along the local

vertical, a is the inertia dyadic about the satellite mass center

and R is the orbit radius. For a satellite in a circular orbit,



i

i
hF

li

6

k3 = a2	 (7)
R

The expression for al from Eq. (4) is substituted into Eq. (6) and

the body reference frame is chosen as a set of principal axes so

that 0 is diagonal. Then the components of the gravity--gradient

torque in the body frame are:

N1 3k (I2-I3 ) ce2se2SO3
R

N2 = 33( I1--I3 ) c42sa2ce3
R

N3 = 
3k( I1-I2)(ca2 ) 2 CO s©3	 (8}
R

D. Non--Linear Equations of Motion

Equations(5) can be solved as a set of three simultaneous

equations for O1 , 02 and B3 to yield:

91 = (WI CE) 3-m2SO3+QcdIso2)/cp2

©2 = (W1s03+w2c03-SZsQ1)

e3 = (m3ce2+w2 so2 so 3-W I CE) 3 SE) 2-SZCO 1) /ce 2	(9)

After substitution of Eq. (S) into Eq. (1) the following non-

linear equations of mntion result.

= { W w (I -I) - I W 3k(1 -I )co s0 so }/I1	 3 2 2 3	 1 I R3 2 3	 2. 2 3	 1



A

W = (w W- } - I	 3k(1 -I )c6 s0 c0 1/1
•	 2	 1 3 3 l	 2w 2	 R3 l 3	 2 2 3 2

'	 3k	 2
w3	 {w2w1{II I 2 ) ~ I3w3 + 

R3
{I1-I2)(c$2) c0 3sQ3 )/I3 	(10)

Equations (9) and (10) are the complete non-linear equations of

motion for the system. These are solved numerically as a system of

1	
six first order differential equations.

E. Motion for Small Out of Plane Euler Angles

For an initially symmetric satellite, if the mass symmetry

(about the spin axis) is maintained during deployment, the

equations of motion reduce to:

hI+b(t)h2 = h0
0 

b (t)1 13ce2so2so3

!	 312
h2-b(t)hl = - h b(t)I I cp2so c03 	(11)

0
I

_	 J

h3 = h0 = constant

where

j	 Il(t) = I2 (t) = I(t)

i	 I -I
b (t) - 3h0	 (12)

..	 3

To study the stability of the system for small perturbations about

the spin axis we examine the equations of motion assuming that

0	 0 are small (but not a which reflects the spin). Itf 1^	 (102	 933

k	 p

a



	
i
	 I	 I	 I	 I	 i

8

y

^n

should be noted that the angle between the normal to the orbit

plane and the body 3 axis is a function of 
01 

and 42 (see Fig. 3).

Under these assumptions, the expressions for the inertial angular

velocity components, Eqs. (5), become:

9	 W, = (02+5201 ) sG j+(el-n02 ) c03

2'=  (0
2+SIOI ) c03-r(01-5202 ) s03

	

t.	 m3 = 0
3-1.12
	

(l3)

Eand the corresponding components of inertial angular acceleration:

m1 = (0 9+5201-0301+ae203 )so 
3 

+(G 
I 
-ae 

2 
+0 

3 
a 2 + 0103) c03

.	 .	 .	 . .	 .	 .	 . .	 .
m2 = (02+5201-0301"Z0203 ) c03-(OZ-M2+63824-no103 )SG 3

w3	
0 3 	(l4)

	

(	
Substitution of Eqs. (12), (13), (14) into Eq. (11) yields the

equations governing the motion in which 1011, l02' ;remain small as:

Ai cos 03 + AZ sin 03 = 0

AZ sin 03 - A2 cos 03 = 0	 (l5)



5
b•

3

9

I
i

i^

l^

5:
E

1

and

f(t) - z(t)/z(t)

In general these coupled equations cannot be solved in closed form.

However the system behavior can be studied with the aid of the-

stability chart previously developed for a symmetrical spinning

satellite. 4,5

F. Stability Chart

Since Eqs. (15) and (16) represent the equations of motion

for a spinning spacecraft for which the principal moments of

inertias are functions of time, these equations would also represent

the equations of motion for a spinning spacecraft when the principal

inertias are not functions of time, provided the terms due to time

varying moments of inertia are modified so that:

I -I
f (t) = 0, b (t) = b = 3z 

h0 = constant1

3

The modified equations are (under the requirement that Al=A2=0)

6l+(b+G3 -SZ)OZ-#-Q(b+0 3 )01 = 0

2
0^-(b+A3-n)pl+n(b+(E3)OZ+ ^^ b0 2 = 0	 (17)

3

Observe that 03 is also a constant. We now define two important

parameters, K, an inertia ratio and , a, a spin factor as follows:

a = p3/S2 =
	

3-0)/n	 (18)

ii
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With the aid of Eqs. (18), the parameter b can be written as

b = Ka3 = KS2(a+l)

After introduction of these parameters Eqs. (17) become

@1+52 {K(a+l)+(a-1) } 0 2-19 (K(a+l)+a} 01 = 0

02-S2 (K(a+l)+(a-I)} 01+522 {K(a+1)+a} 0 +3KQ 20Z = 0
	

(^.9)

If we take the Laplace Transforms of these two equations, the

subsidiary equation can be arranged as follows-

s 2+S22 {K(a+1)+a} 	 Sa{K(a+l )+(a-1) }s	 01(s)

-Q{K(a+l)+(a-1) }s 	s2 4Q{K(a+l)+a} +30	 02(s)

s01(0)+01(0)+S2{K(a+l)+(a-I)}42(0)

_

sot(0)+02(0)-52{K(C+l)+(a-l)}01(0) 	 (20)

where 01 (s), 02 (s) represent the Laplace Transforms of 0 1 and 02,

respectively, and 01 (0), 02 (0), Ol (0), 02 (0) are the initial

conditions.

The stability of the system can be established by examining

the characteristic equation associated with Eq. (20) which is of

the form:

s4-Bs2+C=0

where



f

2iz2 - 
-[{K(a+3.)+a} + 2 {K(a+l) + {a-].)) 2 + I ]

C = {K(a+l)+a}2 + 3K{K(c+l) + a}
R

For stability, the roots of the characteristic equation

2
s ue ± 2" ^2) -C,	 (21)

must not have a positive real part. Two symbols F 1 and F2 are

defined as:

F = $	 (22)
l 222

F24SZ

A brief study of Eq. (21) indicates that the condition under which

there will be no positive real parts are:

(1) Fl < 0

(2) F2 > 0

(3)
(F1)2 - F

2 > 0

To obtain numerical results, the variation of the quantities

Fl , F2 , (F1) 2 - F2 were plotted in the a, K plane. The boundary

of the stable and unstable regions is established and the results

are illustrated in Fig. 4. The unstable regions are indicated by

the cross-hatch marks. This stability chart has been previously

i1
i
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obtained by Thomson (Ref. 4) and Kane (Ref. 5).

G. Analytical Solution for Euler Angles for Symmetric Extension

Without Gravity-Gradient Torques

The equations of motion for a spinning symmetric satellite

with telescoping appendages in torque free space under the assump-

tion that 101 1, 102 1 are small are obtained from Eqs_ (9) and (11)

as:

h1+b(t)h2 - 0 (23.a)

h2-b(t)h1 = 0 (23.b)

0	 go	
= I(t)

cos 03 - 
I{t) sin 0

3 (23.c)

h1 h2
@ +SZO	 = 

I(2	 1	 t)
cos 0 

3
sin 0 

3 
+ 

I(t)
(23.d)

03 = m3-0	 (23.e)

The solution to the first two o f the above equations has been

previously obtained as:l

t
h1 = q0* cos ( o b(t)dt + *0*)

t	 (24)

h2 = q
0* sin ( f b(t)dt + ^0*)

0

where q0* and *0* are constants depending on the initial conditions.

For linear extension rates and under the assumption that the masses
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emanate from the center of mass of the spacecraft, the instantanious

moments of inertia for symmetrical deployment become (see Fig. 1):

11 = I2 = I(t) = Z* + 2mc2t2 + 2m3c3
2
 t2

(25)

I3 (t) = I3* + 4mc2t2

where

Z1 - i^2 =ct, ml =m2 -m

(2G)

Z3 = c 
3 
t

Z  X2, 
Z3 

are the distances of the end masses ml , m2 , m3 from the

satellites mass center 0, respectively, c the extension rate along

the 1, 2 symmetry axes, and c 3 the extension rate along the 3 axis.

