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FINAL TECHNICAL REPORT
*

A METHOD FOR EXPERIMENTAL MODAL SEPARATION

I. Introduction

A system of computer software has been developed for the numerical simula-

tion of multiple-shaker modal survey testing. A fairly simple analytical method

using simulated experimental data is employed to optimize the shaker force-

amplitude distribution for the purpose of isolating individual modes of vibra-

tion. This method is referred to here as the RFAD method, for relative force-

amplitude distribution.

The system has been employed in a thorough simulation of modal testing on

a small, fairly simple, analytical structural model. The detailed description

of this simulation is included in a Master's degree thesis by Stafford (1976).

The software system is currently being used to test the RFAD method on various

other structural models, both discrete and continuous. Each model was designed

to have at 1•east two closely spaced modes in order that we might_ simulate the

separation of close modes by multiple-shaker excitation. Inertia, damping,

stiffness, and modal data for these models are stored on magnetic disks,

aiailable by direct access to the interactive Fortran programs which perform

all computations required by the RFAD method.

The support for this research by NASA has been ren-wed for an additional

year under the same number, Grant No. NSG 1276. Hence, this report is not

the final presentation of theory, procedures and results to be submitted on

our research into the RFAU method.

* The NASA Technical Officer for this grant is Mr. Robert Miserentino,

NASA Langley Research Center.
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II. Short Description of the RFAD Method

The'RFAD method is based on the following theoretical result for an n-

degree-of-freedom damped structure. In order that the structure be forced

to vibrate in its rth undamped normal mode, the condition

[C(wr ) I  = 0
must be satisfied (Asher, 1958; Bishop and Gladwell, 1963; Craig and Su, 1974).

F is the n x 1 column vector of shaker force-amplitudes, and [C(wr)] is the
*

n x n coincident-response matrix evaluated at the rth resonance frequency, wr -

In practice, it is generally not possible to provide forcing excitation at

all the degrees of freedom of a structure, so the problem which the RFAD method

considers is

[C*] F* = 0

wnare F* is a p x 1 matrix of force-amplitudes corresponding to the p available

sharer locations, and [C*] is the incomplete p x p coincident-response matrix

for those same locations. This is an eigenvalue problem for which, ideally, the

eigenvalues (those frequencies at which Det [C*] = 0) are the undamped natural

frequencies, and the eigenvectors are the force-amplitude distributions which

will tune reasonably pure modes.

III. Analytical Models with Closely Spaced Modes

Perhaps the most difficult task in modal survey testing is the separation of

* The coincident-response matrix is the real or in-phase portion of the

complete frequency-response transfer function matrix.
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closely spaced modes. __Hence, one of our primary objectives in developing

analytical models to test with the RFAD method has been to simulate closely

spaced modes. Although such modes appear frequently in vehicle modal testing

programs, they are actually quite difficult to produce in relatively simple

structural models of the type appropriate for this research. Hence, we have

developed an analytical procedure for "optimizing" a structural model to have

at least one pair of closely spaced modes.

The structural model we have considered most extensively is the five-degree-

of-freedom cantilevered plane grid shown in Fig. 1. The beams are aluminum

rods having 0.254 m (10.0 inch) length * and 0.00635 m (0.25 inch) diameter;

3
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Figure 1 Plane Grid Model

they are considered massless. All mass is considered to be concent rated at the

beam intersections. Our procedure has been to adjust the concentrated masses

in order to force together selected adjacent modes.

* All calculations have been made in the primary units of pounds, inches

and seconds.
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Stafford (1976) used an ear',y form of our analytical node-merging method

to produce closely spaced third and fourth modes of this model having fre-

quencies of 30.54 rad/sec and 31.90 rad/sec, respectively. However, this

situation resulted from a set of masses weighing from 11.9 N (2.68 lb.) to

114 N (25.7 lb.). In view of the small size of the model, the latter value

is unrealistically large. But we try to retain a reasonable degree of

physical realism in our analytical models, since we may elect later to build

laboratory specimens based on them. Hence, we have refined our mode-merging

procedure so as to hold the masses to physically realistic values. The theory

and procedure are presented in Appendix A. With this procedure we have pro-

duced an eigensolution for the five-degree-of-freedom model having third and

fourth resonances of 53.50 rad/sec and 55.41 rad/sec, respectively. The masses

in this model weigh from 3.38 N (0.760 lb.) to 20.6 N (4.62 lb.).

