

KINEMATIC CAPABILITY IN THE SVDS

Job Order 86-069.
(NASA-CR-151360) KINEMATIC CAPABIIITY IN
N77-23753
THE SVDS (Lockheed Rlectronics Co.) 51 p CSCI 05H HC A04/MF A01

	Unclas
26151	

Prepared By
Lockheed Electronics Company, Inc. Systems and Services Division

Houston, Texas
Contract NAS 9-15200
For
MISSION PLANNING AND ANALYSIS DIVISION

National Aeronautics and Space Administration LYNDON B. JOHNSON SPACE CENTER Houston, Texas

March 1977

TECHNICAL REPORT
 KINEMATIC CAPABILITY IN THE SVDS

Job Order 86-069

Prepared By
Lockheed Electronics Company, Inc.
For
Mission Planning and Analysis Division
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LYNDON B. JOHNSON SPACE CENTER
HOUSTON, TEXAS
March 1977

CONTENTS

Section Page

1. INTRODUCTION. 1-1
2. SVDS-RMS KINMAT INTERFACE 2-1
3. ENGINEERING FLOWCHARTS 3-1
4.. SVDS-RMS KINMAT COMMON VARIABLES AND DEFINITIONS 4-1
4. REFERENCES 5-1
Appendix
A COORDINATE SYSTEMS AND NOTATIONS. A-1
B RMS ANGLE INITIALIZATION OR COMPUTATION B-1
C THE RESOLVED RATE LAW $C-1$
D LINE-OF-SIGHT STEERING AND AXIS-OF-ROTATION STEERING. D-1

FIGURE

Figure Page
1 Overview of SVDS with KINMAT interfaces. 2-2

KINEMATIC CAPABILITY IN SVDS

1. INTRODUCTION

The purpose of this document is to present the details of the Remote Manipulator System (RMS) kinematic capability implemented into the Space Vehicie Dynamics Simulator (SVDS). Section 2 presents a brief overview of the RMS kinematic models as they are interfaced in SVDS. The basic interface shown can also be used for the RMS rigid body models and the flexible body models. Section 3 contains detailed engineering flow diagrams of the RMS KINMAT models. Section 4 contains the definition of the SVDS RMS KINMAT common variables and the user inputs required to execute these options.

Four appendixes have been included. Appendix A contains a description of the coordinate systems used and some notation and basic mathematical relationships. Appendix B presents a development of the equations used to compute joint angles given the position and orientation of the end effector. Appendix C contains a development of the Resolved Rate Law, the relationship between the end effector translational and rotational velocity and the arm joint rates. It is noted that these relationships are transformed to the wrist pitch system so that joint rates can be solved explicitly. This is similär to a development presented in ref. 1. Appendix D presents a development of the equations used in the line-of-sight steering, and axis-of-rotation steering use by the RMS kinematic model.

2. SVDS-RMS KINMAT INTERFACE

The RMS kinematic model implemented into the SVDS program does not interface with the dynamics of the rigid body motion simulated by the SVDS program; however, the commanded arm joints are integrated to determine the current values of the arm angles. Because of the requirement to numerically integrate these variables, it was decided that this integration should be merged with the integration of the rigid body equation of motion.

For this reason, the RMS model was interfaced at three places in the SVDS program: (1) In the integration initialization to set up the additional variables to be integrated, (2) In the integration driver, and (3) In the math model driver to compute'RMS steering commands and compute RMS joint positions for interface with future models requiring these computations.

The method of interface that was chosen can easily be fotlowed for future development items. such as RMS rigid body and flexible body dynamics. The flowchart following is an overview of the SVDS program structure with the KINMAT interfaces indicated.

Figure 1.- Overview of SVDS with KINMAT interfaces.

3. ENGINEERING FLOWCHARTS

This section contains flowcharts of the subroutines introduced into SVDS to provide the RMS kinematic capability. These flowcharts use engineering symbols and form the basis for the routines coded into SVDS. The purpose of this section is to provide logic flow in a terminology more familiar to an engineer than FORTRAN code. Definitions of symbols used are included at the end of this section.

SUBROUTINE RMANGS

Subroutine RMANGS computes the RMS joint angle, given the position and orientation of the end effector relative to the orbiter.*

[^0]
compute elbow, shoulder, and wrist ${ }^{\text {PITCH }}$ ANGLES
\[

$$
\begin{aligned}
\beta & =\tan ^{-1}\left(\frac{-\left\{T_{3}\right\}^{\top}\left[B_{27}\right]\left\{1_{1}\right\}}{\left\{1_{1}\right\}^{7}\left[B_{27}\right]\left[I_{1}\right\}}\right) \\
\alpha & =\left\{I_{1}\right\}^{\top}\{r\} \cos \theta_{1}+\left\{I_{2}\right\}^{\top}\{r\} \sin \theta_{1}-\ell_{4} \cos B \\
\gamma & =-\left\{I_{3}\right\}^{\top}\{r\}-\ell_{4} \sin \beta \\
C K & =\left(\gamma^{2}+\alpha^{2}-\ell_{2}^{2}-\frac{\ell_{3}^{2}}{3}\right) /\left(2 \ell_{2} \ell_{3}\right) .
\end{aligned}
$$
\]

SUBROUUTINE LTRAJ

Subroutine LTRAJ computes a trapezodial time history for the magnitude of the translationa? velocity, and a unit vector in the direction of the line of sight.

Subroutine ATRAJ computes a trapezodial time history for the magnitude of the rotational velocity of the end effector, and a unit vector along the single axis of rotation.

SUBROUTINE LNKAGE

Subroutine LNKAGE computes RMS joint positions relative to the orbiter, and the orientation (transformation matrices) of these coordinate systems relative to the orbiter.

SUBROUTINE KINSTR

Subroutine KINSTR computes the end effector commanded velocity, and angular velocity relative to the orbiter in the orbiter body system.

COMPUTE TRANSEATIONAL VELOCITY COMMAND

SUBROUTINE KINDER

Subroutine KINDER computes the joint angle rates compatible with the commanded translational and rotation velocity of the end effector using the resolved rate law.