Let

u = 4mc2

p = 2mc2 + 2m3c32

	
(27)

so that

I(t) = 
I* 

+ pt2

I3 (t) = I3* + ut2

	 (28)

t	 t I (t)-I(t)

X
b(t)dt = I

3
 (01(t)h0 dt

Equation (24) can be written:
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hl (t ) = q0* cos 
h0 

tan71 
t	 _ h0 tan I 

t	 + ^0*

1*p	 z*/p 	 13*u	 3
*/u

29)

h2 (t)	 q0* sin 
h0 

tan-1 t	 ha tan71 t ^,0

*p	 */p	 l3*u 	
z3lu

where the constants q 0* and ^ 0 * are related to the initial condi-

tions as follows:

q0* = h2 .. (0) +h2 (0)

-1 h2(0)	

(30)

^'0* = tan hl(0)

After integration of Eq. (23.0,

h
0 (t) =--

0
— tan-

I	 t	 -- at + 0 (0)	 (31)
3	

3*11	 3*/u	
3

*where 03 (0) is the initial condition at t = 0. Equations (31) and

(29) are then substituted into Eqs. (23.c) and(23.d) with the

result:

*	 h
0I-no2 = q^:_ 2 cos 0 tan7l t - at"0*+03(0)

1*+pt

(32)

	

*	 h
02+201 = q0 ' 2 sin 0 tan-1

	
at+*0*+03 (0)

1*fit	 V	—,*–p(, -1

The variation of parameter technique for solving a system of



first order differential equations is now applied to solve

Eqs.	 (32).	 We seek a solution, of the form

s. 0(t) = j(t)u(t) (33)

or

where the fundamental matrix, ^i(t)> is given by:

_ *(t)	 cos at	 sin at

e (34)

- sin at	 COs at

4

^ and the vectors u(t) and 0(t) are

_	 t

u(t)	 T	 1 (s) g(s) ds + C (35)

n .
Cl°o(t) ^	
o

In Eq.	 (35), &(t) represents the right --hand side of Eq.	 (32) and

 C is a Constant vector.

q *
t cos as -sinSas	 a

h
cas	 Q	 tan 1

s2
I*+Ps I*P I*IP)

^.
u(t)

q *
^

h
^	

1
^sin as	 cosns sin	 tan

^}d	 Z*+psz p

^W
ds + C (36)

- sas

m where

4	 t:

r

i

15
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°* 
+ p3 (0) (37)

The solution for el , aZ can be obtained'by first evaluating the

. integral. in Eq.	 (36) and then substituting this result into

Eq. (33) .

*2 h
°

_	
t$	 cosot	 sinot1 h0 sin {

tisP̂
tan	 + ^}^F,gip}

w 0	 -sinsat cosSZt
*

q°
^h0

h
cos {	 °

1*p
tan-l(	 t	 +	

}
l^

r -since	 + Cl

• (38)
7

-cosO	 + C2

E
°- Cl, C2 are constants• which can be related to the initial conditions

by

C1	
01(0)

(39)
C2 = 02(0)

From consideration of Eq. (38), the following conclusions can

be drawn:

(1) For small t /vl—*—/p , tan-1 (t/ I*/p) can be approximated by:

t/ l*/p , so that the frequency of oscillation is given by

h°/T* = 13*w3(0) /I*. This indicates that for high initial spin

rates oscillations will be characterized by a high frequency mode.
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(2) For t sufficiently Large, 
h0 

ta
-1 

tn 	 can be approximated

Ti P	 V,*IP

by a constant: h  2 . Ol and e2 are then periodic with a fre-

l^P

quency of Q (the orbital frequency).

The analytical solution developed is plotted in Fig. 5.a and

is compared with ntmerical integration, including the effect of

gravity-gradient, for an initial spin rate of 3 rad/sec. The

behavior observed is a confirmation of the above two conclusions.

As time increases the analytical solution becomes less valid due

to the accumulated effects of the gravity--gradient torques.

H. Numerical Results

The non-linear equations of motion (9), (10) are solved

numerically. The numerical integration is carried out using a

NOVA-840 computer, with RKGS subroutine. 9 The subroutine RKGS

solves the initial.-value problem by means of a fourth-order

Runge-Kutta formula using the modification due to Gill. The

integration procedure is stable and self-starting; that is, only

the functional value at a single pravious point is required to

obtain the functional values ahead. For this reason it is easy to

change the step size at any step in the calculation. The entire

input of the procedure is: (1) lower and upper bound of the

integration interval, initial, increment of the independent

variable, upper bound for the local truncation error; (2) initial

values for the dependent variable and weights for local truncation
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errors in each component of the dependent variables; (3) the number

of differential equations in the system; (4) as external subroutine

sub-programs, the computation of the right-hand side of the system

of differential equations; for flexibility in output an output

subroutine.

To study the system for which loll, 
192 1 

remain small the

stability chart developed (Fig. 4) can be employed to analyze the

following cases of interest:

(1) Extension only along the '3' principal axis: A previous

study  in the application of telescoping booms for detumbling a

spacecraft, to achieve a desired spin about one of the principal

axes has suggested (based on a modified form of kinetic energy as

a Lyapunov function) extension of booms along all three principal

axes until the final desired spin rate is reached and then con-

tinuing the extension of the set of booms along the nominal spin

axis until the transverse components of the angular velocity ,

reach an acceptably small amplitude. 2 For extension of booms along

the spin axis only and for a symmetrical spacecraft it is clear

that in the stability chart the spin parameter, a, will remain

constant during deployment, while the moment of inertia ratio, K,

decreases. The value of K at any instant of time for this case is

given by
i

(T *-I*-P t2)
K	 3	 2	 (40)

4	 T*+plt
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where starred quantities represent the initial values and

pl = 2mc2

m = end mass

c = extension rate

From consideration of Eq. (40) as t becomes Large, K, tends towards

-1. In the upper-half of the stability chart, the stability

boundary, F2 = 0, tends toward K = -1 . 0 asymptotically. This

implies that for a wide range of spin rates commonly used, extension

only along the '3' axis could result in the system eventually

being driven to an unstable state. Typical examples of such

deployment maneuvers have been simulated and the responses shown in

Figs. 5.b,c; 6.a,b; 7.a,b; 9.a,b; and 10.a,b.

In Fig. 5.b the response of the w  and w 2 components of the

angular velocity with and without the gravity-gradient torque are

compared. The initial conditions, end masses, extension rate and

initial principal inertias are indicated in the figure. For this

case an initial (high) spin rate of 3.0 radjsec is assumed.

Clearly, the envelope of w  and w 2 with gravity-gradient torque

present shows the growth in amplitude after 250 secs. For this

case the response of the nutation angle (Fig. 5.c) indicates the

potential instability during extension after 250 seconds. Since

a = 2.9 x 10 3 here, this case can not be indicated in the regions

of the stability chart as plotted. However use of Eq. (40) shows

that for t > 12 secs, the value of K becomes less than -0.8.

r

1

i

i
j

T

i
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Figures 6.a,b and 7.a,b illustrate the responses of w1, w2

and notation angle for two different extension rates; c 3 = 4.0

ft/sec and c3 0.5 ft/sec, respectively, both with the same

initial conditions. ~ In either case, a = 1.0, and is a constant

during the extension maneuver. Initially K = 1.0. figs. 6.a and

7.a show that with the gravitational torque included, the w 2 com-

ponent increases in amplitude after an initial tendency to decrease.

After 60 secs for the first case (Fig. 6.b) and 250 secs for the

second case (Fig. 7.b}, the xiutation angle increases and almost

doubles its initial value within 280 secs and 500 sacs,

respectively. The time history of the slower extension case

(0.5 ft/sec) is indicated on a redrawn version of the stability

chart in Fig. 8. In this chart the horizontal dotted line parallel

to the K axis passing through a = 1.0 corresponds to the 0.5 ft/sec

extension rate discussed earlier in Figs. 7.a,b. The system

crossed the stability boundary at t = 39 secs, which corresponds to

approximately 20 feet of boom extension. It can be concluded from

Fig. 7.b that' although the system crosses the stability boundary

at t z 39 secs, the instability is not exhibited in the form of

the growth of the notation angle during the extension maneuver,

until about 250 secs, when the nutation angle begins to grow in

an exponential. fashion.

Two more cases of extension only along the '3' axis were

simulated, beginning in, the unstable region in the rigs-=t-half of
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the stability chart, that is the unstable region for positive K.

The responses for the two cases with extension rates of 4 ft/sec

and 0.5 ft/sec are shown in Figs. 9.a,b and Figs. 30.a,b respec-

tively. The responses are similar to the cases of Figs. '6 and 7.

Even for the slower extension rate of 0.5 ft/sec, no appreciable

increase in the nutation angle was observed as the system passes

through the unstable region for K > 0.

(2) Extension maneuver along all three axes

A previous study  on detumbling a randomly spinning spacecraft

using telescoping appendages had considered zero inertial angular

velocity as a final desired state of the system. The authors

using the rotational kinetic energy as a Lyapunov function had

concluded that the necessary conditions for asymptotic stability in

torque free space are satisfied for positive constant boom extension

rates. When the dynamics for symmetric extension with the

gravity-gradient torque is considered, it is observed that the

parameter a - (m 3_a)/Q eventually tends towards --1.0 for suf-

ficiently large time. If the same end masses and extension rates

were employed along all three principal axes, the inertia ratio K

at any instant of time would be given by

R = 
3 

Z	 (41)
I*+pt

where

y	u = 4m c2 ; m = end mass; c = extension rate
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t

Equation (41) suggests that for sufficie ntly Large time, K tends

towards 0.	 Although the point (0, -1) in the stability chart is a

afl boundary point, in practice, extension along all three axes with

x
the same end masses and extension rates could never result in the

system actually reaching this point.

