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VOLATILIZATION OF OXIDES DURING OXIDATION OF 


SOME SUPERALLOYS AT 1200° C 


by lsidor Zaplatynsky 


Lewis Research Center 


SUMMARY 

The subject of this study was the volatilization of oxides during the oxidation of com
mercial Nichrome, Inconel 750, R e d  41, Stellite 6B, and GE-1541 at 1200' C in  static 
air. For this purpose a cold-wall furnace technique was used whereby the specimens 
were heated inductively and the oxide vapors were collected on a cold platinum foil. The 
composition of the vapor deposit was determined in situ by the X-ray fluorescent tech
nique. The results revealed that the oxides of tungsten, molybdenum, niobium, manga
nese, and chromium were preferentially lost from the oxide scales by volatilization. 
Aluminum and silicon were not detected in the oxide vapor deposits of alloys containing 
these elements. The concentrations of nickel, cobalt, and iron - the main component 
elements of the alloys - were considerably lower in  the vapor deposits and in the oxide 
scales than in the alloys themselves. 

INTRODUCTION 

One of the factors that can destroy or modify the protective nature of oxide scales is 
volatilization. In general, volatilization increases significantly with the temperature and 
the gas flow rate. Thus, its detrimental effects become more important i n  advanced 
high-temperature, high-flow, air -breathing propulsion systems. In the numerous 
studies that have been made of the oxidation of superalloys, the emphasis has been placed 
primarily on the reaction kinetics of the process and on the identification and morphology 
of the oxide-scale constituents. The phenomenon of volatilization has been largely ig
nored. The exceptions a re  the studies (refs. 1 and 2) concerned with the volatilization of 
chromium oxide during the oxidation of chromium-containing alloys. However, these 
studies were somewhat misleading because they suggested that only this oxide volatilized 
during the oxidation of such alloys. It is reasonable to expect that other metallic oxides 



would volatilize also. This has been demonstrated by Kohl and Stearns (ref. 3). They 
reported that the major products of volatilization during the oxidation of two silicide
coated niobium alloys contained chromium, silicon, iron, and tungsten. 

The purpose of this study was t o  determine experimentally the proportions of metal
lic elements in oxide vapor deposits obtained during the oxidation of a variety of super -
alloys in still air at atmospheric pressure and 1200' C, which is near their upper use-
temperature. The experimental technique used in this study was based on inductive heat
ing of a specimen and quantitative analysis of oxides deposited from the vapor on cold 
platinum foil, which surrounded the specimen. 

EXPERIMENTAL PROCEDURE 

Sample Preparation 

In order to examine a broad range of alloy compositions, the following alloys were 
used in  this study: Inconel 750 (registered trademark of International Nickel Co. ), 
Re& 41 (registered trademark of General Electric Co. ), Stellite 6B (registered trade
mark of Cabot-Stellite Corp. ), GE-1541 (registered trademark of General Electric Co. ), 
and commercial Nichrome. Their compositions a r e  shown in tables I to IV o r  in the text 
(GE-1541). They were obtained in the form of 1.27-centimeter-diameter rods and ma
chined into cylindrical specimens l.27 centimeters high and of the same diameter with a 
central concentric blackbody hole. The surface of each specimen was finished with 320
grit emery paper, and its edges were given a small radius by grinding. Pr ior  to testing, 
the specimens were degreased and ultrasonically cleaned. 

Apparatus and Oxidation-Volatilization Experiments 

Oxidation-volatilization experiments were carried out in  a cold-wall furnace , a 
schematic illustration of which is shown in figure 1. 

A specimen supported by a three-pronged alumina rod was contained in a vertical 
quartz tube. The central portion of the tube, about 5 centimeters long, was wrapped by 
an  induction coil. The inside surface of the tube, just about opposite the induction coil, 
was lined with properly shaped platinum foil as a collector for the condensing oxide 
vapors. The distance between the surface of the specimen and the collector was 0.3 cen
timeter. The quartz tube and platinum collector were kept cool by a water jacket with 
circulating tap water. The induction coil, which was designed to couple inductively with 
the specimen, was connected to a 2.5-kilowatt, high-frequency induction heating gen
erator. The specimen was heated to  the desired temperature by controlling the power 
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input. Occasional adjustment of the power input was necessary to maintain constant tem
perature. Temperature determinations were made with a disappearing-filament micro-
optical pyrometer calibrated against a standard tungsten s t r ip  lamp. In order to avoid 
fogging the flat quartz window (and thus affecting temperature determinations), the fur
nace was provided with a shutter, which was opened only when the temperature measure
ments were made. Unless otherwise specified the oxidation-volatilization experiments 
were run  at 1200' C for four 8-hour-long cycles. After  each 8-hour cycle the platinum 
collector was removed from the quartz tube for analysis of the deposit and replaced with 
a new one. 

