https://ntrs.nasa.gov/search.jsp?R=19770016248 2020-03-22T08:47:58+00:00Z

AFWL TECHNICAL LIBRARY KIRTLAND AFB, N. M.

MODULARIZED ION THRUSTER

Final Report

c

Contract NAS 3-19691 3 December 1975 to 13 August 1976

J. Hyman and C.R. Dulgeroff Hughes Research Laboratories 3011 Malibu Canyon Road Malibu, CA 90265

Prepared For NÁTIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No NASA CR 134667	2. Government Acce	ssion No.	3. Recipient's Catalog No								
4. Title and Subtitle	5. Report Date										
MODULADIZED ION 7	N o vember	1976									
MODULARIZED ION 1		6 Performing Organization Code									
7 Author(s)	8. Performing Organization Report No.										
J. Hyman, Jr., and C		•									
9. Performing Organization Name and Add	10. Work Unit No.										
Hugnes Research Labo											
Malibu, CA 90265	NAS 3-19691										
			13 Type of Report an	d Period Covered							
12. Sponsoring Agency Name and Address			Final Repo	rt							
National Aeronautics a	ninistration	3 Dec 1975	- 13 Aug 1976								
21000 Brookpark Road	Center		14 Sponsoring Agend	v Code							
Cleveland, OH 44135			· · · · · · · · · · · · · · · · · · ·	,							
15. Supplementary Notes											
16. Abstract											
propulsion applications 1.0-mlb Engineering M Modules (DCMs) have of T = 0.5 mlb and T = These optimizations in components and the ind beam-extraction syste summarized as follows (2.6 mN) P = 71 W, an P = 235 W, and I _{sp} = 2	s. System de Model Thruste been optimize 2 mlb to acco acluded modifi corporation of ms. Perform s: at 0.5 mlb ad I _{sp} = 2576 980 s.	sign was base r. Separate i d for operation ommodate the cations in the ion machined hance of the of nominal thru s; at 2 mlb, T	ad on that of th Discharge Cha on at the thrus extended thru discharge-ch d accelerators ptimized modu st level, T = 0 C = 2.23 mlb (9	e Hughes mber t levels amber in the iles are 0.58 mlb, 0.89 mN),							
17 Kay Words (Salastad by Arthur(a))		18 Distribution Ste	Inment								
Modularized ion thruster, Discharge chamber, Ioniz Propellant utilization, Ele Ion Machining, Thrust, Ca Neutralizer	Mercury, ation, ectrodes, athode,										
19. Security Classif (of this report)	20 Security Classif. (a	f this page)	21. No of Pages	22 Price*							
UNCI ASSIDIED	INCI ACCIDI	rn	47								
ONCLASSIFIED	UNCLASSIFIED UNCLASSIFIED										

*For sale by the Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia 22151

TABLE OF CONTENTS

•

SECTION	P	AGE
	LIST OF ILLUSTRATIONS	vii
I	INTRODUCTION	1
II	TECHNICAL PROGRAM	3
	A. Optimized Discharg e Chamber Modules	3
	B. Discharge Chamber Module Optimization	11
	C. Pat c h Tests	26
	D. Ion Machining Tests	37
	REFERENCES	59
	APPENDIX A - Accel-Current Extrapolation for the 200-Hour Ion- Machining Test (0.5 mlb)	61
	APPENDIX B - Accel-Current Extrapolation for the 200-Hour Ion-Machining Test (2 mlb)	65

~

Page intentionally left blank

,

Page intentionally left blank

·..

٠.

.

LIST OF ILLUSTRATIONS

FIGURE		PAGE
1	Attachment of discharge chamber module (DCM) to module support system (MSS)	4
2	0.5 mlb discharge chamber module	6
3	0.5 mlb discharge chamber module with ground screen removed	6
4	2 mlb discharge chamber module	11
5	Versatile thruster assembly for optimization testing	12
6	Cross-sectional sketch of DCM	15
7	Discharge chamber energy, \mathscr{E}_i , as a function of discharge chamber propellant utilization, η'_{Hg} for 0.5 mlb optimized DCM	20
8	Discharge chamber total efficiency, η'_T as a function of beam current, I_B , for 0.5 mlb optimized DCM	21
9	Discharge chamber propellant utilization, η_{Hg}' , as a function of discharge chamber voltage, V_D , for 0.5 mlb optimized DCM	21
10	Optimized 2-mlb DCM cathode-cup polepiece design	22
11	Discharge specific energy, \mathscr{E}_i , as a function of discharge chamber utilization, η_{Hg}^i , for 2.0 mlb optimized DCM	25
12	Discharge chamber efficiency, η' , as a function of beam current, I_B , for 2.0 mlb optimized DCM	25
13	Discharge chamber utilization, η_{Hg}^{\prime} , as a function of discharge chamber voltage, V_D^{\prime} , for 2.0 mlb optimized DCM	26

FIGURE

-

14	Upstream mean hole diameter versus interelectrode spacing for beam current $I_B = 64 \text{ mA}$	•	•	•	•	3,2
15	Downstream mean hole diameter versus interelectrode spacing for beam current $I_B = 64 \text{ mA}$	•	•	•	•	33
16	Upstream mean hole diameter versus interelectrode spacing for beam current $I_B = 36 \text{ mA}$	•	•	•		34
17	Downstream mean hole diameter versus interelectrode spacing for 36 mA beam		•		•	35
18	Upstream view of accel and PT-3 patches		•	•	•	36
19	Upstream view of PT-3 center patch	•	•	•	•	37
20	Accelerator current versus time for 0.5 mlb DCM	•	•	•	•	38
21	Screen current, $J(S)$, and accel current, $J(A)$, as a function of accel voltage, V_A , after 200 hour ion machining test	•				40
22	Downstream view of beam-extraction system after the 200 hour test	•	•	•	•	42
23	Discharge chamber after 200 hour test .	•	•	•		43
24	Average center-hole size as a function of six hour tests	•	•	•	•	45
25	Nominal accel current, I_A , as a function of accelerated ion machining time for 40,000 hour simulation of electrode erosion for 0.5 mlb DCM		•			47
26	Screen current, I_s , and accel current, I_A , as a function of accel voltage, V_A , after 40,000 hour simulated grid erosion test			•	•	48
27	Accel current, I(A), as a function of ion machining time for 2.0 mlb DCM	•	•	•	•	51

FIGURE

28	Normalized accel current J(A) as a function of ion machining time for a function of time for 2.0 mlb DCM	52
29	Screen current, I _s , and accel current, I _A , as a function of accel voltage, V(A), after 200 hour ion machining test of 2.0 mlb DCM	53
30	Downstream view of beam-extraction system after 200 hour test of 2.0 mlb DCM 5	55

Page intentionally left blank

٠.,

• .

Page intentionally left blank

GLOSSARY OF TERMS

CCPP	Cathode-cup polepiece
CIV	Cathode-Isolator-Vaporizer
DCM	Discharge chamber module
EMT	Engineering model thruster
HOA	High open area
MSS	Module support system
NIV	Neutralizer-Isolator-Vaporizer
SHAG	Small hole accelerator grid
SIT	Satellite Integrated Thruster

ŧ

٠

I. INTRODUCTION

The goal of the Modular Ion Thruster Program was to develop a set of modularized, structurally-integrated mercury ion thrusters to extend the thrust range of the Hughes 1 mlb Engineering Model Thruster (EMT) developed under NASA Contract NAS 3-18917 (Ref. 1). This family of modules now includes interchangeable discharge chamber modules (DCMs) that have been optimized for efficient operation at the 0.5, 1, and 2 mlb thrust levels.

The present program concentrated on the 0.5 and 2 mlb DCM. The desire to expand the range of the thrust level of the 1 mlb EMT did not constitute the development of a new thruster. Our approach optimized the discharge chamber only (with diameter as one of the optimized variables). This approach guaranteed that all the critical subassemblies, Cathode-Isolator-Vaporizer (CIV), Neutralizer-Isolator-Vaporizer (NIV), gimbal, and optics (except for the beam diameter), are identical with those in the highly developed 1 mlb EMT.

A significant improvement in discharge chamber propellant utilization has been obtained by using ion-machined rather than conventionally fabricated accelerator grids.

Page intentionally left blank

. ۰.

• •

Page intentionally left blank

/

II. TECHNICAL PROGRAM

The technical program described below led to the development of the 0.5 and 2 mlb Discharge Chamber Modules (DCMs). Detailed descriptions of the modules are presented in terms of their design as well as the summary tabulation of DCM performances. Optimization tests are described that produced the final configurations. Tests made for determining the optimum spacing between the screen electrodes and ion-machined accelerators are also described. The techniques are explained which were established for ion machining of the accelerator electrodes.

A. Optimized Discharge Chamber Modules

The modularized-ion-thruster concept is depicted schematically in Figure 1. For clarity of presentation, the DCM has been separated from its Module Support System (MSS). To complete the system assembly, a particular DCM module (of the chosen thrust level) is attached to the MSS by bolting the DCM endplate flange to the four support insulators of the MSS and mating the endplate with the Cathode-Isolator-Vaporizer subassembly. No essential change is required in the MSS configuration for operation at any of three thrust levels, but a slight increase in the size of the ground screen is required to accommodate the larger physical size of the DCM optimized for operation at the thrust level T = 2 mlb.

The DCM design shown in Figure 1 consists of an outer shell assembly which is formed by rolling thin stainless-steel sheet stock into a cylindrical section. Structural rigidity of this thin-walled shell is provided by circular stiffening ribs and by flanged sleeves located at each end. Axial strength of the structure is provided by sections of cylindrical tubing which enclose rod-shaped permanent magnets that are mounted axially around the periphery. The tubes are brazed at both ends to a set of flanges. One serves as the interface between the endplate on the closed end of the discharge chamber and the other as a mount for the beam-extraction system on the opposite end. A cylindrical mesh anode is supported within the shell by means of insulating supports which are totally shielded against sputtering. As with the thruster shell, stiffening ribs are used to ensure maintenance of its circular cross section.

The Neutralizer-Isolator-Vaporizer (NIV) and Cathode-Isolator-Vaporizer (CIV) are identical with those used in the 1 mlb EMT. The NIV assembly is supported by a thin-walled bracket which is attached to the ground-screen shield. Appropriate heat shielding provides thermal isolation of the neutralizer assembly and ensures that no condensation of the mercury vapor occurs in the region between the vapor-izer and the cathode. The CIV assembly is attached to the discharge chamber endplate and a thin cylindrical support. Both cathodes employ enclosed 0.32 cm (1/8 in.) diameter hollow cathodes; feed lines run from the vaporizer of each assembly.

Figure 1. Attachment of discharge chamber module (DCM) to module support system (MSS).

1. 0.5 mlb DCM

The photograph of the optimized 0.5 mlb DCM is shown in Figure 2. The neutralizer keeper can be seen protruding through the ground screen mask. The electrical leads exit the rear of the unit. The same DCM is shown in Figure 3 with the ground screen removed in order to display the electrode system, magnets, discharge-chamber shell, and the electrical lead tie points.

a. <u>Critical Dimensions</u> – The critical dimensions for the 0.5 mlb DCM are presented in Table 1. This DCM uses eight permanent magnets. The small hole accelerator grid was ion-machined as described in Section II-D. The distance from the cathode tip to the downstream surface of the discharge chamber endplate is 0.107 cm.

b. <u>Performance</u> – Performance of the 0.5 mlb DCM is summarized in Table 2. Corrections for doubly charged ion content and beam spreading have been applied to the values in Table 2 where appropriate. At the 0.5 mlb nominal thrust level T = 0.58 mlb, P = 70.8 W, and $I_s = 2676$ s.