Typical examples of such deployment maneuvers have been

simulated and the responses shows in Figs. ll and 12.a,b.	 In

Fig. 11 the system is initially in the stable region with

a(0) = 5.0 and K(0) = 0.6,	 The initial conditions are indicated
a,

in the figure.	 For this case the responses of the components of

the angular velocity and the nutation angle show negligible dif-

ference with gravity-gradient present or absent.	 The nutation

angle is observed to be a constant.	 The time history for this case

has been indicated in Fig. 8. by the dash-double dot curve

3 -
beginning at the poi--Lt (0.6,5).	 With the assumed extension rate of

;. 4 ft/sec and end mass of 0.01 .slugs, the system moves rapidly down

. the stability chart.	 It enters the unstable region for positive K,

at about 8 secs which corresponds to 32-feet of boom length.

a.
However it stays a.Lly very briefly in this unstable region

reentering the stable region again in about 10 seconds. Clearly
i'a

any such deployment strategy should ensure that the extension of

booms is not terminated in this unstable region.
a

Figs. 12.a 2 b show the response of a system initially in the

.	 unstable region with a(0) = 5.0 and K(0) _ -0,6. Mere a small

w0	 '

k1w

 !fib



difference in the response of col , w2 , w 3 was observed with gravity-

gradient present and then absent. Within 630 secs-of response time

this difference is not noticeable within the scale shown in the

figure. However the response of the notation angle (Fig. 12.b)

shows a slight growth for the case with gravity-gradient present

after about 430 seconds. The time history for this case is

indicated by the dash-dot curve beginning at the point (--0.6,5) in

Fig. 8. It is observed that the system tends to the point (0,-l)

from the left. The system briefly passes through the narrow strip

of the stable region close to the K axis in the left--half of the

stability chart, although never entering the stable region elsewhere

even for the slow extension rate of 0.1 ft/sec used.

(3) Extension along the 1,2 principal axes

A number of spin-stabilized satellites have long appendages in

the plane of rotation. Hughes 
10 

has studied the dynamics of the

satellite during the deployment maneuver assuming torque free condi-

tions, For symmetric extension along the 1,2 principal axis only

the spin parameter, a = (m3-0 /9, tends towards --1.0 for
sufficiently large time. The inertia factor K at any instant of

time during the deployment maneuver is given by

i *+pt2-1*- u t2
K = 3	 2	

(42)z*+2t2

23

where
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^^ a u = 4 mc2 ; m = end mass; c = extension rate.

^- From Eq. (42) it can be concluded that, given sufficiently large

time the factor K tends towards 1.0.	 So one can expect that under

suitable conditions extension only along the 1,2 principal axes

would eventually drive the system to the point (l,-1), which lies

• in the unstable region for positive K in the stability chart

(see Fig. 4).

Two typical extension maneuvers for this case have been

simulated and the responses presented in Figs. 13.a,b and 14.a,b.

Fig 13.a shows the response of the transverse components of the

angular velocity, for a system initially in the stable region;

K(0) = 0.4 and a(0) = 5.0. 	 The initial conditions are indicated

in the figure.	 It is seen that the w2 component for the case with

gravity-gradient torque, begins to increase after about 270 secs.

The nutation angle (Fig. 13.b) likewise begins an exponential type

i.
growth at about the same time.	 The spin, wis not affected since

the gravity-gradient torque about the spin axis vanishes for

symmetric deployment and the responses with or without the gravity-

gradient torque are identical.	 The time history trajectory for

this case has been indicated in Fig. 15 by the dash-double cross

curve beginning at the point (0.4,5). For the assumed extension

rate of 0.5 ft/sec and an end mass of 0.01 slugs the system crosses

into the unstable region for positive K after 87 secs which

r corresponds to about 44 feet of extended boom.	 Although the
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;l

system enters the unstable region after 87 secs, instability is not

exhibited in the form of growth in the nutation angle until about

270 seconds.

Another case of deployment along the 1,2 axes beginning in
i

the unstable region {a(0) = 5.0, K(0) = -0.6) has been simulated

and the results presented in Figs. 14.a,b. A slow extension rate

of 0.1 ft/sec has been assumed for this case. Fig. 14.a shows

that with the gravity-gradient present the w 2 component becomes

positive at about 500 secs and continues to grow further, whereas

the response without gravity-gradient torque shows that w 2 tends

towards zero. Fig. 14.b shows that with the gravity-gradient

torque the nutation angle begins to grow after 360 seconds. The
3

time history for this case is indicated in Fig. 15. by the dash-cross

curve beginning at the point (-0.6,5). The system enters the

stable region at t = 74 secs, leaves it again and reenters the

unstable region for positive K at t = 179 secs. Although the

system is moving through the unstable region for t > 179 secs, it
3

takes about 360 secs before the instability is indicated as a

pronounced growth in the nutation angle.

i^

01. 11

r

r
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III. ASYMMETRIC DEPLOYMENT

A. Configuration

The system is assumed to consist of a rigid central hub

(Fig. 16.a) with center of mass at point Q and one or two extendible

telescoping booms with end masses m 1 and m21 respectively. The mass

along the boom lengths is assumed negligible in comparison with the

end masses. It is assumed that, in general, the two booms will be

offset from the hub principal axes with the coordinates a, b, c, d

indicating the amount of offset. Previous studies have considered

this type of configuration for detumb ling a spacecraft. 6 ' 7 It has

a-
	 been pointed out that for three axis optimal, control more than one

offset 'Doom (orthogonal to each other) is required and that for Lxo

axis optimal control a single offset boom is sufficient.

3.	 S.	 Development of Gravity Torque Components.

The general configuration of the two mass offset system is

shown in Fig. 16.b. Whenever there is an asymmetric (internal)

mass motion in a spacecraft system, the position of the composite
s	 .
c.	

center of mass and the orientation of the system principal. axes

'	 will vary with time. The choice of the composite center of mass

of the system as the reference point in the body, Leads to time

varying moments of inertia in the rotational equations of motion.

This problem can be circumvented by choosing the vehicle (hub)

center of mass as the reference point and the hub principal axes

as the body reference frame. In Fig. 16.b, d l ,d2 ,d3 represent the

-26-
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hub principal axes; Q, the hub center of mass; A, the geocentric

e
position vector of the hub center of mass; R c the geocentric posi-

tion vector of the composite center of mass, C; ml and m2 are the

control masses whose position vectors relative to point Q are

indicated by r  and r2, respectively. r  is the position vector

of the composita center of mass referenced to point Q.

If r represents the vector from point Q to an elemental mass

dm, then the torque applied by gravity about the hub center of

mass is 

Q ^ rx _kR+r dm

IR + r

where k = soRC2 with gC the gravitational acceleration at the

earth's surface and R0 the radius of the earth. Eq. (43) can be

expressed as:

NQ 
k3 

x	
r dm	 (44)

R	
l+r R 3

A2

where and the integration, is taken over the total mass.

Expanding the denominator of the integrand in a binomial series

provi des the approximation 

(43)
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(45)
•

NQ = R x	 ^. - 3 r
R2 

RR dm

;;

in which terms above the first degree in (R • r/R2) have been

neglected in comparison with first degree terms. This approximation

is justified by the observation that the satellite dimensions are

small in comparison with the orbital radius. The main body can

be treated as a continuum and the offset masses treated as discrete

particles so that the integral in Eq. (45) can be divided into an

E

integral over the main body and a summation for the end masses.

Equation (45) can then be written as:
1.

'-	 N - p̂ 3
	 r l-3 r R 

dm+_ 

	 x ira	 R2	 R3
body

2 _	 3 r	 R
x E r. 1 -	 m.	 (46)

i=l i	 R2

By definition of the center of mass of the hub frdm is zero.

Eq. (46) then becomes

2 _	 _
- 3k a' .0	a' + k a' x E m.r . 1- r	 a'	 (47)

Q R3 1	 m	 l R2 1 i
-1 1. ^	 R i	 1

where

ai - unit vector along the geocentric position vector of the

wain body center of mass.

R - distance of the main body center of mass from the center

of the earth.
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Q- moment of inertia dyadic of the main body.
m

Sere it is important to observe that in general the factor E miri
i

does not vanish. Equation (47) is an expression for t 1ba gravity

torque about the hub center of mass for a system with two offset

control masses. Sere it will be expanded

torque components in the hub reference fr,

configuration shown in Fig. 16.a.

