NAS CR-135138

(NASA-CE-130138)TENSILE AND GREEP BUPTUREN77-23230PEOPERTIES OF (16)UNCOATED AND (2)CCATEDPNGINEEFING ALLOYS AT ELEVATED TEMPERATIONS(Netout Research Associates, Inc.)176 pUnclassUnclassCSCL 11F G3/2020226

TENSILE AND CREEP RUPTURE PROPERTIES OF (1.) UNCOATED AND (2) COATED ENGINEERING ALLOYS AT ELEVATED TEMPERATURES

by

Louis J. Fritz and W.P. Koster

METCUT RESEARCH ASSOCIATES INC. CINCINNATI, OHIO

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA-Lewis Research Center Cleveland, Ohio

Contract NAS3-18911

TABLE OF CONTENTS

PAGE

SUMMARY		i
INTRODUCTION		1
GENERAL BACKGROUND		2
Materials Specimen Preparation Test Procedures	ı	2 4 10
TEST RESULTS		14
Material 1 - Material 2 - Material 3 - Material 4 - Material 5 - Material 6 - Material 7 - Material 8 - Material 9 - Material 10 -	Amzirc Copper Titanium-6A1-2Sn-4Zr-2Mo H-13 Tool Steel D-979 A-286 L-605 304 Stainless Steel 316 Stainless Steel Udimet 700	14 23 31 40 49 58 67 76 85 94
Material 11 - Material 12 - Material 13 - Material 14 - Material 15 - Material 16 -	TAZ 8A IN 100 IN 100 + Jocoat B 1900 B 1900 + Jocoat Mar M200	103 112 121 129 138 146
Material 17 - Material 18 -	Mar M302 Rene 80	155 164

SUMMARY

Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research Center. Two of the materials were additionally tested after a Jocoat^{*} coating was applied.

The tensile and Poisson's Ratio test data are supplied in tabular form with samples of the load-strain curves. Creep rupture data are presented in tabular and graphical form - the graphs being iso-thermal plots of the rupture life data as well as families of plastic deformation versus time plots.

All such data are grouped according to alloy designations.

^{*} Jocoat is a high temperature oxidation-resistant coating proprietary to Pratt & Whitney Aircraft Corporation applied by an approved source according to Specification PWA A47.

INTRODUCTION

Over the past several years, a considerable amount of high temperature, low cycle fatigue data have been generated at the Lewis Research Center on a variety of alloys. A significant part of this testing was to develop improved methods for predicting high temperature fatigue behavior. Specifically, there was a thrust to ascertain whether fatigue behavior could be predicted from a knowledge of the tensile properties at the various temperatures of interest. No such tensile data existed on the particular heats of the materials which had been evaluated in low cycle fatigue testing, although handbook values existed for some material-temperature combinations.

In order to make a critical evaluation of life prediction approaches, it became imperative to generate the tensile and creep rupture properties on the same heats as were used to generate the fatigue data.

This report represents the culmination of the test effort to collect the necessary tensile and creep rupture data for correlating with existing fatigue data. Material for this evaluation was supplied from the test heats by NASA-Lewis Research Center.

GENERAL BACKGROUND

Materials

The materials and test temperatures in this program are as follows:

		т <u>1</u>		Т	2	^T 3	
	Alloy	(°C)	(°F)	(°C)	<u>(°F)</u>	(°C)	<u>(°F)</u>
1.	7075-T6 Aluminum	121	250	149	300	177	350
2.	Amzirc Copper	482	900	538	1000	593	1100
3.	Titanium-6Al-2Sn-4Zr-2Mo	482	900	538	1000	593	1100
4.	H-13 Tool Steel	538	1000	593	1100	649	1200
5.	D-979	593	1100	649	1200	704	1300
6.	A-286	593	1100	649	1200	704	1300
7.	L-605	593	1100	649	1200	704	1300
8.	304 Stainless Steel	593	1100	649	1200	760	1400
9.	316 Stainless Steel	593	1100	704	1300	816	1500
10.	Udimet 700	760	1400	816	1500	927	1700
11.	TAZ-8A	850	1562	925	1697	1000	1832
12.	IN 100	850	1562	925	1697	1000	1832
13.	IN 100 + Jocoat	850	1562	925	1697	1000	1832
14.	B 1900	850	1562	92.5	1697	1000	1832
15.	B 1900 + Jocoat	850	1562	925	1697	1000	1832
16.	Mar-M200	871	1600	927	1700	982	1800
17.	Mar-M302	850	1562	925	1697	1000	1832
18.	Rene' 80	850	1562	925	1697	1000	1832

Alloys 1-10 were furnished by the Government in the form of wrought bars --0.75 inch diameter by 27 to 36 inches long. Specimens of these alloys were machined as described elsewhere in this report (page 4).

Alloys 11-18 were furnished by the Government as cast remelt stock --2-1/2 to 3-1/2 inch diameter by 6 to 43 inches long. Specimens of these alloys were cast to size. The remelt stock was shipped from Metcut to Howmet Corporation-Misco Division, where it was cast into specimen blanks per Figure 1.

The specifics of any heat treatment or coating of the alloys is covered in the segment of this report covering those particular alloys.

(dimensions in inches)

ι μ

GENERAL BACKGROUND (continued)

Specimen Preparation

The wrought materials (Alloys 1-10) were cut into appropriate blank sizes for machining into the tensile, creep and Poisson's Ratio test specimens shown in Figures 2, 3, and 4, respectively. On the assumption that the material was uniform from bar to bar, the blanks were cut up without sketching specimen location within the bars. All tensile blanks might be from consecutive positions in one or two bars with the same procedure followed for creep and Poisson's Ratio blanks.

Once the blank was cut to its approximate size, it was faced and centered; thereafter, all machining was performed with reference to these centers. Such practices assure centrality of the finished specimen.

As previously stated, all specimen blanks from the cast materials were supplied to a single configuration. From this blank, the creep, tensile and Poisson's Ratio specimens were machined per Figures 3, 5, and 6, respectively.

All specimens (except the Amzirc Copper) were machined using Metcut's "low stress" grinding techniques to finish the gage section. The Amzirc Copper specimens were turned and polished in the reduced gage section.

Figure 2 -

SPECIMEN FOR TENSILE TESTING

OF WROUGHT ALLOYS

Figure 3 -

SPECIMEN FOR CREEP RUPTURE TESTING

FIGURE 5 TENSILE SPECIMEN FOR CAST MATERIALS

FIGURE 6 POISSON'S RATIO SPECIMEN FOR CAST MATERIALS

GENERAL BACKGROUND (continued)

Test Procedures

A. General Test Procedures

All measurements of specimen dimensions were made using micrometers or calipers traceable to the National Bureau of Standards. Specimen diameters were measured to the nearest .0001 in.; specimen lengths were measured using caliper which read to the nearest .001 in. Extension measurements on tensile specimens were made using standard mechanical extensometers. Creep readings were made using both optical and electromechanical extensometers. Poisson's Ratio was determined using bonded strain gages verified per ASTM Method E251. Coated specimen diameters were measured prior to coating. The coating thickness was nominally 0.004 in. The reduction of area calculations were corrected for this thickness.

Elevated temperature tests were conducted in standard wire-wound resistance type furnaces. These furnaces were controlled by means of saturable core reactors which have a capability of maintaining temperatures to within $\pm 1^{\circ}$ C. Temperature measurements on all tests through 871°C were made using type K thermocouple wire. Above this temperature, measurements were made using Pt-13%Rh thermocouple wire. Calibration of the thermocouple wire at Metcut routinely follows the procedures outlined in ASTM E 220.

The tensile machines and stress rupture frames at Metcut are verified to less than one percent error sing methods detailed in ASTM Method E74. All test equipment proposed for use in this program is maintained in calibration to standards which are NBS traceable. Calibrations are performed at regularly scheduled intervals.

B. Tensile Test Procedures

Tensile tests to determine ultimate tensile strength, yield strengths (0.02 and 0.2% offset), percent elongation, percent reduction of area, strain hardening exponent, and true fracture strength were performed on a minimum of three (3) specimens at each of four (4) test temperatures -room and three elevated temperatures.

B. <u>Tensile Test Procedures</u> (continued)

All testing was performed in one of two Baldwin universal hydraulic testing machines. Both machines are equipped with integral strain pacers and autographic load-strain recording systems.

Room temperature strain was monitored using a linear differential transformer extensometer which was clipped directly to the test section. At elevated temperatures, the motion was transferred to an LVDT extensometer through extension arms attached to the specimen gage section.

A strain rate of 0.005 cm/cm/min. was maintained through the 0.2% yield strength; thereafter, a controlled head rate of 0.125 cm/min. was used.

All strength calculations were based on loads and cross-sectional areas measured to the accuracies as described earlier. Ductility values were calculated using initial and final measurements as measured to these accuracies also.

Elongation measurements for the wrought alloys were made between gage marks (1 in. length) in the reduced section. For the cast materials, where such marks could adversely affect the test results, the elongation was measured using the overall specimen length. Percent elongation was then calculated using the adjusted reduced gage section length as described in ASTM E21.

The units of measurement in all cases were the U.S. customary system of units. Measurements were made in inches, loads in pounds and stresses calculated in pounds per inch.² The SI units presented in the report are from conversions using NBS values.

The strain hardening exponent "n" was calucated using the power expression of the form,

$$\sigma = K \varepsilon_p^n$$

where σ is true stress, ε_p is true plastic strain, K is the stress at $\varepsilon_p = 1.0$, and n is the strain hardening exponent. The value of n is most accurately determined from tensile stress-strain data obtained in a tensile test using special high elongation extensometry.

B. <u>Tensile Test Procedures</u> (continued)

The extensometry used in normal stress-strain testing has higher precision, but will not permit measurement of plastic strains larger than a few percent. It is possible, however, to get a good estimate of the strain hardening exponent from load elongation data obtained in normal tensile testing. The limitation is that the true stress versus true plastic strain results occurs only over a limited range of strain. Plotting the availatle data points on log-log coordinates and taking the slope of the straight line between them yields an estimate of n which is useful for engineering comparisons of strain hardening behavior among various types of materials. This was the procedure used in this report.

The modulus of elasticity is another value which theoretically can be calculated from a stress-strain plot of a tensile test. In reality, however, the load and strain magnifications necessary to produce a complete tensile curve are not necessarily the ranges one would choose for measuring modulus of elasticity. The modulus of elasticity was obtained with the same specimen as that used for tensile testing, by loading several times to loads well below the proportional limit at suitable load and strain magnification ranges.

All tensile data is reported in both SI and the U.S. customary systems of units.

C. Poisson's Ratio

Tension specimens having a rectangular cross-section per Figures 4 and 6 were used for this determination. Strain gages were bonded on the .250 in. wide test surface at mid-span. The gages were 90° rosettes with 0.100 in. grids. Gages were mounted on opposite faces to compensate for any bending which occurred during testing.

Static loads were applied in approximately ten equal steps with the maximum stress on the specimen being held well below the proportional limit. Strain measurements were made at the individual step loads while loading and unloading the specimen. The entire cycle was performed a total of three times on each specimen.

C. Poisson's Ratio (continued)

The loads were applied while the specimen was mounted in a stress rupture frame and were either direct dead weight loaded or lever loaded, depending on the maximum stress to which the specimen was subjected. The load-strain values thus obtained were analyzed numerically to produce the individual and sample mean (average) value for Poisson's Ratio and both 90 and 95 percent confidence limits. The values so analyzed were the individual values as measured. Poisson's Ratio was not determined using the slope of the plotted values.

D. Creep Rupture Procedures

Creep rupture testing was performed using procedures as detailed in ASTM E 139 on specimens having a 2 in. gage length (Figure 3).

Readings were made using optical creep cathetometers for the longer time and higher temperature tests. A mechanical creep system was used to obtain maximum data points for the shorter time tests, since it gave 24 hour per day coverage of these readings.

The data so generated, assisted by the employment of a variety of numerical analysis procedures, yielded the following:

- (1) A plotted curve of creep strain versus time
- (2) The time to the onset of third-stage creep
- (3) The time to achieve 1% creep strain
- (4) The minimum creep rate
- (5) The time to rupture
- (6) The percent elongation at failure
- (7) The percent reduction of area at failure

From the minimum of five (5) tests at each of three (3) test temperatures, and using the appropriate isothermal and parametric relationships, the stress levels to produce rupture lives of 100, 300, and 1000 hours were determined.

TEST RESULTS

Material 1: 7075-T6 Aluminum

This high strength, heat treatable aluminum alloy was supplied as fully heat treated, wrought bar stock by NASA-Lewis Research Center. Nominal composition of this alloy is as follows:

Zinc	5.1 - 6.1%
Magnesium	2.1 - 2.9
Copper	1.2 - 2.0
Chromium	0.18 - 0.35
Manganese	0.30 max.
Iron	0.50 max.
Silicon	0.40 max.
Titanium	0.20 max.
Other Impurities,	
each	0.05 max.
Other Impurities,	
total	0.15 max.
Aluminum	Balance

Tensile results are presented as Table I with samples of the load-strain curves compiled as Figure 7.

Poisson's Ratio values are as listed below:

Specimen	Average Value	Confiden	Confidence Limits			
Number	Poisson's Ratio	90%	95%			
1-P1	-0, 3244	±. 0018	±•			
1-P2	-0.3190	±. 0030	±.0036			
1-P3	-0,3285	+. 0021	±. 0026			

Creep rupture data are presented in Table II. Creep deformation versus time values are plotted in Figures 8, 9, and 10. Isothermal plots of the rupture life data appear as Figure 11.

TEST RESULTS (continued)

Material 1: 7075-T6 Aluminum (continued)

An analysis of the creep rupture data using parametric plots of the data in conjunction with the isothermal plot yields the following values of the rupture strengths to produce 100, 300, and 1000 hour life data at the appropriate test temperatures.