After two specimens of each material had been exposed to four oxidation cycles, the 
three-pronged alumina support rod was replaced with a clean one and the inner surfaces 
of the quartz window and of the quartz tube were cleaned. The tes ts  for each alloy were 
run in duplicate and the analytical data for the vapor deposits, shown in tables I to N, 
are averages of two determinations. 

Analysis 

The content of metallic elements in  the oxide deposits that were collected on the 
platinum foil was studied in situ, without removing them from the foil, b y  X-ray fluores
cent analysis with a high-resolution, solid-state X-ray detector. The signals from the 
detector were fed directly into a computer and analyzed with the aid of the SAVLOC pro
gram (ref. 4). This technique permitted a rapid quantitative analysis of the relatively 
small amounts of material collected. The technique was satisfactorily verified on two 
standard samples of known composition. The total amount of the deposit was rather 
small and varied from alloy to alloy, larger  deposits being produced by alloys containing 
tungsten and molybdenum. The deposits never exceeded a few milligrams in weight. 
The platinum collectors were reused after deposits were fluxed with sodium borate and 
washed in boiling distilled water. 

After completion of the fourth oxidation cycle, the retained oxide scales were also 
analyzed in situ for constituent oxides by X-ray diffraction and for elements by X-ray 
fluorescence on small  amounts of scraped scale. After these analyses the specimens 
were sectioned perpendicularly to  their axes, polished, etched, and metallographically 
examined and photographed. Finally, some of the polished specimens were used for 
microhardness (DPH) determinations with a 200-gram load to reveal the hardness 
changes in  the superalloys near the surface as a result of preferential loss of some com
ponent elements during oxidation. 
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RESULTS 

Commercial Nichrome 

Table I summarizes the analytical data obtained for  commercial Nichrome, a simple 
Ni-Cr alloy. The proportions of metals i n  the retained scale and in the vapor deposits 
are quite different from the nominal composition of Nichrome. The composition of the 
vapor deposits changed with time. The nickel content in the alloy was 7 8 . 9  wt %, but in 
the scale it was only 14.3 wt %. It was even lower in  the vapor deposit, decreasing with 
time from 7 . 0  wt % during the first cycle to 4 . 8  wt % during the fourth cycle. The 
chromium content showed an opposite trend. It increased from 19.26 wt % in the alloy 
to 6 7 . 3  wt % in the scale and to 81.4 wt % in the vapor deposit collected during the fourth 
cycle. The concentration of manganese was 10 t imes greater in the scale than in  the al
loy. It reached 29.4 wt % in the vapor deposit after the first oxidation cycle. The 
phases forming the retained scale were Cr203  and spinel with a lattice parameter a, of 
8.45  8. This spinel must have contained some manganese because the lattice parameter 
of pure NiCr204 is 8.32 A and no oxides of manganese were detected by X-ray. Metal
lographic examination of a polished specimen that was subjected to four oxidation cycles 
(fig. 2)  revealed the presence of porosity near the surface. The originally small alloy 
grains underwent a significant growth, as would be expected from such a high-
temperature exposure. Microhardness tests did not reveal any softening in  the depletion 
zone. 