2. 2.0 mlb DCM

The 2 mlb DCM shares the same basic geometry as the 0.5 mlb DCM except for dimensional changes. A photograph of the 2 mlb DCM is shown in Figure 4.

a. <u>Critical Dimensions</u> - Critical dimensions of the 2 mlb DCM are listed in Table 3. Sixteen permanent magnets are used in the DCM. For the higher thrust level, the cathode-cup enclosure was penetrated to provide propellant-diversion ports which lower the neutral-particle density near the main cathode. This permits adjustment of the discharge-chamber impedance to the desired value (Ref. 2). The port holes are covered by a 49%-transparent tantalum-wire mesh (0.008 cm wire diameter) which is brazed to the inside of the cathode cup. This mesh interrupts the continuity of plasma flow and restricts the transmission of electron current to the region of an annular gap between the electron baffle and the lip of the cathodecup polepiece. The distance from the cathode tip to the downstream surface of the discharge chamber endplate is 0.107 cm. An ionmachined accelerator grid was also used on this DCM.

b. <u>Performance</u> – Performance of the 2 mlb DCM is listed in Table 4. Doubly charged ion content and beam-spreading corrections have been made where appropriate. At the 2 mlb nominal thrust level, performance characteristics are thrust T = 2.23 mlb, power P = 234.9 W and specific impulse $I_s = 2980$ s.

1. 0.5 mlb DCM

The photograph of the optimized 0.5 mlb DCM is shown in Figure 2. The neutralizer keeper can be seen protruding through the ground screen mask. The electrical leads exit the rear of the unit. The same DCM is shown in Figure 3 with the ground screen removed in order to display the electrode system, magnets, discharge-chamber shell, and the electrical lead tie points.

a. <u>Critical Dimensions</u> – The critical dimensions for the 0.5 mlb DCM are presented in Table 1. This DCM uses eight permanent magnets. The small hole accelerator grid was ion-machined as described in Section II-D. The distance from the cathode tip to the downstream surface of the discharge chamber endplate is 0.107 cm.

b. <u>Performance</u> – Performance of the 0.5 mlb DCM is summarized in Table 2. Corrections for doubly charged ion content and beam spreading have been applied to the values in Table 2 where appropriate. At the 0.5 mlb nominal thrust level T = 0.58 mlb, P = 70.8 W, and $I_s = 2676$ s.

2. 2.0 mlb DCM

The 2 mlb DCM shares the same basic geometry as the 0.5 mlb DCM except for dimensional changes. A photograph of the 2 mlb DCM is shown in Figure 4.

a. <u>Critical Dimensions</u> – Critical dimensions of the 2 mlb DCM are listed in Table 3. Sixteen permanent magnets are used in the DCM. For the higher thrust level, the cathode-cup enclosure was penetrated to provide propellant-diversion ports which lower the neutral-particle density near the main cathode. This permits adjustment of the discharge-chamber impedance to the desired value (Ref. 2). The port holes are covered by a 49%-transparent tantalum-wire mesh (0.008 cm wire diameter) which is brazed to the inside of the cathode cup. This mesh interrupts the continuity of plasma flow and restricts the transmission of electron current to the region of an annular gap between the electron baffle and the lip of the cathodecup polepiece. The distance from the cathode tip to the downstream surface of the discharge chamber endplate is 0.107 cm. An ionmachined accelerator grid was also used on this DCM.

b. <u>Performance</u> – Performance of the 2 mlb DCM is listed in Table 4. Doubly charged ion content and beam-spreading corrections have been made where appropriate. At the 2 mlb nominal thrust level, performance characteristics are thrust T = 2.23 mlb, power P = 234.9 W and specific impulse $I_s = 2980$ s.

Figure 2. 0.5 mlb discharge chamber module.

Figure 3. 0.5 mlb discharge chamber module with ground screen removed.

M11499

TABLE 1. 0.5 mlb DCM Special Dimensions

Thruster Body Assembly	
Effective discharge chamber length	6.741 cm
Diameter of anode	8.547 cm
Length of cathode-cup-polepiece	1.742 cm
Inside diameter of cathode-cup polepiece	3.810 cm
Transparency of cathode-cup enclosure surfaces	0%
Propellant diverted through endplate	0%
Baffle diameter	1.748 cm
Number of magnets (0.485 cm diameter)	8
Mass of DCM plus MSS	1.838 kg
Beam Extraction System	
Electrode-dish radius of curvature	30 cm
Center-to-center aperture spacing	0.221 cm
Screen aperture diameter	0.191 cm
Interelectrode separation	0.0762 cm
Accel thickness	0.0381 cm
Screen thickness	0.0254 cm

	1
Thrust, mlb	0.58
Specific impulse, sec	2676
Total input power, W	70.8
lotal efficiency, percent	48.0
Total utilization percent	78.5
Discharge utilization, percent	90.4
Total neutral flow, mA	45.3
Power/thrust, W/mlb	124.2
eV/ion including keeper, V	226
Beam current, I _B , mA	36
Anode-to-neutralizer tip potential, V _B , V	1215
Neutralizer compling potential, V _C , V	-12
Output beam power, W	43.3
Accelerator voltage, V _A , V	-100
Accelerator drain current, I _A , mA	0.4
Accelerator drain power, W	0.5
Discharge voltage, V _D , V	40
Discharge current, I _D , A	0.160
Discharge power, W Cathode:	6.4
Keeper voltage, V _{MK} , V	10.5
Keeper current, I _{MK} , A	0.150
Keeper power, W	1.6
Heater voltage, V _{MCH} , V	0
Heater current, I _{MCH} , A	0
Heater power, W	0
Vaporizer voltage, V _{MV} , V	4.8
Vaporizer current, I _{MV} , A	1.85
Vaporizer power, W	8.9
Flow rate, Im, Hg	39.3
Neutralizer:	
Keeper voltage, V _{NK} , V	21
Keeper current, I _{NK} , A	0.350
Keeper power, W	7.4
Heater voltage, V _{NCH} , V	0
Heater current, I _{NCH} , A	0
Heater power, W	0
Vaporizer voltage, V _{NV} , V	2.6
Vaporizer current, I _{NV} , A	0.9
Vaporizer power, W	2.3
Flow rate, I _{N,Hg}	6
Neutralizer coupling power, W	0.4
^a Accounting for neutralizer floating potential V beam divergence and the presence of doubly c	and effects due to harged ions.

TABLE 2. 0.5 mlb DCM Performance

8

TABLE 3. 2 mlb DCM Special Dimensions

Thruster Body Assembly	
Effective discharge chamber length	11.318 cm
Diameter of anode	14.346 cm
Length of cathode-cup polepiece	2.074 cm
Inside diameter of cathode-cup polepiece	4.282 cm
Transparency of cathode-cup enclosure surfaces	24.8%
Propellant diverted through endplate	0%
Baffle diameter	2.578 cm
Number of magnets (0.485 cm diameter)	16
Mass of DCM plus MSS	3.338 kg
Beam Extraction System	
Electrode-dish radius of curvature	45 cm
Center-to-center aperture spacing	0.221 cm
Center-to-center aperture spacing Screen aperture diameter	0.221 cm 0.191 cm
Center-to-center aperture spacing Screen aperture diameter Interelectrode separation	0.221 cm 0.191 cm 0.0762 cm
Center-to-center aperture spacing Screen aperture diameter Interelectrode separation Accel thickness	0.221 cm 0.191 cm 0.0762 cm 0.0381 cm
Center-to-center aperture spacing Screen aperture diameter Interelectrode separation Accel thickness Screen thickness	0.221 cm 0.191 cm 0.0762 cm 0.0381 cm 0.0254 cm

TABLE 4. 2 mlb DCM Performance

	2.0 mlb ^a
Thrust, mlb Specific impulse, sec Total input power, W Total efficiency, percent Power efficiency, percent Total utilization, percent Discharge utilization, percent Total neutral flow, mA Power/thrust, W/mlb eV/ion including keeper, V Beam current, I _B , mA Anode—to—neutralizer tip potential, V _B , V Neutralizer coupling potential, V _c , V	2.23 2980 234.9 65.5 73.6 89.1 93.3 154.6 105.3 267 144 1220 -20
Output beam power, W Accelerator voltage, V A, V	172.8
Accelerator drain current, I _A , mA	1.5
Accelerator drain power, W Discharge voltage, V _D , V	1.98 40
Discharge current, I _D , A Discharge power, W Cathode:	0.880
Keeper voltage, V _{MK} , V	9.1
Keeper power, W Heater voltage, V _{MCH} , V	3.19 0
Heater current, I _{MCH} , A	0
Heater power, W Vaporizer voltage, V _{MV} , V	0 4.8
Vaporizer current, I _{MV} , A	1.9
Vaporizer power, W Flow rate, I _m , Hg	9.12 149.6
Neutralizer: Keeper voltage, V _{NK} , V	13
Keeper current, I _{NK} , A	0.620
Keeper power, W Heater voltage, V _{NCH} , V	8.06 0
Heater current, I _{NCH} , A	0
Heater power, W Vaporizer voltage, V _{NV} , V	0 2.1
Vaporizer current, I _{NV} , A	0.8
Vaporizer power, W	1.68 5
Neutralizer coupling power, W	2.88
^a Accounting for neutralizer floating potential due to beam divergence and the presence of c ions.	V and effects doubly charged

B. Discharge Chamber Module Optimization

The final configurations discussed in Section II-A were arrived at as a result of optimization of the 0.5 mlb DCM and 2 mlb DCM. During the optimization phase, each thruster incorporated a movable cathode, electromagnets, and a photoetch-fabricated beam-extraction system (see Figure 5). During the final stages of optimization, permanent magnets and a fixed cathode were installed. Two anode diameters were evaluated for each DCM. With each of the anode diameters, the DCM was optimized with respect to the following geometric variations:

Effective discharge chamber length

Current to electromagnets

Axial cathode position

Cathode-cup polepiece length

Baffle diameter

Cathode-cup-polepiece wall open area.

Figure 5. Versatile thruster assembly for optimization testing.

Throughout the optimization testing, the most desirable operating point was determined on the basis of best operating stability, lowest discharge energy per-beam-ion $\&_i$, and highest discharge-chamber propellant utilization η_{Hg} , as a function of cathode position, electromagnet current, and mainkeeper current. The relative quality of alternative operating points was evaluated on the basis of electrical measurements, with the propellant flow rate being estimated initially on the basis of main-vaporizer temperature. (A calibration curve was generated which related vaporizer temperature to propellant flow rate.)

Each configuration was evaluated as follows:

• The thruster was set at a nominal operating point with the discharge voltage $V_D = 40$ V and the beam current $I_B \cong 36$ mA for the 0.5 mlb DCM and $I_B \cong 144$ mA for the 2 mlb DCM.

- The main-keeper current I_{MK} was minimized at a value of $I_{MK} \ge 100$ mA for each of several values of the current I_{Mag} to the electromagnets.
- For each value of the magnet current I_{Mag} and main keeper current, I_{MK}, the main cathode was moved by 0.127 cm (0.050 in.) increments from 0.635 cm (0.250 in.) downstream of the zero magmetic field to 0.635 cm (0.250 in.) upstream of the zero magnetic field point. The best combination of low discharge power and high propellant utilization was determined from short-term data points.
- To confirm best-point data determined in the short testing, the value of mercury flowrate was confirmed by volumetric displacement over a one-hour period.
- A discharge-chamber propellant utilization efficiency η'_{Hg} was obtained for the best data point at each of the following discharge voltages: $V_D = 37$, 38, 39, and 40 V.
- A discharge-chamber performance curve $(\hat{e}_i \text{ vs. } \eta_{Hg}^{'})$ was also obtained for the best data point with the discharge voltage $V_D = 40$ V and for a range of discharge current values.