<u>(°C)</u>		Stress to Produce Failure at					
	<u>(°F)</u>	100 hou <u>MN/m²</u>	irs <u>ksi</u>	300 h <u>MN/m²</u>	ours <u>ksi</u>	1000 MN/m ²	hours <u>ksi</u>
121	250	365.4	53.0	324.1	47.0	298.6	42.0
149	300	255.1	37.0	206.8	30.0	165.5	24.0
177	350	151.7	22.0	124.1	18.0	103.4	15.0

-15-

Spec.	Te	mp.	Ultima Streng	te gth	0.02% Y Streng	ield gth	0.2% Y Streng	'ield gth	Fractu Streng	re th	Strain Hardening	El on g.	R.A.
No.	<u>°C</u>	°F	MN/m^2	ksi	MN/m^2	ksi	MN/m^2	ksi	MN/m^2	ksi	Exponent	_(%)_	<u>(%)</u>
1-T1	21	70	561.9	81.5	486.1	70.5	510.9	74.1			0.06	16	33.7
1-T5			570.9	82.8	461.3	66.9	515.7	74.8			0.12	16.5	35.7
1-T9			578.5	83.9	470.2	68.2	520.t	75.5	+		0.07	16.5	31.4
1-T2	121	250	466.8	67.7	413.0	59.9	448.9	65.1		~	0.04	24.5	54.9
1-T6			464.0	67.3	350.2	56.6	437.8	63.5		~	0.04	24.5	52.3
1-T10			477.1	69.2	393.0	57.0	452.3	65.6			0.03	24.5	57.2
1-T3	149	300	415.8	60.3	352.3	51.1	399.9	58 0			0.04	27.5	56.4
1-T8	•		413.0	59.9	359.2	52.1	388.9	56.4			0.03	25	58.1
1-T11			418.5	60.7	365.4	53.0	393.0	57.0		*		26.8	60.8
1-T4	177	350	372.3	54.0	315.1	45.7	354.4	51.4			0.03	22	62.5
1-T12			381.3	55,3	284.8	41.3	360.2	52.2			0.03	25	64.8
1-T13			369.6	53.6	297.2	43.1	357.8	51.9		•		20.5	59.3

TABLE I								
<u>Tensile P</u>	roperties o	of 7075-T6	Aluminum					

Ter	~ 	Modulus of Flasticity				
<u>°C</u>	°F	$\frac{GN/m^2}{m^2}$	10 ⁶ psi			
21	70	72.4	10.5			
121	250	70.3	10.2			
149	300	64.1	9.3			
177	350	63.4	9.2			

-17-

Figure 7

Specimen	Te	mp.	Str	es s	Min. Creep Rate	Time (hrs.) to start of	Time (hrs.) to 1%	Rupt. Life	Elong.	R.A.
Number	<u>°C</u>	°F	MN/m ²	ksi	%/hr.	3rd stage	<u>creep strain</u>	<u>(hrs.)</u>	(%)	<u>(%)</u>
1-C4	121	250	379.2	55.0	.0350	33	25	70.0	12.6	54.8
1-C1			344.7	50.0	.0067	90	124	214.1	11.3	56.4
1-C10			331.0	48.0	.0040	130	200	334,2	11.4	56.8
1-C13			303.4	44.0				(a)		
1-C16			303.4	44.0	.0015	320	440	634.2	8.5	54.1
1-C7			289.6	42.0	.0012	650	640	989.7	11.0	58.1
1-C2	149	300	241.3	35.0	.0048	70	110	136.0	10.3	63.0
1-C5			220.6	32.0	.0040	150	190	239.3	12.0	66.8
1-C8			175.8	25.5	.0012	435	580	695.0	11.6	70.6
1-C11			172.4	25.0	.0010	310	620	734.2	10.6	69.0
1-C14			162.0	23.5	.0009	770	810	1103.3	13.0	71.7
1-C3	177	350	151.7	22.0	.0088	45	75	89.6	14.1	75.0
1-C6			127.6	18.5	.0029	205	247	284.1	23.7	76.2
1-C15			117.2	17.0	.0012	315	375	443.8	14.6	78.5
1-C9			106.9	15.5	.0008	530	680	739.6	14.6	81.1
1-C12			100.0	14.5	.0005	850	1030	1195.0	15.0	81.0

1 1

TABLE II Creep Rupture Properties of 7075-T6 Aluminum

(a) Controller malfunction; specimen to 1600°F

Figure 8

TIME (HOURS)

-20-

Figure 9

TIME (HOURS)

TEST RESULTS (continued)

Material 2: Amzirc Copper

This copper zirconium alloy, developed to produce good strength levels at high temperature, was supplied as fully processed (half-hard) wrought bar stock by NASA-Lewis Research Center.

Chemical composition of this heat of material (supplied by NASA-Lewis Research Center) is as follows:

Iron	0.002%
Nickel	0.002
Zirconium	0.18
Copper	Balance

Tensile results are presented as Table III with samples of the load-strain curves compiled as Figure 12.

Poisson's Ratio values are as listed below:

Specimen Number	Average Value Poisson's Ratio	Confidence 90%	e Limits
2 D2	0 3656	<u> </u>	<u> </u>
2-P2	-0, 5050	1.0028	<u>+</u> .0034
2-P3	-0,3623	±.0027	<u>+</u> .0032
2 -F -	-0.3570	±.0013	±. 0016

Cr ep rupture data are presented in Table IV. Creep deformation versus time values are plotted in Figures 13, 14, and 15. Isothermal plots of the rupture life data appear as Figure 16.

An analysis of the creep rupture data using parametric plots of the data in conjunction with the isothermal plot yields the following values of the rupture strengths to produce 100, 300, and 1000 hour life data at the appropriate test temperatures.

Stress to Produce Failure at									
Temp.			100 hrs.		rs.	1000 h	1000 h;s.		
°C	°F	MN/m^2	ksi	MN/m^2	ksi	MN/m^2	ksi		
482	900	48.3	7.0	37.9	5.5	31.0	4.5		
538	1000	29.6	4.3	22.8	3.3	16.5	2.4		
59 3	1100	17.9	2.6	13.8	2.0	10.3	1.5		

Spec. No.	Te °C	emp. 	Ultima Streng <u>MN/m2</u>	ate gth <u>ksi</u>	0.02% Stre <u>MN/m²</u>	Yield ngth <u>ksi</u>	0.02% Strer <u>MN/m²</u>	Yield Igth <u>ksi</u>	Fractu Streng <u>MN/m²</u>	re gth <u>ksi</u>	Strain Hardening Exponent	Elong. (%)	R.A. <u>(%)</u>
2-T1	21	70	352.3	51.1	224.8	32.6	313.7	45.5			0.06	22.0	78.7
2-T5			357.2	51.8	251.0	36.4	313.7	45.5			0.04	22.0	81.5
2-T9			351.6	51.0	226.1	32.8	310.0	44.9			0.05	23.0	80.8
2 - T2	482	900	198.6	28.8	155.8	22.6	195.1	28.3			0.05	21.0	85.6
2 - T6			193.1	28.0	126.2	18.3	186.2	27.0			0.03	22.0	84.4
2- T10			199 3	28.9	128.2	18.6	177.2	25.7			0.02	25.5	84.5
2-T3	538	1000	122.7	17.8	64.1	9.3	113.1	16.4			0.03	32.0	89.5
· 2-T7			120.7	17.5	57.2	8.3	109.6	15.9			0.03	36.0	92.0
₽ 2-T11			13.1	16.4	51.0	7.4	6.5	14.0			0.04	32.0	91.5
2 - T4	592	1100	56.5	8.2	21.4	3.1	26.9	3.9			0.16	78.7	95.7
2-T8			57.9	8.4	23.4	3.4	31.7	4.6		4.4	0.26	72.6	95.4
2-T12			(a)	(a)									
2-C20			66.9	9.7	26.9	3.1	51.0	7.4		2.8	0.10	29.9	94.3

TABLE III

Tensile Properties of Amzirc Copper

(a) Defective test; specimen was losing temperature during test

		Modul	us of			
T	er.p.	Elasticity				
<u>°C</u>	°F	GN/m^2	10 ⁶ psi			
21	70	119.3	17.3			
492	900	82.0	11.9			
538	1000	59.3	8.6			
593	1100	50.3	7.3			

STRAIN, cm/cm

TABLE IV

Creep Rupture Properties of Amzire Copper

Specimen	Tei	mp.	Stre	ess.	Min. Creep Rate	Time (hrs.) to start of	Time (hrs.) to 1%	Rupt. Life	Elong.	R.A.
Number	<u> </u>	<u> </u>	MN/m ²	<u>ksi</u>	<u>%/hr.</u>	3rd stage	<u>creep strain</u>	<u>(hrs.)</u>	<u>(%)</u>	<u>(%)</u>
2-C1	482	900	172.4	25.0		-	0.1	0.2	13.3	83.7
2-C4			124 . I	18.0	.205	5.0	4.5	10.9	16.1	80.9
2-C7			82.7	12.0	.195	3.3	4.3	13.2	37.0	87.1
2-C10			55.2	8.0	.110	23.0	8.6	73.5	64.6	81.7
2-C13			34.5	5.0	.009	130.0	93.0	641.8	48.4	47.9
2-C18			29.0	4.2	. 02 1	580.0	79.0	1208.7	43.4	41.6
2-C2	538	1000	82.7	12.0	4 . 4		~ ~	(a)	57.8	94.3
2-C5			48.3	7.0	1.09	1.2	0.8	21.3	54.0	86.1
2-C8			34.5	5.0	.646	-	2.2	54.0	52.4	66.2
2-C11			27.6	4.0	.240	54.0	1.0	132.0	63.6	56.3
2-C14			20.7	3.0	,066	145.0	14.0	421.6	51.4	40.1
2-C17			16.5	2.4	. 024	720.0	34.0	1012.7	32.2	24.8
2-C9	593	1100	19.3	2.8	.317	48.0	1.5 ⁻	87.6	56.8	51.1
2-C15			16.5	2.4	.168	80.0	5.0	162.4	47.7	43.9
2-C6			13.8	2.0	.109	125.0	8.0	281.2	(b)	
2-C12			11.7	1.7			- -	(c)		
2-C16			11.7	1.7	.044	270.0	18.0	572.5	42.5	39.5
2-C3			10.3	1.5	.032	650.0	28.0	966.9	37.1	52.1

(a) Specimen failed in loading

(b) Specimen bent while being removed from furnace; cannot measure ductility

(c) Specimen loaded at wrong stress level; test void

		S	tress to	Produce F	<u>ailure a</u>	at	
Temperature		100 hr.		300 hr	•	1000 hr.	
<u>°C</u>	°F	MN/m^2	ksi	MN/m^2	<u>ksi</u>	MN/m^2	<u>ksi</u>
482	900	48.3	7.0	37.9	5.5	31.0	4.5
538	1000	29.6	4.3	22.8	3.3	16.5	2.4
593	1100	17.9	2.6	13.8	2.0	10.3	1.5

TIME (HOURS)

-27-

Figure 13

TIME (HOURS)

-28-

'. ...

Figure 14

.

.

TIME (HOURS)

TIME (HOURS)

ł

TEST RESULTS (continued)

Material 3: Titanium-6Al-2Sn-4Zr-2Mo

This super-alpha titanium alloy, developed to produce a good combination of tensile, creep, toughness, and stability to 1050°F was supplied as fully processed wrought bar stock by NASA-Lewis Research Center.

Nominal composition of this alloy is as follows:

Aluminum	5.5 - 6.5%
Tin	1.8 - 2.2
Zirconium	3.6 - 4.4
Molybdenum	1.8 - 2.2
Iron	0.25 max.
Carbon	0.05 max.
Nitrogen	0.05 max.
Hydrogen	0.0150 max.
Oxygen	0.12 max.
Titanium	Balance

Tensile results are presented as Table V with samples of the load-strain curves compiled as Figure 17.

Poisson's Ratio values are as listed below:

Specimen	Average Value	Confidence	e Limits
Number	Poisson's Ratio	90%	95%
3-P1	-0.3017	<u>+</u> .0012	±.0015
3-P2	-0.3076	±. 0026	<u>+</u> .0031
3-P3	-0.3115	±.0016	<u>+</u> .0020

Creep rupture data are presented in Table VI. Creep deformation versus time values are plotted in Figures 18, 19, and 20. Isothermal plots of the rupture life data appear as Figure 21.

An analysis of the creep rupture data using parametric plots of the data in conjunction with the isothermal plot yields the following values of the rupture strengths to produce 100, 300, and 1000 hour life data at the appropriate lost temperatures.

TEST RESULTS (continued)

Material 3: Titanium-6Al-2Sn-4Zr-2Mo (continued)

		Stress to Produce Failure at							
Temp.		100 hour		'300 ho	ur	1000 hour			
<u>°C</u>	<u>°F</u>	MN/m^2	ksi	MN/m^2	ksi	MN/m^2	ksi		
482	900	620.5	90.0	579.2	84.0	254.0	76.0		
538	1000	399.9	58.0	324.1	47.0	258.6	37.5		
593	1100	227.5	33.0	162.0	23.5	113.8	16.5		

•

Spec.	Temp.	Ultimate Strength	0.02% Yield Strength	0.2% Yield Strength	Fracture Strength	Strain Hardening	Elong.	R.A.
10.		MIN/m ⁻ KSI	MIN/m KSI	MIN/m ⁻ KBI	MIN/m ⁻ K31	Exponent		(%)
3-T1	21 70	1014.9 147.2	896.3 130.0	967.3 140.3		0.03	19	42.7
3-T5		1026.6 148.9	859.8 124.7	957.0 138.8		0.02	18	41.6
3-T9		1017.0 147.5	815.7 118.3	947.3 137.4		0.06	20	46.3
3-T2	482 900	738.4 107.1	506.8 73.5	564.0 81.8		0.13	22	51.7
3-T6		737.1 106.9	478.5 69.4	558.5 81.0		0.13	21.5	52.2
3-T10		723.3 104.9	437.1 63.4	562.6 81.6		0.11	24	60.5
3-T3	538 1000	677.1 98.2	428.9 62.2	532.3 77.2		0.09	29	56.4
3-T7		679.8 98.6	457.8 66.4	535.7 77.7		0.11	28	60.2
3-T11		666.0 96.6	420.6 61.0	528.1 76.6		0.11	27.5	65.6
3-T4	593 1100	570.9 82.8	370.3 53.7	472.3 68.5		0.04	31	65.7
3-T8		586.7 85.1	312.3 45.3	483.3 70.1		0.08	35	66.5
3-T12		576.4 83.6	337.2 48.9	468.8 68.0		0.09	34.5	68.2

TABLE V Tensile Properties of Ti-6A1-2Sn-4Zr-2Mo

		Modulus of			
Te	mp.	Elasti	city		
°C	°F	GN/m^2	10 ⁶ psi		
21	70	117.9	17.1		
482	900	99.3	14.4		
5 3 8	1000	90.3	13.1		
593	1100	84.8	12.3		

STRAIN, cm/cm

٠

TABLE VI

Creep Rupture Properties of Ti-6Al-2Sn-4Zr-2Mo

Specimen	Temp.		Stress		Min. Creep Rate	Time (hrs.) to start of	Time (hrs.) to 1%	Rupt. Life	Elong.	R.A.
Number	<u>°C</u>	°F	MN/m^2	<u>ksi</u>	%/hr.	3rd stage	<u>creep strain</u>	(hrs.)	(%)	(%)
3-C4	482	900	620.5	90.0	.104	52	(a)	87.4	22.0	57.6
3-C13			606.7	88.0	.0507	87	(a)	186.2	24.2	54.8
3-C10			586.1	85.0	.0215	175	0.3	304.1	22.2	54.1
3-C1			551,6	80.0	.0236	200	12	464.1	28.0	54.6
3-C7			524.0	76.0	.0055	370	70	1070.3	22.8	54.7
3-C2	538	1000	517.1	75.0	. 382	8.5	2	24.7	39.8	67.0
3-C5			482.6	70.0	.227	10.5	3.5	37.3	27.9	59.0
3-C8			379.2	55.0	.0292	26	27	137.9	27.6	58.8
3-C11			331.0	48.0	.0201	110	54	349.3	63.4	60.6
3-C14			275.8	40.0	.0088	150	103	539.7	27.8	65.2
3-C16			265.4	38.5	.0068	137	140	899.1	47. 6	67.8
3-C3	593	1100	310.3	45.0	.285	6.5	3.5	24.7	39.8	67.0
3-C6			241.3	35.0	.160	(b)	(b) [·]	89.9	40.0	70.5
3-C9			199.9	29.0	.0704	54	14	163.5	71.9	75.2
3-C12			158.6	23.0	.0469	52	24	337.7	72.5	81.1
3-C15			113.8	16.5	.0211	225	45	976.1	82.7	95.6

(a) More than 1.0% plastic deformation occurred on loading

(b) Insufficient data to obtain this value

-

.