CALCULATE ELEMENTS OF JACOBIAN MATRIX:
$a_{11}=-\sin \left(\theta_{2}+\theta_{3}+\theta_{4}\right)$
$a_{16}=\cos \theta_{5}$
$a_{26}=\sin \theta_{5}$
$a_{31}=\cos \left(\theta_{2}+\theta_{3}+\theta_{4}\right)$.
$a_{41}=-\ell_{5} \cos \left(\theta_{2}+\theta_{3}:+\theta_{4}\right) \sin \theta_{5}$
$a_{51}=\left(l_{2} \cos \theta_{2}+l_{3} \cos \left(\theta_{2}+\theta_{3}\right)+\left(l_{4}+\theta_{5} \cos \theta_{5}\right)\left(\cos \left(\theta_{2}+\theta_{3}+\theta_{4}\right)\right)\right.$
$a_{61}=-\ell_{5} \sin \left(\theta_{2}+\theta_{3}+\theta_{4}\right) \sin \theta_{5}$.
$a_{42}=l_{2} \sin \left(\theta_{3}+\theta_{4}\right)+l_{3} \sin \theta_{4}$
$a_{62}=-\ell_{2} \cos \left(\theta_{3}+\theta_{4}\right)-\ell_{3} \cos \theta_{4}-\ell_{5} \cos \theta_{5}-\ell_{4}$
$a_{43}=\ell_{3} \sin \theta_{4}$.
$a_{63}=-\ell_{4}-\ell_{5} \cos \theta_{5}-\ell_{3} \cos 0_{4}$
$a_{64}=-\left(l_{4}+\ell_{5} \cos \theta_{5}\right)$
$a_{45}=-\ell_{5} \sin \theta_{5}$
$a_{55}=\ell_{5}^{\prime} \cos \theta_{5}$

DEFINITIONS OF SYMBOLS

. a_{m}	Maximum translational acceleration of the end effector relative to the orbiter
$\mathrm{a}_{i j}$	Coefficients of the Jacobian used in the resolved rate law
[B]	Transformation matrix from initial orientation of the end effector to the final
$\left[\mathrm{B}_{\mathrm{F}}\right]$	Transformation matrix from final desired end effector orientation to orbiter body system
$\left\{b_{1}\right\}$	Column matrix of the commanded end effector angular velocity relative to the orbiter expressed in the wrist pitch system
$\left\{b_{2}\right\}$	Column matrix of the components of the commanded end effector translational velocity relative to the orbiter expressed in the wrist pitch system
$\left[\mathrm{B}_{13}\right]$	Transformation matrix from the upper arm system to the longeron system
$\left[B_{14}\right]$	Transformation matrix from the lower arm system to the longeron system
${ }^{\left[B_{15}\right]}$	Transformation matrix from the wrist pitch system to the longeron system
$\left[\mathrm{B}_{16}\right]$	Transformation matrix from the wrist yaw system to the longeron system
$\left.{ }^{[8}{ }_{17}\right]$	Transformation matrix from the end effector system to the longeron system-
$\left[B_{27}\right]$	Transformation matrix from the end effector system to the shoulder yaw system
D	Distance from initial position of end effector to final desired position of the end effector
D_{m}	Twice distance traveled by end effector during time to reach maximum velocity accelerating at maximum acceleration

	Difference between D and D_{m}		
Identity matrix		\quad	Distance from RMS orbiter attach point to shoulder pitch pivot
:---			
point			

$\left\{r_{5 B}\right\}$	Column matrix of the components of the position vector from the CM of the orbiter to the yaw wrist joint in the orbiter body system
$\left\{r_{6 B}\right\}$	Column matrix of the components of the position vector from the CM of the orbiter to the tip of the end effector in the orbiter body system
$\left\{\mathrm{r}_{21}\right\}$	Column matrix of the components of the position vector from the RMS orbiter attach point to the shoulder pitch joint in the longeron system
$\left\{r_{37}\right\}$	Column matrix of the components of the position vector from the RMS orbiter attach point to the elbow pitch joint in the longeron system
$\left\{r_{47}\right\}$	Column matrix of the components of the position vector from the RMS orbiter attach point to the wrist pitch joint in the longeron system
$\left\{r_{51}\right\}$	Column matrix of the components of the position vector from the RMS orbiter attach point to the wrist yaw joint in the longeron system
$\left\{r_{67}\right\}$	Column matrix of the components of the position vector from the RMS orbiter attach point to the tip of the end effector in the longeron system
${ }_{[T, B}{ }^{\text {] }}$	Transformation matrix from the orbiter body system to the longeron system
$\left[T_{B 3}\right]$	Transformation matrix from the lower arm system to the orbiter body system
$\left[T_{B 4}\right]$	Transformation matrix from the upper arm system to the orbiter body system
$\left[T_{B 5}\right]$	Transformation matrix from the wrist pitch system to the orbiter body system
$\left.{ }_{[T B 6}\right]$	Transformation matrix from the wrist yaw system to the orbiter body system
$\left[\mathrm{T}_{\mathrm{B7}}\right]$	Transformation matrix from the end effector system to the orbiter body system

$\mathrm{t}_{\mathrm{R}]}$	Time when max angular velocity is attained
$\mathrm{t}_{\mathrm{R} 2}$	Time of start of angular velocity deceteration phase
${ }_{,} \mathrm{t}_{\mathrm{R} 3}$	Time of end of end effector rotational maneuver
$t_{T 1}$	Time when max velocity of end effector is attained
$t_{\text {T2 }}$	Time of start of end effector deceleration phase
$t_{T 3}$	Time of end of end effector translational maneuver
$\left[T_{1}(\theta)\right]$	Transformation matrix representing a θ rotation about the 1-axis
$\left[T_{2}(\theta)\right]$	Transformation matrix representing a θ rotation about the 2-axis
$\left[T_{3}(\theta)\right]$	Transformation matrix representing a θ rotation about the 3 -axis
$\left\{u_{\mathrm{R}}\right\}$	Column matrix representing the unit axis of rotation vector
$\left\{u_{T}\right\}$	Column matrix representing the unit vector along the line of sight
V	Magnitude of the translational velocity command
\{V\}.	Column matrix representing a vector in the direction of the single-axis of rotation vector
$\left\{V_{c}\right\}$	Column matrix of the components of the commanded velocity vector expressed in the orbiter body system
V_{m}	Magnitude of the maximum allowable translational velocity of the end effector relative to the orbiter
Y_{m}^{*}	Magnitude of the maximum translational velocity attained for the end effector relative to the orbiter
α	Parameter used in arm angle initialization computations
α_{m}	Magnitude of the maximum allowable angular acceleration of the end effector relative to the orbiter
β	Parameter used in arm angle initialization computations
γ	Parameter used in arm angle initialization computations

θ_{2}. Shoulder pitch angle
θ_{3} Elbow pitch angle Wrist pitch angle
$\theta_{5} \quad$ Wrist yaw angle
${ }^{-} \theta_{6} \quad$ Hand roll angle

Elbow pitch angle rate
$\dot{\theta}_{4} \quad$ Wrist pitch angle rate
$\dot{\theta}_{5} \quad \cdots$ Wrist yaw angle rate

Rotation angle from initial orientation of end effector to final desired orientation

Twice the angular distance traveled in acceleration from zero angular rate to max angular rate at max angular acceleration Magnitude of commanded angular velocity of end effector relative to orbiter
$\left\{\omega_{c}\right\} \quad$ Column matrix of the components of the commanded angular velocity vector for the end effector relative to the orbiter

Magnitude of the maximum allowable angular velocity of the end effector

Magnitude of the maximum angular velocity attained for the end effector
$\left\{1_{i}\right\}$. Column matrix with ith component equal 1 and all other components zero
4. SVDS-RMS KINMAT COMMON VARIABLES AND DEFINITIONS

This section contains a list of the SVDS-RMS KINMAT common variables and their definitions. Input variables are listed at the end of this section.