We now make the assumptions that the

above can be considered equivalent to the

to yield the gravity

ame for the specific

A

unit vector ai defined

unit vector along the

composite system local vertical and that the distance, R, as

defined above is equivalent to the orbital radius. These

assumptions are justified by the fact that for the choice of

control masses as one percent of the satellite mass, 6 the dis-

placement between the hub center . 'of mass and the composite center

of mass would be extremely small in comparison with the orbit

radius. It is then possible to make use of the same set of Euler

angles (Fig. 3; as defined for the symmetric deployment in

Section. TI, now relating the orbiting reference frame (Fig. 2) to

the hub principal axes reference frame, d l,d21 d3' The trans-

formation between these two reference frames is given by Eq. (2)
A

and the vector a' is obtained from Eq. (4) and is given as follows:

w	 A	 A	 A

ai = cD2c0 3d1-c02s0 3d2+s02d3	(48)

{;
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For the two mass system shoran in Fig. 15 the control mass position

vectors are giver. by:
A	 A	 A

ri a di + b d2 + z d3

A	 A	 (og)
r2 x d I + c d 2 + d d 3

Equations (48) and (49) are substituted into Eq. (47), resulting in

the following gravity torque components

NIA3 
(IZ-T3) ce2s02s0 3 + R2 [m'{-zcD2s03-bse2}

+m^{ dce2se3-cs92 }] - A [ml(ac02ce3-bc02sa3
R

+zse 2)(-zce2se3-bsed + m2(xc(32c03-cce2sa3

+dse 2) (-dce2so3--cs02)]	 (50.a)

N2 R3 (Il-I 3} ct^ 2 sC 2 c83 
+ R2 

[ml {-zce2c03+as02}

+m {--dc0 ce +xs0	 MLk [ (ace c0 -bcQ s02.	 2 3	 2	 R3	 2 3	 2 3

+zs(32) (as 02-zce2c0 3) + m2(xce2ce3-cce2s03

+dse 2) (xse2-dc02CO 3) ] (50.b)

A
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':	 N = 3k (Y -I ) (c0 ) 2 co s0 +	 jm {bc0,c0 +ac0 s0 }
s	 3	 R3	 ^. 2	 2	 3 3	 R2	 I	 c 3	 2 3

+m { ,-c4 c0 +xc0 sO }] - 3k [ (ac0 c0 -bce s0

	

2	 2 3	 2 3	 R3 -1 	 2 3	 2 3
r

+zs02) (bc02c©3+acG2so3 ) +m2(xcOZc03-cce2s03

	

+dsO2) (cc@2 c0 3+xce2 s0 3 )]	 (50.c)

C. Equations of Motion

The complete equations of motion with telescoping type control

booms in the presence of gravity torque are developed. The torque

free equations of motion for the system have been previously

developed 7 and this development is briefly reproduced here, after

modification to include the gravity torque.

The generalized vector equation of motion for such a system

containing a central hub and moving connected masses can be

written:ll
' 9

n

NQ = L  + E m  (ri/Q ) x R ,	(51)i-1
where NQ refers to the gravity torque, Q refers to the reference

point which is assumed to be at the center of mass of the hub, R

is the inertial acceleration of the reference point and r i/Q is the

position vector of mass, mi , with respect to point Q (Fig. 15.b.)

It should also be noted that 
c 

is the position vector of the com-

posite system center of mass whose position will change with

the movement of ml and m2 . The composite c.me is assumed to move.
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in a circular orbit, and it is assumed that coupling between orbital

(translational) motion and the attitude dynamics is a higher order

effect.

The angular momentum of the system measured with respect to

point, Q, has three components,

LQ ! 
L
b/Q + LM,/Q 

+ Lm 
2/Q
	 (52)

where Lb/Q describes the momentum of the hub, and Lm/Q describes. 

the momentum oL mass mi . The hub momentum may be expressed in

terms of the hub principal moments of inertia and angular velocity

components as:

-b /Q Lp1dl + I
2W 2d2 + 73m3d3	(53)

where di, d2 , d3. are unit vectors along the hub principal axes,

and

Lm_/Q - m
i {ri x r'i)	 i = 1,2	 (54)

where r  describes the position of m.. relative to Q(ri/Q).

We will now consider the inertial acceleration of the

reference paint (Fig. 16) .

R = R -- r	 (55)c	 c

Tinder the assumption that coupling between translational and

rotational motion can be neglected, Rc = 0, and

R -- - r	 (56)
c

From the definition of the system center of mass we can relate
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i

'i'i + m 2 r 2
Rr- M+Em

where M represents the huh mass and

Em = ml + m2

After substituting Eqs. (53), ( 54) and (57) into Eq. (51) the

following rotational equation results:7

Lb/Q + 41 (
rl x r1 ) + u2 (r2 x r2)

+ u3 (r1 x r2 + r2 x rl) - NQ

where

pl = m1 (M + m2) / (M + Em)

11 2 = m2 (M + ml) ! (M + Em)

U3 = - mim2 / (M + rm)

Eq. (58) is then expanded using the familiar relationship,

= d^	 +mx—
Lb/Q d t body	 ^`bIQ

and for the specific geometry of Fig. 16.a,

_	 ^	 A

rl=adl + bd2+zd3

r2 W x dl +c d2 +d d3

The acceleration terms r  (i = 1,2) may be calculated by using

(57)

(58)

(59)

(60)

(61)
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t

y.r;

I.

;a

.;V

ri = w x (w x ri) + w x r  + 2w x (riIbody

+ [ri]body

together with Eqs. (60) and (61).

The complete nonlinear equations of motion are obtained by

expansion of Eq. (58) and substitution for the gravity torque

components from Eqs. (50.a), (50.b), and (50.c).

Ilwl + (13-12) w 2w3 + µ l [(b2+z 2) w  - abw 2 - azw 3 - azwlw2

+(b 2-z 2) w 2w3 + abwiw3 + 2zz W  
+ bz (w32 - w22) + bz]

+11 2 [ c2+d2) wl --cxw 2 - dxw3 - dxw lw2 + (c2-d2) w2w3

+cxwlw3 - 2cxm 2 - 2dxw 3 + cd (w3
2
-w22) ] + u3[2(bc4-dz) W 

-(ac+bx) w2 - (ad+xz) w3 - (ad+zx) wIw 2 + 2(bc-dz) w2w3

s
+(ac+bx) w1w 3 + 2dzwi - 2bxw2 - 2xzw3 + (bd+cz) (w 3 -w 2 }

+ cz]	
R3 

(I2-z3)c62s0 2s0 3 + R2 (ml {-zCe2s03-bs02)

+M {-dc82s$3-cs02}] - 
33 

[mi (ac0 2cQ3 bc02s03
R

+--So2) (-zcO2so3-bs02) + m2 (xc02c03- cce2SO3

+dse 2) (-dcO 2sO csO2)]
	

(63 . a)
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•	 2	 2	 •
I2^°2 + (I

1-I3) w 3wl -
 III [abwI - (a +z ) w2 + bzw3 bzwlw2

+abw 
2 w3 

+ (a2-z	
3

2) w w 	 - 2zzw2 + az(w 3 2-0312) + az1 - u2[cxw1

-(d2+x2)12 + cdn 3 - cdwlw2 + cxw2w 3 + (x2-d2)w3w1

-2xxr 2 + dx(w 32-w 12 ) 	 P 3 [ac+bx)wI - 2(ax+dz)m2

+ (bd+cz ) m 3 - (bd+cz ) w1w2 + (ac+bx) w 2w 3 + 2 (ax-dz)w3wI

-2(ax+dz ) (a
2	 3	 1

+ (ad+=)	 (w 2_03 2 ) + xz-zx1

(II3} c0 2sO
2

c0 3 + R2
	 ml

 {-zc0 2c0 3 + as0 2 }

R

k +m2 { dc02 c03 + xs0 2 }I - 33 [ml(ac^2c03--bc02$Q3

+zso2) (as92-zc02 c0 3} + m2 (xc02c03 cc02s03

+dsO 2)	 (xso2 dco2co 3 ) 1	 (63.b)

13m3 + 
(12 1

I )wIw2 - ul[az^ 1 + b zu 2 - (a2+b2) 3

+(b2-a2)w
1
w2 - azw2w 3 + bzw 3w1 + UL 	 + 2bzw2 + ab(w12-w22)I

-u2 [6:u
1
 + cd^	 - (c 2 +X2

3
 + (c2-x2 ) w^w 2 - dxw2w3

+cdw 3wl - 2^3 + cx(w12 - w2 2 ) + cxI - P3[(ad+xz)wI

+(bd+cz)12 - 2(bc+ax)w 3+2 (bc-ax)w1w2 - (ad+xz)w2w3

+ (bd+cz ) w3w1 + 2xzw 1 + 2czw 2 - 2axw 3 + (ac+bx) ( w12-0322)

+ b 1	 3 (I1 T 2 ) {c02 } 2c03s0 3 + R2 Cal {bco2c03

+ ac() s0 } + m {cc0 c0	 + xc0 s0 } 1 -	 3k [
m 

(a c0 c0
2	 3	 2	 2	 3	 2	 3	 R3	 I	 2	 3

- bcO2se3 + zs0 2 )	 (bc02c0 3 + acO2so 3) + m2(xco2c03

- cc02s0 3 + dsO 2 )	 (cc0 2 co 3 + xc0 2so 3 ) 1	 (63.c)
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Equations (9), which relate the Ruler angular rates to the angular

velocity components, together with the above Eqs. (63.a), (63.b)

and (63.0 are the complete non-linear equations of motion for the

two mass asymmetric system. Due to their complexity, no attempt

has been made to obtain an analytical solution.