.

.

Material 4: H-13 Tool Steel

This air-hardening, hot work tool and die steel was supplied as bar stock by NASA-Lewis Research Center. Nominal composition of this alloy is as follows:

Carbon	0.35%
Manganese	0.35
Silicon	1.00
Chromium	5.00
Vanadium	1.00
Molybdenum	1.50
Iron	Balance

Prior to finish machining, the material was heat treated at Metcut using the following NASA recommended heat treatment.

> Preheat specimen blanks to 1400°F for 1/2 hour. Transfer to 1850°F/1 hour/air cool. Double temper at 1200°F for two hours, air cool to room temperature each time.

Tensile results are presented as Table VII with samples of the load-strain curves compiled as Figure 22.

Specimen Number	Average Value Poisson's Ratio	Confidence 90%	e Limits
4-P1	-0.2746	<u>+</u> .0019	<u>+</u> .0023
4-P2	-0.2786	<u>+</u> .0017	<u>+</u> .0020
4-P3	-0.2758	<u>+</u> .0015	<u>+</u> .0018

Creep rupture data are presented in Table VIII. Creep deformation versus time values are plotted in Figures 23, 24, and 25. Isothermal plots of the rupture life data appear as Figure 26.

An analysis of the creep rupture data using parametric plots of the data in conjunction with the isothermal plot yields the following values of the rupture strengths to produce 100, 300, and 1000 hour life data at the appropriate test temperatures.

Material 4: H-13 Tool Steel (continued)

	Stress to Produce Failure at										
Temp. 100		100 hou	irs	300 hours		1000 ho	urs				
<u>°C</u>	<u>°F</u>	MN/m^2	ksi	MN/m^2	ksi	MN/m^2	<u>ksi</u>				
538	1000	282.7	41.0	237.9	34.5	193.0	28.0				
593	1100	165.5	24.0	134.4	19.5	106.9	15.5				
649	1200	96.5	14.0	79.3	11.5	62.0	9.0				

Spec.	Te	mp.	Ultima Streng	te gth	0.02% Y Streng	ield gth	0.2% Y Strens	ield gth	Fracti Streng	ure gth	Strain Hardening	Elong.	R.A.
<u>No.</u>	°C	°F	MN/m^2	ksi	MN/m^2	ksi	MN/m^2	<u>ksi</u>	MN/m^2	<u>ksi</u>	Exponent	(%)	<u>(%)</u>
4-T1	21	70	986.0	143.0	684.0	99.2	788,1	114.3			0.11	14.1	50.9
4-T2			986.0	143.0	651.6	94.5	768.1	111.4			0.11	14.9	52.7
4-T3			981.8	142.4	622.6	90.3	759.1	110.1			0.12	15.7	51.4
4-T4	538	1000	552.3	80.1	410.2	59.5	501. ?	2.7			0.07	27.1	80.8
4-T5	550	1000	554.3	80.4	356.5	51.7	491.	1.3			0.05	26.5	80.4
4- T 6			572.3	83.0	366.1	53.1	r ر.2	74.0			0.05	25.4	80.1
4 - T7	593	1100	426.8	61.9	247.5	35.9	361.3	52.4			0.05	34.3	88.5
4-T8	575		461 3	66.9	255.8	37.1	382.0	55.4			0.04	35.1	88.2
4-T9			416.4	60.4	262.0	38.0	366.1	53.1			0.04	35.5	89.7
4 - T 10	649	1200	315.8	45.8	166.2	24.1	239,9	34.8			0.06	36.6	92.4
4-T11	/		322.0	46.7	144.1	20.9	226.8	32.9				40.7	93.5
4-T12			206.1	44.4	138.6	20,1	228.2	33.1			0.04	43.0	92.6

TABLE VII	
Tensile Properties of H-13 Tool Steel	

Te	n.p.	Modulu Elastic	s of ity
<u>°C</u>	<u>°F</u>	GN/m^2	10 ⁶ psi
21	70	226. 1	32,8
538	1000	177.9	25.8
593	1100	130.3	18.9
649	1200	125.5	18.2

· • · ·

STRAIN, cm/cm

Specimen	T		C to a		Min.	Time (hrs.)	Time (hrs.)	Rupt.	-	
Number	°C	• <u>F</u>	$\frac{MN/m^2}{m^2}$	ksi <u>ksi</u>	%/hr.	3rd stage	creep strain	Life (hrs.)	Elong. _(%)	R.A. <u>(%)</u>
4-C1	538	1000	448.2	65.0		0.4	0.1	1.0	25.7	76.8
4-C4			413.7	60.0	2.93	1.5	0.2	32.4	24.2	74.8
4-C7			275.8	40.0	.072	45	8	116.8	32.1	80.5
4-C13			241.3	35.0	.030	110	20	285.6	36.9	82.5
4-C10			206.8	30.0	.0119	300	52	797.3	45.5	85.1
4-C16			196.5	28.5	.0106	450	80	914.5	29.2	82.8
4-C2	593	1100	275.8	40.0	2.35	2.5	0.3	4.3	27.9	84.3
4-C5			482.6	30.0	.342	9	0.7	39.7	33.6	88.9
4-C8			158.6	23.0	.0775	50	8.5	142.1	51.0	89.8
4-C11			137.9	20.0	.0498	95	16	209.8	35.6	89.2
4-C14			96.5	14.0	.0074	850	27	1804.8	49.4	89.9
4-C3	649	1200	137.9	20.0	.60	1.5	1	15.8	43.3	94.0
4-C6			106.9	15.5	.333	11	2	45.4	43.0	92.8
4-C15			82.7	12.0	.0623	105	8	263.7	49.9	92.0
4-C9			72.4	10.5	.0327	200	13	500.6	58.7	92.2
4-C12			65.5	9.5	.0192	360	14	761.5	58.9	94.1

TABLE VIII

TIME (HOURS)

-47-

Material 5: D-979

This precipitation hardening austenitic, high temperature superalloy was supplied as fully processed wrought bar stock by NASA-Lewis Research Center.

Nominal composition of this alloy is as follows:

Carbon	0.08 max.
Manganese	0.75 max.
Silicon	0.75 mex.
Phosphorus	0.040 max.
Chromium	14.00 - 16.00
Molybdenum	3.00 - 4.50
Tungsten	3.00 - 4.50
Titanium	2.70 - 3.00
Aluminum	0.75 - 1.30
Boron	0.008 - 0.016
Iron	25.00 - 29.00
Nickel	42.00 - 48.00

Tensile results are presented as Table IX with samples of the loadstrain curves compiled as Figure 27.

Poisson's Ratio values are as listed below:

Specimen	Average Value	Confidence Limits			
Number	Poisson's Ratio	90%	95%		
5-P1	-0.2852	+.002 6	±.0031		
5-P2	-0.2853	+.0016	+.0020		
5-P3	-0.3013	±.0012	+.0014		

Creep rupture data are presented in Table X. Creep deformation versus time values are plotted in Figures 28, 29, and 30. Isothermal plats of the rupture life data appear as Figure 51.

Material 5: D-979 (continued)

An analysis of the creep rupture data using parametric plots of the data in conjunction with the isothermal plot yields the following values of the rupture strengths to produce 100, 300, and 1000 hour life data at appropriate test temperatures.

Temp.		100 ho	ur	300 h	our	1000 hour		
<u>C°</u>	<u>°F</u>	MN/m^2	ka:	MN/m ²	ksi	MN/m ²	ksi	
593	1100	758.4	117.0	696.4	101.0	627.4	91.0	
649	1200	599.8	87.0	537.8	78.0	482.6	70.0	
704	1300	468.8	68.0	427.5	62.0	386.1	56.0	

Stress to Produce to Failure at

Spec.	Temp.	Ultimate Strength	0.02% Yield Strength	0.2% Yield Strength	Fracture Strength	Strain Hardening	Elong.	R.A.
<u>No.</u>	°C °F	<u>MN/m² ksi</u>	<u>MN/m² ksi</u>	<u>MN/m² ksi</u>	<u>MN/m² ksi</u>	Exponent	_(%)_	<u>(%)</u>
5 - T5	21 70	1407.2 204.1	877.7 127.3	1010.0 146.5		0.11	18	27.5
5-T?		1428.6 207.2	844.6 122.5	976.3 141.6		0.11	19.5	27.2
5-T14		1410.7 2 04.€	757.7 109.9	954.2 138.4			19	27.7
5-T2	593 1100	1289.3 187.0	743.3 107.8	937.7 136.0		0.15	16	23.6
5-To		1276.2 185.1	779.1 113.0	933.6 135.4		0.09	17	25.8
5-T10		1291.4 187.3	780.5 113. 2	932.2 135.2		0.14	18	26.3
5-T3	649 1200	1136.3 164.8	715.7 103.8	916.3 132.9		0.07	10.5	13.7
5-T7		1108.7 160.8	734.3 106.5	913.6 132.5		0.08	11.2	12.7
5 - T11		1167.3 169.3	756.4 109.7	923.2 133.9		0.08	14	15.3
5-T4	704 1300	927.4 134.5	677.1 98.2	821.2 119.1		0.04	10	11.4
5-T8		960.4 139.3	724.6 105.1	872.2 126.5		0.03		
5-T12		1012.8 146.9	735.0 106.6	903.2 131.0		0.04	11	12.2

TABLE IX Tensile Properties of D-979

- 51 -

		Modulus of						
Te	mp.	Elasticity ,						
<u>°C</u>	<u>°F</u>	<u>GN/m</u>	10 ⁶ psi					
21	70	212.4	30.8					
593	1100	167.5	24.3					
649	1200	165.5	24.0					
704	1300	166.2	24.1					

TABLE X

Creep Rupture Properties of D-979

Specimen	Те	mn	Sta	• 0 C S	Min. Creen Bate	Time (hrs.)	1'me (hrs.)	Rupt. Life	Elong.	RA
Number	<u>•C</u>	_°F	MN/m ²	ksi	%/hr,	3rd stage	creep strain	<u>(hrs.)</u>	(%)	(%)
5-C1	593	1100	758.4	110.0	.016	32	53	111.1	3.3	4.7
5-C12			703.3	102.0	.0033	109	213	258.7	1.6	4.7
5-C4			689.5	100.0	.0022	110	265	408.8	2.2	4.0
5-C9			641.2	93.0	.0001	(a)	(a)	724.1	1.1	4.0
5-C15			620.5	90.0	.0003	(a)	(a)	1144.2	0.8	4.4
5-C2	649	1200	620.5	90.0	.016	15	34	61.7	2.9	5.4
5-C5			593.0	86.0	.015	36	52	109.1	3.5	5.3
5-C7			544.7	79.0	.0027	125	242	317.3	2.0	2.4
5-C10			496.4	72.0	.0010	420	730	808.1	1.7	2.5
5-C13			482.6	70.0	.0006	620	(a)	976.0	1.2	2.5
5-C3	704	1300	517.1	75.0	.049	11	16	34.3	4.0	6.4
5-C6			482.6	70.0	.026	24	31	68.4	3.6	5.9
5-C14			441 3	64.0	.0102	59	81	169.9	3.9	6.1
5-C8			413.7	60.0	.0061	120	148	367.8	4.6	6.8
5-C11			386.1	56.0	.0018	295	465	972.6	5.1	7.2

- 53 -

Note: (a) Specimen failed before value was obtained.

Material 6: A-286

This age hardenable austenitic nickel-chromium steel was supplied as wrought bar stock by NASA-Lewis Research Center. Nominal composition of this alloy is as follows:

Carbon	0.08 max.
Manganese	2.00 max.
Silicon	1.00 max.
Phosphorous	0.025 max.
Sulfur	0.025 max.
Chromium	13.50-16.00
Nickel	24.00-27.00
Molybdenum	1.00-1.50
Titanium	1.90-2.35
Aluminum	0.35 max.
Vanadium	0.10-0.50
Boron	0.003-0.010
Iron	Balance

Prior to finish machining, the material was heat treated at Metcut using the following NASA recommended heat treatment:

Age at 1325°F/16 hours/air cool to room temperature

Tensile results are presented as Table XI with samples of the load-strain curves compiled as Figure 32.

Poisson's Ratio values are as listed below:

Specimen Number	Average Value Poisson's Ratio	Confiden 90%	ce Limits <u>95%</u>
6-P1	-0.2621	±. 0015	±.0018
6-P2	-0.2624	±.0024	±.0029
6-P3	-0.2640	±. 0015	±.0018

Creep rupture data are presented in Table XII. Creep deformation versus time values are plotted in Figures 33, 34, and 35. Isothermal plots of the rupture life data appear as Figure 36.

Material 6: A-286 (continued)

An analysis of the creep rupture data using parametric plots of the data in conjunction with the isothermal plot yields the following values of the rupture strengths to produce 100, 300, and 1000 hour life data at the appropriate test temperatures.