Inconel 750 

Inconel 750, containing nine constituent elements (table II)exhibited quite different 
chromium volatilization from the oxide scale than was observed for  Nichrome. Chro
mium content i n  the vapor deposit was 86.2 wt % during the first oxidation cycle and de
clined gradually to 64.3 wt % during the fourth cycle. The chromium content increased 
from 1 5 . 0  wt % in the alloy to 46.2 wt '%,in  the scale. The vapor deposit collected during 
the first oxidation showed only 4.4-wt % Ni, but this gradually increased to  24 wt % dur
ing the fourth cycle. Iron was present in the scale and in  the vapor deposits, in amounts 
approximately similar to those in the alloy. Titanium was found in the oxide scale but 
not in the vapor deposits. Conversely, niobium was not detected in the scale but ap
peared in the vapor deposits. During the first three cycles, the manganese content was 
higher in the scale and in  the vapor deposits than in  the alloy. Apparently, the contents 
of aluminum and silicon in the scale were too low to  be detected. Neither of the two ele
ments was detected in  the vapor deposits. 
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It is obvious that carbon could not be detected in the scale or in vapor deposits be
cause it oxidized to  form a gas. The phases that were identified in the retained oxide 
scale were Cr203,  spinel (ao = 8.40 A), and rutile. A metallographically prepared 
cross section of an oxidized specimen (fig. 3) revealed the existence, near the surface, 
of a 0.05 -centimeter -thick depletion zone and the presence of porosity, which went con
siderably deeper. Again, very significant grain growth took place during the four oxida
tion cycles at 1200' C. Microhardness determinations indicated a very pronounced but 

> gradual softening of the alloy in a zone that was 0. 1 centimeter deep (fig. 4). 

Y 

Re& 41 

Due to "explosive" spallation of the oxide scale m e n 6  41 during the cooling part 
of the oxidation cycles, it was possible that vapor deposits from this alloy would be con
taminated by minute fragments of the scale. Therefore, it was necessary to remove the 
platinum collector from the quartz tube immediately after the heating period of the oxi
dation cycle was completed and while the specimen was still red hot. The results of the 
analysis of these vapor deposits are  shown in table III. Chromium and nickel were the 
predominant elements in the oxide scale. The chromium content was 67.9 wt % in the 
vapor deposit collected during the first oxidation cycle, and it steadily decreased to 5. 7 
wt % during the fourth cycle. The amount of nickel in the vapor deposits was consider
ably lower than in the alloy and it never exceeded 2 w t  %. Although Re& 41 contained 
ll-wt % cobalt, only traces of cobalt were detected during the first and third cycles. 
None of it was detected in deposits collected during the second and fourth cycles. 

Molybdenum was the predominant component in deposits collected during the second, 
third, and fourth oxidation cycles. The molybdenum content increased to 94.3 wt %, 
which was 9.43 times greater than its content in the alloy. The concentration of titanium 
in the deposit collected during the first cycle was higher than that in the alloy, but it de
creased rapidly with time and titanium was not detected during the fourth cycle. Alu
minum was not found in the retained scale or in the deposits. An X-ray diffraction anal
ysis of the retained scale indicated the presence of Cr203,  spinel (ao = 8.30 A),  and 
rutile structure. Examination of a metallographically prepared cross  section of an ox
idized specimen (fig. 5) revealed the presence of porosity to a depth of 0.05 centimeter 
and considerable grain growth. A very significant drop in microhardness was  noted in a 
zone approximately 0.04 centimeter deep (fig. 4). 
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Stellite 6B 

As in the cases of previously discussed alloys, the concentration of chromium was 
greater in  the retained oxide scale on Stellite 6B than in the alloy itself (table IV). It 
was also greater i n  the vapor deposit collected during the first oxidation cycle. How
ever, in the subsequent deposits, the chromium content decreased, being 20.8 wt % in 
the fourth deposit. The amount of cobalt in the retained scale and in the vapor deposits 
was considerably lower than that in the alloy, and it decreased with time. Iron was not 
detected in the vapor deposits. The concentrations of tungsten and molybdenum were 
considerably greater in the vapor deposits than in  the alloy o r  retained scale, and they 
increased with time. The apparent anomaly in the concentration values of the component 
elements, mainly tungsten and molybdenum, obtained during the fourth oxidation cycle 
was due to  oxide-scale spallation during the cooling period of the third cycle. 

Metallographic examination of this alloy after oxidation (fig. 6) revealed a moderate 
growth of the matrix grains and a decrease in  the quantity of carbide precipitates W7C3 
and MZ3C6, where M represents the sum of carbide-forming elements). This depletion 
zone was about 0. 1 centimeter deep. Just  below the surface a small amount of porosity 
could be observed. An X-ray diffraction analysis of the retained scale after the fourth 
cycle indicated the presence of Cr203,  spinel (ao = 8.35 A), and possibly COO. Micro-
hardness tests indicated that the alloy was softer i n  the zone that was about 0 . 1  centi
meter deep (fig. 4). 