D. Numerical Results

The equations of motion developed are solved numerically

using the RKGS subroutine outlined earlier in section II. In

Ref. 7 a control law has been obtained for the boom end mass

position such that a quadratic cost functional involving the

weighted components of angular velocity plus the control is

minimized when the final time is unspecified, assuming torque free

conditions.

As an illustrative example the system parameters and initial

conditions are selected from Ref. 7 for a large space station. It

is to be noted that the satellite mass and the control mass here

are 32 times larger when compared with. those used .in Ref. .6.

11 = 12 = I = 10.5 x 10 6 slug-ft 2	(1.42 x 107kg-m2)

13 = 15 x 10 6 slug-ft2 (2.03 x 107kg-m2)

M = 1.37 x 10 5 slugs (6.21 x 104 kg)

m. = 1800 slugs (26112 1bm)

a = 65 ft (19.8m), b= Oft (0m)

m1 (0) = 0.391 rad/sec, w 2 (0) = 0.0 rad/sec, m 3 (0) = 0.314 rad/sec.



In all the cases in this study only a single boom (Z boom) offset

from the spin axis has been considered. A specific example has

been chosen from Ref. 7 for which the Z boom control law is stated

as follows:

z + (0.314) 2 z = - 0.314 x 17.72 (kc IwI+kc2m2 }
	

(64)

where kcl and kc 2 are constants chosen based on optimal

control theory. 7 In this case:

kcl = - 3.92 2 kc2 = 9.56,

The solution to Eq. (64) with the initial conditions z(0) = 0,

z(0) = 0 for the torque free case is given in Ref. 7 as:

z(t)• = 17.72 {0.655 sin. 0.3141 + 0.417 cos 0.314t
(65)

-0.54x0.3141-e	 (0.417 cos 0.428x0.314t+2.056 sin 0.428x0.314t)}

In the first part of the numerical study the effectiveness of

the above control law in the presence of gravity torque is deter-

mined. Two cases of interest have been identified and the system

behavior for these two cases are compared with the behavior for

the torque free system.

Case.l: where the control law as given by Eq- (64) employs the

actual components of the angular velocity +w 1 , W2 , w 3 , in the

j	 presence of gravity torque.

Case.2: where the Z boom motion is according to the idealized

control, the controller using the angular velocity components for

37
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the torque free system. For this hypothetical case the Z boom

motion is input into the program as given by Eq. (65).

Figure 17.a shows the Z boom motion for Case.l by the dash-

cross curve, and for Case.2 by the solid line. It is seen from

Eq. (65) that the boom will experience a steady state oscillation

after the initial transient for Case.2. Observe that for this

case within 10-15 seconds the transient part of this motion is

removed leaving a remaining steady state oscillation. For Case.l

the Z boom motion amplitude increases after 40 secs and would

reach displacements of nearly 300 feet in 60 seconds (assuming

that much boom length could be extended).

Fig. 17.b shows the response of the w 1 component of the

angular velocity. When gravity torque is neglected the amplitude

of w1 decreases with time and becomes close to zero in about 20

seconds of response time, whereas for Case.l. and 2. the response

shows a markedly different variation with w  becoming as high as

-0.12 rad/sec and -1.5 rad/sec respectively within 60 seconds of

response. Figs. 17.c shows a similar behavior for the w 2 com-

ponent. For the case without the gravity torque 1w 2 I becomes

close to zero as Opposed to the large amplitude motion for Case.l

and Case.2. Figure 17.d indicates that w 3 is constant when

gravity torque is neglected, whereas for Case.2 the motion is

periodic over a mean value of 0.6 rad/sec. For Case.l, correspond-

ing to the actual Z boom motion, the w 3 response is somewhat



I	 I	 I	 f

39

f

similar to Case.2 until about 40 seconds after which it suddenly

increases rapidly. This sudden increase corresponds to the high

amplitudes of the Z boom motion. Fig. 17.e. shows the response of

the mutation angle. For all cases there is an initial tendency to

reduce this angle. However after 8 secs, with gravity—gradient present

T	 there is a definite tendency to exceed the initial value.

For a single boom offset system in Eq. (58) the term p1(rl x rl)

can be identified as the reaction torque due to the control, while

NQ is the gravity torque. The magnitude of the reaction torque for

the actual Z boom motion in the presence of gravity torque is compared

'	 with the magnitude of the gravity torque in Fig. 17.f.

From these responses it can be concluded that the gravity torque

has a profound influence on the system behavior. If the controller senses

Y
	 the actual angular velocities with the gravity torque present the very

E

high amplitudes of the Z boom motion would force the spacecraft to a

larger amplitude mutational state. If the idealized control is used

even though the response is a little better than the previous case the
J
1

results are clearly undesirable. These results indicate that with

1
	 gravity gradient present this method of control could be used for

only a very limited time period, after which the Z boom motion would

have to be terminated.

It was thought that the presence of a counter mass, such that the
r'
j	 composite center of mass would coincide with the hub center of mass for

the zero position of the Z boom, might improve the system response.

To study this configuration the Y boom mass, m 2 , was chosen equivalent

}	 to the Z boom mass and placed so as to maintain the symmetry of the

spacecraft initially when z = 0 (see Fig. 16.a).



T

Identical initial conditions and satellite parameters as used in

Fig. 17 were employed. The Z boom motion was assumed to be the

ideal motion based on the control law for the torque free system.

JL	 The Z boom motion and the nutation angle response are shown

in Fig. 1$.a. It is observed that with gravity tor que even in the

presence of a counter mass the satellite would achieve a very

large nutation angle reaching as high as 80 degrees after 39

seconds. When the gravity torque is neglected the nutation angle

s	
decreases initially and has almost a constant value of 2 degrees.

after 20 seconds. Fig. 1$.b shows the response of the components

of angular velocity. The decrease in the magnitude of the w3

component and increases in the magnitudes of the w1 and w 2 com-

ponents explain the high value of nutation angle at 39 seconds

1
observed with the gravity torque. The responses without the

gravity torque show a periodic motion for w 1 and w2 after the

initial transient, while w 3 remains nearly constant. This example

4.	 with a counter mass points out the undesirable response in the

presence of gravity gradient for the choice of parameters and

initial conditions used.

It has been pointed out in Ref. 7 that there is a residual

oscillation in the Z boom after the spacecraft has been detumbled

using the control sequence. To study the response of the system

in the presence of gravity torque, when the Z boom executes a sinu-

soidal motion the following equation is chosen to represent the

a•
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motion of the Z boom:

z = 4 sin 0.314t

a,

The responses with and without the gravity torque are shown in

Fig. 19.a,b. In Fig. 19.a we see the Z boom motion and the

corresponding nutation angle response. The initial conditions are
i

indicated. The nutation angle response with the gravity torque

shows periodic peaks reaching a maximum value. of 9 degrees,. while

intermittently reaching a minimum value of about 2 degrees. When

the gravity torque is absent the nutation angle is periodic over a

mean value of 5.5 degrees. The corresponding responses of the

angular velocity components are shown, in Fig. 19.b. In the presence

of the gravity torque w1 and w2 have intermittent peaks and troughs

while w 3 is oscillatory over a mean value of 0.55 rad/sec. The

responses without the gravity torque show that w  and w 2 are

sinusoidal while w3 remains a constant. The adverse effect of the

gravity torque during the boom motion is clearly seen.

A close study of Eq. (47) explains the substantial effect of

-	 the gravity torque observed in, all the cases described above. The
f

"	 presence of the term Emiri results in the gravity force on each

control mass exerting a torque about the hub mass center. Clearly

the torque resulting from this is an order of magnitude in r/R

-	 larger, than that which would result if the torque were taken

about the composite center of mass. Here it would be inappropriate

to call the torque as gravity-gradient torque since it is usually

as
;t

^b
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understood to mean the torque about the satellite composite mass

center due to differential gravity force acting on each element

of the body.

In Eq. (47) if we isolate the term

m1 km
2 kal x r1 + R2 al` x r2R2 

we see that even in the presence of the counter mass the vector

addition of r1 and r2 (if r  represents the position of the Z boom:

rAss and r2 the position of the counter mass) for the maximum a

displacement would be such as to make the above mentioned term

quite appreciable. This explains the undesirable response in the

presence of the counter mass.

From the previous cases studied it was concluded,that to improve

the performance of the system in the environment of the earths' gravity

either the control mass and/or the amplitude of the Z boom oscillations

have to be smaller. Further, the initial tendency of the mutation angle

to decrease even, in the presence of the gravity torque suggests that

the presence of suitable damping in the boom mechanism would serve to

diminish the undesirable large amplitude residual oscillations of the

Z boom, while maintaining the initial beneficial effect of the control.