Variable	Definition
IRMS	RMS angle initialization flag $=0$ Compute RMS angles from position and orientation input data
IRMSTR	RMS steering option flag $=0$ Table lookup of joint rate commands used $=1$ Compute line-of-sight and axis-of-rotation steering $=2$ Line-of-sight and axis-of-rotation steering has been initialized
RMANGD	(1) Shoulder yaw angle rate (2) Shoulder pitch angle rate (3) Elbow pitch angle rate (4) Wrist pitch angle rate (5) Wrist yaw angle rate (6) Hand roll angle rate
RMSAMR	Magnitude of maximum allowable angular acceleration of end effector relative to orbiter
RMSAMT	Magnitude of the maximum allowable end effector translational acceleration relative to the orbiter
RMSANG	RMS joint angles
	(1) Shoulder yaw angle
	(2) Shoulder pitch angle
	(3) Elbow pitch angle
	(4) Wrist pitch angle
	(5) Wrist yaw angle
	(6) Hand roll angle

RMSB13 Transformation matrix from the upper arm system to the longeron system

Variable.
RMSB14

RMSBT5

RMSB16

RMSB17 Transformation matrix from the arm end effector system to the longeron system

RMSLTH Arm member lengths
(1) Length from RMS orbiter attach point to shoulder pitch joint
(2) Length from shoulder pitch joint to elbow pitch joint
(3) Length from elbow pitch joint to wrist pitch joint
(4) Length from wrist pitch joint to wrist yaw joint
(5) Length from wrist yaw joint to tip of end effector

RMSRC Dependent variable in commanded arm angle rates table lookups
RMSRF Position vector from the orbiter CM to the final desired position of the tip of the end effector in the orbiter body system

RMSRTB Position vector from the orbiter CM to the RMS attach point in the orbiter body system

RMSR2B Position vector from the orbiter CM to the shoulder pitch joint in the orbiter body system

RMSR3B Position vector from the orbiter CM to the elbow pitch joint in the orbiter body system

RMSR4B Position vector from the orbiter CM to the wrist pitch joint in the orbiter body system

RMSR5B Position vector from the orbiter CM to the wrist yaw joint in the orbiter body system

Variable	Definition
RMSR6B	Position vector from the orbiter CM to the tip of the end effector in the orbiter body system
RMSR21	Position vector from the RMS orbiter attach point to the shoulder pitch joint in the longeron system
RMSR31	Position vector from the RMS orbiter attach point to the elbow pitch joint in the longeron system
RMSR41	Position vector from the RMS orbiter attach point to the wrist pitch joint in the longeron system
RMSR51	Position vector from the RMS orbiter attach point to the wrist yaw joint in the longeron system
RMSR61	Position vector from the RMS orbiter attach point to the tip of the end effector in the longeron system
RMSTBF	Transformation matrix from the final desired orientation of the end effector to the orbiter body system
RMSTB3	Transformation matrix from the upper arm system to the orbiter body system
RMSTB4	Transformation matrix from the lower arm system to the orbiter body system
RMSTB5	Transformation matrix from the wrist pitch system to the orbiter body system
RMSTB6	Transformation matrix from the wrist' yaw system to the orbiter body system
RMSTB7	Transformation matrix from the arm end effector system to the orbiter body system
RMSTLB	Transformation matrix from the orbiter body system to the longeron system
RMSTR1	Time relative to RMSTS of the end of the angular acceleration phase of axis-of-rotation steering

Variable
RMSTR2

RMSTR3

RMSTS

RMSTTI

RMSTT2

RMSTT3

RMSUR . Unit vector defining the axis of rotation from the initial orientation of the end effector to the final orientation of the end effector.

RMSUT Unit vector along the line-of-sight from the initial end effector position to the final end effector position in the orbiter body sysțem .

RMSVC End effector translational velocity command in the orbiter body system

RMSVMR Magnitude of maximum allowable angular velocity of the end effector relative to the orbiter

RMSVMT Magnitude of maximum allowable translational velocity of the end effector relative to the orbiter

RMSWC End effector angular velocity command in the orbiter body system
RMVMRS - Magnitude of maximum angular velocity attained for the end effector. relative to the orbiter

RMVMTS Magnitude of the maximum translational velocity attained for the end effector relative to the orbiter.

Variable Definition
 TRMS Current time relative to RMSTS used for line-of-sight and axis-of-rotation steering

SVDS INPUTS FOR RMS KINMAT OPTION
IRMS
$=0$ RMSB17 and RMSRB6 (ft) required
$\neq 0$ RMSANG must be input

İRMSTR
$=3$ Tables TARAT $_{\mathbf{j}} \mathbf{i = 1 , 6}$ must be input for commanded joint rates $=1$ RMSAMR, ($\mathrm{deg} / \mathrm{sec}^{2}$), RMSAMT ($\mathrm{ft} / \mathrm{sec}^{2}$), RMSRF (ft), RMSTBF, RMSYMR ($\mathrm{deg} / \mathrm{sec}$), RMSVMT $(\mathrm{ft} / \mathrm{sec})$ required.

Other required inputs:
RMSLTH(ft), RMSRIB(ft), RMSTLB

TABLE INPUTS
The tables
TARAT $_{\mathbf{i}} \quad \mathbf{i = 1}, 6$ must use RMSRC as their dependent variable and RMS as their independent variable.

5. REFERENCES

1. Ravindran, R., and Nquyen, P.: Kinematics and Control of Shuttle Remote Manipulator, SPAR TM-1209, Issue A, (Preliminary) May 1976.
2. Copeland E.: Analytic Description of Subprogram "INITIAL" Added to the RMS Computer Program, LEC-7465, Aug. 1975.
3. JSC/LEC Task Description, Payload Deployment and Retrieval Systems Simulation Development Support, Oct. 1976.
4. JSC/LEC Task Agreement TA-1, Payload Deployment and Retrieval Systems Simulation Development Support, Oct. 1976.

APPENDIX A

COORDINATE SYSTEMS AND NOTATIONS
The purpose of this appendix is to present the definitions of the coordinate systems used in the RMS kinematic model implemented into the SVDS program. This appendix is concerned only with right-handed unit orthonormal systems. The transformation matrix from any one coordinate system to any other coordinate system is a 3×3 orthogonal matrix with its determinant equal to +1 .