		Stress to produce failure at									
Temp.		100 hc	ours	300 ho	urs	1000 hours					
<u>°C</u>	°F	MN/m^2	<u>ksi</u>	MN/m^2	ksi	MN/m^2	ksi				
593	1100	703.3	102.0	648.1	94.0	593.0	86.0				
649	1200	524.0	76.0	437.8	63.5	358.5	52.0				
704	1300	303.4	44.0	217.2	31.5	148.2	21.5				

Spec. Temp.		Ultimate Strength		0.02% iield Strength		0.2% Y Streng	0.2% Yield Strength		ire gth	Strain Hardening	Elong.	R.A.	
<u>No.</u>	°C	• <u></u> •F	MN/m^2	ksi	<u>M * /m²</u>	ksi	MN/m ²	<u>ksi</u>	MN/m^2	ksi	Exponent	<u>_(%)</u>	<u>(%)</u>
6-T1	21	70	1336.9	193.9	912.9	132.4	1174.2	170.3			0.06	15	35.8
6-T2			1341.0	194.5	891.5	129.3	1139.0	165,2			0.06	15.5	37.5
6-T3			1339.7	194.3	891.5	129.3	1165.2	169.0			0.07	14	36.0
6-T4		1100	990.1	143.6	639.1	92.7	903.2	131.0			0.04	17	44.9
6-T5			1000.4	145.1	735.7	106.7	904.6	131.2			0.04	16.5	44.5
6-T6			983.2	142.6	640.5	92.9	843.2	122.3			0.05	19	45.8
6-T7	649	1200	840.5	121.9	556.4	80.7	786.0	114.0			0.05	24	54.0
6-T8			870.8	126.3	581.2	84.3	772.2	112.0			0.05	24	54.2
6-T9			853.6	123.8	623.3	90.4	779.1	113.0			0.04	27	54.1
6-T10	704	1300	728.8	105.7	370.9	53.8	639.1	92.7			0.02	34	63.2
6-T11			743.9	107.9	421.3	61.1						36	63.5
6-T12			739.1	107.2	477.8	69.3	690.9	100.2			0.03	32	62.7

TABLE XI Tensile Properties of A-286

_		Modulus of					
Te	mp.	Elasticity					
°C	<u>°F</u>	GN/m^2	10 ⁶ psi				
21	70	22/1	33 0				
21	70	220.1	54.0				
593	1100	166.9	24.2				
649	1200	145.5	21.1				
704	1300	144.8	21.0				

STRAIN, cm/cm

					Min.	Time (hrs.)	Time (hrs.)	Rupt.		
Specimen	Te	mp.	Sti	ess	Creep Rate	to start of	to 1%	Life	Elong.	R.A.
Number	<u>°C</u>	<u>°F</u>	MN/m^2	ksi	%/hr.	3rd stage	creep strain	<u>(hrs.)</u>	_(%)	<u>(%)</u>
6-C4	593	1100	758.4	110.0	.154	7	7	29.0	22.0	47.7
6-C7			689.5	100.0	.011	25	42	93.9	17.9	50.9
6-C10			655.0	95.0	.0062	95	126	270.6	15.3	50.3
6-C13			634.3	92.0	.0043	82	122	257.3	14.5	52.1
6-C1			586.1	85.0	.0008	400	865	1462.5	15.1	47.2
6-C5	649	1200	551.6	80.0	.035	21	27	54.3	18.4	59.6
6-C8			496.4	72.0	.0076	56	89	176.4	22.3	59.8
6-C2			448.2	65.0	.0033	52	106	244.2	13.6	59.5
6-C11			386.1	56.0	.0022	190	307	666.4	14.8	60.7
6-C14			365.4	53.0	.0019	190	345	887.1	34.0	57.8
6-C3	704	1 300	324.1	47.0				(a)		
6-C6			324.1	47.0	.029	20	25 -	81.5	32.5	66.3
6-C			275.8	40.0	.020	26	42	145.9	23.7	64.9
6-C 2			227.5	33.0	.012	60	78	272.8	36.7	61.0
6-C15			165.5	24.0	.0051	120	172	688.8	47.1	57.5
6-C16			137.9	20.0	.0027	200	315	1271.1	37.5	59.1

TABLE XII Creep Rupture Properties of A-286

Note: (a) Specimen over-temperature prior to test; void test.

1

.

,

^{, , , , ,}

TIME (HOURS)

· •

•

-64-

Figure 34

.

-63-

Material 7: L-605

This alloy, a cobalt-base alloy, was supplied as fully processed wrought bar stock by NASA-Lewis Research Center. Nominal composition of this alloy is as follows:

Carbon	0.05-0.15
Manganese	1.00-2.00
Silicon	0.040 max.
Phosphorous	0.040 max.
Sulfur	0.030 max.
Chromium	19.00-21.00
Nickel	9.00-11.00
Tungsten	14.00-16.00
Iron	3.00 max.
Cobalt	Balance

Tensile results are presented in Table XIII with samples of the loadstrain curves compiled as Figure 37.

Poisson's Ratio values are as listed below:

Specimen Number	Average Value Poisson's Ratio	Confidence Lin <u>90%</u> 95		
7-Pl	-0.2924	±.0016	±.0020	
7-P2	-0.2935	±.0015	±.0 018	
7-P3	-0.2874	±.00 12	±.0015	

Creep rupture data are presented in Table XIV. Creep deformation versus time values are plotted in Figures 38, 39, and 40. Isothermal plots of the rupture life data appear as Figure 41.

.aterial 7: L-605 (continued)

An analysis of the creep rupture data using parametric plots of the data in conjunction with the isothermal plot yields the following values of the rupture strengths to produce 100, 300, and 1000 hour life data at the appropriate test temperatures.

		Stress to produce failure at									
Temp.		100 ho	urs	300 ho	ours	1000 hours					
<u>°C</u>	°F	MN/m^2	ksi	MN/m^2	ksi	MN/m^2	ksi				
593	1100	551.6	80.0	496.4	72.0	448.2	65.0				
649	1200	399.9	58.0	351.6	51.0	299.9	43.5				
704	1 300	30 3. 4	44.0	275.8	40.0	244.8	35.5				

-68-

					Tens	<u>TAB</u> ile Prop	LEXIII perties of	<u>L-605</u>					
Spec. No.	Ter °C	np. <u>°F</u>	Ultima Streng <u>MN/m²</u>	te (th ksi	0.02% Y Streng <u>MN/m²</u>	ield gth ksi	0.2% Y Streng <u>MN/m²</u>	'ield gth <u>ksi</u>	Fractu Streng <u>MN/m²</u>	re th <u>ksi</u>	Strain Hardening Exponent	El on g. (%)	R.A. <u>(%)</u>
7-T1 7-T5 7-T9	21	70	1032.2 1036.3 1036.3	149.7 150.3 150.3	439.2 424.0 375.1	63.7 61.5 54.4	477.1 477.1 452.3	69 .2 69 .2 65.6		 	0.07 0.09 0.09	60 61 61	43.4 42.3 42.9
7-T2 7-T6 7-T10	592	1100	777.0 793.6 789.5	112.7 115.1 114.5	208.9 204.8 224.1	30.3 29.7 32.5	229.6 231.0 232.4	33.3 33.5 33.7		 	0.13 0.11 0.10	70 68 71	48.7 48.0 48.3
7 - T 3 7 - T 7 7 - T 1 1	649	1200	669.5 666.7 655.7	97.1 96.7 95.1	205.5 197.2 186.2	29.8 28.6 27.0	216.5 208.9 207.5	31.4 30.3 30.1	 	• • • • • -	0.11 0.18 0.19	40.5 41 39.5	35.1 33.7 34.4
7-T4 7-T8 7-T12	704	1300	568,1 571,6 585,4	82.4 82.9 84.9	201.3 188.2 201.3	29.2 27.3 29.2	213.7 210.3 219.3	31.0 30.5 31.8			0.07 0.14 0.18	27 26 27	25.9 24.6 25.3

Tamp		Modulus of	
10	mp.	CN/ 2	
<u> </u>	<u> </u>	<u>GN/m²</u>	100 psi
21	70	220 0	32 2
593	1100	190.3	27 6
649	1200	177.2	25.7
704	1300	170.3	24.7

STRAIN, cm/cm

TABLE XIV								
Creep	Rupture	Properties	of	L-605				

					Min.	Time (hrs.)	Time (hrs.)	Rupt.		
Specimen	Te	mp.	Str	ess	Creep Rate	to start of	to 1%	Life	Elong.	R.A.
Number	<u>°C</u>	°F	MN/m^2	<u>ksi</u>	%/hr.	3rd stage	creep strain	<u>(hrs.)</u>	_(%)	<u>(%)</u>
7-C7	593	1100	551.6	80.0	.0074	(a)	(a)	116.2	28.4	27.5
7-C10			517.1	75.0	.0049	(a)	(a)	183.7	27.8	23.8
7-C4			482.6	70.0	.0016	(a)	(a)	525.7	15.3	21.8
7-C13			448.2	65.0				(b)		
7-C15			448.2	65.0	.0009	(a)	(a)	938.6	17.3	21.5
7-C1			413.7	60.0	.0006	(a)	(a)	1976.1	13.7	19.3
7-C5	649	1200	393.0	57.0	.014	(a)	(a)	93.5	12.3	23.2
7-C14			365.4	53.0	.0052	(a)	(a)	263.4	9.1	11.5
7-C2			344.7	50.0	.0044	(c)	(c)	323.4	8.4	11.2
7-C8			324.1	47.0	.0027	(a)	(a)	577.0	6.9	9.1
7-C11			303.4	44.0	.0019	(a)	(a)	905.8	4.2	7.2
7-C16	704	1300	303.4	44.0	. 0 30	80	(d)	97.1	8.0	12.1
7-C6			299.9	43.5	.039	127	(d)	156.8	10.8	10.5
7- C9			268.9	39.0	.012		(C)	277.0	5.2	8.9
7-C3			248.2	36.0	.0050	(a)	(a)	637.2	5.7	6.3
7-C12			234.4	34.0	.0026		150	(e)		
7-C17			234.4	34.0	.0009		117	>1533.1(f)		

Notes:

(a) Specimen indicated plastic deformation in excess of 1.0% on loading; no third stage creep indicated.

(b) Temperature to 2000° F prior to loading; test void.

(c) Extensometer erratic; data not available

(d) Value obtained on loading.

(e) Temperature 80°F over at 691.1 hours; specimen unloaded.

(f) Spe inten unloaded without failure at time shown.

- 72 -

-73-

-74-

- 75 -

Material 8: 304 Stainless Steel

This alloy, a low carbon member of the austenitic stainless steel family, was supplied as fully processed bar stock by NASA-Lewis Research Center.

Nominal composition of this alloy is as follows:

Carbon	0.08 max.
Manganese	2.00 max.
Silicon	1.00 max.
Phosphorus	0.045 max.
Sulfur	0.030 max.
Chroinium	18.00 - 20.00
Nickel	8.00 - 10.50
lron	Balance

Tensile results are presented as Table XV with samples of the load-strain curves compiled as Figure 42.

Poisson's Ratio values are as listed below:

Specimen	Average Value	Confidence Limits			
Number	Poisson's Ratio	90%	95%		
8-P4	-0.2609	<u>+</u> .0039	<u>+</u> .0046		
8-P5	-0.2458	<u>+</u> .0040	<u>+</u> .0048		
8-P6	-0.2617	<u>+</u> .0047	<u>+</u> .0057		

Creep rupture data are presented in Table XVI. Creep deformation versus time values are plotted in Figures 43, 44, and 45. Isothermal plots of the rupture life data appear as Figure 46.

An analysis of the creep rupture data using parametric plots of the data in conjunction with the isothermal plot yields the following values of the rupture strengths to produce 100, 300, and 1000 hour life data at the appropriate test temperatures.

			Stress to Produce Failure at									
Temp.		100 hour		300 hour		1000 hour						
<u>°C</u>	°F	MN/m^2	ksi	MN/m ²	<u>ksi</u>	MN/m^2	<u>ksi</u>					
593	1100	237.9	34.5	206.8	30.0	179.3	26.0					
649	1200	162.0	23.5	134.4	19.5	106.9	15.5					
760	1400	68.9	10.0	59.3	8.6	50.3	7.3					

Material 8: 304 Stainless Steel (continued)

Т	'A	\mathbf{B}	L	ιE	X	٧

Tensile	Properties	of 304	Stainless	Steel

Spec. _No	Temp. °C °F	Ultimate Strength <u>MN/m² ksi</u>	0.02% Yield Strength <u>MN/m²ksi</u>	0.2% Yield Strength <u>MN/m² ksi</u>	Fracture Strength <u>MN/m² ksi</u>	Strain Hardening Exponent	Elong. (%)	R.A. _(%)
8-T1	21 70	639.1 92.7	286.1 41.5	404.7 58.7		0.07	65	79.9
8-T5		641.9 93.1	257.9 37.4	393.7 57.1			63	79.9
8 79		588.8 85.4	183.4 26.6	203.4 29. 5		0.05	81	84.1
8-T2	593 1100	357.2 51.8	193.1 28.0	247.5 35.9		0.07	36	57.4
8-T6	- *	357.8 51.9	180.0 26.1	252.3 36.6		0.09	31.5	59.9
8-T10		325.4 47.2	88.3 12.8	102.7 14.9		0.21	43.5	71.3
8- T 3	649 1200	299.2 43.4	177.2 25.7	219.3 31.8		0.10	44.5	52.3
8-T7		297.9 43.2	184.1 26.7	224.1 32.5		0.12	40.5	51.5
8-T11		275.1 39.9	65.5 9.5	88.9 12.9		0.14	55.0	68.2
8-T4	760 1400	180.6 26.2	115.8 16.8	153.8 22.3	**** ***	0.06	47	56.2
8-T8		183.4 26.6	119.3 17.3	153.8 22.3		0.06	58	52.9
8-T12		173.7 25.2	76.5 11.1	91.7 13.3		0.13	95	87.6

Ŧ		Modulus of			
<u>°C</u>	<u> </u>	<u>GN/m² 10⁶</u>			
21	70	197.9	28.7		
593	1100	153.8	22, 3		
649	1200	141.3	20.5		
760	1400	111.7	16.2		

•

STRAIN, cm/cm

Spacimon	Ta		C +		Min.	Time (hrs.)	Time (hrs.)	Rupt.		
Number	<u>°C</u>	• . -	MN/m ²	<u>ksi</u>	%/hr.	3rd stage	creep strain	<u>(nrs.)</u>	(%)	к.а. <u>(</u> %)
8-C1	593	1100	234.4	34.0	.41	(a)	(b)	70.5	49.3	79.8
8-C11			220.6	32.0				(c)		
8-C15			220.6	32.0	.10	148	(b)	193.5	47.6	72.4
8-C4			206.8	30.0	.042	175	(b)	410.2	47.7	75.5
8-C8			179.3	26.0	.030	270	47	804.2	46.3	48.0
8-C14			106.9	15.5	.0002			1750.6(d)		
8-C18	649	1200	162.0	23.5				(e)		
8-C2			158.6	23.0	.45	31	(Ъ)	125.1	46.8	83.7
8-C7			137.9	20.0	.11	95	12	242.6	50.6	46.7
8-017			124.1	18.0	.0011		(b)	1274.6 (d)		
8-C12			110.3	16.0	.016	335	80	857.6	33.5	32.8
8-C9	760	1400	75.8	11.0	.15	10	7	45.7	23.2	26.4
8-C3			65.5	9.5	.31		0.8	151.3	100.6	90.4
8-C10			58.6	ز.8				(f)		
8-C13			58.6	8.5	.103	22	2.2	406.8	104.8	85.8
8-C6			55.2	8.0	.068	3.	3	594.2	97.3	85.2
8-C5			44.8	6.5	.017	10	11	2040.2	105.6	64.2

TABLE XVI Creep Rupture Properties of 304 Stainless Steel

(a) Insufficient data to obtain value

(b) Over 1% plastic strain on loading

(c) Specimen over temperature prior to loading; test void

(d) Specimen unloaded without failing at time shown

(e) Controller malfunction at 71.7 hours; test void

(f) Test run in error at 1300°F; test void

، ۱

- 82 -

- 83 -

-84-

Material 9: 316 Stainless Steel

This molybdenum bearing grade of austenitic stainless, which can be hardened only by cold working, was supplied as fully processed wrought bar stock by NASA-Lewis Research Center.

The nominal composition of this alloy is as follows:

Carbon	0.08 max.
Manganese	2.00 max.
Silicon	1.00 max.
Phosphorus	0.045 max.
Sulfur	0.030 max.
Chromium	17.00 - 19.00
Nickel	9.00 - 12.00
Titanium	5XC min.
Iron	Balance

Tensile results are presented as Table XVII with samples of the load-strain curves compiled as Figure 47.