The figure of merit for a given configuration was the discharge-chamber efficiency η which is defined as the product of the discharge chamber electrical efficiency η_E^+ and the discharge-chamber propellant efficiency η_{Hg}^+ . (These definitions exclude from consideration fixed heater losses and neutralizer losses, since these parameters are not being optimized.) Upon completion of the testing with each configuration, a final choice was made from evaluation of all data and by consultation with the NASA-LeRC Project Manager.

1. 0.5 mlb DCM

Nomenclature used in this section is shown in the crosssectional sketch of Figure 6. The two anode diameters evaluated in optimization of the 0.5 mlb DCM were D = 8.547 cm for the 0.5 mlb-N tests and D = 10.07 cm for the 0.5 mlb-L tests.

a. <u>L-Configuration</u> – Results for the 0.5 mlb-L tests are presented in Table 5. Critical dimensions are listed for each test. The total efficiency (uncorrected for Hg⁺⁺) of the discharge chamber η'_T was compared from test to test. The discharge-chamber propellant utilization η'_{Hg} , presented in Table 1, includes corrections for doubly charged ions, but these corrections were measured for the performance of the final configurations reported in Section II-A. The accelerator electrodes in the optimization tests were fabricated by a photoetch process.

									tion									Τ		
Remarks		Good n'HG	2		High Keener Current				Not as stable as configura) 2H		High Keeper Current		(Good n' _{HG} , Good n' _E	Most stable configuration	8 permanent magnets	10 permanent magnets			
Discharge Chamber Voltage VD	40,V																-			
DC Total Efficiency $\eta' T$	0.615	0.582	0.603	0.599	0.614	0.593	0.594	0.583	0.597	0.582	0.570	0.553	0.541	0.634	0.625	0.584	0.594			
DC Electrical Efficiency $\eta'_{\rm E}$	0.781	0.797	0.808	0.750	0.744	0.766	0.777	0.730	0.778	0.797	0.695	0.726	0.736	0.789	0.809	0.757	0.814			
Discharge Chamber Utilization $\eta^{'} HG$	0.788	0.731	0.747	0.799	0.825	0.775	0.764	0.798	0.767	0.730	0.820	0.762	0.736	0.803	0.773	0.771	0.730			
eV/Ion With eV/Ion	336	306	286	400	412	367	344	443	342	305	525	450	430	321	283	385	275			
eV/lon Without eV/lon	255	222	206	316	333	290	255	377	256	242	322	250	222	283	244	344	233			
Bmax Gauss	40	46	49	29	29	37	45	29	37	46	29	37	46	34	39	33	43			
Wall Open Area	%0												-	88			-			
Baffle Diameter a	1.748									-	1.905		-	1.748						
P/I	0.457																-			
Cathode Cup Pole Piece Diameter d	3.810																			
Cathode Cup Pole Piece Length	1.742																			
L/D	0.789			0.852			-	0.726		-	0.789				_		-			
Discharge Chamber Length L	7.945		-	8.580			-	7.310		-	7.945								ERS	
Anode Diameter D	10.071																		CENTIMET	
Test Designation	2H			2L				2D			2F			2G		2G'	2G'		ONS ARE IN	
Test Sequence	80			6				10			11			13		14	15		DIMENSI	

0.5 mlb-L Optimization Test Results for 10.071 cm Anode Diameter TABLE 5^a.

14

Figure 6. Cross-sectional sketch of DCM.

Test sequence 13 (0.5 mlb-L-2G) gave the highest dischargechamber total efficiency of $\eta'_T = 0.63$ for the 0.5 mlb-L configurations when operated with electromagnets. Test sequences 14 and 15 had the same critical dimensions as test 13, except the electromagnets were substituted by 8 and 10 permanent magnets, respectively. These tests produced discharge-chamber efficiencies 4% to 5% lower than the electromagnet results.

b. <u>N Configuration</u> – Table 6 presents results of the 0.5 mlb-N tests. Of the first seven tests completed, configuration 1D gave the highest total discharge-chamber efficiency (uncorrected for $Hg^{++}) - \eta'_T = 0.62$ – accompanied by good discharge-chamber stability. Test 12 was a repeat of the 1D configuration to verify the earlier results and obtain more data at discharge voltage $V_D = 40$ V. A value of $B_{max} = 43$ G gave optimal results with $\mathscr{E}_i = 317$ eV/ion and the discharge-chamber efficiency $\eta'_T = 0.61$. Test 17 showed that eight permanent magnets ($B_{max} = 42$ G) resulted in better performance than the six permanent magnets ($B_{max} = 31$ G) used in Test 16. Test 17 also showed that a slightly higher total efficiency is obtained when the cathode is at a distance $D_0 = 0.381$ cm upstream from axial magnetic

0.5 mlb N Optimization Test Results for 8.547 cm Anode Diameter TABLE 6^a.

irks	B _{max}		B _{max} = 56 G	AK = 500 mA		101		table V _D =40 V							s	Q		low eV/ion	,u'HG			electromagnet	nagnets		_	8	magnets	_	/ fived cathode	8 permanent 7 hr operation	
Rema	Not stable for	Ý ≥ 35 Gauss	(Not stable for	Fxcept with In			ט ט מו ≥ max	Unable to keep s)	SH trave 1				_	Not as stable a	configuration	_	43 Gauss gives	and acceptable	Good stability	Best overall	After degaussing	6 permanent n	D ₀ = 0.381 cm	D ₀ = 0.630 cm	$D_0 = 0.381 cm$	$D_0 = 0.630 cm$	D ₀ = 0.381 cm	$D_0 = 0.630 \text{ cm}$	<pre>{ D₀ = 0.343 cm magnets; avg of</pre>	
Discharge Chamber Voltage VD	38.5 V	-	40 V	-	38.5 V	40 V	38.5 V	40 V																						•	
DC Total Efficiency $\eta'_{\rm T}$	0.599	0.599	0.616	0.629	0.576	0.620	0.516	0.600	0.535	0.554	0.547	0.554	0.502	0.566	0.600	0.601	0.565	0.523	0.590	0.567	0.607	0.593	0.604	0.611	0.585	0.599	0.574	0.594	0.580	0.591	
$\begin{array}{c} \mathrm{DC} \\ \mathrm{Electrical} \\ \mathrm{Efficiency} \\ \eta' \mathrm{E} \end{array}$	0.784	0.806	0.747	0.810	0.807	0.799	0.825	0.820	0.777	0.772	0.719	0.729	0.679	0.765	0.791	0.790	0.740	0.649	0.774	0.755	0.791	0.792	0.752	0.796	0.789	0.788	0.794	0.796	0.798	0.815	
Discharge Chamber Utilization η' HG	0.764	0.743	0.825	0.776	0.713	0.776	0.623	0.732	0.689	0.718	0.760	0.761	0.740	0.741	0.759	0.761	0.764	0.806	0.761	0.752	0.767	0.749	0.803	0.767	0.741	0.760	0.723	0.746	0.727	0.734	
eV/lon With eV/lon	330	288	406	281	286	301	254	264	344	355	468	447	568	369	317	319	422	447	351	389	317	316	396	308	320	323	311	308	303	291	
eV/Ion Without eV/Ion	288	236	357	222	234	262	212	222	242	194	321	278	278	333	278	247	278	411	288	294	277	277	356	267	276	283	210	267	261	248	
B max Gauss	24	32	16	30	30	30	46	46	30	46	39	46	52	30	35	43	50	31	34	39	43	43	31	42	42	42	42	42	42	42	
Wall Open Area	8%	-	-00																								-	8%	-	%0	
Baffle Diameter a	1.905			-	1.748			-	1.905	-	1.588						-	1.748												-	
P/I	0.457						-	0.791					-	0.457																-	
Cathode Cup Pole Piece Diameter d	3.810																													-	
Cathode Cup PolePiece Length	1.742	7					-	3.012					•	1.742																-	
L/D	0.789																													-	
Discharge Chamber Length L	6.741																													-	rers
Anode Diameter D	8.547																										4			-	CENTIME
Test Designation	1A		18		10			Ħ	١F		1G			11				10					1D,	1D,				1C		1D'	SIONS ARE IN
Test Sequence	-		2		e			4	5		9			7				12					16	17				18		19	aDIMENS

r1954

16

field zero than when it is 0.630 cm upstream. D_o is the distance from the cathode tip to the zero axial magnetic field point. Cathode-position studies generally showed that the plasma in the discharge chamber was more stable when the cathode was upstream of the axial magnetic-field zero.

c. <u>Selected Configuration</u> — The last test (sequence number 19) of 0.5 mlb-N configuration is the chosen optimized configuration with eight permanent magnets and a fixed cathode position. The critical parameters for this configuration were listed in Table 1; the performance values are listed in Table 7. Power levels for the neutralizer and main-cathode vaporizers were taken as nominal values rather than the actual power measured, since no attempt was made under the current effort to optimize these values.

Other performance values taken for the optimized 0.5 mlb DCM are shown in Figures 7 through 9. The discharge chamber energy, $\&_i$, is plotted as a function of discharge-chamber utilization η'_{Hg} in Figure 7. The nominal operating point is $\&_i = 300 \text{ eV/ion}$. In Figure 8, the total utilization η'_T is shown to be at a maximum value in the range of beam currents, 35 mA $\leq I_B \leq 40$ mA. Figure 9 shows, as expected, that the discharge-chamber utilization increases as a function of discharge chamber voltage, V_D . Figures 7 through 9 do not account for the presence of doubly charged ions.

2. 2 mlb DCM

The anode diameters evaluated in the 2 mlb DCM optimization were D = 12.882 cm for the 2 mlb-N test and D = 14.346 cm for the 2 mlb-L tests.

a. <u>N Configuration</u> – Results for the 2 mlb-N tests are presented in Table 8. Critical dimensions are listed for each test. The results for test 1 are the accumulation of one-hour data points. It can be seen that the discharge chamber utilization dropped from an apparent value of η'_{Hg} = 135 to 97.2% as the accel current dropped from I_A = 9 to 3 mA. The unbelievably high values of propellant utilization η'_{Hg} are thought to reflect a high level of ion machining which occurred with the photoetched beam extraction system before it was able to transmit the primary beam current. Only the final value of propellant utilization is thought to be reliable.

Test 1 was terminated after 20 hours of operation but before ion machining was fully complete, because the discharge chamber electrical efficiency η_E was considered to be unacceptably high. Test 2 was also terminated after a short time; the zero value of open wall area permitted operation only up to a maximum discharge-chamber voltage $V_D = 38$ V and beam current $I_B = 110$ mA. The configuration of test 3 also did not produce desirable results. Although a discharge voltage $V_D = 40$ V could be attained, the discharge current became highly unstable if $I_D > 1$ A. This limited the stable operation to a value of beam current $I_B = 110$ mA.