IV. Simulation of Arbitrary Hysteretic Damping

We have studied primarily n-degree-of-freedom damped models governed by

the linear matrix equations

[m) z +	 [d) x + (k) x	 = f
W

where [d] is the hysteretic damping matrix, and excitation and response

are sinusoidal at frequency w,

f = Feiwt

x = Xeiwt

All previous studies of the RFAD method (Bishop and Gladwell, 1963; Craig

and Su, 1974; Stafford, 1976) have considered only the case of hysteretic

4



damping which does not couple the undamped normal modes of the system.

Stafford used a proportional damping matrix,

[d ] = 9 [k]

which is uncoupled by the standard transformation to normal coordinates and

gives structural damping constant g in all modes.

However, there is no reason to expect in general that damping will not

couple the modes. So we have developed the capability to simulate a structure

with arbitrary hysteretic damping. The theory behind this simulation is

evidently due to Bishop and Johnson (1960), and it has been discussed ex-

tensively by Mead (1970). It involves first determination of the complex

eigenvalues xr and eigenvectors *r of the homogeneous problem

( [k] + i [d] - a [ml ) * = 0

and then solution for the steady-state response due to sinusoidal excitation

by modal analysis with the complex modes.

To provide an example of the possible effects of damping which couples the

normal modes, we have applied the RFAD method with both proportional and non-

proportional damping to the five-degree-of-freedom model discussed in Section

III. For the proportional case we use [d] = 0.03 [k] , and for the non-

.	 proportional case we use simply the diagonal portion of the proportional

damping matrix. Since a primary objective of the RFAD method is to separate

closely spaced modes, we seek distributions of shaker force-amplitudes which

will separate the third and fourth modes at 53.50 and 55.41 r ead/sec, respectively

Plots of Det [C(w)] for all five masses excited and Det [C*(w)] for only

masses 1 and 5 (see Fig. 1) excited are shown on Fig. 2. Det [C] curves

5
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for the two damping cases are barely distinguishable in the frequency range

shown, and both have zero crossings exactly at the undamped resonances as

is required by theory. Det [C*] curves for the two cases are similar but

not identical anywhere, as should be expected since they are derived from

incomplete transfer function matrices.

Eigenvalue solutions corresponding to the zero crossings of the determinant

plots are listed in Tables la and b. Each shaker force-amplitude eigenvector

is normalized to its largest value. With all masses excited, there are sub-

stantial differences between the force-amplitude eigenvectors for proportional

and non-proportional damping. This means that the shaker force-amplitude re-

quired-to isolate a mode is strongly dependent on the specific form of damp-

ing, as one would expect. Curiously, this dependence appears to be much

weaker with only masses 1 and 5 excited.

V. On the Number of Predominant Modes and the Number of Required Shakers

One consequence of our numerical studies is considerable qualitative

evidence of a relationship between the number of modes predominant in the

motion at a given frequency and the number of shakers required to separate

modes in the vicinity of that frequency. This is not a new idea, as Traill-

Nash (1958), Bishop and Gladwell (1963), and Asher (1967) have previously

discussed it. In fact, Asher proposed a quantitative technique for determin-

ing the number of predominant modes by means of a determinant evaluation pro-

cedure using transfer-function data. We have tested Asher's technique exten-

sively and have found it to be unreliable.

* In contrast, Ibrahim and Mikulcik (1976) employed a similar technique with

filtered transient response data and found it quite satisfactory.

7



a. All masses excited

Proportional damping4 Non-pro ortional damping

Zero crossings
(rad/sec) 53.50 55.41 53.50 55.41

F, 0.324 1.000 0.208 0.360

F2 0.070 70.883 0.141 -1.000

F3 1.000 -0.896 1.000 -0.503

F4 -0.234 -0.460 -0.315 -0.348

F5 -0.213 0.736 -0.060 0.116

b. Masses 1 and 5 only excited

Proportional damping Non-proportional damping
Zero crossing
(rad/sec) 53.25 55.36 53.16 55.31

F1 * 0.436 0.709 0.444 0.719

F 5 -1.000 1.000 -1.000 1.000

Tables la and b

Coincident-response determinant zero-crossing frequencies and force-amplitude

eigenvectors associated with plots in Figure 2.
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A concept analogous to the number of -predominant modes is that of "a

best approximating subspace". This has been analyzed by Cliff (1975) in

the context of control theory. Cliff's approach appears to be applicable,

with some modifications, to our problem. A detailed description of the

theory behind this method is presented in Appendix B. The method involves

numerical testing of experimental or simulated experimental transfer function

data to determine the number of predominant modes. Within the context of

this method, there are several different possible ways to evaluate a given

set of data. We ara currently conducting numerical studies of these dif-

ferent approaches, and a Master's degree thesis on the subject is In pre-

paration.