EULER ROTATIONS
The notation $\left\{I_{i}\right\} i=1,2,3$ is used to denote the components of a unit vector:

$$
\begin{align*}
& \left\{1_{1}\right\}^{\top}=[1,0,0] \\
& \left\{7_{2}\right\}^{\top}=[0,1,0] \tag{A-1}\\
& \left\{7_{3}\right\}^{\top}=[0,0,1]
\end{align*}
$$

The notation of a bar under the symbol for a column matrix denotes the 3×3 skew symmetric cross product matrix.

If.

$$
\begin{align*}
& \{A\}^{\top}=\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right] \tag{A-2}\\
& {[\underline{A}]=\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right]} \tag{A-3}
\end{align*}
$$

Using this notation, it can be shown that the orthogonal matrix corresponding to a rotation through an angle θ about a unit vector \bar{u} whose components are \{u\} can be written as

$$
\begin{equation*}
[B]=\left(r_{I}-\sin \theta[\underline{u}]+(1-\cos \theta)[\underline{u}]^{2}\right) \tag{A-4}
\end{equation*}
$$

So that if $\left\{V_{A}\right\}$ is the representation of a vector in the A system and $\left\{V_{B}\right\}$ is the representation of the same vector in the B system, and the B system is obtained by rotating the A system through an angle θ about \bar{u}, then

$$
\begin{equation*}
\left\{V_{B}\right\}=[B]\left\{V_{A}\right\} \tag{A-5}
\end{equation*}
$$

where [B] is defined by eq. (A-4). In developing the relationships obtained by rotating coordinate systems about various coordinate axes, it becomes convenient to define the following transformations which are sometimes called Euler rotations.

$$
\begin{equation*}
\left[T_{i}(\theta)\right]=\left(\Gamma_{I_{j}}-\sin \theta\left[1_{i}\right]+(1-\cos \theta)\left[1_{i}\right]^{2}\right) \tag{A-6}
\end{equation*}
$$

Writing these transformations out explicitly:

$$
\begin{align*}
& {\left[T_{1}(\theta)\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{array}\right]} \\
& {\left[T_{2}(\theta)\right]=\left[\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right]} \tag{A-7}\\
& {\left[T_{3}(\theta)\right]=\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{align*}
$$

A definition of the coordinate systems used in the RMS kinematics follows.

COORDINATE SYSTEMS

The orbiter body coordinate system is a standard airplane system with the x-axis or 1 -axis defined as positive forward, the y-axis or 2-axis is defined
as positive out the right wing, and the z-axis or 3 -axis is positive down, as shown in the figure below.

System 1 is the longeron system, which is fixed in the longeron supporting the arm. The x-axis or 1 -axis is positive, aft, the z-axis is downward and perpendicular to the longeron, and the y-axis is to the left, completing the right-hand system. This system is rolled outboard through an angle ϕ during RMS deployment activity. The transformation matrix from the body system to the longeron system can be written as

$$
\left[T_{L B}\right]=\left[T_{7}(\phi)\right]\left[\begin{array}{ccc}
-1 & 0 & 0 \tag{A-8}\\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

System 2 is fixed in the upper arm and is obtained from the longeron system by first yawing through the shoulder yaw angle and the pitching through the shoulder pitch angle. The transformation matrix from system 1 to system 2 can be written as

$$
\begin{equation*}
\left[T_{21}\right]=\left[T_{2}\left(\theta_{2}\right)\right]\left[T_{3}\left(\theta_{1}\right)\right] \tag{A-9}
\end{equation*}
$$

System 3 is fixed in the lower arm, and is obtained by rotating about the 2-axis through the elbow pitch angle, θ_{3}. The transformation from system 2 to system 3 can be written as:

$$
\begin{equation*}
\left[T_{32}\right]=\left[T_{2}\left(\theta_{3}\right)\right] \tag{A-10}
\end{equation*}
$$

System 4 is obtained by rotating system 3 about the z-axis through θ_{4}, the wrist pitch angle. The transformation from system 3 to system 4 is written:

$$
\begin{equation*}
\left[T_{43}\right]=\left[T_{2}\left(\theta_{4}\right)\right] \tag{A-17}
\end{equation*}
$$

System 5 is obtained by rotating system 4 about the 3 -axis through θ_{5}, the wrist yaw angle. The transformation from system 4 to system 5 is written

$$
\begin{equation*}
\left[T_{54}\right]=\left[T_{3}\left(\theta_{5}\right)\right] \tag{A-12}
\end{equation*}
$$

System 6 is fixed in the end effector and is obtained by rotating system 5 about the 1 -axis. The transformation from system 5 to system 6 is:

$$
\begin{equation*}
\left[T_{65}\right]=\left[T_{7}\left(\theta_{6}\right)\right] \tag{A-13}
\end{equation*}
$$

In most cases, we are interested in transforming the component of vectors to the longeron or system 1 or to the body system. Using the transformations defined above we can write:

$$
\begin{gather*}
{\left[T_{7 j}\right]=\left[T_{12}\right]\left[T_{23}\right] \cdots\left[T_{j-i j}\right]} \tag{A-14}\\
\left.\left[T_{B j}\right]=\left[T_{L B}\right]^{T}{ }^{[B} B_{1 j}\right] \tag{A-15}
\end{gather*}
$$

and
where we have used the fact that

$$
\begin{equation*}
\left[T_{i j}\right]=\left[T_{j i}\right]^{T} \tag{A-16}
\end{equation*}
$$

The convention is followed of labeling as the first index the coordinate system transformed to, and as the second index the coordinate system transformed from.

APPENDIX B

RMS ANGLE INITIALIZATION OR COMPUTATION
The purpose of this appendix is to present a derivation of the equations used to compute the arm angles given the position of the tip of the end effector and the orientation of system 6^{*} relative to the orbiter body system.

This problem can be reduced to computing the arm angles starting with the position vector of the RMS orbiter attach point to the tip of the end effector expressed in the longeron system and the transformation matrix from the end effector system to the longeron system. Definitions of certain arm lengths used in these computations follow.
${ }^{\ell} 1$ The distance from the orbiter arm attach point to the shoulder pitch joint
ℓ_{2} The length of the upper arm from the shoulder pitch joint to the elbow pitch joint
ℓ_{3} The length of the lower arm from the elbow pitch joint to the wrist pitch joint
ε_{4} The distance from the wrist pitch joint to the wrist yaw joint
ℓ_{5} The distance from the wrist yaw joint to the tip of the end effector

Using this information, the transformation from the end effector system to the 1ongeron system can be written

$$
\begin{equation*}
\left[T_{16}\right]=\left[T_{3}\left(\theta_{1}\right)\right]^{\top}\left[T_{2}\left(\theta_{2}+\theta_{3}+\theta_{4}\right)\right]^{\top}\left[T_{3}\left(\theta_{5}\right)\right]^{T}\left[T_{1}\left(\theta_{6}\right)\right]^{\top} \tag{B-1}
\end{equation*}
$$