_			the second s
	Thrust* (ideal), mlb Specific impulse,* sec Total input power, W Total efficiency,* percent Power efficiency, percent Total utilization,* percent Discharge utilization,* percent Total neutral flow, mA Power/thrust,* W/mlb eV/ion excluding keeper, V eV/ion including keeper, V eV/ion including keeper, V Beam current, I _B , mA Anode-to-neutralizer tip potential, V _B , V Neutralizer coupling potential, V _C , V Output beam power, W Accelerator voltage, V _{AC} , V Accelerator drain current, I _{Acc} , mA	0.57 2257.3 65.7 42.5 65.1 65.3 73.4 55.1 115.3 248 291 36 1193 -7 -100 0.14	43.0
	Accelerator drain power W		0 17
	Discharge voltage, V _D , V	40.0	0.17
	Discharge current, I _D , A	0.222	
	Discharge power, W		8.88
	Cathode		
	Keeper voltage, V _{MK} , V	16.0	
	Keeper current, I _{MK} , A	100	
	Keeper power, W Heater voltage, V _{MCH} , V	0	1.6
	Heater current, I _{MCH} , A	0	
	Heater power, W Vaporizer voltage, V _{MV} , V	(2.0)	0
	Vaporizer current, I _{MV} , A	(0.8)	
	Vaporizer power, W Flow rate, mA Neutralizer	49.1	(1.6)
	Keeper voltage, V _{NK} , V	(17.0)	
	Keeper current, I _{NK} , A	(0.5)	
	Keeper power, W Heater voltage, V _{NCH} , V	0	(8.5)
	Heater current, I _{NCH} , A	0	
	Heater power, W	(5.5)	0
	Vaporizer voltage, V _{NV} , V	(3.6)	
	Vaporizer current, I _{NV} , A	(0.5)	
	Vaporizer power, W	(6)	(1.8)
	Neutralizer coupling power, W	(0)	0.2
_	······		
	*Accounting for neutralizer floating V potent effects due to beam divergence and the pre charged ions. Nominal values are enclosed in pa	ial but negle esence of do rentheses.	cting uble-
			T1955

2.0 mlb N and L Optimization Results for 12.882 and 14.346 cm Anode Diameter TABLE 8.

	-			-				-		-	_					-				_		_	_	-	_	_	-	_			_	_			_	-	-
Remarks	1 _B = 124 mA; ¹ A = 5 mA; very noisy	$I_A = 9.0 \text{ mA}$; strikes on I_D	$I_A = 7 \text{ mA}$; spikes on I_D	$I_A = 6 \text{ mA}$; spikes on I_D	I _A = 7 mA	$I_A = 4.5 \text{ mA}$ no spikes on I_D	I _A = 3.0 mA	$V_D = 38 V \text{ spikes on I}_D$	$I_{B} = 110 \text{ mA}; \text{ unstable for}$	∫ 1 _D ≥ IA	Thruster operated overnight before taking	data. IA dropped from	4.6 mA to 2.1 mA	1 1		lowest eV/Ion; Mesh CCPP and	mesh baffle from HAC 8 cm	16 slots	V 16 slots in CCPP		[137 holes, 0.102 cm dia in baffle]	Poor initial stability				<pre>> L = (NOMINAL) - (0.953 cm)</pre>		L = (NOMINAL) + (0.953 cm)	3 hr data point; 12 electromagnets) L = (NOMINAL) + (0.953 cm)	16 electromagnets	Neutralizer did not couple	12 electromagnets	L = (NOMINAL) - (0.953 cm)	16 permanent magnets	16 permanent magnets; cathode fixed	T1956
Discharge Chamber Total Efficiency η'	1.049	1.103	0.929	0.765	0.774	0.780	0.805	0.682	0.730	0.699	0.675	0.698	0.710	0.706	0.713	0.758	0.708	0.727	0.739	0.745	0.739	0.732	0.742	0.731	0.734	0.716	0.732	0.722	0.774	0.730	0.738	0.750	0.756	0.741	0.753	0.758	
Discharge Chamber Electrical $\pi'_{\rm Hg}$	0.777	0.788	0.774	0.729	0.707	0.755	0.775	0.702	0.819	0.779	0.711	0.740	0.751	0.737	0.767	0.828	0.791	0.773	0.797	0.799	0.798	0.789	0.816	0.789	0.748	0.781	0.807	0.742	0.815	0.769	0.784	0.821	0.808	0.794	0.803	0.804	
Discharge Chamber Utilization $\eta^{'}_{Hg}$	1.350	1.400	1.200	1.050	1.005	1.033	1.040	0.972	0.890	0.897	0.949	0.944	0.945	0.958	0.929	0.916	0.895	0.941	0.927	0.932	0.926	0.928	0.910	0.926	0.919	0.917	0.908	0.973	0.950	0.949	0.941	0.913	0.936	0.934	0.938	0.943	
Energy/lon With Keeper Loss eV/lon	345	322	351	447	498	389	350	509	265	301	488	422	398	429	364	249	317	353	305	301	303	320	270	320	303	337	287	416	272	361	331	262	286	311	295	292	
Energy/lon Without Keeper Loss eV/lon	319	307	335	432	488	376	341	487	258	294	479	413	388	427	351	238	307	349	300	296	299	316	265	304	288	329	266	413	266	355	326	252	279	304	290	286	
Cathode Position From D.S. Surface of End Plate dc cm	0.0457 US											-	0.338 US			0.805 DS	-	0.338 US			0.810 DS	0.333 US	0.810 DS	0.333 US	0.460 US		-	0.780 DS	0.188 US	0.798 DS		-	0.249 US		0.343 US	-	
Maximum Axial Magnetic Field Bmax Gauss	44	44	44	44	44	47	50	50	50	44	45	50	50	54	50	44	36	44	48	48	45	45	48	48	50	45	54	41	46	45	48	52	45	42	47	47	
Cathode Cup Pole Piece Open Wall Area A0	8.5						-	0	8.5	-	12.7				-	23.9	-	24.8										-	24.8								
Baffle Diameter a cm	2.456							-	2.700	-	2.456		-	2.578	-	2.197	-	2.578											2.578	_							
Q/I	0.485														-	0.491	-	0.485											0.485								
Cathode Cup Pole Piece Inner Diameter D, cm	4.282														-	3.518	-	4.282											4.282								
Cathode Cup Pole Piece Length I cm	2.075				-										-	1.727		2.075			_								2.075							-	
L/D	0.789																							-	0.715		-	0.863	0.789	0.855		-	0.723	-	0.789 L		
Discharge Chamber Length L cm	10.117										,													-	7.793		-	11.069	11.318	12.270		-	10.366	-	11.318 L		
Anode Diameter D cm	12.882																											-	14.346								
Test Number	-							2	e	,	4			2		9		7			00				6			10	1	12			13		14	15	

19

DISCHARGE CHAMBER PROPELLANT UTILIZATION, η'_{H}

Figure 7. Discharge chamber energy, \mathscr{E}_i , as a function of discharge chamber propellant utilization, η'_{Hg} for 0.5 mlb optimized DCM.

Modifications made in the cathode-cup polepiece and baffle improved thruster operation. The configuration of test 4 was the same as test 1 except that the wall open area of the cathode-cup polepiece (CCPP) was increased to $A_0 = 12.7\%$. The accel current value was decreased from $I_A = 4.6$ mA to $I_A = 2.1$ mA by operating the thruster overnight before data were taken. Stable operation was achieved at $I_B = 144$ mA, but the discharge specific energy was higher than desired ($\&_i = 398$ eV/ion).

In test 5, the baffle size was increased to lower the discharge specific energy. At the conclusion of this test, results indicated the need to use a high wall open area in the CCPP to obtain superior thruster performance.

Figure 9. Discharge chamber propellant utilization, η'_{Hg} , as a function of discharge chamber voltage, V_D , for 0.5 mlb optimized DCM.

A 23.9% CCPP wall open area was obtained in test 6 by use of a mesh-covered CCPP and an all-mesh baffle. The results were encouraging with $\mathcal{E}_i = 249 \text{ eV/ion}$; this prompted a change from the CCPP used in tests 1 through 6.

A new CCPP design was employed from test 7 to the end of optimization. As shown in Figure 10, 16 slots were placed in the CCPP and were covered by the 49% transmission mesh normally used over CCPP wall openings. This produced a wall open area of $A_0 = 24.8\%$. This CCPP was installed for test 7 with the solid baffle that appeared to give good stability in previous tests, i.e., a = 2.578 cm. Of the first seven tests, test 7 produced the best results except for the meshcovered CCPP and all-mesh baffle of test 6.

5651-1

Figure 10. Optimized 2 mlb DCM cathodecup polepiece design. We attempted in test 8 to improve performance by employing a baffle with a 23% transmission which was provided by 137 holes of 0.102 cm diameter (no mesh was used). Except for an initial instability that lasted more than one hour, performance with this configuration was about the same as for test 7.

Tests 9 and 10 involved variations of chamber length; performance was not as good as test 7.

Of the first 10 tests (using the anode diameter D = 12.882 cm and nonmesh baffle), test 7 produced the best results with $\eta' = 0.745$.

b. <u>L Configuration</u> – Results for the 2 mlb-L tests are presented in Table 8. Test 11 evaluated performance with an anode diameter D = 14.346 cm combined with the same CCPP and baffle from test 7. The performance was excellent with $\eta' = 0.774$. Variations in the discharge-chamber length were made in Tests 12 and 13, but the results with the nominal length in test 11 remained the best. It was clear that the large-diameter anode used in test 11 produced the optimum results.

The next step (test 14) was to go to permanent magnets. The discharge-chamber efficiency of test 14 ($\eta' = 0.753$) was 0.021 lower than the results with electromagnet of test 11. (A similar loss was also experienced in the 0.5 mlb DCM optimization when permanent magnets replace the electromagnets.)

c. <u>Selected Configuration</u> – The last test (test 15) of the 2 mlb-DCM is the chosen optimized configuration with 16 permanent magnets and a fixed cathode position. The performance of the optimized 2 mlb DCM is $\eta' = 0.758$. The critical dimensions of this final configuration are presented in Table 3 and the performance values are listed in Table 9. Power levels for the neutralizer and main cathode vaporizers were taken as nominal values rather than the actual power measured, since no attempt was made under the current effort to optimize these values.

Other performance values taken for the optimized 2 mlb DCM are shown in Figures 11 through 13. The discharge specific energy, & i, is plotted as a function of discharge chamber utilization, η_{Hg} in Figure 11. The nominal operating point is $e_i \sim 300 \text{ eV/ion}$. In Figure 12, the discharge chamber efficiency η_T achieves a maximum value in the range of beam current 139 mA $\leq I_B \leq 145$ mA. The discharge-chamber utilization is shown in Figure 13 to change in the range of 37 V $\leq V_D \leq 39$ V, but appears to be constant from 39 V $\leq V_D \leq 40$ V. These curves do not account for multiply charged ions.

TABLE 9. Results of 2.0 mlb Optimized DCM Test

.

Thrust* (ideal), mlb Specific impulse,* sec Total input power, W Total efficiency, * percent Power efficiency, percent Total utilization,* percent Discharge utilization,* percent Total neutral flow, mA Power/thrust,* W/mlb eV/ion excluding keeper, V eV/ion including keeper, V Beam current, I _B , mA Anode—to—neutralizer tip potential, V _D , V	2.29 3143 231.8 67.7 74.7 90.6 94.2 158.9 286 292 144 1230								
Neutralizer coupling potential, V., V	27								
Output beam power, W Accelerator voltage, V _{Ac} , V	-100	173.2							
Accelerator drain current, Γ_{Ac} , mA Accelerator drain power, W Discharge voltage, V _D , V	40.0	0.9							
Discharge current, I _D , A	1.03								
Discharge power, W		41.2							
Keeper voltage, V _{MK} , V	7								
Keeper current, I _{MK} , A	0.12								
Keeper power, W Heater voltage, V _{MCH} , V	0	0.8							
Heater current, I _{MCH} , A	0								
Heater power, W Vaporizer voltage, V _{MV} , V	(2.5)	0							
Vaporizer current, I _{MV} , A	(1.0)								
Vaporizer power, W Flow rate, mA	152.9	(2.5)							
Keeper voltage, V _{NK} , V	(1.7)								
Keeper current, I _{NK} , A	(0.5)								
Keeper power, W Heater voltage, V _{NCH} , V	0	(8.5)							
Heater current, I _{NCH} , A	0								
Heater power, W Vaporizer voltage, Vanz, V	(3.6)	0							
Vaporizer current, INV, A	(0.5)								
Vaporizer power. W	(0.07	(1.8)							
Flow rate, mA	(6)	,/							
Neutralizer coupling power, W		(2.9)							
*Accounting for neutralizer floating V potential but neglecting effects due to beam divergence and the presence of double-charged ions. Nominal values are enclosed in parentheses.									