Poisson's Ratio values are as listed below:

Specimen	Average Value	Confidence Limits		
Number	Poisson's Ratio	90%	95%	
9-P4	-0.2881	±.0028	<u>+</u> .0033	
9-25	-0.2846	<u>+</u> .0023	<u>+</u> .0027	
9-P6	-0.2928	±.0035	<u>+</u> .0043	

Creep rupture data are presented in Table XVIII. Greep deformation versus time values are plotted in Figures 48, 49, and 50. Isothermal plots of the rupture life data appear as Figure 51.

Material 9: 316 Stainless Steel (continued)

An analysis of the creep rupture data using parametric plots of the data in conjunction with the isothermal plot yields the following values of the rupture strengths to produce 100, 300, and 1000 hour life data at the appropriate test temperatures.

			Stress to Produce Failure at								
Temp.		100 ho	ur	300 ho	our	1000 hour					
	<u>°F</u>	MN/m ²	<u>ksi</u>	MN/m^2	<u>ksi</u>	MN/m^2	<u>ksi</u>				
	1100	303.4	44.0	282.7	41.0	255.1	37.0				
701	1300	134.4	19.5	113.8	16.5	93.1	13.5				
816	1500	64.1	9.3	51.7	7.5	40.7	5.9				

Sper, No.	T₊ °C	mp. °F	Ultima Strena MN/m ²	ite gth <u>ksi</u>	0.02% Y Streng <u>Mil/m²</u>	lield gth <u>ksi</u>	0.2% Y Streng <u>MN/m²</u>	ield gth <u>ksi</u>	Fractu Streng <u>MN/m²</u>	tre gth <u>ksi</u>	Strain Hardening Exponent	Elong. (%)	R.A. <u>(%)</u>
9- T I	21	70	629.5	91.3	175.1	25.4	240.6	34.9			0.15	79	82.0
9-T5			632.3	91.7	153.1	22.2	245.5	35.6			0.14	79	82.0
9-T9			618.5	89.7	151.0	21.9	225.5	32.7			0.14	80	82.1
9-T2	593	1100	441.3	64.0	82.0	11.9	111.7	16.2			0.22	53	71.3
9-T6			444.0	64.4	68.3	9.9	100.7	14.6			0.16	53	70.7
9-T10			442.0	64.1	71.7	10.4	106.2	15.4			0.24	56	70.8
9-T3	704	1300	266.1	38.6	71.7	10.4	103.4	15.0			0.21	67	66 . 1
·; 7			273.0	39.6	80.0	11.6	112.4	16.3			0.29	67.5	64.1
9-TH			269.0	39,1	77.9	11.3	106.2	15.4			0.21	61	62.3
9-T4	810	1500	161.3	23.4	75 .2	10.9	100.7	14.6			0.21	105	85.5
9-T8			155.1	22.5	71.7	10.4	99.3	14.4			0.18	9 7	97.0
9-T12			157.9	22.9	73.1	10.6	98.6	14.3			0.19	65.5	79.5

TABLE XVII								
Tensile Properties of 316 Stainless Steel								

		Modulu	Modulus of					
r	emp.	Elasti	Elasticity /					
<u>°C</u>	°F	<u>GN/m²</u>	<u>10 ps</u> i					
21	70	177.9	25.8					
593	1100	149.6	21.7					
704	1300	141,3	20.5					
816	1500	105,5	15.3					

STRAIN, cm/cm

-83-

Specimen	Te	mp.	Str	ess	Min. Creep Rate	Time (hrs.) to start of	Time (hrs.) to 1%	Rupt. Life	Elong.	R.A.
Number	<u>°C</u>	•F	MN/m^2	ksi	%/hr.	3rd stage	creep strain	<u>(hrs.)</u>	(%)	(%)
9-C1	593	1100	317.2	46.0	.105	(a)	(b)	60.6	22.1	28.7
9-C7			310.3	45.0	.044	52	(b)	80.8	28.5	32.9
9-C4			289.6	42.0	.036	120	(b)	249.7	35.4	42.0
9-C13			268.9	39.0	.022	380	(b)	660.7	33.8	40.9
9-C10			241.3	35.0	.004	980	(b)	2118.1	30.2	40.8
9-C2	704	1300	172.7	25.0	1.06	9	(b)	22.5	62.5	80.0
9-65			144.8	21.0		14	(b)	62.9	78.4	80.9
9-C8			124.1	18.0	.169	55	0.8	169.7	81.3	83.2
9-C14			106.9	15.5	.052	73	15.5	387.1	70.4	68.7
9-C11			96.5	14.0	.031	300	25	844.7	73.8	72.3
9-C3	816	1500	82.7	12.0	1.99	(a)	0.3	26.5	84.4	81.8
9-C6			68.9	10.0	.653	(a)	1.3	93.1	54.7	73.8
9-09			58.6	8.5	.165	(a)	3.5	177.8	88.1	73.7
9-C12			51.7	7.5	.112	140	7.5	274.4	68.8	67.4
9-C15			41.4	6.0	.020	370	35	938.2	45.4	48.5

TABLE XVIII

Creep Rupture Properties of 316 Stainless Steel

(a) Insufficient data points to determine this value

(b) Specimen exceeded 1% plastic deformation on loading

-90-

- +] -

-92-

Material 10: Udimet 700

This nickel-base alloy was developed for high temperature tensile strength, creep resistance and high fatigue strength. Chemical composition of this heat of material (supplied by NASA) is as follows:

Carbon	0.07%
Manganese	<0.10
Silicon	<0.10
Chromium	14.6
Cobalt	19.0
Iron	0.19
Molybdenum	4.85
Boron	0.027
Zirconium	<0.05
Sulfur	0.003
Copper	<0.10
lickel	Balance

The bar stock supplied by NASA-Lewis Research Center required this recommended heat treatment prior to final machining.

2125°F/4 hours/air cool to room temperature 1975°F/4 hours/air cool to room temperature 1550°F/24 hours/air cool to room temperature 1400°F/16 hours/air cool to room temperature

Tensile results are presented as Table XIX with samples of the loadstrain curves compiled as Figure 52.

Poisson's Ratio values are as listed below:

Specimen Number	Average Value Poisson's Ratio	Confiden _90%_	cc Limits
10-P1	-0.2903	±.0014	±.0017
10-P2	-0.2926	<u>+</u> .0023	+.0023
10-P3	-0.2862	±.0017	±.0020

3

\$

Material 10: Udimet 700 (continued)

Â.

Creep rupture data are presented in Table XX. Creep deformation versus time values are plotted in Figures 53, 54, and 55. Isothermal plots of the rupture life data appear as Figure 56.

L \circ analysis of the creep rupture data using parametric plots of the data in conjunction with the isothermal plot yields the following values of the repture strengths to produce 100, 300, and 1000 hour life data at the appropriate test temperatures.

			Stress to Produce Failure at									
Temp.		100 hour		300 h	our	1000 hour						
<u>°C</u>	<u>°F</u>	MN/m ²	<u>ksi</u>	MN/m ²	<u>ksi</u>	MN/m^2	<u>ksi</u>					
760	1400	482.6	70.0	420.6	61.0	358.5	52.0					
816	1500	372.3	54.0	331.0	48.0	289.6	42.0					
927	1700	186.2	27.0	151.7	22.0	120.7	17.5					

Spec.	Ter	np.	Ultima Streng	te th	0.02% Stren	Yield gth	0.2% Y Strens	ield gth	Fracto Streng	ire gth	Strain Hardening	Elong.	R.A.
No.	<u>°C</u>	°F	MN/m^2	kei	MN/m^2	ksi	MN/m^2	ksi	MN/m^2	ksi	Exponent	<u>_(%)</u> _	(%)
10-T1	21	70	1373.4	199.2	537.8	92.5	925.3	134.2			0.07	17.0	15.5
10-T2			1370.7	198.8	711.5	103.2	924.6	134.]			0.12	15.5	16.4
10-T3			1374.8	199.4	799.8	116.0	938.4	136.1			0.11	16.3	15.8
10-T4	760	1400	1039.0	150.7	688. 1	99.8	870.8	126.3	974.9	141.4	0.11	14.5	14.9
10-T5			1029.4	149.3	699.1	101.4	864.6	125.4	948.7	137.6	0.08	16.0	19.9
10-T6			1010.1	146.5	675.7	98.0	854.3	123.9	924.6	134, 1	0.08	16.5	17.2
10-T7	816	1500	886.0	128.5	595.0	86.3	771.5	111.9	721.9	104.7	0.03	14.5	19.3
10-T8			857.7	124.2	633.6	91.9	783.2	113.6	69 9. 8	101,5	0.04	15	18.6
10-T9			902.5	130.9	599.8	87.0	795.7	115.4	735.7	106.7	0.04	18	18.1
10-T1	0 927	1700	540.6	78.4	447.5	64.9	510.9	74.1	224, 8	32.6	0.02	14	16.9
10-T1	1		559.2	81.1	462.6	67.1	535.0	77.6	202.7	29.4	0.03	12	14.6
10-T1	2		541.2	78.5	434.4	63.0	524.0	76.0	1.4	0.2	0.02	12.5	15.2

	TABLE	XIX	
Tensile	Properties of	Udimet	t 700

Temp.			Elasticity		
-	°C	°F	<u>GN/m²</u>	106 psi	
	21	70	228, 2	33, 1	
7	760	1400	190.3	27.6	
e	316	1500	171.7	24.9	
¢	927	1700	158.6	23.0	

TABLE XX

Creep Rupture Properties of Udimet 700

Specimen	Ter	no.	Str	655	Min. Creep Bate	Time (hrs.)	Time (hrs.)	Rupt.	Flore	D A
Number	<u>°C</u>	<u>°C</u> <u>°F MN/m² ksi %/hr.</u>		<u>%/hr.</u>	3rd stage	<u>creep strain</u>	<u>(hrs.)</u>	<u>(%)</u>	(%)	
10-C1	760	1400	586.1	85.0		(a)	(a)	26.3	5.5	9.6
10-C4			537.8	78.0	.044	13	19	43.9	5.5	10.1
10-C7			434.4	63.0	.0060	78	113	243.0	12.1	16.8
10-C10			393.0	57.0	.0018	150	275	551.2	13.6	18.7
10-C13			365.4	53.0	.0015	320	480	955.5	18.2	23.5
10-C2	816	1500	448.2	65.0		(a)	(a)	17.7	5.9	8.6
10-C5			413.7	60.0	.052	11	15	39.8	7.5	10.7
10-C11			344.7	50.0	.0078	55	89.	164.5	10.2	15.5
10-C8			310.3	45.0	.0028	195	282	613.6	13.5	21.2
10-C14			289.6	42.0	.0014	250	420	971.6	13.1	17.5
10-C16	927	1700	186.2	27.0	.025	29	37	107.8	12.9	19.0
10-C3			172.4	25.0	.027	73	40 ·	141.1	10.4	13.4
10-C6			158.6	23.0				(b)		
10-C9			158.6	23.0	.0092	75	101	242.1	10.5	14.4
10-C12			131.0	19.0		(c)	(c)	320.2	11.0	15.7
10-C15			117.2	17.0	.0017	250	475	1187.3	17.0	19.9

(a) Insufficient data available to obtain value

õ

(b) Specimen to 2000°F prior to loading; no test

(c) Data is erratic; cannot determine values

•

- ----

-99-

TIME (HOURS)

-100-

F gure 55

TIME (HOURS)

Material 11: TAZ-8A

This alloy was developed by NASA-Lewis Research Center for good elevated temperature strengths and excellent corrosion resistance. The material was supplied as cast remelt stock and was cast into bar specimens by Howmet Corporation-Misco Division. Testing was performed on the material in the as-cast condition.

Chemical analysis of this heat of material (supplied by NASA-Lewis Research Center) is as follows:

Carbon	0.13%
Manganese	0.04
Silicon	0.11
Chromium	6.10
Molybdenum	3.90
Tungsten	4.00
Iron	<0.10
Sulfur	0.015
Aluminum	5.78
Columbium	1.81
Tantalum	8.10
Boron	0.005
Zirconium	0.57
Bismuth	<.2 ppm
Lead	<1 ppm
Nickel	Balance

Tensile results are presented as Table XXI with samples of the loadstrain curves compiled as Figure 57.

Poisson's Ratio values are as listed below:

Specimen Number	Average Value Poisson's Ratio	Confidence <u>90%</u>	ce Limits
11-P1	-0.3092	<u>+</u> .0067	<u>+</u> .0080
11-P2	-0.3295	+.0024	<u>+</u> .0029
11-P3	-0.3111	<u>+</u> .0084	<u>+</u> .0101

Material 11: TAZ-8A (continued)

Creep rupture data are presented in Table XXII. Creep deformation versus time values are plotted in Figures 58, 59, and 60. Isothermal plots of the rupture life data appear as Figure 61.

An analysis of the creep rupture data using parametric plots of the data in conjunction with the isothermal plot yields the following values of the rupture strengths to produce 100, 300, and 1000 hour life data at the appropriate test temperatures.