Also, the component of the position vector from the orbiter attach poir the tip of the end effector in the longeron system can be written

[^1]\[

$$
\begin{equation*}
\left\{r_{16}\right\}=-\left\{1_{3}\right\} l_{1}+\left[T_{12}\right]\left\{1_{1}\right\} \ell_{2}+\left[T_{13}\right]\left\{1_{1}\right\} \ell_{3}+\left[T_{14}\right]\left\{1_{1}\right\} \ell_{4}+\left[T_{16}\right]\left\{1_{1}\right\} \ell_{5} \tag{B-2}
\end{equation*}
$$

\]

From eq. (B-2),

$$
\begin{align*}
\left\{r_{1}\right\} & =\left\{r_{16}\right\}+\left\{1_{3}\right\} \ell_{1}-\left[T_{16}\right]\left\{1_{1}\right\} \ell_{5} \\
& =\left[T_{12}\right]\left\{1_{1}\right\} \ell_{2}+\left[T_{13}\right]\left\{1_{7}\right\} \ell_{3}+\left[T_{14}\right]\left\{1_{1}\right\} \ell_{4} \tag{B-3}
\end{align*}
$$

where $\left\{r_{1}\right\}$ is the position vector from the, shop μ leer pitch joint to the wrist yaw joint. It can be seen that the projection of this vector onto the $x-y$ longeron plane defines the shoulder yaw angle
or

$$
\begin{gather*}
\tan \theta_{1}=\frac{r_{1}(2)}{r_{1}(1)} \tag{B-4}\\
\theta_{1}=\tan ^{-1}\left(r_{1}(2) / r_{1}(1)\right)
\end{gather*}
$$

Then

$$
\begin{gather*}
{[B]=\left[B_{16}\right]^{T}\left[T_{3}\left(\theta_{1}\right)\right]^{\top}=\left[T_{1}\left(\theta_{6}\right)\right]\left[T_{3}\left(\theta_{5}\right)\right]\left[T_{2}(\beta)\right]} \tag{B-5}\\
\beta=\theta_{2}+\theta_{3}+\theta_{4} . \tag{B-6}
\end{gather*}
$$

where

Expanding eq. ($\mathrm{B}-5$),

$$
[B]=\left[\begin{array}{ccc}
1 & 0 & 0 \tag{B-7}\\
0 & C \theta_{6} & S \theta_{6} \\
0 & -S \theta_{6} & C \theta_{6}
\end{array}\right]\left[\begin{array}{ccc}
C \theta_{5} & S \theta_{5} & 0 \\
-S \theta_{5} & C \theta_{5} & 0 \\
\vdots \sigma_{0} & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
C \beta & 0 & -S \beta \\
0 & 1 & 0 \\
S \beta & 0 & C \beta
\end{array}\right]=\left[\begin{array}{ccc}
C \theta_{5} C \beta & S \theta_{5} & -C \theta_{5} S \beta \\
C \theta_{5} C \beta & C \theta_{6} C \theta_{5} & -C \theta_{5} S \beta \\
C \theta_{5} C \beta & -S \theta_{6} C \theta_{5} & -C \theta_{5} S \beta
\end{array}\right]
$$

From eq. (B-7),

$$
\begin{align*}
& \theta_{5}=\sin ^{-1}(B(1,2)) \tag{B-8}\\
& \theta_{6}=\tan ^{-1}\left(\frac{-B(3,2)}{B(2,2)}\right) \tag{B-9}
\end{align*}
$$

$$
\beta=\tan ^{-1}\left(\frac{-B(1,3)}{B(1,1)}\right)
$$

Using eq. (B-3),

$$
\begin{align*}
\{p\}= & {\left[T_{3}\left(\theta_{1}\right)\right]\left\{r_{1}\right\}=\left[T_{2}\left(\theta_{2}\right)\right]^{T}\left\{1_{1}\right\} \ell_{2} } \\
& +\left[T_{2}\left(\theta_{2}+\theta_{3}\right)\right]^{T}\left\{1_{1}\right\} \ell_{3}+\left[T_{2}(\beta)\right]^{T}\left\{1_{1}\right\} \ell_{4} \tag{B-11}
\end{align*}
$$

From this, we can write

$$
\begin{align*}
\{p\}= & C \theta_{2}\left\{1_{7}\right\} \ell_{2}-S \theta_{2}\left\{1_{3}\right\} \ell_{2}+C\left(\theta_{2}+\theta_{3}\right)\left\{1_{1}\right\} \ell_{3} \\
& -S \theta_{2}\left\{1_{3}\right\} \ell_{3}+C B\left\{1_{1}\right\} \ell_{4}-S B\left\{1_{3}\right\} \ell_{4} \tag{B-12}
\end{align*}
$$

and

$$
\begin{align*}
& p_{1}=C \theta_{2} l_{2}+C\left(\theta_{2}+\theta_{3}\right) l_{3}+C B l_{4} \\
& p_{3}=-S \theta_{2} l_{2}-S\left(\theta_{2}+\theta_{3}\right) l_{3}-S \beta l_{4} \tag{B-13}
\end{align*}
$$

or

$$
\begin{align*}
& C \theta_{2} \ell_{2}+c\left(\theta_{2}+\theta_{3}\right) l_{3}=p_{1}-C \beta l_{4}=\alpha \\
& s \theta_{2} \ell_{2}+s\left(\theta_{2}+\theta_{3}\right) l_{3}=-p_{3}-s \beta l_{4}=\gamma \tag{B-14}
\end{align*}
$$

Squaring both equations, we obtain

$$
\begin{align*}
& c^{2} \theta_{2} \ell_{2}^{2}+2 C \theta_{2} c\left(\theta_{2}+\theta_{3}\right) l_{2} \ell_{3}+c^{2}\left(\theta_{2}+\theta_{3}\right) l_{3}^{2}=\alpha^{2} \\
& s^{2} \theta_{2} \ell_{2}+2 S \theta_{2} s\left(\theta_{2}+\theta_{3}\right) l_{2} \ell_{3}+s^{2}\left(\theta_{2}+\theta_{3}\right) l_{3}^{2}=r^{2} \tag{B-15}
\end{align*}
$$

Adding these equations, we obtain
or

$$
\begin{align*}
& \ell_{2}^{2}+2 \ell_{2} \ell_{3} C \theta_{3}+\ell_{3}^{2}=\alpha^{2}+\gamma^{2} \tag{B-16}\\
& \theta_{3}= \pm \cos ^{-1}\left(\frac{\alpha^{2}+\gamma^{2}-\ell_{2}^{2}-\ell_{3}^{2}}{2 \ell_{2} \ell_{3}}\right) \tag{B-17}
\end{align*}
$$