T1958

Figure 11. Discharge specific energy, \mathscr{E}_i , as a function of discharge chamber utilization, η'_{Hg} , for 2.0 mlb optimized DCM.

Figure 12. Discharge chamber efficiency, η' , as a function of beam current, I_B , for 2.0 mlb optimized DCM.

Figure 13. Discharge chamber utilization, η'_{Hg} , as a function of discharge chamber voltage, V_D , for 2.0 mlb optimized DCM.

C. Patch Tests

A series of ion-machining patch tests were performed to determine the optimum grid-gap spacing for minimum neutral loss at the 0.5 mlb and 2 mlb thrust levels. These tests were carried out using an 8-cm Satellite-Control Ion Thruster (SIT-8) received as Government Furnished Equipment (GFE).

1. SIT-8 Thruster Performance Evaluation

As received, the SIT-8 thruster was operated at a level recommended by the Lewis Research Center (LeRC) Project Manager. Thruster operating conditions are listed in Table 10; they are not significantly different from those recommended by the LeRC Project Manager.

Based on these measurements, Hughes recommended that the discharge chamber be modified prior to initiating the ion-machine patch tests required under this task. With concurrence of the LeRC Project Manager, the thruster was reconfigured to a form which was found suitable earlier (in Hughes IR&D testing) for operating over the range of beam current 36 mA < I_B < 72 mA. Special dimensions for the revised configuration are listed in Table 11.
TABLE 10. SIT-8 Thruster Operating Conditions

Thrust* (ideal), mlb Specific impulse,* sec Total input power, W Total efficiency, * percent Power efficiency, percent Total utilization,* percent Discharge utilization,* percent Total neutral flow, mA Power/thrust,* W/mlb eV/ion excluding keeper, V eV/ion including keeper, V Beam current, J _B , mA Anode—to—neutralizer tip potential, V ₁ , V Neutralizer floating potential, V _g , V	1.14 2398.1 142.3 42.3 61.4 68.8 75.2 104.6 124.3 337.9 380.6 72 1240 -26.5	
Output beam power, W Accelerator voltage, V _A , V	-300	87.33
Accelerator drain current, J _A , mA Accelerator drain power, W Discharge voltage, Delta VI, V	0.25 39.5	0.082
Emission current, J _E , A Discharge power, W Cathode	0.616	24.33
Keeper voltage, V _{CK} , V Keeper current, J _{CK} , A	12.8 0.240	
Keeper power, W Heater voltage, V _{CH} , V	3.3	3.07
Heater current, J _{CH} , A	1.5	
Heater power, W Vaporizer voltage, V _{CV} , V	4.15	4.95
Vaporizer current, J _{CV} , A	2.08	
Vaporizer power, W Flow rate, mA	95.7	8.63
Keeper voltage, V _{NK} , V Keeper current, J _{NK} , A	11.3 0.500	
Keeper power, W Heater voltage, V _{NH} , V	2.5	5.65
Heater current, J _{NH} , A	1.5	
Heater power, W Vaporizer voltage, V _{NV} , V	2.45	3.75
Vaporizer current, J _{NV} , A	1.08	
Vaporizer power, W		2.64
Flow rate, mA Neutralizer coupling power, W	8.9	1.91
*Accounting for neutralizer floating potential due to beam divergence and the presence of	but neglecting doubly charge	effects ed ions.

T1959

TABLE 11. DCM Special Dimensions

DCM Parameters	Specifications
Length (including structurally formed endplate)	8.484 cm
Diameter of Anode	8.547 cm
Length of Cathode—Cup Polepiece	1.742 cm
Outside Diameter of Cathode–Cup Polepiece	3.810 cm
Transparency of Cathode–Cup Enclosure Surfaces	7.55%
Baffle Diameter	1.905 cm
Distance from Cathode tip to downstream surface of endplate	0.343 cm

T1960

2. 2 mlb and 0.5 mlb Results

Requirements for the ion-machine patch tests, as defined by the contract, were:

The Contractor shall perform ion machine patch tests with the GFE SIT-8 thruster to determine the optimum grid gap for minimum neutral loss at 0.5 and 2-mlb thrust. The patch tests shall comply with the following:

- a. The beam current for the 1/2-mlb thrust tests shall be 36 mA. The beam current for the 2-mlb thrust tests (64 mA) shall be based on the average ion current density for a 12-cm active grid diameter.
- b. The patches shall
 - (1) Consist of 0.001 in. thick tantalum foil
 - (2) Cover at least three accelerator holes.

- (3) Be mounted on both upstream and downstream surfaces of the accelerator grid
- (4) Be mounted at three locations along a radius of the accelerator grid (in the center, at the edge, and halfway between the center and the edge).
- c. The 1/2- and 2-mlb tests shall be performed for five grid spacings each (0.015 in., 0.020 in., 0.025 in., 0.030 in., 0.035 in.). The same set of holes on the accelerator grid and relative orientation of screen and accelerator grid shall be used for each test.
- d. The ion machining time for each test (10 tests total) shall be five hours.
- e. The hole diameters for each patch shall be measured and recorded. A plot of hole diameters versus grid spacing shall be made for each location on the accelerator grid for the 1/2- and 2-mlb thrust tests.
- f. The hole patterns in each patch shall be photodocumented.

A 1.219 m (4 ft) diameter by 3.048 m (10 ft) long vacuum chamber served as the test facility for all patch tests. After the neutralizer discharge and main cathode discharge were initiated in the GFE SIT-8 thruster, the vacuum chamber pressure dropped to less than 5 x 10⁻⁶ Torr. The thruster operated stably and reliably at the two setpoints (I_B = 36 mA and I_B = 64 mA) required for patch test operation.

A High-Open-Area (HOA) accel electrode is part of the electrode geometry of the GFE SIT-8. In order to better simulate the total accelerating fields which obtain with a Small Hole Accel Grid (SHAG), the thruster was operated at a beam voltage $V_B = 1000$ V and an accel voltage $V_A = -300$ V. This simulates the SHAG condition of $V_B = 1200$ V and $V_A = -100$ V while still avoiding electron backstreaming which would occur with the HOA optics under those conditions. The decision to change the beam voltage from $V_B = 1200$ V to $V_B = 1000$ V and maintain the accel voltage $V_A = -300$ V was made (with the concurrence of

the NASA Project Manager) after completion of patch test 1 (PT-1). * After completion of each patch test, the screen and accel electrodes were separated for hole size measurements, photodocumentation, and new patches were installed. A slight nonuniformity in the SIT-8 beam extraction system made it impossible to simultaneously set the grid gap spacing to its nominal dimensions at the center, edge, and midpatch locations. To accommodate this condition, the nominal gap spacing was maintained only at the midpatch location. Grid gap dimensions for all tests and locations are listed in Table 12.

Experimental data were analyzed by generating four graphs: two for the three upstream patches at $I_B = 36$ mA and $I_B = 64$ mA and two for the three downstream patches at the same beam-current levels. Figures 14 and 15 are plots of the upstream and downstream mean hole diameters for an ion beam current $I_B = 64$ mA (representative of the 2 mlb thrust level) as a function of the grid-gap spacing g. As expected, the larger holes were formed in the center patches where the beam intensity is the greatest. By comparing the upstream and downstream mean hole diameters of similar patch locations, it can be seen that the beam is most convergent in the center-patch region. The figures show that the mean hole diameters are relatively constant (for a particular patch location) for grid spacings up to 0.030 in. Based on these results, a gap spacing g = 0.030 in. was recommended for the 2-mlb thruster, because a larger gap spacing provides greater immunity from possible interelectrode electrical contact.

Patch test 1 was the only one taken with a beam voltage $V_B = 1200$ V and accel voltage $V_A = -300$ V. The mean hole diameter and grid spacing for this test are shown in Figures 14 and 15 by the filled-in data points. The mean diameters of the center and midpatch holes are about 0.010 cm (0.004 in.) smaller for this test; the edge mean diameter holes are not affected. This diameter reduction corresponds to an area reduction of $\approx 20\%$ and could be exploited to produce a higher value of discharge chamber propellant utilization than will be achieved at the nominal beam and accel voltage settings.

Figures 16 and 17 present the data for an ion-beam current $I_B = 36$ mA. The mean hole diameters are relatively constant for the grid spacings. Based on these results, a grid gap g = 0.076 cm (0.030 in.) was recommended for the 0.5 mlb thruster.

Photographs were taken after each patch test (PT-1 through PT-10). The same number of photographs were taken for each patch test. Figure 18 is an upstream view of the accel electrode and the

^{*}Although PT-1 data were not used in analysis of ion-machined hole sizes, it provided useful information about the hole size dependence on the total accelerating voltage of the extraction system.

TABLE 12.	Patch	Test	Grid	Spacings

Grid			I _B = 36 mA		I _B = 64 mA					
Spa	acing		Patch		Patch					
cm	(in.)	Center	Mid	Edge	Center	Mid	Edge			
0.025	(0.010)			PT-9						
0.028	(0.011)									
0.030	(0.012)									
0.033	(0.013)			PT6			PT-5			
0.036	(0.014)			2 A.						
0.038	(0.015)									
0.041	(0.016)		PT-9							
0.043	(0.017)		DT 0							
0.046	(0.018)		PI-6							
0.048	(0.019)	DT O				P1-5				
0.051	(0.020)	PT-9		P1-4						
0.053	(0.021)						PI-3			
0.056	(0.022)	DT C		DT O			DT 10			
0.058	(0.023)	P1-0		P1-0			PI-10			
0.061	(0.024)		DT 4			рт 2				
0.064	(0.025)		P1-4		DTE	FI-3				
0.066	(0.026)				F1-5					
0.069	(0.027)	DT 4								
0.071	(0.028)	P1-4			DT 2		DT 1			
0.074	(0.029)				FI-3	PT 10	F1-1			
0.076	(0.030)		PT_8	PT_7		F1-10				
0.079	(0.031)		F1-0			PT_1	PT_2			
0.081	(0.032)				PT_1	11-1	11-2			
0.084	(0.033)									
0.080	(0.034)	PT-8	PT-7		PT-10					
0.089	(0.035)		,							
0.091	(0.030)									
0.007	(0.037)					PT-2				
0.099	(0.039)				PT-2					
0.102	(0.040)									
0.104	(0.041)	PT-7								
	(51011)					-				

Figure 14. Upstream mean hole diameter versus interelectrode spacing for beam current $I_B = 64$ mA. Edge patch asymmetries are indicated by error bars.

Figure 15. Downstream mean hole diameter versus interelectrode spacing for beam current $I_B = 64$ mA. Edge patch asymmetries are indicated by error bars.

Figure 16. Upstream mean hole diameter versus interelectrode spacing for beam current $I_B = 36$ mA. Edge patch asymmetries are indicated by error bars.

Figure 17. Downstream mean hole diameter versus interelectrode spacing for 36 mA beam. Edge patch asymmetries are indicated by error bars.

Figure 18. Upstream view of accel and PT-3 patches.

patches for PT-3. Individual patch-test photographs were also made at higher magnification; a typical photograph is presented in Figure 19 for PT-3. All photographs have been submitted in a special report (Ref. 3).