If we are able to conclude from this evaluation that Cliff's method

provides a reliable test for the number of predominant modes, then we still

must determine if there is, in fact, a relationship between this number and

the number of shakers required to isolate mvdEs. it is intuitively appealing

that there should be such a relationship, but its existence has not been

established.

VI. Other Work in Progress

Our studies thus far of the RFAD method have considered only hystereti%.ally

damped structures. However, the results of Ibrahim and Mikulcik (1976) and

the continuing work of Ibrahim at NASA LaRC suggest that the damping of real

structures might be represented more accurately by a viscous model or

possibly a combination hysteretic-viscous model. Therefore, we are extending

the capability of our RFAD software to the case of arbitrary viscous damping.

The theory employed to solve the forced response problefi; ; s that presented in

4
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detail by Hurty and Rubinstein (1964) and used also by . Ibrahim and Mikulcik.

We have also begun the design of a simple experimental model patterned

after our basic analytical model; Fig. 1. We plan to use aluminum rods as

the grid beams and steel rods with axes oriented vertically as the joint

masses. To analyze this specimen accurately, we are improving our analytical

model to account for the distributed inertia of the aluminum beams and for

the rotational inertias of the steel-rods. Also, to design closely spaced

modes into the specimen, we are revising the mode-merging analysis discussed

in Section III and Appendix A to account for the constraints that exist be-

tw,.en the translational and rotational inertias of the steel joint masses.

We plan to run modal survey tests on this specimen using excitation

equipment on loan to VPI&SU from NASA LaRC and subminiature accelerometers

recently acquired by VPI&SU. We also hope to employ a Zonic/Tektronix FFT

data processing system, two of which are being purchased by VPI&SU.

t
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APPENDIX A

A SIMPLE PROCEDURE FOR PRODUCING

CLOSELY SPACED VIBRATION MODES

IN AN ANALYTICAL STRUCTURAL MODEL

We consider here the standard n-degree-of-freedom structural dynamic

eigenvalue problem,

( -w2 [m] + [k] ) ^r = 0	 r = 1 9 2, ..., n	 (1)

We assume that the mass and stiffness matrices can be separated into full and

diagonal component matrices,

[m] = [mf] + [u]
(2)

[k] = [kf] + [a]

The uk and ak matrix elements correspond to lumped physical members, which

often are easily varied in laboratory experimental models as well as analytical

models.

It is necessary first to develop expressicns for the derivatives of the

natural frequencies w  with respect to the diagonal mass and stiffness elements,

Ilk and ak . The eigensolution for the rth mode of vibration satisfies Eq. 1.

Substituting Eq. 2 into Eq. i and differentiating it with respect to 
uk 

gives

(-2wr 
ur 

[m] - wr [11 ]) ^r + ( -w2 [m] + [ k] ) 
aor 

= 0	 (3)
k	 k

where [ 1 0 is filled with zeros except for a unit element in the kth diagonal

position. We next premultiply Eq. 3 by ^ r T and use the definition of the rth

generalized mass, Mr = ^rT [m] O r . Finally, we simplify the equation by

f

12



0

_	
r

applying the identity

^rT (-w
2 [m] + [k] ) = OT

which is simply the transpose of Eq. 1. From this procedure we obtain

awr _ _ 1	 2
auk	2Mr W  ^kr

By differentiating Eq. 1 with respect to ak and proceding as above, we may

obtain also

awr =
	 1	 2

aak 2Mrwr ^kr

The procedure leading to Eqs. 4 and 5 is due to Zarghamee (1968).

Now, our general objective is to develop an analytical model which is

physically reasonable with at least one pair of closely spaced modes. To do

this, we may start with a specific numerical structural model and adjust the

diagonal terms 
uk 

and ak , k = 1, 2, ... n. To simplify the analysis, let

us consider adjustments only to the mass elements, u k . The requirement of

physical reasonableness constrains-all 
Pk 

to be positive and less than some

maximum possible value.

We define vector u as the n-dimensional column of uk elements. Then the

difference o between any two adjacent natural frequencies may be considered a

function of µ

P(P) = wj - w i	 (6)

where we choose wj > wi for this discussion. The Taylor series representation

of this functional relation is

Q(u) = Q ( Po ) + [ v_Q ] } ,	 (u - uo ) + ...

13
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--	 whereuo is an initial state and it is assumed that u- PO is small so

that terms of higher order may be neglected. Hence, with an = n(u) - a(po)

and du = P- yo,

r	 an = (vn)	 au + ...
Ho

= gT au + ,..	 (7)

where

an	 aw. awi

9 k = tauk ) u = [auk auk)

°	 u-o

Clearly, g may be evaluated with the use of Eq. 4.