From the geometry of the RMS, we know that θ_{3} is always negative; therefore,

$$
\begin{equation*}
\theta_{3}=-\cos ^{-1}\left(\frac{\alpha^{2}+\gamma^{2}-l_{2}^{2}-l_{3}^{2}}{2 l_{2}^{l} 3}\right) \tag{B-18}
\end{equation*}
$$

From eq. (B-14), we can write

$$
\begin{align*}
& \mathrm{C} \theta_{2}^{\ell_{2}}+\mathrm{C} \theta_{2} \mathrm{C} \theta_{3} \ell_{3}-\mathrm{S} \theta_{2} \mathrm{~S} \theta_{3}^{\ell_{3}}=\alpha \\
& \mathrm{S} \theta_{2}^{\ell_{2}}+\mathrm{S} \theta_{2} \mathrm{C} \theta_{3} \ell_{3}+\mathrm{C} \mathrm{\theta}_{2} \mathrm{~S} \theta_{3}^{\ell_{3}}=\gamma \tag{B-19}
\end{align*}
$$

Now

$$
\begin{gather*}
\mathrm{S} \theta_{2}\left(l_{2}+\ell_{3} \mathrm{C} \theta_{3}\right)=\gamma-\mathrm{C} \theta_{2} \mathrm{~S} \theta_{3} \ell_{3} \tag{B-20}\\
\mathrm{~S} \theta_{2}=\frac{\gamma-\mathrm{C} \theta_{2} \mathrm{~S} \theta_{3} \ell_{3}}{\ell_{2}+l_{3} \mathrm{C} \theta_{3}} \tag{B-21}
\end{gather*}
$$

Substituting eq. (B-21) into the first of eqs. (B-19), we have

$$
\begin{equation*}
C\left(\theta_{2}\right)\left(\ell_{2}+C \theta_{3} \ell_{3}\right)-\left(\frac{\gamma-C \theta_{2} S \theta_{3} \ell_{3}}{\ell_{2}+\ell_{3} C \theta_{3}}\right) S \theta_{3} \ell_{3}=\alpha \tag{B-22}
\end{equation*}
$$

Solving for θ_{2}, we have

$$
\begin{equation*}
\theta_{2}=\cos ^{-1}\left(\frac{\alpha\left(\ell_{2}+\ell_{3} \mathrm{C} \theta_{3}\right)+\gamma \mathrm{S} \mathrm{\theta}_{3} \ell_{3}}{\ell_{2}^{2}+\ell_{3}^{2}+2 \ell_{2} \ell_{3} \mathrm{C} \theta_{3}}\right) \tag{B-23}
\end{equation*}
$$

Using eq. (B-6), we have

$$
\begin{equation*}
\theta_{4}=\beta-\theta_{2}-\theta_{3} \tag{B-24}
\end{equation*}
$$

This completes the derivation.

APPENDIX C

THE RESOLVED RATE LAW

The purpose of this appendix is to present a derivation of the Resolved Rate Law, which is a relationship between the translation and angular velocity of the tip of the end effector and the joint angle rates. This relationship may be denoted in the following manner:

$$
\begin{align*}
& 6 \times 1 \\
& \left.\left[\begin{array}{l}
{[\omega\}} \\
\{V\}
\end{array}\right]=\begin{array}{l}
6 \times 1 \\
{[A \times 1}
\end{array}\right\}\{\dot{\theta}\} \tag{C-1}
\end{align*}
$$

where
\{V\} is a column matrix of the relative translational velocity in the orbiter body system
$\{\omega\}$ is a column matrix of the component of the relative angular velocity
[A] is a 6×6 matrix commonly referred to as a Jacobian matrix
$\{\dot{\theta}\}$ is a 6×1 column matrix of the joint angle rates.
Let $\overline{\mathrm{e}}_{\mathrm{j}}^{\mathrm{j}}$ denote a unit base vector in the \mathbf{i} direction of system j^{*}, then the angular velocity of the end effector can be written

$$
\begin{equation*}
\bar{\omega}=\dot{\theta}_{1} \bar{e}_{3}^{2}+\left(\dot{\theta}_{2}+\dot{\theta}_{3}+\dot{\theta}_{4}\right) \bar{e}_{2}^{2}+\dot{\theta}_{5} \bar{e}_{3}^{-6}+\dot{\theta}_{6} \bar{e}_{1}^{6} \tag{C-2}
\end{equation*}
$$

Before proceeding, note the following useful relationships:

$$
\begin{equation*}
\left.\left.\left[T_{i}(\theta)\right]\left\{1_{i}\right\}=\{]_{i}\right\}=\left[T_{i}(\theta)\right]^{T_{\{1}}\right\} \tag{C-3}
\end{equation*}
$$

[^2]and
\[

$$
\begin{align*}
& {\left[T_{i}(\theta)\right]\left\{1_{j}\right\}=\operatorname{C\theta }\left\{1_{j}\right\}-\operatorname{S\theta }\left\{1_{i}\right\} \times\left\{1_{j}\right\}} \\
& \left.\left[T_{i}(\theta)\right]^{T}\left\{1_{j}\right\}=\operatorname{C\theta }\left\{1_{j}\right\}+\operatorname{S\theta \{ } 1_{i}\right\} \times\left\{1_{j}\right\} \tag{C-4}
\end{align*}
$$
\]

Using the transformation presented in Appendix A and eq. (C-2), we can write

$$
\begin{align*}
& {\left[T_{2}\left(\dot{\theta}_{2}+\theta_{3}+\theta_{4}\right)\right]\left[T_{3}\left(\theta_{1}\right)\right]\{\omega\}=\left[T_{2}\left(\theta_{2}+\theta_{3}+\theta_{4}\right)\right]\left\{1_{3}\right\} \dot{\theta}_{1}+\left\{1_{2}\right\}\left(\dot{\theta}_{2}+\dot{\theta}_{3}+\dot{\theta}_{4}\right)} \\
& \left.\left.\quad+\{]_{3}\right\} \dot{\theta}_{5}+\left[T_{3}\left(\theta_{5}\right)\right]^{T}\left\{1_{1}\right\} \dot{\theta}_{6}=C\left(\theta_{2}+\theta_{3}+\theta_{4}\right)\{]_{3}\right\}-S\left(\theta_{2}+\theta_{3}+\theta_{4}\right)\left\{1_{7}\right\} \dot{\theta}_{1} \\
& \left.\left.\quad+\left\{1_{2}\right\}\left(\dot{\theta}_{2}+\dot{\theta}_{3}+\dot{\theta}_{4}\right)+\{]_{3}\right\} \dot{\theta}_{5}+C \theta_{5}[]_{7}\right\} \dot{\theta}_{6}+S \theta_{5}\left\{1_{2}\right\} \dot{\theta}_{6} \tag{C-5}
\end{align*}
$$

Eq. (C-5) gives one of the relationships we want. The second equation, relative translational velocity to joint rates, can be developed by writing the position vector from the shoulder pitch joint to the tip of the end effector and differentiating this relationship to arrive at the desired results.