The ion-machined holes in the center and midpatches generally were circular and uniform in size, whereas the edge patches were less uniform and slightly elongated. For most edge-patch cases, a mean hole diameter for each patch was obtained by averaging the largest and smallest dimension of the hole. In the few edge-patch cases, where the ion machined holes were of unusual shapes, the diameters were assigned to these holes to approximate the area of the hole. To characterize the large asymmetries observed in edge-patch hole shapes, both the largest and smallest hole dimensions are indicated by error bars (in Figures 14 through 17) for edge-patch hole dimensions. All hole measurements were made with the aid of a microscope. Although most of the individual patch photographs involved an optical comparator, only the microscopic measurements were used to obtain average values for the hole diameters. The points plotted in Figures 14 through 17 represent the average values of the three holes in each patch.

Figure 19. Upstream view of PT-3 center patch. Holes in downstream patch have dark background (15x magnification).

D. Ion Machining Tests

Upon completion of each 0.5 mlb DCM and 2 mlb DCM optimization, a 200 hour ion machining test (Ref. 4) was undertaken. Blank accelerator grids were continuously ion machined with the 0.076 cm (0.030 in.) grid spacing determined from the patch tests. Accelerator drain currents were monitored periodically throughout the test. The accelerator drain current values were used to calculate the drain current expected after 20,000 hours and 40,000 hours of operation. At the end of the 200 hour tests, the accelerator grids were inspected without disassembly and the holes measured across one diameter of the accelerator with the 0.5 mlb and 2 mlb electrode sets to evaluate accelerated ion-machining techniques. These techniques were used to machine the accel grids for the 0.5 mlb DCM and 2 mlb DCM described in Section II-A. The results of the ion machining tests follow.

1. 0.5-mlb Accelerator Grid

Results of the 200-hour test and the subsequent six-hour tests are described below for ion machining of the 0.5 mlb DCM accelerator grid.

a. <u>200 Hour Test</u> – This test was started with a dished accelerator-electrode blank. An ion beam current $I_B = 36$ mA was maintained for the full 200 hours. The first signs of holes appeared in the accelerator approximately two hours after the start of the test. The accelerator current and the normalized accelerator drain current J'(A) = J(A)/[J(A) + J(B)] are listed as a function of time in Table 13. The accelerator current values are plotted in Figure 20. The accelerator drain current was also measured at the end of the 200 hour period for reduced voltage (down to zero); the result of these measurements are shown in Figure 21.

Figure 20. Accelerator current versus time for 0.5 mlb DCM.

TABLE 13. 0.5 mlb DCM 200 Hour Ion Machining Data

-	Τ				_		~																~~~~															
J' (A		0.019	0.015	0.012	0.014	0.01	0.017	0.01	0.01	0.017	0.01	0.01																										
A n A n		0.68	0.55	0.5	0.52	0.6	0.6	0.6	0.6	0.6	0.6	0.6																										
's m	1	36																																				1
e nin		35	48	24	60	03	18	54	60	51	46	00																										
1	ž	170		171	172	197			198	198	199	200																										
J' (A)		0.031	0.031	0.028	0.028	0.025	0.025	0.024	0.025	0.025	0.025	0.025	0.024	0.023	0.024	0.011	0.011	0.011	0.011	0.011	0.012	0.023	0.023	0.023	0.023	0.023	0.023	0.022	0.022	0.021	0.014	0.014	0.014	0.014	0.014	0.015	0.016	0.014
A H		1.1	1.1	1.0	1.0	0.9	0.9	0.87	0.9	0.9	0.89	0.89	0.86	0.84	0.87	0.38	0.38	0.39	0.39	0.39	0.43	0.84	0.83	0.82	0.83	0.83	0.84	0.79	0.79	0.77	0.5	0.5	0.5	0.49	0.52	0.54	0.58	0.5
-s- MA		36																																				
9 1	E E	35	42	27	02	39	36	46	29	24	20	30	10	39	42	03	19	45	13	27	39	42	. 54	10	31	58	23	39	38	12	23	22	34	03	90	16	37	-
Ē	ž	99		67	68	86	107	107	108	109	110	110	113		116	119			120			129		130		131	133	134	136	138	142	144		152		154	158	159
J' (A)		0.056	0.056	0.056	0.042	0.047	0.044	0.047	0.047	0.047	0.053	0.058	0.058	0.056	0.058	0.056	0.056	0.056	0.053	0.053	0.050	0.044	0.047	0.044	0.042	0.036	0.028	0.042	0.022	0.022	0.025	0.028	0.050	0.022	0.028	0.028	0.033	0.033
۹ ^۳		2.0	2.0	2.0	1.5	1.7	1.6	1.7	1.7	1.7	1.9	2.1	2.1	2	2.1	2	2	2	1.9	1.9	1.8	1.6	1.7	1.6	1.5	1.3	-	1.5	0.8	0.8	6.0	1.0	1.8	0.8	-	-	1.2	1.2
-s m		36																																				
e i	Ē	10	31	10	31	8	30	60	35	8	55	38	55	12	46	90	36	56	80	29	42	50	10	25	40	56	30	46	52	27	52	17	42	05	40	52	16	90
i i	ž	21		22		23		24		25		26		28		29		30	32	36			37				40			41		42	44	49		51	54	55
J' (A)		0.256	0.250	0.233	0.225	0.211	0.211	0.197	0.194	0.192	0.181	0.175	0.156	0.150	0.125	0.125	0.111	0.100	0.097	0.083	0.089	0.069	0.083	0.075	0.075	0.072	0.072	0.069	0.069	0.067	0.067	0.064	0.056	0.056	0.056	0.050	0.053	0.053
۹ ۳ ۹		9.2	6	8.4	8.1	7.6	7.6	7.1	7	6.9	6.5	6.3	5.6	5.4	4.5	4.5	4.0	3.6	3.5	3.0	3.2	2.5	3.0	2.7	2.7	2.6	2.6	2.5	2.5	2.4	2.4	2.3	2.0	2.0	2.0	1.8	1.9	1.9
-s MA		36																																				
ae min	Ē	22	30	46	8	15	33	8	07	15	28	44	0	30	8	30	00	30	00	30	00	30	8	30	8	30	01	31	01	31	02	31	10	31	01	31	01	31
if 1	E	2			9			2					∞		6		10		=		12		13		14		15		16		17		18		19		20	
J' (A)		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.972	0.903	0.886	0.867	0.850	0.772	0.694	0.639	0.583	0.556	0.528	0.467	0.453	0.411	0.333	0.306	0.319	0.306	0.278	0.286
- ⁴		36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	35	32.5	31.9	31.2	30.6	27.8	25	23	21	20	19	16.8	16.3	14.8	12	1	11.5	11	10	10.3
-s MA		36																																				
	_	~	4	ß	9	8	80	ю	0		0	6	0	2	2	6	6t	00	90	60	0	-	e	~	80	90	4	22	8	15	88	12	0	6	5	6	13	
an	Ē	8	0	0	0	0	=	3	ē	õ	4	4	0	-	~		~	u ,	u,	~	-	-	-	-	~		4	<u> </u>	<u> </u>			~	0	_		~		

ACCELERATOR VOLTAGE, VA, V

Figure 21. Screen current, J(S), and accel current, J(A), as a function of accel voltage, V_A, after 200 hour ion machining test (0.5 mlb).

The predicted values for normalized accelerator current, J'(A) = J(A)/[J(A) + J(B)] at 20,000 and 40,000 hours, are J'(A) = 0.71%and 0.66%, respectively. The manner by which these values were obtained is discussed in Appendix A.

Upon completion of the 200 hour test, the accelerator grid was inspected without disassembly. Hole diameters were measured across one diameter of the accelerator grid on the downstream side only; the results of these measurements are shown in Table 14. The hole sizes were photodocumented also; the downstream surface is shown in Figure 22. Sufficient detail is visible in Figure 22 to obtain detailed information on individual aperture shape by enlargement from the negative.

The discharge chamber itself is shown in Figure 23. An extensive amount of sputter-deposited material is shown peeling from the anode and hanging across the beam-extraction system. Metal flakes, associated with this process caused numerous fluctuations in accel current (as shown in Table 13 and Figure 20), and several screen-toaccel short circuits occurred throughout the 200 hour test.

No.	Height cm (inch)	Width cm (inch)	No.	Height cm (inch)	Width cm (inch)	No.	Height cm (inch)	Width cm (inch)
1	0.066 (0.026)	0.036 (0.014)	13	0.055 (0.0215)	0.052 (0.0205)	25	0.051 (0.020)	0.047 (0.0185)
2	0.058 (0.023)	0.051 (0.020)	14	0.055 (0.0215)	0.053 (0.021)	26	0.051 (0.020)	0.046 (0.018)
3	0.058 (0.023)	0.051 (0.020)	15	0.056 (0.022)	0.055 (0.0215)	27	0.052 (0.0205)	0.044 (0.0175)
4	0.056 (0.022)	0.048 (0.019)	16	0.056 (0.022)	0.055 (0.0215)	28	0.053 (0.021)	0.043 (0.017)
5	0.056 (0.022)	0.046 (0.018)	17	0.056 (0.022)	0.055 (0.0215)	29	0.055 (0.0215)	0.044 (0.0175)
6	0.056 (0.022)	0.046 (0.018)	18	0.056 (0.022)	0.052 (0.0205)	~ 30	0.055 (0.022)	0.048 (0.019)
7	0.056 (0.022)	0.046 (0.018)	19	0.056 (0.022)	0.056 (0.022)	31	0.057 (0.0225)	0.051 (0.020)
8	0.053 (0.021)	0.046 (0.018)	20	0.056 (0.022)	0.055 (0.0215)	32	0.060 (0.0235)	0.051 (0.020)
9	0.053 (0.021)	0.047 (0.0185)	21	0.056 (0.022)	0.053 (0.021)	'33	0.061 (0.024)	0.052 (0.0205)
10	0.052 (0.0205)	0.048 (0.019)	22	0.055 (0.0215)	0.052 (0.0205)	34	0.061 (0.024)	0.051 (0.020)
11	0.052 (0.0205)	0.051 (0.020)	23	0.053 (0.021)	0.051 (0.020)	35	0.066 (0.026)	0.047 (0.0185)
12	0.053 (0.021)	0.051 (0.020)	24	0.110 (0.0435)	0.091 (0.036)			

TABLE 14. Hole Diameters after 200 Hour Machining Test (0.5 mlb)

T1964

M11336

Figure 22. Downstream view of beam-extraction system after the 200 hour test (0.5 mlb).

Figure 23. Discharge chamber after 200 hour test (0.5 mlb).

b. <u>Accelerated Ion Machining</u> – Following the 200 hour test, the metallic deposits in the thruster were removed. The electrode system remained intact for all subsequent accelerated ion machining. Six tests of six-hour durations were completed. Descriptions of each test are summarized in Table 15.

In all but test 1, nominal accel drain currents were recorded hourly. These values are listed in Table 16. Although in most cases these values decreased with time, flakes on the electrodes create some exceptions. Upon completion of each test, the accelerator grid was inspected. Hole diameters were measured across one diameter of the accelerator grid on the downstream side only. Figure 24 shows the average center hole size after each test. The greatest change occurred after test 1. This was expected because the normal beam trajectories were already grazing the apertures existing then, and the entire test was under unstable conditions. The basic shape of holes remained the same for the duration of test; only the size increased.