GE-1541 

The iron-based alloy GE -1541 (14. 54-wt % C r ,  4.14-wt % Al, 0.83-wt o/c Y, 
0.0002-wt % C ,  and balance Fe) produced only a very small vapor deposit, which con
tained chromium and some iron. The deposit w a s  too small for quantitative analysis. 
Additional oxidation for up to 56 hours did not increase the deposit. Apparently, the 
alumina scale that formed on the surface of the specimen protected i t  from further 
oxidation and reduced the loss of chromium by oxidation-volatilization. 

Figure 7 shows the microstructure of GE-1541 in the as-received condition and after 
96 hours of cyclic oxidation at 1200’ C. The original grains were rather large and no 
growth could be observed in  the oxidized specimen. However, during oxidation, a 0.02 
centimeter-deep depletion zone formed that was void of YFeg precipitates. An X-ray dif
fraction analysis of the oxide scale on an oxidized specimen revealed the presence of 
CY -A1203, Cr203, and spinel. An attempt to perform an oxidation-volatilization experi

ment a t  1300’ C resulted in the melting and coalescence of YFe9 along the grain bound
aries of the matrix. The amount of vapor deposit obtained was still not sufficient for  
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analysis. The microhardness test  did not reveal any drop in hardness of the alloy in the 
zone near the alloy - oxide-scale interface. 

DISCUSSION 

The volatilization of oxides and the determination of their vapor pressures  have been 
? the subjects of numerous investigations (refs. 5 to 12). Volatilization reactions have 

been proposed and formulas derived to express the vapor pressure of many oxides as a 
‘i 	 function of temperature. Also, methods were developed (refs. 13 to 15) for computing the 

oxide vapor pressures  of simple systems as a function of oxygen pressure.  Such com
putations require the knowledge of thermochemical data for all the elements, compounds, 
and vapor species that could exist during oxidation conditions. 

In the oxidation of superalloys, only qualitative predictions could be made about the 
volatilization of oxides because of the complex nature of the problem. The results ob
tained in this investigation represent a quantitative determination of the content of metal
lic elements in oxide vapor deposits. They indicate which oxides volatilize preferentially 
from the oxide scales and thus permit us to establish which elements are lost from an 
alloy during high-temperature oxidation. 

Calculating the ratio of the content in the vapor deposit (in percent) to the content in 
the original alloy (in percent) for the component metallic elements of an alloy gives cer 
tain numerical values that are a measure of such depletion. The following table is an at
tempt to rank the elements in the superalloy according to these numerical values, which 
are shown in parentheses. If for a given component element the number is greater than 
1, its content in  the alloy is being reduced. This ranking was made for the first and 
fourth oxidation cycles to  show these values and to bring out the fact that they changed 
with time, The elements preferentially lost during oxidation were tungsten, molybdenum , 
manganese, niobium, and chromium. Chromium was the main element in all retained 
oxides except those on GE-1541. Tungsten, molybdenum, and niobium were detected in 
very small  percentile amounts in the scales on alloys containing these elements. The 
preferential loss of these elements affected the hardness of the depleted zone in each of 
the alloys Re& 41, Stellite 6B, and Inconel 750. Figure 4 illustrates this phenomenon. 
The loss  of the strengthening element occurred to  a depth of 0. 1 centimeter ( 0 . 0 4  in. ). 
Porosity, the presence of which can be observed in figures 2(b), 3(b), 5(b), and 6(b), and 
the decrease in the amount of dispersed phase shown in figures 6(b) and 7”)were also 
evidence of preferential loss  of some component elements. Aluminum and silicon were 
never detected in the oxide vapor deposits from alloys containing these elements. The 
spallation of the oxide scales during cyclic oxidation of some superalloys might cause 
the composition of the oxide vapor to be different from that which could be  obtained in thei 
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First 
Fourth 

First 

Fourth 

First 

Fourth 

First 
Fourth 

Mn(l5.89)Xr(3.30)>Ni(O. 09) 
Mn(7.45)>Cr(4.23)>Ni(O. 06)  

Cr(5.74)>Nb(4. ll)>Mn(3. 57)>Fe(0.47) 
>Ni(O. 06)>Ti(0), Al(O),Si(0) 

Nb(5.11)>Cr(4.29)>Fe(l. OO)>Ni(O. 33) 
>Mn(O), Ti(O),Al(O),Si(0) 

_. 