Consequently two changes were made in the satellite parameters listed

an page 36, the new mass of the satellite M = 4258 slugs (6.21x10 4 kg)

and the new Z boom control mass m = 55.95 slugs (816 kg). Introduction

of damping in the boom motion would result in the control Equation (64)

being modified as:

d.

iq e

S
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Z + c (0.314) z + (0.314) 2 z = -0.314 x 17.72 {kciw17'kc2w2 I where

c is the damping constant. The constants kci and kc2 can be determined

for the modified satellite parameters as suggested in Ref. 7. They

were calculated to be:

kci = -3.3188, kc2 = 31.366.

The response of the system for this case has been plotted in

Figs. 20.a. and 20.b under the same set of initial conditions and boom

offset coordinates as used in Figs. 17. Figure 20.a shows Z boom motion

for three different cases. The Z boom motion is indicated by the solid

line in the absence of gravity torque and damping; by the dash-dot line

in the presence of the gravity torque but no damping; by the dash-cross

Sine in the presence of the gravity torque and in the presence of boom

damping. The damping constant for this example was chosen, to be, c = 0.4,

which represents less than critical damping in the absence of control.

The corresponding response of the nutation angle is shorn in Fig. 20.b.

In the absence of gravity torque and damping the nutation angle approaches

zero within 175 sec. With damping in the boom motion the improvement in

the response of the system in the presence of gravity torque is clearly

seen. It should be mentioned here that the damping constant, c, must be

chosen carefully to obtain the best results.

Figures 21.a and 21.b show the response of the system for sinn.soidal

Z boom motion with the reduced mass. A comparison of this with the

responses shown. in Figs. 19.a and 19.b clearly points out the diminished

effect of the gravity torque when smaller masses are employed.

b r

a
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IV.	 CONCLUSIONS

_-	 1. For deployment maneuvers during which the inertia symmetry

about the spin axis is maintained the stability chart for

symmetrical spinning bodies can be used to study the

system behavior.

2. For various extension maneuvers the bounds for boom

lengths can be determined so that the system does not

enter an unstable region.

3. For extension along all three axes with the same end

masses and extension rates, if' the satellite is initially

stable, there is negligible difference in tha response of

the system with gravity--gradient present or absent.

4. For all the cases where the extension maneuver is performed

through an unstable region although the nutation angle

does not increase as soon as the system enters the unstable

region, there is an exponential type growth in the nutation

angle after a certain, length of boom has been extended.

5. The an.-aytical solution obtained for the out of plane

Eyler angles for symmetric extension in torqua free space

- can be used to study the system behavior with gravity

torque for a limited time period.

5. For the asymmetric deployment the expression for the

gravity torque developed shows that a first order gravity

4. force on the asymmetric mass exerts a torque about the

.t'

-44-
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hub mass center. This torque is an order of magnitude in

(r/R) larger than the gravity-gradient torque for the

symmetric deployment.

7. For smaller control masses the controlled (asymmetric) offset

boom system may be used effectively in the presence of the

gravity-torque to reduce nutational motion when there is

damping present in the offset boom system. The amount of boom

damping required must be carefully selected for best results.

8. For large control masses with gravity torque present the offset

(asymmetric) system can be controlled so as to reduce the nutation

angle only for the first few seconds, suggesting that the control

should be terminated after that.

9. The effect of other perturbations such as due to solar radiation

pressure, aerodynamic effects etc., have not been considered

here but should be investigated especially for the case of large

boom lengths.
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FIG. 21.a. DYNAMIC RESPONSE OF SYSTEM WITH
SINUSOIDAL Z BOOM MOTION:z = 4 Sin 0.314t
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Without Gravity Torque
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FIG. 21.b. DYNAMIC RESPONSE OF ANGULAR
VELOCITY COMPONENTS WITH
SINUSOIDAL Z BOOM MOTION

z = 4 Sin 0.314t



COMPUTER PROGRAM

4 ^
	 SYMIET'RIC DEPLOYMENT

?/10/77 21:27:al
!J0 ,_+ [^!.AE) IN	 AT	 2 1 C2{:2 5 )	 M&HFS H PAVAN
;F0RT /A /[:S/E./P/3	 FORT.LS/L
!LIVING

C CASE-3	 ALFA=-0.5	 FAST E	 T
C DYNAMICS	 OF	 SYSTE'A DURING	 NLINSINAL	 DEPLOYMENT
C FUR SPI N PRINC;IP4LLY	 ABOUT	 3-AXIS	 AND SYMMETRIC EXTEmSION

a C INCL.UnI,M[;	 f;RQVITY	 C[?ADiENT	 EFFECTS	 Bri=l.f)
4s C ALTILEOE:	 W50[)	 N A U T I C 4 L	 (MILE S

EXTERNAL,	 HG5Q 1 r ti C SE7?
D. 	=MEAlS10	 PAF+MC5) rY(6 	 D .Y{6	 0RKC9r,6S.l_7E~E.Ei.).... i
KLAL	 Tl0,l20rl30r Nll, % 2,M3rrlr12r13 i

i COMMO N Y, A LF 4 !

:_z I ' C} r. I 2 O .r..130 ,II r12r 13 r [` l 	 M-2,M3	 CI,C2rC3
E.". EQUIVALENCE(YC1	 OVI) ► (Y(2) ,oq2)t(Y(3)rvi3)r.(Y(a)rA.l)r(Y(5)rA2) r
.. :3(.Y(b),A3):

.:.. .. _.._._CALL. I.NOUTC2r5)._.._--
> CALL	 0PEf%1(1r'RAJAN't3 ► TER)

^- IF (IER.N.E:., 1)STOP	 UNABLE	 TO	 UP.E.N	 F ILE
C _ _ 1

STEP =2.i1
r^ L= 0.
HLAD( 2, 91)NI1	 M2rM3..

HirAE-)(2,91) 110r120, 130
KE±A0	 2r.. 9'T )C1,.C2r.G3

.• ri r HEAO(2r92)Y s,
VLAD(2 , 92)SIZE i

t AIRTTEC5,93)M	 r}-1 2, M 3	 _.. #r
v4HirEr(5.9u)110,I2() ► 130°'-,
tiNZTE" C5,9S)C1 rC^,C3 	.  ^

'^^K11^CSr98)
r
E

PAR'p tIRM f2)=IN44Y
..
r b a

i
FARM	 3)=STEP
C -ALL R'KSCL(N,3lZE,DY,TQL ► PARM)
GALL	 RKGS(PARM#Yr[).Y,, N ,INS.F H(7,SQI,Rt;5U2j,;4E!.PK) i
a	 1T F .. (9f,	 9)IHLF

r _ ^
q 1 FURMAT(3F10.0) €

'
93 FURMA`f CIX ► 'M1= `rE- 10.br5X,'M2`',F`10.6r5X,'t-43=',Fjo,b)

f 9:E FOR IA 4T(1X,:`II0=	 ► F10. h,5Xr'I20=",F10.6r5Xr'•T 30= `rF1,0,E,) a

95 FUh^ M ATCtXr'C1.	 'rF1O.,br5x,'C2='rF10.6.9Xr'C-3=',F10.6)
96 FUG"41 AT( zk ► `Y'r.3Xr:bF1c1,)
q7 FLIPMA,T(3X„'S1IL	 bF1U.9)
98 E"!q-',IAT(r1' ► TA P '1'rT17	 1'rT3{l,'s,2"rTLl	 't% .5	 T55r"TH	 TA-1'r

_
a7

2ib y , f 'THFTR- G ' r 1S1 r' T[-€.hTA-.3'. ► . r9br 1 AE_.F4 1', E II O t	 IHLF	 r 
99 F IJP'-iATC'01HLF=	 rL3)

r. J IGINA.L PAGE IS
r. A L L	 x I OF POOR. QUALITY;



PROGRAM 15	 REL ( 1C A TABLF	 gg
T I T4	 A!N

E	 K !FClt?l /A/H /E/P/5 FURT.LS/L	 J
!LISTING

SU6ROUTIN	 RGSGl (•T,Y,DY)
; 1?iM^^JSI[3E+J	 Y(h)rL1Y{(a}

`x^ ^ KLAL	 Tl0ri24 ► I30 ► L1rL2rL.3,^'lt^^2,^"3,i1 ► i2,J.3,K ► K^1
r CU-MMON	 Vil'r:'J2,W3rA1 ► A2,'A3,aLFP_

COMMON	 T10 ► I20,I30,I1 ► I2ri3r''" t 1r^2,^h 3rr1rC2rC3
C

r L1=C1*T

(_2=C2*T
L3=C3 *1
t1=.ti11*L1*L1.	 .