TABLE 15.Summary Description of Six-HourAccelerated Ion Machining Tests (0.5 mlb)

6 Hour Test No.	Description of Test
1	I _B = 36 mA; maintain I _A = 10 times nominal value by increasing mercury flow rate
2	$V_D = 40 V$; maintain $I_D = 2$ times nominal value; no restriction on I_B
3	$I_B = 36$ mA; maintain $I_A = 7$ times nominal value by decreasing V_S
4	Same as Test No. 2
5	Same as Test No 3
6	Same as Test No. 2
	T1963

TABLE 16.0.5 mlb DCM Accelerated Ion Machining Tests -
Nominal Accel Drain Currents, I(A)

Test	l _(A) Start mA	I _(A) After 1 Hour mA	I _(A) After 2 Hours mA	I _(A) After 3 Hours mA	I _(A) After 4 Hours mA	I _(A) After 5 Hours mA	I _(A) After 6 Hours mA
1	0.4						0.28
2	0.5	0.28	0.37	0.35	0.33	0.36	0.35
3	0.33	0.30	0.30	0.28	0.28	0.30	0.28
4	0.31	0.30	0.30	0.30	0.29	0.29	0.29
5	0.32	0.31	0.33	0.32	0.33	0.31	0.34
6	0.28	0.26	0.24	0.235	0.24	0.24	0.235

T1965

Figure 24. Average center-hole size as a function of six hour tests (0.5 mlb).

The last accelerated ion-machining test (following the six 6-hour tests) was carried out to attain a nominal accel current $I_A = 0.2$ mA. The accelerated ion machining was accomplished by doubling the discharge current I_D . In this case, doubling the discharge current to $I_D = 500$ mA changes the beam current from $I_B = 36$ mA to $I_B \approx 50$ mA. During the test, nominal accel drain currents I_A were recorded periodically when the discharge current was lowered to $I_D = 250$ mA ($I_S = 36$ mA). After 63-1/2 hours, $I_A = 0.2$ mA, as shown in Table 17 and Figure 25; higher nominal values are obtained with the first few hours following a thruster startup. The test was completed with a measurement of the accel current I_A as a function of the accel voltage V_A (see Figure 26); these measurements showed the onset of electron backstreaming occurs for $|V_A| < 15$ V. The hole size measurements and photodocumentation for this test were presented in a detailed report (Ref. 5).

TABLE 17.	0.5 mlb DCM Accelerated	Ion Machining
Test -	40,000 Hour Simulation -	Nominal
	Drain Current, I $_{A}$	

Hours	í _A , mA	
0	0.27	
1	0.32	
2	0.235	
3	0.23	
4	0.235	
5	0.235	
20	0.280 🔫	Thruster
21	0.255	Restart
22	0.245	
23	0.24	
24	0.22	
42	0.22	
45½	0.21	
63½	0.20	
L	т1966	1

Figure 25. Nominal accel current, I_A, as a function of accelerated ion machining time for 40,000 hour simulation of electrode erosion for 0.5 mlb DCM.

Figure 26. Screen current, I_s , and accel current, I_A , as a function of accel voltage, V_A , after 40,000 hour simulated grid erosion test (0.5 mlb).

Final Machining - The accelerator electrode c. delivered with the 0.5 mlb DCM was ion machined for 150 hours. As in the previous ion-machining tasks, holes appeared in the accel electrode in approximately two hours. The nominal beam current $I_{\rm B}$ = 36 mA was maintained for the first four hours of the test. The beam current ranged from $I_B = 40$ mA to $I_B = 52$ mA for the remainder of the ion machining time. These values were limited by instabilities that developed at high values of discharge chamber current. The last 50 hours of the ion machining was performed with the dischargechamber current held at twice the nominal value. Prior to that time, operation at twice the nominal value resulted in unstable operation of the discharge. A nominal accel current $I_A = 0.29$ mA was measured at the end of the test. This set of optics was installed (without disassembly) on the 0.5 mlb DCM. The performance with this beam-extraction system is discussed in Section II-A.

2. 2-mlb Accelerator Grid

Results of the 200-hour test and the subsequent sixtests are described below for ion machining of the 2 mlb DCM accelerator grid.

a. <u>200 Hour Test</u> – This test was similar to the one performed with the 0.5 mlb DCM; the grid spacing was also 0.030 in. The accelerator-drain current was recorded at least every hour for the first six hours, every two hours for the next six hours, and every 25 hours thereafter up to 200 hours. The results of these measurements are listed in Table 18 along with the normalized accelerator drain current J'(A) = J(A)/[J(A) + J(E)]. Both quantities are plotted as the function of time in Figures 27 and 28. At the end of the test, the accelerator drain current was also measured for reduced accelerator voltage (down to zero); the results of these measurements are shown in Figure 29. Electron backstreaming occurs for |V(A)| < 5 V.

From data acquired during the 200 hour test, the values for accel current J(A) were extrapolated to predict the value for normalized accelerator current, J'(A) = J(A)/[J(A) + J(E)], at 20,000 and 40,000 hours. The extrapolated values are J'(A) = 0.47% and 0.44% for 20,000 hours and 40,000 hours, respectively. The manner by which these values were obtained is discussed in Appendix B.

Upon completion of the test, the accelerator grid was inspected without disassembly. Hole diameters were measured across one diameter of the accelerator grid on the downstream side only; the results of these measurements are shown in Table 19. The hole sizes were photodocumented; the downstream surface is shown in Figure 30. Sufficient detail is visible in Figure 30 to obtain detailed information on individual aperture shape by enlargement from the negative.

TABLE 18.	2.0 mlb DCM-200	Hour Ion Machining	Data - $I(S)$	= 144 mA.
-----------	-----------------	--------------------	---------------	------------

Time hr/min	I (A) mA	J' (A)	Time hr/min	I (A) mA	J′ (A)	Time hr/min	I (A) mA	J' (A)
0/00	144	1	11/00		0.0070	155/07	1 71	0.0110
/10	144		11/09	14	0.0972	155/27	1.71	0.0119
/10	144		/48	13	0.0903	172/56	1.72	0.0119
/20	144		12/48	12	0.0833	172/50	1.05	0.0115
/32	144		13/20		0.0833	176/05	1.05	0.0115
/35	144		28/40	0	0.0417	170/05	1.04	0.0112
/42	144		/45		0.0480	101/27	1.04	0.0112
/45	144		29/00		0.0417	106/55	1.03	0.0113
1/02	144		35/01	4.5	0.0313	200/00	1.60	0.0111
/10	144	1	20/20	4.0	0.0276	200/00	1.00	0.0111
/10	144		30/20	0.0	0.0417			
/20	144		/42	4.5	0.0313			
/22	144		/54	4.5	0.0313			
2/00	144		37/03	4.5	0.0313			
2/00	144	0.072	/29 50/46	4.0	0.0278			
/02	140	0.972	52/40	3.0	0.0208			
/03	130	0.944	54/29	3.0	0.0208			
/00	130	0.903	50/29	3.0	0.0208			
/08	125	0.808	/41	3.0	0.0208			
/10	106	0.819	/40	3.0	0.0208			
/21		0.730	57/23	3.01	0.0209			
/30	90	0.025	58/04	3.00	0.0208			
2/27	05	0.550	59/55	2.95	0.0205			
/20	95	0.000	61/07	2.92	0.0203			
/30	50	0.347	/27	2.95	0.0205			
4/01	44	0.300	/3/	2.95	0.0205			
/00	24	0.299	02/44	2.00	0.0101			
/31	22	0.230	101/35	2.13	0.0140			
5/03	30	0.222	124/40	2.0	0.0139			
///1	25	0.200	120/01	1.05	0.0135			
6/22	20	0.174	120/27	1.95	0.0133			
7/04	20	0.155	123/00	1.95	0.0134			
////	18	0.107	/27	1.07	0.0130			
2/10	10	0.125	132/06	1.09	0.0131			
0/10 /F2	10	0.125	132/00	1.07	0.0130			
0/10	16	0.125	//E	1.04	0.0120			
10/00	16	0.111	149/47	1.04	0.0126			
/20	15	0.104	152/57	1.01	0.0120			
/28	15	0.104	153/57	1.73	0.0120			

T1967

Figure 27. Accel current, I(A), as a function of ion machining time for 2.0 mlb DCM.

Figure 28.

Normalized accel current J(A) as a function of ion machining time for a function of time for 2.0 mlb DCM.

Figure 29. Screen current, I_s, and accel current, I_A, as a function of accel voltage, V(A), after 200 hour ion machining test of 2.0 mlb DCM.

No.	Height cm (inch)	Width cm (nch—	No.	Height cm (inch)	Width cm (inch)	No.	Height cm (inch)	Width cm (inch)	No.	Height cm (inch)	Width cm (inch)
1	0.074 (0.029)	0.067 (0.0265)	15	0.084 (0.033)	0.079 (0.031)	29	0.086 (0.034)	0.085 (0.0335)	43	0.083 (0.0325)	0.072 (0.0285)
2	0.011 (0.028)	0.066 (0.026)	16	0.084 (0.033)	0.081 (0.032)	30	0.085 (0.0335)	0.085 (0.0335)	44	0.081 (0.032)	0.071 (0.028)
3	0.072 (0.0285)	0.065 (0.0255)	17	0.085 (0.0335)	0.093 (0.0365)	31	0.085 (0.0335)	0.084 (0.033)	45	0.080 (0.0315)	0.069 (0.027)
4	0.072 (0.0285)	0.065 (0.0255)	18	0.084 (0.033)	0.081 (0.032)	32	0.084 (0.033)	0.084 (0.033)	46	0.079 (0.031)	0.067 (0.0265)
5	0.075 (0.0295)	0.065 (0.0255)	19	0.084 (0.033)	0.083 (0.0325)	33	0.084 (0.033)	0.084 (Q.033)	47	0.077 (0.0305)	0.065 (0.0255)
6	0.076 (0.030)	0.0 69 (0.0255)	20	0.084 (0.033)	0.083 (0.0325)	34	0.084 (0.033)	0.083 (0.0225)	48	0.075 (0.0295)	0.065 (0.0255)
7	0.077 (0.0305)	0.066 (0.026)	21	0.085 (0.0335)	0.084 (0.033)	35	0.084 (0.033)	0.083 (0.0325)	49	0.074 (0.029)	0.064 (0.025)
8	0.081 (0.0315)	0.069 (0.027)	22	0.085 (0.0335)	0.084 (0.033)	36	0.084 (0.033)	0.081 (0.032)	50	0.072 (0.0285)	0.065 (0.0255)
9	0.081 (0.032)	0.071 (0.028)	23	0.085 (0.0335)	0.084 (0.033)	37	0.085 (0.0325)	0.081 (0.032)	51	0.071 (0.028)	0.065 (0.0255)
10	0.083 (0.0325)	0.072 (0.0285)	24	0.086 (0.034)	0.085 (0.0335)	38	0.083 (0.0325)	0.080 (0.0315)	52	0.070 (0.0275)	0.065 (0.0255)
11	0.083 (0.0325)	0.075 (0.0295)	25	0.086 (0.034)	0.085 (0.0335)	39	0.083 (0.0325)	0.079 (0.031)	53	0.072 (0.0285)	0.067 (0.026)
12	0.084 (0.033)	0.076 (0.030)	26	0.086 (0.034)	0.085 (0.0335)	40	0.083 (0.0325)	0.077 (0.0305)			
13	0.084 (0.033)	0.077 (0.0305)	27	0.086 (0.034)	0.086 (0.034)	41	0.083 (0.0325)	0.076 (0.030)			
14	0.084 (0.033)	0.079 (0.031)	28	0.086 (0.034)	0.085 (0.0335)	42	0.083 (0.0325)	0.074 (0.029)			

TABLE 19. Hole Diameter of the 200 Hour Ion Machining Test (2.0 mlb)

T1968

M11387 ามและและในและและเมื่อและและเม่น

Figure 30. Downstream view of beam-extraction system after 200 hour test of 2.0 mlb DCM.