		Stress to Produce Failure at							
Temp.		100 hour		300 hour		1000 hour			
<u>_0</u>	<u>°F</u>	MN/m^2	ksi	MN/m ²	<u>ksi</u>	MN/m^2	<u>ksi</u>		
850	1562	417.1	60.5	348.2	50.5	282.7	41.0		
925	1697	244.8	35.5	203.4	29.5	166.5	24.0		
1000	1832	137.9	20.0	117.2	17.0	96.5	14.0		

	TABLE	XXI
Tensile	Propertie	s of TAZ-8A

			Ultima	te	0.02% Y	ield	0.2% Y	ield	Fractu	re	Strain		
Spec.	Ten	np.	Streng	th	Streng	th	Streng	th	Streng	th	Hardening	Elong.	R.A.
<u>No.</u>	<u>°C</u>	<u>°F</u>	MN/m^2	ksi	MN/m^2	<u>ksi</u>	MN/m^2	<u>ksi</u>	MN/m ²	<u>ksi</u>	Exponent	<u>(%)</u>	_(%)_
11-T1	21	70	1002.5	145.4	713.6	103.5	826.0	119.8	1077.7	156.3	0.06	4.1	7.3
11-T2			1006.6	146.0	690.9	100.2	816.3	118.4	1033.5	149.9	0.11	3.9	6.4
11-T3			979.1	142.0	670.9	97.3	810.8	117.6	1025.3	148.7	0.07	3.4	4.8
11-T4	850	1562	870.8	126.3	568.1	82.4	761.2	110.4	900.5	130.6	0.06	2.7	5.2
11-T5			850.8	123.4	552.3	80.1	741.9	107.6	880.5	127.7	0.12	3.1	5.4
11-T6			822.5	119,3	499.9	72.5	72 6. 0	105.3	861.9	125.0	0.06	3.2	6.4
11-T7	92 -	1697	666.0	96.6	329.6	47.8	517.1	75.0	675.0	97.9	0.16	4.5	6.5
11-T8			641.2	93.0	357.2	51.8	518.5	75.2	632.5	91.7	0.09	4.8	7.5
11-T9			644.0	93.4	329.6	47.8	508.1	73.7	595.0	91.9	0.16	4.0	6.1
11-T10	0 1000	1832	469.5	68.1	242.7	35.2	378.5	54.9	438.5	63.6	0.09	6.8	12.1
11-T1	l		477.8	69.3	233.0	33.8	368. 2	53.4	423.3	61.4	0.09	6.5	11.3
11-T12	2		468.2	67.9	221.3	32.1	351.6	51.0	446.8	64.8	0.13	6.3	9.9

Te	mp.	Modulu Elasti	is of city
<u>°C</u>	°F_	GN/m^2	10 ⁶ psi
21	70	206.8	30.0
850	1_32	173.7	25.2
925	1697	147.5	21.4
1000	1832	137.2	19.9

105-

STRAIN, cm/cm

IABLE XXII

Creep Rupture Properties of TAZ-8A

Specimen	Т	em n	S++.		Min.	Time (hrs.)	Time (hrs.)	Rupt.		
Numt	<u>°C</u>	<u>°F</u>	MN/m ²	<u>ksi</u>	%/hr.	3rd stage	to 1% creep strain	Life (hrs.)	Elong. (%)	R.A. <u>(%)</u>
11-C1	850	1562	427.5	62.0	.027	30	32	85.1	5.7	6.3
11-C2			379.2	55.0		÷ -		(a)		
11-C3			379.2	55.0	. 0092	50	86	197.9	3.9	5.6
11-C4			331.0	48.0	.0941	150	192	444.7	3.7	4.4
11-C5			306.8	44.5	.0029	200	285	619.6	4.]	4.4
11-C16			282.7	41.0	.0013	370	500	1017.4	3.5	5.2
11-C8	925	1697	248.2	36.0	.025	27	36	89.5	6.1	y 7
11-C6			227.5	33.0	.0109	55	75	179.7	4.7	6.9
11-C7			206.8	30.0	.0082	85	105	265.5	6.2	7.5
11-C9			182.7	26.5	.0028	215	302	9.8ר	4.6	6.5
11-C10			172.4	25.0	.0025	260	335	705.2	4.7	6.8
11-C12	1000	1432	151.7	22.0	.014	40	53	60.2	3.9	11.7
11-C13			127.6	18.5	.012	90	88 [·]	175.0	5.2	9.4
11-C14			113.8	16.5	.0047	210	143	392.9	4.6	7.9
11-C11			103.4	15.0	.0022	320	365	665.1	4.5	11.2
11-C15			96.5	14.0	.0022	340	380	789.2	5.3	11.7

(a) Specimen loaded at 1652°F; test void

-107-

-108-

-109-

-110-

-11:-

TEST RESULTS (continued)

Material 12: IN 100

This nickel-base alloy, developed for high temperature strength, was supplied by NASA-Lewis Research Center as cast remelt stock. Subsequent y, it was cast into bar specimens by Howmet Corporation-Misco Division. Testing was performed on the material in the as-cast condition.

Chemical composition of this heat of material (supplied by NASA-Lewis Research C nter) is as follows:

Carbon	0.17
Manganese	< 0.02
Silicon	0.11
Chromium	10.30
Cobalt	15.10
Molybdenum	2.96
Aluminum	5.45
Titanium	4.76
Zirconium	0.084
Boron	0.016
Iron	0.021
Vanadium	0.97
``.ckel	Balance

Tensile results are presented as Table XXIII with samples of the loadstrain curves compiled as Figure 62.

Poisson's Ratio values are as listed below:

Specimen Number	Average Value Poisson's Ratio	Confidence Limi		
12-P1	-0.3038	<u>+</u> .0080	<u>+</u> .0096	
12 _22	-0,3188	<u>+</u> .0038	<u>+</u> .0046	
12-123	-0.2717	<u>+</u> .0049	<u>+</u> .0059	

TEST RESULTS (continued)

Material 12: IN 100 (continued)

Creep rupture data are presented in Table XXIV. Creep deformation versus time values are plotted in Figures 63, 64, and 65. Isothermal plots of the rupture life data appear as Figure 66.

An analysis of the creep rupture data using parametric plots of the data in conjunction with the isothermal plot yeidles the following values of the rupture strengths to produce 100, 300, and 1000 hour life data at the appropriate test temperatures.

		Stress to Produce Failure at								
Temp.		100 hou	ır	300 hou	r	1000 hour				
<u>°C</u>	<u>°F</u>	MN/m^2	<u>ksi</u>	MN/m ²	<u>ksi</u>	MN/m^2	<u>ksi</u>			
850	1562	427.5	62.0	358.5	52.0	296.5	43.0			
925	1697	262.0	38.0	206.8	30.0	158.6	23.0			
1000	1832	137.9	20.0	113.8	16.5	93.1	13.5			

Spec. Temp. No. °C (Uitim Stren F MN/m	nate ngth 2 kai	0.02% Y Streng MN/m ²	ield th ksi	0.2% Y Streng MN/m ²	ield gth kai	Fractu Streng MN/m ²	ire gth ksi	Strain Hardening Exponent	Elong.	R.A. (%)
12-T1 21	70 1052.1	152.6	775.7	112.5	905.3	131.3	1190.7	172.7	0.03	7.0	9.0
12-T2	1031.5	149.6	715.0	103.7	815.7	118.3	1168.0	169.4	0.10	8.4	14.1
12-T3	1037.7	150.5	754.3	109.4	875.0	126.9	1151.4	167.0	0.07	7.3	13.1
12-T4 850 15	562 758.4	110.0	537.8	78.0	617.8	89.6	860.5	124.8	0.14	6.0	13.5
12-T5	789.5	114.5	507.5	73.6	652.9	94.7	878.4	127.4	0.10	5,8	10.9
12-T6	796.3	115.5	508.1	73.7	668, 1	96.9	858.4	124.5	0.10	5.3	14.1
12-T7 925 16	697 654.3	94.9	384.7	55.8	521.9	75.7	642.6	93.2	0.17	5.0	7.7
12-T8	598.5	86.8	308.9	44.8	436.4	63.3	580.0	84.1	0.12	4.4	9.1
12-T9	614.3	89.1	312.3	45.3	442.6	64.2	618.5	89.7	0.18	6.5	13.7
12-T10 1000 18	332 437.8	63.5	227.5	33.0	328.9	47.7	276.5	40.1	0.14	10.5	15.6
12-T11	432.3	62.7	218.6	31.7	331.0	48.0	433.0	62.8	0.09	8.1	21.7
12-T12	417.1	60.5	186.2	27.0	290.3	42.1	326.8	47.4	0.11	9.6	20.0

	TABLE	XX	111	
Fensil e	Propert	ies	of IN	100

Те	mp.	Modulus of Elasticity			
<u>°C</u>	<u>•</u> F	GN/m^2	10 ⁶ рві		
21	70	205.5	29.8		
850	1562	150.3	21.8		
925	1697	155.1	22.5		
1000	1832	132,4	19.2		

STRAIN, cm/cm-

TABLE XXIV

					Min.	Time (hrs.)	Time (hrs.)	Rupt.		
Specimen	Te	mp.	Str	ess	Creep Rate	to start of	to 1%	Life	Elong.	R.A.
Number	<u>°C</u>	<u>°F</u>	MN/m^2	<u>ksi</u>	_%/hr	3rd stage	<u>creep strain</u>	<u>(hrs.)</u>	_(%)	(%)
12-C1	850	1562	434.4	63.0	.027	32	33	83.9	3.9	9.6
12-C2			372.3	54.0	.0069	103	127	261.3	3.6	10.1
12-C3			331.0	48.0	.0031	195	260	512.2	4.2	9.2
12-C4			296.5	43.0	.0018	315	483	801.7	5.0	9.5
12-C5			286.1	41.5	.0009	510	800	1211.4	3.3	6.7
12-C6	925	1697	262.0	38.0	.0129	26	48	114.2	7.7	11.5
12-C7			220.6	32.0	.0069	75	102	209.9	5.9	13.7
12-C9			186.2	27.0	.0031	130	225	429.4	5.4	6.9
12-C10			172.4	25.0	.0017	180	375	708.9	8.1	9.5
12-C8			158.6	23.0	.0012	490	745	1163.7	5.9	10.1
12-C11	1000	1832	151.7	22.0	.039	23	25	59.3	8.6	13.9
12-C12			117.2	17.0	.0067	110	136	263.8	7.4	14.0
12-C14			103.4	15.0	.0026	195	280	415.0	5.1	22.0
12-C15			96.5	14.0	.0021	310	377	590.9	4.6	16.9
12-C13			93.1	13.5	.0010	(a)	(a)	1035.7	5.4	15.0

Creep Rupture Properties of IN 100

(a) Extensometer malfunction; data not available

-117-

-119-

TEST RESULTS (continued)

Material 13: IN 100 + Jocoat

Some of the cast IN 100 bars (Material 12) were coated with Γ WA A 47 Jocoat at TRW Inc.-Turbine Components Division. At the end of the coating cycle, the bars were heat treated in vacuum as follows:

1975°F/4 hours/rapid argon quench

Tensile results are presented as Table XXV with samples of the load-stain curves compiled as Figure 67.

Creep rupture data are presented in Table XXVI. Creep deformation versus time values are plotted in Figures 68, 69, and 70. Isothermal plots of the rupture life data appear as Figure 71.

An analysis of the creep rupture data using parametric plots of the data in conjunction with the isothermal plot yields the following values of the rupture strengths to produce 100, 300, and 1000 hour life data at the appropriate test temperatures.

Stress to Produce Failure at									
Temp.		100 hour		300 hou1		1000 hour			
°C	<u>°F</u>	MN/m^2	<u>ksi</u>	MN/m^2	<u>ksi</u>	MN/m^2	ksi		
850	1562	413.7	60.0	344.7	50.0	202.7	41.0		
925	1697	244.8	35.5	199.9	29.0	158.6	23.0		
1000	1832	137.9	20.0	106.9	15.5	82.7	12.0		

Spec. Te	mp.	Ultima Streng	te th	0.02% Y Streng	ield gth	0.2% Y Streng	ield gth	Fractu Streng	ire jth	Strain Hardening	Elong.	R.A.
<u>No.</u> °C	<u>°F</u>	MN/m^2	<u>ksi</u>	MN/m^2	ksi	MN/m^2	ksi	MN/m^2	ksi	Exponent	<u>_(%)</u>	(%)
13-T1 21	70	957.7	138.9	605.4	87.8	761.2	110.4	1138.3	165.1	0.10	7.9	15.9
13-T2		987.3	143.2	607.4	88.1	743.3	107.8	1122.5	162.8	0.11	7.1	12.6
13-13		1021.8	148.2	617.8	89.6	783.9	113.7	1179.0	1 1.0	0.11	8.8	13.8
13- T4 850	1562	760.5	110.3	621.2	90.1	732.2	106 . 2	777.7	112.8	0.06	5.0	6.1
13-T5		772.2	112.0	579.9	84.1	724.6	105.1	801.9	116.3	0.06	4.1	6.3
1 3- T6		763.9	110.8	615.0	89.2	,24.6	105.1	837.7	121.5	0.06	4.6	11.6
13-T7 925	1697	557.8	80.9	315.8	45.8	456.4	66 . 2	501.3	72.7	0.04	7.5	10.9
13-T8		568.8	82.5	353.7	51.3	446.1	64.7	561.9	81.5	0.04	8.0	13.5
13- T 9		574.3	83.3	372.3	54.0	480.6	69.7	577.1	83.7	0.05	7.0	11.6
13-T10 1000	1832	393.7	57.1	205.5	29.8	295.1	42.8	315.1	45.7	0.05	12.3	19.7
13-T11		383.4	55.6	189.6	27.5	285.4	41.4	122.0	17.7	0.05	11.9	19.5
13 - 🗂 👘		384.0	55.7	199.9	29.0	302.7	43.9	299.2	43,4	0.03	13.3	20.2

TABLE XXV Tensile Properties of IN 100 + Jocoat

Te	mp.	Modulus of Elasticity				
<u>°C</u>	°F_	GN/m^2	10 ⁶ psi			
21	70	225.5	32.7			
850	1562	157.9	22.9			
925	1697	155.8	22.6			
1000	1832	12.8.9	18.7			

STRAIN, cm/cm

TA	B	LE	XX	٧I	

Creep	Rupture	Prop	perties	on IN	100 + J	locoat
	_					

					Min.	Time (hrs.)	Time (hrs.)	Rupt.		
Specimen	Te	mp.	Str	ess	Creep Rate	to start of	to 1%	Life	Elong.	R.A.
Number	<u>°C</u>	<u>°F</u>	MN/m^2	<u>ksi</u>	%/hr	3rd stage	creep strain	<u>(hrs.)</u>	_(%)	<u>(%)</u>
13-C1	850	1562	427.5	62.0	.029	20	29	75.1	6.3	13.3
13-C2			393.0	57.0	.0145	55	67	159.2	5.6	16.6
13-C3			317.2	46.0	.0036	230	272	576.1	5.7	12.7
13-C4			317.2	46.0	.0031	230	277	580.5	5.0	13.8
13-C5			293.0	42.5	.0020	300	420	807.7	4.8	8.5
13-C6	925	169 7	248.2	36.0	.0179	26	45	90.7	5.8	18.2
13-C7			220.6	32.0	.0056	65	110	191.1	6.0	17.8
13-C8			186.2	27.0	.0043	130	190	408.0	7.1	14.4
13-C9			179.3	26.0	.0037	170	225	518.6	6.2	16.1
13-C10			168.9	24.5	.0018	310	420	712.0	4.5	12.9
13-C11	1000	1832	144.8	21.0	.027	25	30	60.1	5.0	18.0
13-C2			127.6	18.5	.0106	75	81 .	178.2	11.2	25.3
13-C13			110.3	16.0	.0035	130	184	302.1	5.9	19.0
13-C14			100.0	14.5	.0035	175	246	399.1	7.1	24.5
13-C15			93.1	13.5	.0017	340	422	634.3	5.2	23.8

-125-

-126-

TEST RESULTS (continued)

Material 14: B 1900

This nickel-base alloy, developed by Pratt & Whitney Aircraft for turbine applications was supplied by NASA-Lewis Research Center as cast remelt stock. The alloy was cast into specimen blanks by Howmet Corporation-Misco Division.

Chemical composition (supplied by NASA-Lewis Research Center) of this heat of material is as follows:

Carbon	0.10
Manganese	0.10
Silicon	< 0.10
Chromium	8.11
Cobalt	10.15
Molybdenum	6.11
Tungsten	<0.10
Aluminum	6.09
Fitani um	0.98
Zirconium	0.08
Boron	0.013
Tantalum	4.28
Iron	0.16
Nickel	Balance

Prior to finish machining the specimens were heat treated in air per NASA-Lewis Research Center. Instructions were as follows:

1550°F/24 hours/air cool to room temperature

Tensile results are presented as Table XXVII with samples of the loadstrain curves compiled as Figure 72.