^2= Ls2 *L2*L2
r

h3	 L3*L3

° 13=130+2.0*(E1 +F- 2)

f t)12=4.0*CM1,*LI*C1+TA3*L.3*C3)
{_ ^ L)13= u.0 * {r^2*L2 *C2+t^1*l-.t*C1)	 -

- K=1°4LEJ1528*(10.0**16)
Ft-2.3450b *L1t) * o **7)	 -

- bb=1 . Q
} KE^=3.0 *K *,L3E3/ (R**3 7 __.	 _	 s

C. U 1= C O S( A l)	 i

CG2=C0S(A2)
^r
a: F CU.3= CCtS ( A3 }:	 -

.5(32= 5101 C A2 ?

a
Z=SQRT CK /(R**3)1

DYC1)={43*W2*C12-I3) — UTt+r V}1+KB	 12-13	 CO2*5C?2	 303}/11
,.R r DY(2}-(w1*Vt3*(I.3-1t	 — DI 2*,,"42+KB*(11-133_*CQ2kSL^2*G:C13)_/12. 	 s

_.	 3
L)YC3)=(42*Vjl *(1112) — DI3*V3+KB*(I1-12)*CU2*CO2*CU3*503)/13	 a

^'l l3Y{U)={^^+1*C[13^(°t2*SU3+2*COti*5U2)t(:CZ
UY (5)=Cu 1*S03 +P2 *CQ.3 -Z*S0l) ......._..	 _.	 _.
UY(6)=(^V3*CO?--vul* CO3*SC72+'xa2*SU2*303—C*Call)/CU2
ZZ=3 1)RrCtIi*WI	 +C12*t 21#*2)'

rp+ ; ALFA=A T AN2 (ZZ, ZY ) *57. 2955

HET URN	
}

q

_. 'ltC1G#tA^^ I5	 REL(ICATABLE.
Tj . TL .	PG5iJ1

? FORT /A /H /E /P/S . FORT,LS/L

-r. SUMIUTIMk P(-S rJ2(TrY,rY,IHLF, 11i,P)
-

r

1—UGICAL. !'.KNX1
COl-VYIUN	 4"7 l_to2.13,, 3Yal, A 2 pi 3,AL.F A 	...
C0 14MUN	 110 ,120, 130,{1,I2,I3 ► rltrM?,M3rCItC?,C3
D 1 ". 1 F- N 5 1 U N,	 Y C6) rCY(6) r1)LlMmY (f5) 	 ^

}}

r CALLL	 YG501 CT rY, DU 
Tip=r

_ 1,F C_.NOT	 UHLF) }	 GU	 TO	 33
t:'H1TE(5r1)TPrY(I),Y( 2), Y(3),Y(U),Y(5)rY(b),ALF q ,IHLF	 i

t FUG?MAT(lx,F7,3rt+C1xrE15.t3) ► 1X,F 10.7r1X ► I3}'-L PAG^'IQ-,	 s
_ tAWI CF	 HINaPY	 (1)	 T,Y[t),Y(2).ALFA	 OF POOR 

Cu,,tT P,.UF .



Zd

c^

f

t

r r.

i

.	 .. - r na
i

t

"r

uy

s

b

e
iJ

E

d

3t̂

{	 000000000"1^IS
f	 000000000' 0

00000000 1 0 0000000sU`0 0000TS00000 00001;000040 UU0uS0000`0 ^tTS r
000000000`0 00000010000 01309US00010 00000000000 00005000040 A

000000'17	 _51 00000010 = ,e,	 000000`E! =t^

J
000000`01	 =OF-T 000000's	 =02I 0000006c =011

000010 6 0 0000 0 0`o =2n!	 00000060 =Tin'
r

91`180A Nl'dS9:OdfJ	 ZOO 200	 1001	 S/dK.L NIH(J-18i
2[JS;JN ^1i1` k^

^l y tilU^l7^^u
. 

ST tn^^N^C1^id

y	 68 N8r)1.:1N
r



^ju

C01MUTER PROGRAI+'i

ASYMEIRIC DEPLOYMENT

2/26/77 1b:54:22
_	 —

:F0PT/b/h/F-/P/S	 FORT.LS/L
:E.I^TI^:f
•	 C LFFECT	 OF	 f;F'A	 I. TY	 Tf)Rt^1IE	 ASY NI ET 9 IC. APPENDAGES	 _. .

C ALTIIJ-)F..	 =500	 1 1.AU TYC4L	 MILES.
C iNCLUOT,"r:	 GRAVITY-rRADIF !1T EFFECTS	 PG=1.0
IT' 1 ,^'C;^fc7	 -

(1^=^F"^sTt1A;	 PAR k'(5),Y(6)	 f)Y(b)r4°10RK(8,6) 	 ',IZE(b)
" RE4 L 	 T 1 .I?,T .	 r N srlk .1 s^"2rK

c wvio m 	I 1	 12 rj'. , t^ 	 ,•'	 , t52
MIAvl):.t	 A A, 68,CC r ^I.l

Cot'NoM MIN
i

lu,
E±sLJTv_ AL, E-NCE-CY.._C-1~}.,_r!.U_.0YC2)r.V'"2) . r.CY_C3)f'N3}f.EY	 AI	 (Y	 5)	 ,_--^:

;. iCY(b) ► A3)
,• INCIL	

2 
r 5

^
fC-AL1L...

AJ AIN
q	 t	 Cif 1

iFCIElQ.NE.1)5TOP	 L)NAHLE	 TO	 OPEN	 FILE
RE40(2, 91)TMAX,STEP, TGL.

._F.G
y
^
y
^AT C^+F
 

PARll(2)=T^IAY

Cr INITIAL VALUE
j FE&DC2,91)Y

-,^' ^EAUE2,911)I1,z2rI3

^E4t^E2rg31)i^8.1`^1r^y^2
-	 _m

4l l FORMAT OIF 20.4)

r
f^^

jF
ITE(a..,92)T T -'-' A'X	 ST EP^A:P,	 _	 tii	 TEQ r TGL .

V4Pl TE (5,93)I1,I2, I3

i^,r-?IT^(5r`^5)A4r^=E^TCC^€^!7

•
tiiRITE(S,96)Y
Y±R!T.EC5,97?SlZ-F-	 __	 ..._
►vuITFl5,9S?

92
-._9.3—_.:._.{

FOR'1'ATCIX,'T1VAX=P, FIO.6,5X„STEP=',Fl0.b,5Xr'T0L='rFlQ.b)
1r?^IALIlr_^^,i^.IS..4.15r^:_^Z-=-r.^15_.C^.l.`iX^_^Z_=,`.r,F.t.,u}__ 	 —

^a 91E FUt?V4T(1X	 f';= 'r E. 1S.0 r5 Xr' M 1=` ► F19	 4 , 5X, r	 2^'rE15,^)
r	 95 DO=rr

Pb F aP4a. T C 39r	 Y 	 9r6 FIS.b)
97 FO R 	 4TC3Xr'S.I7E`,6F15.6)

•	 ^^'
*

_..L'.Q^^aTE” '1:' rT^F:.'^^_fT.^_^r--'-+^{^.'-1^.^.^1:'."a^r.r.T^:^Jr'^'r^.^r..T^r?f:^^^F.T^.^1.'_r^_ _-_
2T:6'?	 r ) H ET-2 • ,TF, I,'THETA ,3',T g 6,' I'LF D ',TIIOr "THLF', /)

r	 .

CALL_._	 SCLC-iti,8.1Ztt.,DY.T.OL, PAPR) 	 i

rY^O^,N,Ttil_F,PG501 jRCS17.2^Wl
	 ..	 ..	 ^..

GALL	 NKi;S(C'pt?`^^	 r, tiwK]

. C t:LL	 EXIT	
;.

ru•



P€iUGRAN^ IS	 :,EL0CATAF_;LE
.TITL	 . M A.I M

?F0PT/APP /E/P/8 FDFT.Ls/L
:LISTIMP

8LlAR(i0T'INF	 RG5Q1 (.T	 Y,DY)
L`!.	 E4+:3ICK	 Y	 C(3r3)
PEA L 	 I1, I2,13,	 M2,K

' Cit ,4.y1f7N	 l rA.2r 6 3rA1 FA2 tA3
L u'.''.1MN	 I 1.12 ► I 3 , vi r,rX41,<M2

a: Ltjtil'oin,%t	 Afl.	 F,CC r1) i)	 .
:..	 .... C(.iMvi0N Z,1j[ r D^7

'i
c[}	 9N,	 C

S Q L. _.:[)F.	 C {1 E 	 E...E)F	 L..	 ..5.. (1	 M ATRIX	 E9N	 .

D X = V . o	
..

T T-O. 31.4*T'.
3QI=3INCT T?. Ct^]1_C;C35^TI1
ET=EX'P(-G,5a *TT)

;.^ CQ2=C08 (0. u28*TT)
WW 2 =STNC	 ,L42B*.L_7_:^.-w
Q 1=0, 655*SQi+ 0 . 4 17*C

Q l pQR=ET* ( 	 III 7*CU2+2. V 5f7' 9(.	 2)

Z=17.72*92

1).Z_0.314*17,72*QDZo
I   	 -FT*C--(t.lil7*C:.u28*0.428*CP?-	 5b*0.425*0.42	 *SC 2)	 2.^*

DDZ= 0.314*0.314* 17.72*QDDZ`

•. C(1r.1)=I1+!31*C6B**2+Z**2)+u2*(CC**2+D[)**2)+2.*lJ3*CE3B* 	 CfDD*Z3
GC.1.r 2).--1,11.,rAAtRB-1..)2*.CG:*)4-U3*(AA*(<C+BR*x)	 -..._^ _....._ _	 --	 . _..._....-.
C ( l r 3) =-iJ I *A A*Z-u2*-D-G*X-U3* (A A*Di)+X*Z.)	 I

= j^+X11:^CAlt^*.2kZ^^2.):±k^?*_(f^17*^^^X,^*2^^_^...4*.U.3*.CAA*^^'Qd*Z_^._._._--._'.
CC2r

^1

t,!