To achieve the objective of closely spaced modes, we seek to adjust the

masses so that do is negative. Mass changes du must be kept small both to

justify the neglect of higher-order terms in Eq. 7 and to maintain physically

reasonable mass values. A simple way to maximize do while holding du small

is to specify

Su = eg	 (8)

where a is a dimensional number to be determined. For a given total length

of vector du, the form specified in Eq. 8 clearly maximizes the inner product

in Eq. 7. Substituting Eq. 7 into Eq. 8 gives

do = egT g	 (9)

The change desired in iZ may be written as

do = fn(uo )	 (10)

14



where f is a negative decimal number usually ranging from 0 to -0.5. Now

c may be determined from Eqs. 9 and 10 as

n(u )
E = f 

T`0	 (11)

99

Hence, the procedure used to bring together two modes of a structural

model by adjusting its masses is as follows:
t

(i) Calculate the modes of the original configuration, and from

those males calculate with Eq. 4 the frequency-gradient matrix.

(ii) On the basis of the original modes and the frequency-gradient

matrix, select two adjacent modes to be brought together.

(iii) Using the definition of Eq. 10, select a ratio f, 0>`- -0.5, by

which the frequency spacing is to be reduced. If this ratio is

too large, the assumption that higher-order terms in Eq. 7 are

negligible may be invalid, and this procedure may fail to give

satisfactory results.

(iv) Now calculate the mass change vector which should produce the

desired reduction in frequency spacing,

du = Eg

with c given by Eq. 11.

(v) Calculate u l = uo + 8u, and subsequently calculate the modes for

this new configuration. The candidate modes selected in (ii) should

now be closer together by about the amount specified in (iii).

(vi) If it is desirable to bring the candidate modes even closer together,

then repeat the procedure as many times as necessary, omitting step

(ii) in all iterations after the first.

15



The theory and procedure presented here can be broadened without much

difficulty to account for such situations as specific constraints on or

between the mass valuesu k and variations of the modes with respect to	
7

both lumped massesu k and lumped stiffnesses Gk' 
In the latter case,

frequency difference a would be regarded as a function of both it and v

and both Eqs. 4 and 5 would be used.

1

g

2

A

3
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_ APPENDIX B

A METHOD FOR DETERMINING THE NUMBER OF MODES
PREDOMINANT IN FORCED SINUSOIDAL RESPONSE

Consider a structural system with n discrete degrees of freedom. We

denote the column matrix of structural response as x and the column matrix

of force as f. For steady-state sinusoidal forcing and response at frequency

w, we use complex notation,

f = Re [ Fe iwt - F cos wt

x = Re [ Xeiwt^

The complex response vector X represents both amplitude and phase of response.

In general, one can employ modal analysis with real or complex modes to

express forced response in the series form

n
X = L Kr (w) ^r fr F

r=1

where ^r is the mode shape of the rth mode and K r
 (w)is a constant dependent

on the generalized mass and damping of the rth mode. Hence, the complete

n x n transfer function matrix is

n
[A] = E Kr(w) _r t 

r=1

•	 And any column of this matrix may be expressed as a linear sum of the n mode

shape vectors,

n
A = L Kr( w) r ^r
^^	 r=1

where ^jr is the jth element of fir.

17
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In order to simplify this discussion, let us restrict attention to

situations for which all K r and 4r are real. Consider, for example, a system

with hysteretic damping which does not couple the undamped normal modes.

For such a system, the real part of the admittance matrix, which represents

in-phase or coincident response, may be expressed as

Re[A] = LC) = E Kr(W) +r trr=l

where

Mr(W2 - W2)
Kr(m) = M2(W2 - 

W2)2 + (MrW2gr)2

in which wr , Mr , and g  are the natural frequency, generalized mass, and modal

structural damping, respectively, for the rth mode. With these definitions,

each column of the -coincident-response matrix can be expressed as a series sum

of real n-dimensional column vectors,

n
Cj = L Kr(w) Ojr 0r

r=1

In the process of sinusoidal vibration testing, it is usually possible to

measure response at p stations on the specimen, where almost invariably p < n.

Hence, with a single shaker, say the j th , forcing at frequency w, one measures

an incomplete column vector of the admittance matrix,

n

Cj	
r=1
^ Kr (w) Ojr t- r

where C^ and tr are p-dimensional column vectors which lack the n-p elements of

the corresponding C j and w r . Since the ^r are p-dimensional, at most only p of

the n incomplete mode shape vectors are linearly independent. It seems reasonable

r

18



to expect that in general any sub.et of p hr's will, in fact, be independent.