The components of the position vector expressed in the longeron system can be written

$$
\begin{align*}
\{r\}= & {\left[T_{3}\left(\theta_{1}\right)\right]^{T}\left[T_{2}\left(\theta_{2}\right)\right]^{T}\left\{1_{1}\right\} \ell_{2}+\left[T_{3}\left(\theta_{1}\right)\right]^{T}\left[T_{2}\left(\theta_{2}+\theta_{3}\right)\right]^{T}\left\{1_{1}\right\} \ell_{3} } \\
& +\left[T_{3}\left(\theta_{7}\right)\right]^{T}\left[T_{2}\left(\theta_{2}+\theta_{3}+\theta_{4}\right)\right]^{\left\{1_{1}\right\} \ell_{4}} \\
& +\left[T_{3}\left(\theta_{7}\right)\right]^{T}\left[T_{2}\left(\theta_{2}+\theta_{3}+\theta_{4}\right)\right]^{T}\left[T_{3}\left(\theta_{5}\right)\right]^{T}\left\{1_{7}\right\} \ell_{5} \tag{C-6}
\end{align*}
$$

Differentiating eq. (C-6), we get

$$
\begin{align*}
& \{\dot{r}\}=\{V\}=\left(\dot{\theta}_{1}\left[\frac{d T_{3}\left(\theta_{7}\right)}{d \theta_{1}}\right]^{T_{1}}\left[T_{2}\left(\theta_{2}\right)\right]^{T}+\dot{\theta}_{2}\left[T_{3}\left(\theta_{7}\right)\right]^{T}\left[\frac{d T_{2}\left(\theta_{2}\right)}{d \theta_{2}}\right]^{T}\right) \\
& \left(\left\{l_{1}\right\} \ell_{2}+\left[T_{2}\left(\theta_{3}\right)\right]^{\top}\left(\left\{1_{1}\right\} \ell_{3}+\left[T_{2}\left(\theta_{4}\right)\right]\left(\left\{l_{1}\right\} \ell_{4}+\left[T_{3}\left(\theta_{5}\right)\right]^{T}\left\{1_{1}\right\} \ell_{5}\right)\right)\right) \\
& +\dot{\theta}_{3}\left[T_{3}\left(\theta_{1}\right)\right]^{T}\left[T_{2}\left(\theta_{2}\right)\right]^{T}\left[\frac{d T_{2}\left(\theta_{3}\right)}{d \theta_{3}}\right]^{T}\left(\left\{1_{1}\right] \ell_{3}+\left[T_{2}^{\prime}\left(\theta_{4}\right)\right]^{\top}\left(\left\{1_{1}\right\} \ell_{4}+\left[T_{3}\left(\theta_{5}\right)\right]^{T}\left(1_{7}\right\} \ell_{5}\right)\right) \\
& +\dot{\theta}_{4}\left[T_{3}\left(\theta_{7}\right)\right]^{T}\left[T_{2}\left(\theta_{2}+\theta_{3}\right)\right]^{T}\left[\frac{d T_{2}\left(\theta_{4}\right)}{d \theta_{4}}\right]^{T}\left(\left\{1_{1}\right\} \ell_{4}+\left[T_{3}\left(\theta_{5}\right)\right]^{T}\left\{1_{1}\right\} l_{5}\right) \\
& +\dot{\theta}_{5}\left[T_{3}\left(\theta_{1}\right)\right]^{T}\left[T_{2}\left(\theta_{2}+\theta_{3}+\theta_{4}\right)\right]^{T}\left[\frac{d T_{3}\left(\theta_{5}\right)}{d \theta_{5}}\right]\left[1_{1}\right) \ell_{5} \tag{C-7}
\end{align*}
$$

After performing a considerable amount of algebra on eq. (C-7), the following result can be obtained.

$$
\begin{align*}
& {\left[T_{2}\left(\theta_{2}+\theta_{3}+\theta_{4}\right)\right]\left[T_{3}\left(\theta_{1}\right)\right](v)=\dot{\theta}_{1}\left(-c\left(\theta_{2}+\theta_{3}+\theta_{4}\right) S \theta_{5} \ell_{5}\left[1_{1}\right)-s\left(\theta_{2}+\theta_{3}+\theta_{4}\right) S \theta_{5} \theta_{5}\left(l_{3}\right) \quad .\right.} \\
& +\left(c \theta_{2} \ell_{2}+c\left(\theta_{2}+\theta_{3}\right) \ell_{3}+c\left(0_{2}+\theta_{3}+\theta_{4}\right)\left(\varepsilon_{4}+C \theta_{5} \ell_{5}\right)\right)\left(\theta_{2}\right) \\
& +\dot{\theta}_{2}\left(\left(s\left(\theta_{3}+\theta_{4}\right) \ell_{2}+5 \theta_{4} \ell_{3}\right)\left(l_{1}\right)+\left(-c\left(\theta_{3}+\theta_{4}\right) \ell_{2}-c \theta_{4} \ell_{3}-\left(\varepsilon_{4}+c \theta_{5} \lambda_{5}\right)\right)\left(l_{3}\right)\right) \text {. } \\
& \left.+\dot{\theta}_{3} 5 \theta_{4} \ell_{3}\left[1_{1}\right]+\left(-C \theta_{4} \ell_{3}-\left(\ell_{4}+C \theta_{5} \ell_{5}\right)\right) r_{3}\right] \\
& +\dot{\theta}_{4}\left(-\left(\ell_{4}+C \theta_{5} \ell_{5}\right)\left\{1_{3}\right\}\right)+\dot{\theta}_{5}-\left(\left\langle\theta_{5} \ell_{5}\left\{l_{1}\right\}+C \theta_{5} \ell_{5}\left\{\imath_{2}\right\}\right)\right. \tag{C-8}
\end{align*}
$$

Eqs. ($C-5$) and ($C-8$) are the equations to be solved. First, let us make the following definitions.

$$
\left[\begin{array}{l}
b_{1} \tag{c-9}\\
b_{2} \\
b_{3}
\end{array}\right]=\left[T_{2}\left(\theta_{2}+\theta_{3}+\theta_{4}\right)\right]\left[T_{3}\left(\theta_{1}\right)\right]\{\omega\}
$$

$$
-\left[\begin{array}{l}
b_{4} \tag{C-10}\\
b_{5} \\
b_{6}
\end{array}\right]=\left[T_{2}\left(\theta_{2}+\theta_{3}+\theta_{4}\right)\right]\left[T_{3}\left(\theta_{1}\right)\{v\}\right]
$$