3	 U1 *8R*7-U2*C.0*DD-U3*CR 13	 1)D+CC*Z)
CC3sI)=CC1r3)	 f

P
C. (3. s)=13+ 1)1.*.{AG	 Fiia**2)tU.2*(CC.**2+ X**2) +2:0*U3*C13B*CC+AA	 X)	 3

C CAL.	 OF R.H.8 OF MATRIX EQUATTON	 1

^,r,_i.n
G 	 c

r

CO3=CnS	
31

1-!?K*}I * C_±A*C^2C_(?3.-F+CG2*:C1^ifZ*5[).2:) 	 -	 -	 _ _
K^i^f{!L^'`r:^C;!'xCC1?^^'1^3—CC.^C{3^*SC}.3+f}p;^S(3^) 	 a

;,



Z	 Z{-MI+t)D	 92

,All) =( I3-12) *V-2 *'043
r.' AE I = UI *(-Ab*Z*{h1*^;2+(e.R*k2 - Z*,*2)*va2*v;3+AA*kBR*Wl*w3+2,*Z*I)Z*vlI+

_xH*Z*(v3*k2-V,2**?)+18B*00Z)
Al2=U2*(-I)E)*X*v1* 0, 2+(CC —*2-DO**2)*yr2*v,3+CC*X*4N1*4`!3-2.*CC*i)X*E'r2

__..	 :.. -. *t^f?r)x*^t ^^^C.*.Q7* C`3*^k2-;+:?x23 ).
A13=U	 k(( -AA*DD-Z*X)*,rjI*i2+R.*(68*CC-DD*7.)*W2*N3+CAA*CC+BB*X)

^*^^j x^ra3+?,*E%[)*U^*a'•1'"2.*138*L1X*w2-2.*13X*z* 4a3+(#^S*DD+GC *7_} *(y+13**2

; ii;	 vp * *a).+CC *()DZ)v	 ,
AI4=:th*t12-13)*CC2*SO2*SO3
A1^=(K/1-;**2}*C-Cft2*SO3 *Z13,ti1- S(72*E3CM]

..	 :.	 ._ ..	 n1^ Y t^3. Kk CZ*G[)2_+ S rJ3#Fib*^E]2]	 _	 _..:.-
A17=R2K*(0U*CO2*51J3+CC*SQ2)
I)YC1)=-(AIO+411+Al2+AI3-AlU-AI5-Al6-A17)

bl1=0I*(-BB*Z*iiI*V2+AA*R A * ti2*V)3+(AA**2-Z**2)*W3*W1-2.*Z*QZ*'W2
; ^+AA*Z*C^a3**2-.^,1**2)}bA*C1C1Z}

l ; —	 *	 r.	 *	 ..	 it X- ir	 _^( , k ^l^

► fE?X*(+13 **- 2 -W1**2l-DE)*UIJx?
Li l3=U3*C	 (P6*DD+CC*Z)*4u1*rt2+(AA*CC+85*X)*412*f73+2.*CAA *X-DD *Z]

i	 .	 r. c^ *+ .3 * "^ L-.2	 (AA_kf^k_ D^??'^ .Z^_*' 2.fi._C 1	 D^+x*. z ] * C!ti3*	 '-^4.^.**_ ^- .X	 Df3Z-ZtDU] .
81U-RK* (Z1-13)*8oR*CO2 *Co3

`	 r 316 =(K/R**2)*(-CO2*CO3*ZDNI+SO2*AX M )
' 3L .=R1.K.*_C Z..*C.0 It, CQ.3,-AA*SC^^_

(1Y C2)=•-(6lo-EytlwE312-313-81t^-815^t^Z^-617}

;.. Cl1=U1*((f-3i-4**2-AA**2}.*OJt*v42-AA*Z*to2*LN3+BFi*Z*W3*Wt+2.*AA*DZ*Vlli,
X12. *E1R*- )Z* ya2+AA*C?8* (W1 **?-W2**23 )

_.._	 :_ .	 _.. __. C^z-^J2*(_CC:.G^^2-X^*^.*w^*1}2.,UI^^X*^v_^^yv3^•C.C^^.p*^^.^_-*k^_i•-2^*x,*Dx*4^3_.^^_}
n)tGC*x*(^^1**2-^:2**2)+CC:^pDX) _

C13-k)5*(2.*CBB*CC- A.4*X)*:til*{N2-(AA*DD+X *Z)* 4112*w 3+(BB*DD+LC*Z) *4;13 *^)I
,- ^^^2..*[k*!7Z*^;t+CC:^^Z*^1.2^-A^:*^.X*^3]_^_(AA*CC,^•X33_;^:X}*,(111.?^*2-t^^r:^^)tS.^s^_--_-_

DDx ]
C14=RK*(11-12)*CO2*G02*CO3 *303
C .t5.=. C K L'? ^ ^? )._*._C C i) ^ ^ S 0 3.^. A x <^+ C tl2 ^ ^ Q 3.* H C ^_^.Y._.._ . - - _-- ------ — -^ ---	 -- - __ _._ __.___ .
C16=PJ K*• (AA*COR*503+56*CO2*CO3 )
C 17=R2K* (CC*CO2*CO3+X*CO2"*S03 )
0YC3].=-CC10-C11- C12- .C_13-CA4-CL54!CA6+C17)
UY ( 4) = Celt *C[]3-i11.2*SO3+OM*C() l *SQ2) /CDC
COY (B) =(4l *S03+ Ir, 2 *CO3-0 m *S01 )

_ _[, Y_C_e.)_= C 03 	 . rr_:_f'	 '-'.1 * C C^ 3	 S_	 :A^ 2 *_5-U 2 *	 ^' -^.CI« *_C.!]_ 1 /,t^_Q_2^
CALL SIMQ(CrDYrH,KB)
1P(KS)3a2,3

2. _	 RE;71JRN.
3	 viRITt (9r U)
q 	 F0f7MAT(1/'51ftiGUE,.4R	 E QUATIWNS')

E IIJ D

PROG R AM IS Cg FL.QCQ •FARLE	 -

T TTEr	 ocsn 4
---^-FO R T/A/ 1a lUP /.S. FQRT.L-5/L

L i S T I t3	 Q4 ^I
51 .J0RbUT1r,6 P (:-302CTrYrDYrIIALF N,P)
L+.1iC A L f-^;h.xTr	
0111E.. Nis 1(11 %, y 	 D YCh) rDi3WAYC^+)
RE-^ 4 L IliI2r13rr•rsr^^lr"12rES
Ot{1,-in % - , 1 r •v 2r t 3r k I.r 2r_P3
tro	 fv4 11	 2 ► 13	 1ri 2

.6.



r " C[I.r111041	 AA,[s-(,CC,00	 93

CALL	 i?GSOl ( T rYrDl VIA Y)

^ ; H2^ ^ 2*•,;2

- H3-I3*r43 !je
AL.F A^G TArY2fSr7RTCH^^H7.^H2*i^2)rH^)*^a7.2^SK

i.. TP=T
IF { M MF)I .9KN	 T C IHL r T)	 GO	 T 	 S

RI:TF(5,I)fP	 YiZ,DZ,ALFA,IHLF
1 F'I IRA 4TCIXr F 5.1r ,q C1x.F12.9 1XrF7.a	 Ixr123

raRITE	 f3INAP	 {1]	 T,Z

.S C0%iTlNUE

RETURN
i

by PROGRAM iS	 RELOCAT46LF ^

T I T L	 € G302

:RLDR /M F ill P/5	 01 01	 0102	 (303	 UR0s55F.L g 	FORT.LB
`EXEC
T1	 L--	 , i?O.Ot}(30 . [fU	 5T1 P= .	x.000_[3.0	 _.._	 Tt}L"'	 f).01 ©00.0 _.

II =. 11.1050E	 6	 12=	 0.1050E.	 5	 13^	 0,1500E	 8 t
sag= 0.1370E.	 b	 ^M31=	 0.1800E	 4	 m 	 R	 0.0000E	 0

^. AA= .65..0	 f}^^.t)0.	 ;3_I ; ^	 n.00i} n QO	 CC=.	 ._ 0.0 000.0Q.0D.-	 0..000000
0.0391u0	 0,000000	 0.31000	 0.100000

^.
SIZE- 1.500000	 1.500000	 2,000000	 2.200001

i

Y 0.000000	 04000000
SIZE 1.000000	 .42.000000

l

'e

i

t

ORxGIl^AL PAGE IS
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