. .  

Ti(5.58)>Cr(3.57)>Mo(l. 38)Xo(O. 05) 
>Ni(O. O l ) > A l ( O )  

Mo(9.43)>Cr(O. 3)>Ti(0), Co(O),Ni(O),Al(0) 

~. 

W(5.47)Xr( l .73)>Mo(1. 53)Xo(O. 35)>Fe(O) 
W(12.08)>M0(5.73)Xr(O. 69)>Co(O),Fe(0) 

absence of spallation. However, these differences a re  not expected to be large enough 
to affect the general findings and conclusions. 

SUMMARY OF RESULTS 

The proportions of metallic .components in the retained oxide scales of commercial 
Nichrome, Inconel 750, R e d  41, and Stellite 6B differ from those i n  the alloys as a r e 
sult of selective oxidation and subsequent preferential volatilization of some component 
oxides. The compositions of their oxide vapor deposits differed from those of the oxide 
scales as a result of the preferential volatilization, which may in turn influence subse
quent oxidation by removing some components from the scale. The elements preferen
tially lost during cyclic oxidation were tungsten, molybdenum, niobium, manganese, and 
chromium. This preferential volatilization caused the change in the hardness of the al
loys, the formation of porosity, and the disappearance of precipitate phases in the de
pleted zone. Aluminum and silicon were never detected in the oxide vapor deposits of al
loys containing these elements. Nickel, cobalt, and iron, the main component elements 
of superalloys, were found in the vapor deposits and in the corresponding oxide scales in 
percentile amounts considerably smaller than in the alloys. The tungsten, molybdenum, 
and niobium contents were much higher in  the vapor deposits than in the alloys, but their 
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contents in  the oxide scales were below those in the corresponding alloys. Chromium 
was the main component element in all the oxide scales except one (GE-1541). It was 
present in the form of Cr203 and spinels. Because the GE-1541 alloy formed a protec
tive A1203 scale, it produced a small amount of oxide vapor deposit that was not suff i 
cient for quantitative analysis. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, December 6, 1976, 
505-01. 
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TABLE I. - ANALYSIS OF VAPOR DEPOSITS OBTAINED DURING OXIDATION 

OF COMMERCIAL MCHROME AT 1200' C IN AIR 

3lement Z omposition Composition I Composition of vapor deposited during -
of alloy of scalea 

Content, w t  56 of total metal 

Cr 19.26 b67. 3 f 0.7 
Mn 1.85 18.4 5 0.2 
Ni 78. 89 14.3 5 0 . 3  

!X-ray diffraction analysis of the retained oxide scale indicated the presence of the 
following phases: Cr203 (very strong),and spinel with a. = 8.45 A (medium). 

bThe 5 values are standard deviation (sigma). 

TABLE II. - ANALYSIS OF VAPOR DEPOSITS OBTAINED DURING OXIDATION 

OF INCONEL 750 AT 1200' C IN AIR 

Clement Composition Composition Composition of vapor deposited during -
of alloy of scalea 

after fourth First Second Third Fourth 

oxidation cycle oxidation oxidation 
cycle cycle cycle 

- -
Content, wt 56 of total.metal 

~ 

Ni 73.0 37.3 f 0.2 4.4 f 0.2 11.2 f 1.1 20.1 * 0.6 24.1 f 0.2 
Cr 15.0 46.2 5 0. 6 86.2 f 1.4 78.4 f 2 . 2  67.6 i 1.6 64.5 f 1.0 
Fe 6.7 8.6 f 0.2 3 . 2 f 0 . 4  4 . 6 f l . l  6.0 f 0.6 6.8 f 0.4 
T i  2.4 6. 8 * 0.6 (b) (b) 0) (b) 
NB .a cb) 3 . 7 + 0 . 6  4 . 1 + 0 . 7  4 . 6 + 0 . 4  4.6 i 0.2 
A1 .a (b) ca) (b) (b) @) 
Mn . 6  1.1 f 0.2 2 . 5 f 0 . 7  1 . 7 f 1 . 1  1.7 f 0.7 (c) 
Si . 7  (b) (b) (b) (b) (b) 
C .04 _-------- __-------_--------