At any particular frequency of excitation, we would expect some subset,

say q, of the total modes to'be predominant in the response. If this is the

case, then each C* should be a linear sum of the q hr's corresponding to the

predominant modes. This suggests the following procedure for determining the

number q:

A. If k shakers and p motion sensors are available, measure at

frequency w the incomplete p x k coincident -response matrix

whose columns are the C^

[C*] = [C^ ,C2 . . . Ck]

B. Now analyze [C*] as follows:

(1) Determine the single p-dimensional unit vector h l which,

in a sense to be defined, best represents each column

vector C^ as a linear sum, i.e.,

C^ - C l h i , j = 1, 2, . .	 k

Calculate, in a sense to be defined, the error E 1 resulting

from this representation.

(2) Determine the pair of p-dimensional orthogonal unit

vectors h l and h 2 which best represent each Ct as a

linear sum, i.e.,

2

_ j	 C 
j
2 i h i , j = 1, 2,	 ., k

_^	
i=1 

Calculate the error E 2 resulting from this representation.

19



(m) Determine the m p+dimensional orthogonal unit vectors h l , h2,

., hm which best represent each Ct as a linear sum.

Calculate the error E m resulting from this representation.

If after q steps of this procedure we find Eq << E q-1 and E  = 0,

then we may reasonably conclude the each C^ is, with very small

error, a sum of q orthogonal unit vectors and, therefore, that q

modes predominate in the response at the frequency in question.

If the procedure is carried through p steps, it is clear that

Ep = 0 since the p independent h i span Rp.

The theory required to carry out the calculations in B. above is next

developed. To simplify the notation we denote the given incomplete coin-

cident-response matrix as

[C*] = [Z] = [z l , z2 ,	 ., zk 1

Let a basis for R P consist of p orthogonal unit vectors h l , h 2 , - . " hp,

which are unknown at this point. Hence any real p-dimensional vector can be

expressed as the sum

z = (^	 +	 (hi	 z ) h i , J = 1, 2,	 k
^^	 1 i=1	 i=m+1	 ^J

Since the unit h i are orthogonal,

m	 p
z^	 z

j
= 	 + 	 ( h i
	

z^)2
i 1-m+1 ///	 -	 1

Hence, we may define the scalar error resulting from representing z
j 
by only the

first m of the h i as

20



(e^)

2
m 	

2j 	
(-1 ' 

zJ) 2 	 Zj	 zj _ F (hi - zj)

i=m+1	 i=1

It follows that an appropriate total error, defined in the least-squares sense,

for all z j , j = 1, 2 9 . . ., k, is

Em =	 k (em 
) 2 	 112

j=1

k	 k	 m
zJ , zJ _	 (h' , zj)2 1/2

j=1	 j=1	 i=1

Clearly, the maximum value of the double-summation corresponds to the minimum

Em, which is the value that we seek. It can be shown that

k
r ( h i • zj) 2 = hi [T] hi
j=1

where

[T] = [Z][Z]t

[T] is a p x p real, symmetric, positive-semidefinite matrix, so it has p non-

negative real eigenvalues 
X  

and p corresponding real orthogonal eigenvectors

^ i . It is convenient to take the ^i to be unit vectors. It can be shown that

the maximum values of the quadratic form involving [T] are

{ h, [T] hi^	 _ ,	 [T]
max

	

Hence, in order to minimize E m we take h i	 i = 1, 2,	 p, and we obtain

k	 m

{ Em } min	 [ L zj	 zj - L Ai 1

/
2

j-1	 i 1	 l

21
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We can now reiterate and Summarize the method for determining the number

q Of predominant modes at 6 given frequency:

(i) Using experimental Or analytical data, assemble the p x k

' incomplete coincident-response matrix F C* l based upon k

shaker locations and p sensor locations.

(ii) Form the p x p matrix

[Tl = [[*]rC^lt

^ (iii) Calculate the S1genvdl^P^ of [ T l , Ail i = l	 2	 , p^	 `	 '	 ^^"	 ,...	 ,
'

^	 OV\	 For m = l, 2, ' ' ,, p, calculate the error

'	 k	 m
l/2

i=l
[ m =	 C	 ^	 '

| ^^	
^ ^ ^^ -
J	 J	 ^^	 ^ |^ '=l	 -	 -	 J

If there are in fact q < p predominant modes, then this should be indicated

q	 q-1	 q^ by the observations that E < vE	 and E ^ 0.

^.^	 .

/
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