Poisson's Ratio values are as listed below:

Specimen	Average Value	Confider	nce Limits
Number	Poisson's Ratio	90%	95%
14-P1	-0.2176	<u>+</u> 0,0028	+0.0033
14-P2	-0,2118	<u>+</u> 0,0071	<u>+</u> 0.0085
14-P3	-0.3771	<u>+</u> 0.0024	<u>+</u> 0.0029

TEST RESULTS (continued)

Material 14: B 1900 (continued)

Creep rupture data are presented in Table XXVIII. Creep deformation versus time values are plotted in Figures 73, 74, and 75. Isothermal plots of the rupture life data appear as Figure 76.

An analysis of the creep rupture data using parametric plots of the data in conjunction with the isothermal plot yeilds the following values of the rupture strengths to produce 100, 300, and 1000 hour life data at the appropriate test temperatures.

		Stress to Produce Failure at									
Temp.		100 hou	r	300 ho	ou r	1000 hour					
<u>°C</u>	<u>°F</u>	MN/m^2	<u>ksi</u>	MN/m^2	<u>ksi</u>	MN/m^2	<u>ksi</u>				
850	1562	413.7	60.0	372.3	54.0	324.0	47.0				
925	1697	248.2	36.0	210.3	30.5	172.4	25.0				
1000	1832	148.2	21.5	120.7	17.5	96.5	14.0				

Spec. No.	Temp. <u>°C °F</u>		Ultimate Strength <u>MN/m²ksi</u>		0.02% Yield Strength <u>MN/m²ksi</u>		0.2% Y Streng <u>MN/m²</u>	0.2% Yield Strength <u>MN/m² ksi</u>		tre th <u>ksi</u>	Strain Hardening Exponent	Elong. (%)	R.A. _(%)_
14-Tl	21	70	971.5	140.9	659.8	95.7	781.2	113.3	1076.3	156.1	0.09	6.6	10.9
14-T2 14-T3			911.5 940.5	132.2 136.4	655.7 674.3	95.1 97.8	726.0 782.6	105.3 113.5	1066.6 1072.8	154.7 155.6	0.07 0.06	6.4 7.2	15.6 13.9
14-T4	850	1562	787.4	114.2	476.4	69.1	664.0	96.3	830.8	120.5	0.09	6.8	13.8
14-T5			775.7	112.5	538.5	78.1	669.5	97.1	851.5	123.5	0.07	7.4	15.5
14-16			755.7	109.6	493.7	71.6	634.3	92.0	843.9	122.4	0.10	4,4	15.7
14-77	925	1697	601.2	87.2	317.9	46.1	448.2	65.0	677.1	98. Z	0.05	6.1	18.9
14-78			609.5	88.4	344.1	49.9	493.0	71.5	664.0	96.3	0.2	4.5	14.8
14 - T9			589.5	85.5	330.3	47.9	466.8	67.7	644.7	93.5	0 08	4.4	14.1
14-T 10	1000	1832	439.2	63.7	208.9	30.3	311.6	45.2	382.0	55.4	0.08	8.6	15.5
14-T11			467.5	67.8	212.4	30.8	328.9	47.7	426.8	61.9		7.5	12.5
14-T12			419.2	60.8	226.1	32.8	329.6	47.8	316.5	45.9	0.04	6.0	17.3

TABLE XXVII Tensile Properties of B 1900

Te	mp.	Modulus of Elasticity				
°C	• <u>F</u>	GN/m^2	10 ⁶ psi			
21	70	209.6	30.4			
850	1562	158.6	23.0			
925	1697	157.2	22.8			
1000	1832	135.1	19.6			

STRAIN, cm/cm

TABLE XXVIII

Creep Rupture Properties of B 1900

Specimen	Те	mo	C+	~~~	Min.	Time (hrs.)	Time (hrs.)	Rupt.		5.4
Number	<u>°C</u>	• <u>F</u>	MN/m ² ksi		%/hr.	3rd stage	creep strain	<u>(hrs.)</u>	Liong. _(%)	(%)
14-C4	850	1562	448.2	65.0	.044	19	19	51.0	4.7	14.3
14-C1			372.3	54.0	.0069	195	118	307.3	3.9	11.8
14-C2			372.3	54.0	.0066	105	119	250.3	3.9	10.4
14-C3			?44:7	50.0	.0032	200	275	583.4	5.2	15.0
14-C5			313.7	45.5		(a)	(a)	1156.9	5.9	14.3
14-C7	925	1697	225.1	37.0	.014	50	55	93.2	3.2	10.5
14-C6	-		220.6	32.0	.0063	70	165	202.4	3.3	12.9
14-C8			199.9	29.0	.0012	225	335	395.5	3.5	14.1
14-C9			186.2	27.0	.0017	305	442	670.7	3.7	15.5
14-C10			172.4	25.0	.0008	510	750	1022.4	4.1	15.2
14-C12	[.] 1000	1832	151.7	22.0	.016	50	53	92.9	6.4	23.4
14-C11			124.1	18.0	.0037	150	188	256.5	4.9	27.4
14-C13			113.8	16.5	.0017	315	395	472.9	4.7	24.9
14-C14			103.4	15.0	.0011	(b)	(b)	773.9	3.0	14.1
14-C15			96.5	14.0	.0006	575	795	928.4	5.5	28.4

(a) Extensometer malfunction; data not available

(b) Specimen indicated 0.90% creep at 765.6 hours; time to 1% and start of third stage data was not obtained

-134-

-136-

TEST RESULTS (conti d)

Material 15: B 1900 + Jocoat

A number of the machine: nd heat treated cast B 1900 bars (Material 14) were shipped to TRW Inc. - Lurbine Components Division to have the PWA A 47 Jocoat applied. During this coating cycle, the bars were vacuum heat treated as follows:

1975°F/4 hours/rapid argon quench

After coating, the specimens were heat treated (at Metcut) in air as follows:

1550°F/24 hours/air cool to room temperature

Tensile results are presented as Table XXIX with samples of the load-strain curves compiled as Figure 77.

Creep rupture data are presented in Table XXX. Creep deformation versus time values are plotted in Figure 78, 79, and 80. Isothermal plots of the rupture life data appear as Figure 81.

An analysis of the creep rupture data using parametric plots of the data in conjunction with the isothermal plot yields the following values of the rupture strengths to produce 100, 300, and 1000 hour life data at the appropriate test temperatures.

Temp.			Stres	s to Produce	Failur	e at	
		100 hour		300 hour	1000 ho	1000 hour	
<u>°C</u>	<u>°</u> F	MN/m ²	ksi	MN/m^2	<u>ksi</u>	MN/m^2	<u>ksi</u>
850	1562	393.0	57.0	344.7	50.0	299.9	43.5
925	1697	241.3	35.0	199.9	29.0	165.5	24.0
1000	1832	137.9	20.0	113.8	16.5	93.1	13.5

					<u>Tensile</u> F	<u>TABI</u> Properti	LE XXIX es of B 199	00 + Joc	oat				
Spec. No.	Ter <u>°C</u>	np. °F	Ultima Strene <u>MN/m^Z</u>	ite gth <u>ksi</u>	0.02% Y Streng <u>MN/m²</u>	ield gth <u>ksi</u>	0.2% Y Streng <u>MN/m²</u>	ield th <u>ksi</u>	Fractu Streng <u>MN/m²</u>	re th ksi	Strain Hardening Exponent	Elong. (%)	R.A. _(%)_
15-T1 15-T2 15-T3	21	70	941.8 972.9 906.0	136.6 141.1 313.4	635.7 678.4 628.8	92.2 98.4 91.2	76' 7' 155.0	.0.4 .15.2 109.5	1026.6 1048.7 983.9	148.9 152.1 142.7	0.10 0.07 0.08	6.7 6.6 6.3	8.5 7.5 8.0
15-T4 15-T5 15-T6	850	1562	752.9 751.5 770.8	109.2 109.0 111.8	466.8 463.3 540.6	67.7 67.2 78.4	642.6 660.5 695.7	93.2 95.8 100.9	779.1 826.7 795.0	113.0 119.9 115.3	0.07 0.06 0.11	7.0 5.8 1.9	11.0 11.1 5.3
15-T7 15-T8 15-T9	925	1697	627.4 584.0 600.5	91.0 84.7 87.1	350.3 351.6 333.0	50,8 51.0 48.3	482.6 483.3 484.0	70.0 70.1 70.2	715.7 581.2 432.3	103.8 84.3 62.7	0.10 0.07 0.16	6.2 8.8 6.5	17.4 12.7 19.8
15-T10 15-T11 15-T12	1000	1832	399.9 435.1 423.3	58.0 63.1 61.4	228.2 204.8 204.8	33, 1 29, 7 29, 7	311.6 312.3 322.7	45.2 45.3 46.8	374.4 295.1 337.8	54.3 42.8 49.0	0.17 0.18 0.24	8.6 8.5 6.9	19.5 13.7 14.5

Те	mp.	Modulu Elasti	is of city
<u>°C</u>	°F	GN/m^2	10 ⁶ psi
21	70	217.9	31.6
850	1562	170.3	24.7
925	1697	149.6	21.7
1000	1832	128,2	18.6

STRAIN, cm/cm

	Specimen	Te	np.	Stre	e S S	Min. Creep Rate	Time (hrs.) to start of	Time (hrs.) to 1%	Rupt. Life	Elorg.	R.A.
	Number	<u>°C</u>	°F_	MN/m ²	ksi	%/hr.	3rd stage	creep strain	<u>(hrs.)</u>	<u>(%)</u>	(%)
	15-C1	850	1562	434.4	63.0	.061	16	14	41.0	3.8	9.7
	15-C2			393.0	57.0	.0211	42	44	98.6	3.4	9.4
	15-C3			358.5	52.0	.0077	140	120	288.0	4.7	11.3
	15-C4			324.1	47.0	.0029	230	284	503.7	4.6	12.2
	15-C5			317.2	46.0	.0031	220	252	549.8	5.4	10.3
	15-C6	925	1697	255.1	37.0	.0170	38	51	79.2	3.6	12.9
	15-C7			220.6	32.0	.0088	70	100	170.6	4.7	23.6
	15-C8			199.9	29.0	.0040	130	189	299.7	4.3	22.0
•	15-C9			186.2	27.0	.0024	250	300	471.6	4.1	12.0
	15-C10			172.4	25.0	.0014	360	485	698.3	4.7	12.2
	15-C11	1000	1832	151.7	22.0	.0153	25	32	48.4	3.4	18.3
	15-C12			134.4	19.5	.0078	70	9 2 '	127.4	3.5	16.7
	15-C13			117.2	17.0	.0037	135	197	244.7	3.6	14.1
	15-C14			106.9	15.5	.0020	290	374	512.6	4.1	13.1
	15-C15			96.5	14.0	.0009	400	650	761.5	5.6	14.0

TABLE XXX

Creep Rupture Properties of B 1900 + Jocoat

-141-

- 142 -

-143-

- 144 -

Material 16: Mar-M200

The nickel-base alloy, designed for use as a cast turbine blade material, was supplied as cast remelt stock by NASA-Lewis Research Center. Test specimen blanks were cast by Howmet Corporation-Misco Division. Testing was performed on the material in the as-cast condition.

Chemical composition (supplied by NASA-Lewis Research Center) on this heat of material is as follows:

A 35
0.15
< 0.02
0.080
9.20
10.25
12.55
5.05
2.13
0.048
0.017
0.36
0.96
<0.01
Balance

Tensile results are presented as Table XXXI with samples of the load-strain curves compiled as Figure 82.

Poisson's Ratio values are as listed below:

Specimen	Average Value	Confidence	ce Limits
Number	Poisson's Ratio	_90%	95%
16-P1	-0.2843	<u>+</u> .0044	<u>+</u> .0053
16-P2	-0.3107	<u>+</u> .0035	<u>+</u> .0042
16-P3	-0.3167	<u>+</u> .0060	<u>+</u> .0072

Material 16: Mar-M200 (continued)

Creep rupture data are presented in Table XXXII. Creep deformation versus time values are plotted in Figures 83, 84, and 85. Isothermal plots of the rupture life data appear as Figure 86.

An analysis of the creep rupture data using parametric plots of the data in conjunction with the isothermal plot yields the following values of the rupture strengths to produce 100, 300, and 1000 hour life data at the appropriate test temperatures.

		Stress to Produce Failure at								
Temp.		100 hou	ır	300 hc	our	1000 hour				
<u>°C</u>	°F_	MN/m^2	ksi	MN/m^2	ksi	<u>MN/m2</u>	<u>ksi</u>			
871	1600	400.0	58.0	344.7	50.0	296.5	43.0			
927	1700	262.0	38.0	217.2	31.5	175.8	25.5			
982	1800	165.5	24.0	137.9	20.0	110.3	16.0			

TABLE XXXI

Tensile Properties of Mar-M200

			Ultim	ate	0.02%	Yield	0.02%	Yield	Fractu	ıre	Strain		
Spec.	Ter	np.	Stren	gth	Stre	Strength		Strength		gth	Hardening	Elong.	R.A.
No.	<u>°C</u>	°F	MN/m ²	ksi	MN/m ²	ksi	MN/m^2	ksi	MN/m^2	<u>ksi</u>	Exponent	_(%)	<u>(%)</u>
16-TI	21	70	1049.4	152.2	792.2	114.9	901.8	130.8	1128.7	163.7	0.08	6.0	8.5
16-T2		• •	1074.9	155.9	766.C	111.1	898.4	130.3	1178.3	170.9	0.08	7.5	9.1
16-T3			1006.0	145.9	717.1	104.0	864 . ó	125.4	1183.8	171.7	0.08	6.7	15.5
16-T4	871	1600	798.4	115.8	575.0	83.4	750.2	108.8	838.4	121.5	0.14	1.1	4.7
16-T5			812.2	117.8	539.2	78.2	743.9	107.9	831.5	120.6	0.08	1.9	2.8
16 - T6			797.8	115.7	559.2	81.1	728.1	105.6	825.3	119.7	0.07	1.5	3.6
16-77	927	1700	630.2	91.4	411.6	59.7	540.6	78.4	657.8	95.4	0.07	1.6	4.4
	,		659.8	95.7	460.6	66.8	570.9	82.8	682.6	99.0	0.12	2.5	5.0
* 16-T9			683.7	99.2	428.2	62.1	556.4	80.7	685.3	99.4	0.12	2.3	3.9
16-T10	982	1800	466.8	67.7	308.2	44.7	373.7	54.2	451.6	65.5	0.10	3.6	4.2
16-T11			515.7	74.8	315.8	45.8	408.2	59.2	498.5	72.3	0.09	2.8	4.2
16-T12			540.6	78.4	279.2	40.5	406.1	58.9	553.7	80.3	0.09	4.6	7.8

Te	mp.	Modulus c	of Elasticity
<u>°C</u>	°F	GN/m ²	<u>106 psi</u>
21	70	211.0	30.6
871	1600	164.8	23.9
927	1700	156.5	22.7
982	1800	141.4	20.5

STRAIN, cm/cm

Specimen	Т	emp.	Str	e 8 S	Min. Creep Rate	Time (hrs.) to start of	Time (hrs.) to 1%	Rupt. Life	Elong.	R.A.
Number	<u>•C</u>	<u>•F</u>	MN/m^2	<u>ksi</u>	%/t.r.	3rd stage	creep strain	<u>(hrs.)</u>	(%)	<u>(%)</u>
16-C1	871	1600	379.2	55.0	.0060	73	110	138.1	1.6	2.2
16-C4			365.4	53.0	.0042	117	177	229.6	1.8	2.0
16-C2			344.7	50.0	.0014	145	265	383.8	2.6	3.4
16-C5			317.2	46.0				(a)		
16-C16			317.2	46.0	.0010	290	480	588.8	2.0	1.5
16-C3			303.4	44.0	.0012	250	498	874.7	5.2	8.1
16-C6	927	1700	255.1	37.0	.0078	73	101	122.2	1.7	1.8
16-C7	, – .		227.5	33.0	.0027	165	(b)	227.6	1.1	0.4
16-C8			199.9	29.0	.0012	370	(b)	515.8	1.4	0.4 (c)
16-C10			186.2	27.0	.0011	510	(b)	629.5	0.9	0.4 (c)
16-C9			179.3	26.0				4.8(d)	6.8	19.4
16-C11	982	1800	172.4	25.0	.0081	73	(b)	101.2	1.3	0.2
16-C12			151.7	22.0	.0057	118	167	198.8	1.7	0.8
16-C13			131.0	19.0	.0025	2.50	312	322.5	1.4	0.2
16-C14			120.7	17.5	.0007	(b)	(b)	717.9	2.0	nil (c)
16-C15			113.8	16.5	.0008	(b)	(b)	871.4	1.4	1.2 (c)

TABLE XXXII

Creep Rupture Properties of Mar-M200

(a) Over temperature at beginning of test; void

(b) Specimen failed before value wis obtained

(c) Failure occurred near radius

(d) Test void; specimen temperature was approximately 60°F higher after one hour at stress

. .