Two thruster cleanings were performed; the first after 2-1/2 hours of operation, and the second after 36 hours of operation. Each of these were made necessary by instabilities in thruster operation. The remaining 164 hours of operation were completed without instability or arcing problems. The discharge chamber was relatively clean at the end of the test.

b. <u>Accelerated Ion Machining</u> – The electrode system has remained intact for all subsequent accelerated ion machining tests. Seven tests of six-hour duration each were completed. Descriptions of each test are summarized in Table 20.

In all tests, nominal accel drain currents were recorded hourly by lowering the beam current to $I_B = 144$ mA. These values are listed in Table 21. During the series of these tests, the accel drain current I(A) dropped from I(A) = 1.6 mA to I(A) = 0.92 mA.

Before the first test and after each test, the hole sizes across the same electrode diameter were measured and photodocumented (Ref. 6). The measured hole were located along the vertical diameter and were assigned numbers 1 through 53. Table 22 shows the results of the measurements for holes 1, 14, 27, 40, and 53. The majority of hole sizes increased through test 4, but they did not change in size following test 5. For this reason, the discharge current was increased to $I_D \approx 1800$ mA. The hole size increased for tests 6 and 7.

c. Final Machining – The accelerator electrode delivered with the 2 mlb DCM was ion machined until the accelerator drain current $I_A = 0.62$ mA at the nominal beam-current setting. This value was the one predicted in Appendix B after 40,000 hours of operation at the nominal beam current of $I_B = 144$ mA. The total ion machining time was 126 hours. The first 6-1/2 hours (until all the holes penetrated the accelerator electrode) of ion machining were performed with $I_B = 144$ mA; the balance of the ion machining was accomplished with $I_B = 185$ mA. Periodic measurements of the accelerator drain currents I_A were made at the nominal value of $I_B = 144$ mA.

Three discharge chamber and grid cleanings were performed at 2 hours and 30 minutes, 3 hours and 30 minutes, and 33 hours and 55 minutes. The first cleaning eliminated noisy operation, the second cleaning eliminated a short between the grids, and the third cleaning was made to assure uninterrupted operation to the end of the ion machining.

The ion-machined grid set was then installed on the deliverable 2 mlb DCM. The performance of this combination is discussed in Section II-A.

6 Hour	Description of Test							
Test No.	Discharge Voltage	Discharge Current	Beam Current					
1	V _D = 40 V	I _D = 1385 mA	I _B = 165 mA					
2	V _D = 40 V	I _D = 1498 mA	l _B = 172 mA					
3	V _D =40 V	I _D = 1508 mA	l _B = 172 mA					
4	V _D = 40 V	I _D = 1509 mA	l _B = 171 mA					
5	V _D = 40 V	I _D = 1504 mA	l _B = 170 mA					
6	V _D = 40 V	I _D = 1775 mA	l _B = 185 mA					
7	V _D = 40 V	I _D = 1855 mA	1 _B = 185 mA					
			T1969					

TABLE 20. 2.0-mlb DCM Accelerated Ion-Machining Tests

`

TABLE 21.2.0 mlb Accelerated Ion Machining Tests -
Nominal Accel Drain Currents, I(A)

Test	l _(A) Start mA	I _(A) After 1 Hour mA	l _(A) After 2 Hours mA	I _(A) After 3 Hours mA	I _(A) After 4 Hours mA	I _(A) After 5 Hours mA	l(A) After 6 Hours mA
1	1.60	1.53	1.50	1.48	1.40	1.40	1.39
2	1.40	1.20	1.10	1.10	1.16	1.10	1.17
3	1.16	1.02	1.01	1.00	0.96	0.97	1.02
4	1.20	0.84	1.20	1.20	1.08	1.12	1.12
5	1.07	1.05	1.02	1.02	1.00	0.98	1.02
6	1.07	0.97	0.96	1.10	0.95	0.97	1.00
7	1.00	0.94	0.89	0 .9 0	0.90	0.8 9	0.92

т1970

Test	Hole	Hole	Hole	Hole	Hole
	1	14	27	40	53
	cm	cm	cm	cm	cm
	(inch)	(inch)	(inch)	(inch)	(inch)
Start	0.074	0.084	0.086	0.083	0.072
	(0.029)	(0.033)	(0.034)	(0.0325)	(0.0285)
1	0.075	0.086	0.090	0.084	0.071
	(0.0295)	(0.034)	(0.0355)	(0.033)	(0.028)
2	0.075	0.088	0.093	0.086	0.072
	(0.0295)	(0.0345)	(0.0365)	(0.034)	(0.0285)
3	0.075	0.086	0.094	0.088	0.074
	(0.02 9 5)	(0.034)	(0.037)	(0.0345)	(0.029)
4	0.075	0.091	0.097	0.089	0.074
	(0.0295)	(0.036)	(0.038)	(0.035)	(0.029)
5	0.076	0.091	0.097	0.090	0.074
	(0.030)	(0.036)	(0.038)	(0.0355)	(0.029)
6	0.076	0.094	0.100	0.093	0.074
	(0.030)	(0.037)	(0.0395)	(0.0365)	(0.029)
7	0.076	0.097	0.103	0.095	0.074
	(0.030)	(0.038)	0.0405	(0.0375)	(0.029)

r.

TABLE 22. 2 mlb DCM Accelerated Ion Machining Tests - Hole Size Measurements

References

- B. G. Herron, J. Hyman, Jr., and D. Hopper, "8-cm Engineering Model Thruster Development," AIAA Paper No. 76-1058, AIAA 12th Electric Propulsion Conference, Key Biscayne, Florida/November 15-17, 1976.
- J. Hyman, Jr., and R. L. Poeschel, "Satellite Central Mercury Ion Thruster," AIAA Paper No. 73-1132, AIAA 10th Electric Propulsion Conference, October 31 - November 2, 1973, Lake Tahoe, Nevada.
- 3. Special Report Task I, Performance Evaluation and Ion Machine Patch Test Report, Modular Ion Thruster, Contract NAS 3-19691, Hughes Research Laboratories, Malibu, California, August 1975.
- 4. W. R. Hudson, "Auxiliary Propulsion Thruster Performance with Ion-Machined Accelerator Grids," AIAA No. 75-425, AIAA 11th Electric Propulsion Conference, New Orleans, La., March 1975.
- 5. 0.5 mlb DCM Accelerated Ion Machining Tests (TASK III), Modular Ion Thruster, Contract NAS 3-19691, Hughes Research Laboratories, Malibu, California, February 1976.
- 2.0 mlb DCM Accelerated Ion Machining Tests (TASK III), Modular Ion Thruster, Contract NAS 3-19691, Hughes Research Laboratories, Malibu, California, March 1976.

Page intentionally left blank

٠.,

Page intentionally left blank

APPENDIX A

Accel-Current Extrapolation for the 200-Hour Ion-Machining Test (0.5 mlb)

Experimental data obtained during the 200 hour 10n-machining test of a 0.5 mlb DCM were extrapolated by fitting an empirically derived analytical expression to the experimental data to predict the anticipated values of accel current J(A) expected at 20,000 and 40,000 hours, respectively. The analytical expression used to approximate the measured accel current was the following:

$$\overline{J(A)} = C + \frac{32}{(\ln t)^2 \cdot 5}$$
 (t ≥ 5)

where $\overline{J(A)}$ is the calculated accel current in milliamps, C is a curvefitting constant, and t is the elapsed test time in hours. The expression above has the same functional behavior as the measured data; i.e., a rapid variation during the start of the test and a very slow variation for large times. Figure A-1 shows this function plotted with C as a parameter which was varied from 0.00 to 0.20 in four equal steps. It is not obvious which curve is the best fit to the measure data, because the experimental data points exhibit considerable spread. In order to quantify the quality of fit, the rms deviation σ corresponding to each value of C was calculated as follows:

$$\sigma = \sqrt{\frac{\Sigma_n (\delta \mathbf{J})^2}{n}} \mathbf{m} \mathbf{A}$$

where $\delta J = J(A) - \overline{J(A)}$ was calculated for each of thirty typical data points (n = 30) for t = 5 to t = 200 hours. A summary of the results of these calculations is shown in Table A-1 below; the extrapolated values of accel current are also listed.

Over the range of investigation, the value of σ varies only slightly with the curve-fitting parameter C, however, a shallow minimum does occur at C = 0.15. This value corresponds to predicted accel currents of J(A) = 0.254 mA and 0.238 mA at 20,000 hours and 40,000 hours, respectively.

Figure A-1. Analytical expression $\overline{J(A)}$ plotted as a function of the curve-fitting parameter C.
C Const.	RMS Deviation,σ, mA	Extrapolated Accel Current, J(A), mA	
		20,000 hr.	40,000 hr.
0.00	0. 342	0.104	0.088
0.05	0. 325	0.154	0.138
0.10	0.314	0.204	0.188
0.15	0.312	0.254	0.238
0.20	0.318	0.304	0.288

TABLE A-1. Calculated RMS Deviation σ and Extrapolated Current J(A) as a Function of the Curve-Fitting Parameter C

.

Page intentionally left blank

· · .

Page intentionally left blank

APPENDIX B

Accel-Current Extrapolation for the 200-Hour Ion-Machining Test (2 mlb)

Experimental-data obtained during the 200 hour ion-machining test of a 2-mlb DCM were extrapolated by fitting an empirically derived analytical expression to the experimental data to predict the anticipated values of accel current J(A) expected at 20,000 and 40,000 hours, respectively. The analytical expression used to approximate the measured accel current has the same functional form as was used for the 0.5 mlb data i.e.,

$$\overline{J(A)} = C_1 + C_2/(\ln t) C_3$$

where $\overline{J(A)}$ is the calculated accel current in milliamps and C_1 , C_2 , and C_3 are curve fitting parameters and t is the elapsed test time in hours. The rms deviation for a number of combinations of C_1 , C_2 and C_3 were calculated as follows:

$$\sigma = \sqrt{\frac{\sum_{n} (\delta J)^{2}}{n}} mA$$

where $\delta J = J(A) - \overline{J(A)}$ was calculated for each of 30 typical data points (n = 30) for t = 25 to t = 200 hours. A summary of the results of these calculations is shown in Table B-1 below for $C_2 = 85$.

C_1^{-} C_3^{-}	. 3	. 4	. 5
2.3	.663	. 765	. 868
2.4	. 298	. 395	. 495
2.5	.175	.173	. 225
2.6	. 403	. 321	. 256
2.7	. 642	. 550	. 464

TABLE B-1. Calculated rms Deviation σ as a Function of Curve-Fitting Parameters C_1 and C_3 for $C_2 = 85$ Inspection of Table B-1 shows that $C_3 = 2.5$ and $C_1 = 0.4$ results in the smallest rms devication. As a result C_2 was varied holding C_3 and C_1 to these optimum values. The results are shown in Table B-2 below. These results show the best fit corresponds to the empirical equation

$$\overline{J(A)} = 0.4 + \frac{85}{(\ln t)^{2.5}}$$
 (mA).

This equation predicts an accel current of J(A) = 0.675 mA and 0.632at 20,000 hours and 40,000 hours, respectively. The funcation $\overline{J(A)}$ is plotted in Figure B-1 for C₁ varying from a value of 0.1 to 0.5 in four equal steps.

TABLE B-2. Calculated rms Deviation σ as a Function of C₂ for C₁ = 0.4 and C₃ = 2.5

C ₂	σ
80	. 210
85	. 173
90	. 218
95	. 310
100 `	. 422

Figure B-1. Analytical expression $\overline{J(A)}$ plotted as a function of the curve-fitting parameter C_1 .