X-ray diffraction analysis of the retained oxide scale indicated the presence of the 
following phases: spinel with a, = 8.40 A (medium), Cr203 (very strong), and 
rutile structure (medium). 

bNot detected. 
'Detected but not determined. 
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TABLE ILI. - ANALYSIS OF VAPOR DEPOSITS OBTAINED DURING OXIDATION 

OF RENEI 41 AT 1 2 0 0 ~c IN AIR 

clement I Composition] Composition I Composition of vapor deposited during 
~~~~of alloy 

Second Third Fourth 

ofidation cycle oxidation oxidation oxidation oxidation 
cycle cycle cycle cycle 

I I I I I 

4 4 . 3 f 0 . 7  6 7 . 8 i 1 . 4  3 1 . 1 f 0 . 9  !3.7 rt 0.6 5.7 f0.7 
7 . 7 i 0 . 3  . 6  i 0 . 1 5  (b) . 3  i 0. OE @) 

Mo 3.4 i 0 . 0 5  1 3 . 7 i 0 . 3  64.7i0.7 12.3 i 0 . 6  34.3 i o . 9  
T i  3.1 8.5 i0.6 17.2 i 2 . 7  2.2 rtO.5 1.7 f 0.5 (b) 
A1 1.5 @) @) (b) (b) @) 
Ni 55.3 

.09 
36.1 i 0.5 . 7  i 0.14 2.0 f 0.07 2.0 f0.07 @)_____-___--_--------_------_--.--------- .-------

.. -.. __ 
'X-ray diffraction analysis of the retained oxide scale indicated the presence of the 
following phases: Cr203 (very.strong), spinel-with a. = 8.30 (weak), and rutile 
structure (very weak). 

bNot detected. 

TABLE IV. - ANALYSIS OF VAPOR DEPOSITS OBTAINED DURING OXIDATION 

OF STELLITE 6B AT 1200' C IN AIR 
-

~ Composition Composition of vapor deposited during -
of alloy 

Fourth 

cycle cycle cycle cycle

71I -30.0 57.0 51.9 i 1.0 38.5 i 1.0 20.8 rt 0.7 20.8 f 0.7 
4.5 4.0 24.6 i 0 . 6  42.9 f0.7 64.1 -I 1.0 54.4 i 0.6 
1.5 . 2  2 . 3 i 0 . 4  4 . 5 f 0 . 8  6.5*0.3 8.6 f 0.3 

c o  3.0 1.0 (b) @) (b) (b) 
59.8 37.8 2 1 . 2 i 0 . 4  1 4 . 1 f 0 . 3  8 .6 r t0 .3  16.2 i 0.4 
1. 2 --_____-___----__ 

__ .. 
%-ray diffraction analysis of the retained oxide scale indicated the presence of the 

following phases: spinel with a. = 8.35 A (strong), Cr203 (very weak), and possibly 
c o o .  

bNot detected. 
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Figure 1. - Schematic i l lustrat ion of oxidation-vaporization apparatus. 
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(a) As received. @)After oxidation. 


Figure 2. - Microstructure of commercial 2ichrome as received and after four 8-hour-long oxidation cycles at 1200" C. Etched; x100. 
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(a) As received. @) After oxidation. 

Figure 3. - Microstructure of lnconel 750 as received and after fow 8-hour-long oxidation cycles at 1200" C. Etched; AOO. 
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Figure 4. - Determination of hardness (DPH) in RenE 41, Stellite 68, 
and Inconel 750oxidized a� 12Wo C during four I-hour-[ong cycles. 
Load, 2M3 grams. 
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(a) As received. (b) After oxidation. 
Figure 5. - Microstructure of Reng41 a s  received and after four 8-hour-long oxidation cycles at 1200°C. Etched; AOO. 
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(a) As received. (b) After oxidation. 


Figure 6. - Microstructure of Steliite 6B as received and after four 8-hour-long oxidation cycles a t  1200°C. Etched; AOO. 


(a) As received. (b) After oxidation. 


Figure 7. - Microstructure of GE-1542 as received and after helve 8-hour-long oxidation cycles at 1200" C. Etched; d00. 
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