- 151 -

-152 -

-153-

Figure 25

- 154 -

Material 17: Mar-M302

This cobalt base alloy, having good oxidation and thermal shock resistance, was supplied as cast remelt stock by NASA-Lewis Research Center. It was subsequently cast into specimens by the Howmet Corporation-Misco Division. All testing was performed on the material in the as-cast condition.

Chemical composition (supplied by NASA-Lewis Research Center) for this heat of material is as follows:

Carbon	0.88
Manganese	<0.10
Silicon	0.22
Chromium	21.9
Nickel	0.49
Molybdenum	< 0.1
Tungsten	9.89
Zirconium	0.24
Boron	< 0.01
Tantalum	8.80
Iron	1.11
Cobalt	Balance

Tensile results are presented as Table XXXIII with samples of the load-strain curves compiled as Figure 87.

Poisson's Ratio values are as listed below:

Specimen Number	Average Value Poisson's Ratio	Confidence <u>90%</u>	e Limits <u>95%</u>
17-P1	-0.3001	<u>+</u> .0020	<u>+</u> .0024
17-P2	-0.2906	<u>+</u> .0037	<u>+</u> .0044
17-P3	-0.2907	<u>+</u> .0051	<u>+</u> .0061

Creep rupture data are presented in Table XXXIV. Creep deformation versus time values are plotted in Figures 88, 89, and 90. Isothermal plots of the rupture life data appear as Figure 91.

An analysis of the creep rupture data using parametric plots of the data in conjunction with the isothermal plot yields the following values of the rupture strengths to produce 100, 300, and 1000 hour life data at the appropriate test temperatures.

			Stress to Produce Failure at								
Temp.		100 ho	ur	300 hou	ır	1000 h	our				
<u>°C</u>	<u>°F</u>	MN/m ²	<u>ksi</u>	MN/m^2	ksi	MN/m ²	ksi				
850	1562	217.2	31.5	186.2	27.0	155.1	22.5				
925	1697	144.8	21.0	120.7	17.5	98.6	14.3				
1000	1832	79.3	11.5	65.5	9.5	51.7	7.5				

	Spec. No.	••• •••	np. <u>°F</u>	Ultima Streng <u>MN/m²</u>	te th ksi	0.02% Y Streng <u>MN/m²</u>	ield gth <u>ksi</u>	0.2% Y Streng <u>MN/m²</u>	ield sth ksi	Fractu Streng <u>MN/m²</u>	tre sth <u>ksi</u>	Strain Hardening Exponent	Etong. (%)	R.A. _(%)_
	17 - T 17 17 - T 2 17 - T 3	21	70	826.0 834.3 737.1	119.8 121.0 106.9	402.0 430.9 387.5	58.3 62.5 56.2	623.3 602.6 625.4	90.4 87.4 90.7	829.4 845.3 745.3	120.3 122.6 108.1	0.29 0.14 0.33	0.8 0.8 0.9	0.4 1.6 1.5
	17-T4 17-T5 17-T6	850	1562	459.9 441.3 437.8	66.7 64.0 63.5	253.0 254.4 254.4	36.7 36.9 36.9	337.2 334.4 331.0	48.9 48.5 48.0	473.7 472.3 489.5	68.7 68.5 71.0	0.16 0.14 0.08	8.2 11.7 11.1	9.8 12.2 14.9
-	17-T7 17-T8 17-T9	925	1697	326. 1 328. 2 303. 4	47.3 47.6 44.0	222.0 225.5 197.8	32.2 32.7 28.7	273.7 274.4 248.9	39.7 39.8 36.1	348.2 333.7 348.9	50.5 48.4 50.6	0.08 0.11 0.08	10.1 16.0 16.1	11.5 21.1 18.2
57-	17 - T 10 17 - T 1 1 17 - T 12	1000	1832	222.0 225.5 237.9	32.2 32.7 34.5	139.3 125.5 130.3	20.2 18.2 18.9	178.6 199.9 174.4	25.9 29.0 25.3	54.5 4.1 187.5	7.9 0.6 27.2	0.04 0.09 0.10	12.5 21.5 20.9	22.0 27.8 26.1

TABLE XXXIII
Tensile Properties of MAR-M302

		Moduli	us of
Тe	mp.	Elasti	city
<u>°C</u>	°F	GN/m^2	106 psi
21	70	233.0	33.8
850	1562	144.1	20.9
925	1697	152.4	22.1
1000	1832	121.3	17.6

STRAJN, cm/cm

TABLE XXXIV

Creep Rupture Properties of Mar-M302

					Min.	Time (hrs.)	Time (hrs.)	Rupt.		
Specimen	Te	mp.	Stress		Creep Rate	to start of	to 1%	Life	Elong.	R.A.
Number	<u>°C</u>	<u>°F</u>	MN/m^2	ksi	%/hr	3rd stage	creep strain	<u>(hrs.)</u>	_(%)	<u>(%)</u>
17-C1	850	1562	206.8	30.0	.043	(a)	(a)	139.7	17.4	19.0
17-C2			189.6	27.5				(Ъ)		
17-C3			189.6	27.5	.0184	77	30	254.0	17.4	24.4
17-C4			172.4	25.0	.0113	140	45	509.7	22.3	23.7
17-C5			155.1	22.5	.0036	310	190	924.5	7.7	12.7
17-C8	925	1697	137.9	20.0	.079	49	7.5	130.0	15.0	20.4
17-C6			124.1	18.0	.0257	120	28	246.3	9.0	13.2
17-C9			110.3	16.0	.0036	220	95	532.8	8.9	12.6
17-67			93.1	13.5	.0025	875	235	1401.4	5.6	7.4
17-C10	1000	1832	103.4	15.0		(c)	2.5	24.5	11.9	19.2
17-C11			79.3	11.5	.0492	ა5	19.5	111.9	8.3	11.7
17-C12			68.9	10.0	.0130		74 ·	(d)		
17-C13			68.9	10.0	.0166	175	62	255.2	6.8	7.5
17-C14			62.1	9.0	.0069	250	140	444.4	5.6	8.2
17-C15			55.2	8.0				669.7	(e)	5.7
17-C16			48.3	7.0	.0013	1050	610	1476.5	(e)	1.8

(a) Apparent extensometer malfunction; data not available

(b) Specimen over temperature at 21.3 hours; test unloaded

(c) Insufficient data available to determine this value

(d) Turnace "burned out" at 142.3 hours; test discontinued

(e) Specimen broke at second loadtion while removing from adapter; elongation not available

-160-

-162-

TIME (HOURE,

ŧ

Material 18: Rene' 80

This nickel-base alloy, developed from high temperature-high strength applications was supplied by NASA-Lewis Research Center as cast remelt stock. Specimen blanks were cast by Howmet Corporation-Misco Division. Subsequently, Miscc also heat treated the blanks as follows:

> 2200°F (vacuum)/2 hours/vacuum cool to 2000°F, gas fan cool 2000°F (vacuum)/4 hours/gas fan cool 1925°F (vacuum)/4 hours/cool to 1200°F in 1 hour - gas fan cool 1550°F (argon)/16 hours/air cool

Cremical composition (supplied by NASA-Lewis Research Center) for this heat of material is as follow

Carbon	0.17
Manganese	< 0.02
Silicon	<0.05
Chromium	13.80
Molybdenum	4.11
Iron	0.13
Titanium	4.87
Aluminum	2.99
Cobalt	9.73
Tungsten	3.94
Zirconium	C.043
Boron	0.015
Nickel	Ealance

Tensile results are presented as Table XXXV with samples of the load-strain curves compiled as Figure 92.

Poisson's Ratio values are as listed below:

Specimen	Average Value	Confidence Limits			
Number	Poisson's Ratio	90%	95%		
1 S- P1	-0.3039	<u>+</u> .0038	<u>+</u> . 0046		
18-P2	-0.3312	<u>+</u> .0051	<u>+</u> . 0062		
18-P3	-0.3199	<u>+</u> .0095	<u>+</u> .0115		

Material 18: Rene' 80 (continued)

Creep rupture data are presented in Table XXXVI. Creep deformation versus time values are plotted in Figures 93, 94, and 95. Isothermal plots of the rupture life data appear as Figure 96.

An analysis of the creep rupture data using parametric plots of the data in conjunction with the isothermal plot yields the following values of the rupture strengths to produce 100, 300, and 1000 hour life data at the appropriate test temperatures.

	Stress to Produce Failure at										
Temp.		100 hou	r	300 ho	1000 hour						
<u>°C</u>	<u>°F</u>	MN/m ²	ksi	MN/m ²	<u>ksi</u>	MN/m ²	<u>ksi</u>				
850	1562	358.5	52.0	313.7	45.5	272.3	39.5				
925	1697	227.5	33.0	186.2	27.0	155.1	22.5				
1000	1832	127.6	18.5	103.4	15.0	82.7	12.0				

Spec. Temp.		np.	Ultimate Strength		0.02% Yield Strength		0.2% Yield Strength		Fracture Strength		Strain Hardening	Elong.	R.A.
<u>No.</u>	<u>°C</u>	<u>°F</u>	MN/m ²	<u>ksi</u>	MN/m ⁻	ksi	<u>MN/m</u> -	<u>k Bi</u>	<u>MN/m⁻</u>	KBI	Exponent	(%)	<u>(%)</u>
18-TI	21	7 -	979.8	142.1	689.5	100.0	814.3	118.1	1032.8	149.8	0.11	5.3	5.2
18-T2		·	1005.3	145.8	682.6	99.0	820.5	119.0	1077.7	156.3	0.11	6.0	6.8
18-T3			1001.8	145.3	690.9	100.2	828.1	120.4	1074.2	155.8	0.09	5.8	6.7
18-T4	850	1562	686.7	99.6	435.8	63.2	555.7	80.6	752.9	109.2	0.08	12.5	32.6
18-T5			693.6	100.6	417.1	60.5	515.4	76.2	759.8	110.2	0.08	17.5	28.7
18-T6			668.1	96.9	413.7	60.0	531.6	77.1	737.1	106.9	0.09	20.8	26.9
18-T7	925	1697	523.2	75.9	279.2	40.5	364.7	52.9	501.3	72.7	0.20	20.6	32.0
18-T8			510.2	74.0	284.1	41.2	368.2	53.4	498.5	72.3	0,08	21.2	35.9
18-T9			495.0	71.8	262.0	38.0	344.1	49.6	400.6	58,1	0.19	20.3	31.7
18-T10	1000	1832	329.6	47.8	169.6	24.6	221.3	32.1	257.9	37.4	0.17	17.0	32.9
18-T11			357.2	51.8	177.2	25.7	244.1	35.4			0.22	19.9	34.4
18-T12			311.6	45.2	163.4	23.7	223.4	32.4	153.8	22,3	0.19	18.4	30.8

<u>TABLE XXXV</u> Tensile Properties of Rene'80

Te	mp.	Modulus of Elasticity					
<u>°C</u>	°F	GN/m^2	106 psi				
21	70	198.6	28.8				
850	1562	150.3	21.8				
925	1697	139.3	20.2				
1000	1832	128, 2	18.6				

STRAIN, cm/cm

TABLE XXXVI

Creep Rupture Properties of Rene' 80

Specimen	Temp.		Stress		Min. Creep Bate	Time (hrs.)	Time (hrs.)	Rupt.	Flore	D A
Number	°C	<u>°F</u>	MN/m ²	ksi	%/hr.	3rd stage	creep strain	(hrs.)	<u>(%)</u>	<u>(%)</u>
18-C2	850	1562	413.7	60.0	, 16	7	5	29.0	14.4	22.9
18-C3			310.3	45.0	.010	125	9 5	307.0	9.2	14.7
18-C4			289.6	42.0	.0049	205	140	584.1	8.5	10.5
18-C1			275.8	40.0	.0029	295	245	839.5	6.6	8.7
18-C5			265.4	38.5	.0022	575	380	1220.9	6.3	9.7
18-C7	925	1697	206.8	30.0	.0148	50	62	144.8	7.9	16.2
18-C8			189.6	27.5				(a)		
18-C9			189.6	27.5	.0070	145	125	262.1 (b) 6.5	9.2
18-C17			189.6	27.5	.0067	100	115	278.4	8.2	13.3
18-C6			172.4	25,0	.0046	190	175	462.5	7.7	14.7
18-C10			151.7	22.0	.0016	475	510	1210.7	8.1	9.0
18-C11	1000	1832	165.5	24.0	. 16	(c)	(c) ·	21.1	9.7	13,5
18-C12			151.7	22.0	.065	15	14	34.4	8.7	14.8
18-C13			117.2	17.0	.015	50	58	165.7	8.2	11.5
18-C14			100.0	14.5	.0052	160	165	351.7	7.4	9.4
18-C16			93.1	13.5	.0027	275	320	506.1	4.7	13.1
18-C15			86.2	12.5				(d)		

(a) Adapter failure at 136.0 hours; test discontinued

(b) Specimen was 44°F over temperature at failure

(c) Insufficient data to construct creep curve

(d) Controller malfunction prior to loading; specimen melted

TIME (HOURS)

-169-

- 170 -

Figure 94

٠

-171-

Figure 15

- 172 -