Also, we will define

$$
\begin{align*}
& a_{11}=-S\left(\theta_{2}+\theta_{3}+\theta_{4}\right), \quad a_{16}=C \theta_{5}, \quad a_{22}=a_{23}=a_{24}=a_{35}=1 \\
& a_{26}=S \theta_{5}, \quad a_{31}=C\left(\theta_{2}+\theta_{3}+\theta_{4}\right), \quad a_{41}=-C\left(\theta_{2}+\theta_{3}+\theta_{4}\right) S \theta_{5} l_{5} \\
& a_{51}=C \theta_{2} \ell_{2}+C\left(\theta_{2}+\theta_{3}\right) l_{3}+C\left(\theta_{2}+\theta_{3}+\theta_{4}\right)\left(l_{4}+C \theta_{5} \ell_{5}\right) \\
& a_{61}=-S\left(\theta_{2}+\theta_{3}+\theta_{4}\right) S \theta_{5} l_{5} \\
& a_{42}=S\left(\theta_{3}+\theta_{4}\right) l_{2}+S \theta_{4} \ell_{3} \\
& a_{62}=-C\left(\theta_{3}+\theta_{4}\right) \ell_{2}-C \theta_{4} l_{3}-\left(l_{4}+C \theta_{5} \ell_{5}\right) \\
& a_{43}=S \theta_{4} l_{3} \\
& a_{63}=-C \theta_{4} \ell_{3}-\left(l_{4}+C \theta_{5} \ell_{5}\right) \\
& a_{64}=-\left(\ell_{4}+C \theta_{5} \ell_{5}\right) \\
& a_{45}=-S \theta_{5} \ell_{5}, \quad a_{55}=C \theta_{5} \ell_{5} \tag{C-11}
\end{align*}
$$

Using the definitions in eqs. (C-9) - (C-11), we can write

$$
\begin{equation*}
[\mathrm{A}]\{\dot{\theta}\}=\{\mathrm{b}\} \tag{C-12}
\end{equation*}
$$

or ..

$$
\left[\begin{array}{cccccc}
a_{11} & 0 & 0 & 0 & 0 & a_{16} \tag{C-13}\\
0 & 1 & 1 & 1 & 0 & a_{26} \\
a_{31} & 0 & 0 & 0 & 1 & 0 \\
\dot{a}_{41} & a_{42} & a_{43} & 0 & a_{45} & 0 \\
a_{51} & 0 & 0 & 0 & a_{55} & 0 \\
a_{61} & a_{62} & a_{63} & a_{64} & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\dot{\theta}_{1} \\
\dot{\theta}_{2} \\
\dot{\theta}_{3} \\
\dot{\theta}_{4} \\
\dot{\theta}_{5} \\
\dot{\theta}_{6}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4} \\
b_{5} \\
b_{6}
\end{array}\right]
$$

Because of the sparseness of the. [A] matrix in eq. (C-13), it is convenient to write the $\dot{\theta}$'s explicitly. From eq. ($C-13$) we can write

$$
\left[\begin{array}{cc}
a_{31} & 1 \tag{C-14}\\
a_{51} & a_{55}
\end{array}\right]\left[\begin{array}{l}
\dot{\theta}_{7} \\
\dot{\theta}_{5}
\end{array}\right]=\left[\begin{array}{l}
b_{3} \\
b_{5}
\end{array}\right]
$$

or

$$
\left[\begin{array}{l}
\dot{\theta}_{1} \tag{c-15}\\
\dot{\theta}_{5}
\end{array}\right]=\frac{1}{a_{31} a_{55}-a_{51}}\left[\begin{array}{cc}
a_{55} & -7 \\
-a_{51} & a_{31}
\end{array}\right]\left[\begin{array}{l}
b_{3} \\
b_{5}
\end{array}\right] .
$$

Also from eq. (C-13)

$$
\begin{align*}
& b_{1}=a_{11} \dot{\theta}_{1}+a_{16} \dot{\theta}_{6} \\
& \dot{\theta}_{6}=\frac{1}{a_{16}}\left(b_{1}-a_{11}{\dot{\theta_{1}}}_{1}\right) \tag{C-16}
\end{align*}
$$

or

This leaves:

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \tag{c-17}\\
\therefore & & \\
a_{42} & a_{43} & 0 \\
a_{62} & a_{63} & a_{64}
\end{array}\right]\left[\begin{array}{l}
\dot{\theta}_{2} \\
\dot{\theta}_{3} \\
\dot{\theta}_{4}
\end{array}\right]=\left[\begin{array}{c}
b_{2}-a_{26} \dot{\theta}_{6} \\
b_{4}-a_{41} \dot{\theta}_{1}-a_{45} \dot{\theta}_{5} \\
b_{6}=a_{61} \dot{\theta}_{1}
\end{array}\right]
$$

which yiẹlds

$$
\left[\begin{array}{c}
\dot{\theta}_{2} \tag{C-18}\\
\dot{\theta}_{3} \\
\dot{\dot{\theta}}_{4}
\end{array}\right]=\frac{1}{a_{43}\left(a_{64}-a_{62}\right)-a_{42}\left(a_{64}-a_{63}\right)}\left[\begin{array}{ccc}
a_{43} a_{64} & a_{63}-a_{64} & -a_{43} \\
-\quad-\quad . & a_{42} a_{64} & a_{64}-a_{62} \\
a_{42} \\
a_{42} a_{63}-a_{62}{ }^{a_{43}} & a_{62}-a_{63} & a_{43}-a_{42}
\end{array}\right]\left[\begin{array}{c}
b_{2}-a_{26} \dot{\theta}_{6} \\
b_{4}-a_{41}-a_{45} \\
b_{6}-a_{61} \dot{\theta}_{3}
\end{array}\right] .
$$

This completes the development of the desired equations. It should be noted that the following singularity conditions exist, which follow from the divisors appearing in eqs. ($\mathrm{C}-15$), ($\mathrm{C}-16$), and ($\mathrm{C}-18$):

$$
\begin{align*}
& C \theta_{2} \ell_{2}+c\left(\theta_{2}+\theta_{3}\right) l_{3}+c\left(\theta_{2}+\theta_{3}+\theta_{4}\right) l_{4}=0 \\
& c \theta_{5}=0, \quad S \theta_{3}=0 . \tag{c-19}
\end{align*}
$$

APPENDIX D

LINE-OF-SIGHT STEERING AND AXIS-OF-ROTATION STEERING

The purpose of this appendix is to develop the equations used in the line-ofsight steering and the axis-of-rotation steering of the SVDS RMS kinematic capability. In line-of-sight steering, the tip of the end effector is commanded to move along a line from its initial position to its final commanded position. In axis-of-rotation steering, the end effector coordinate system is rotated about its single axis of rotation to change its orientation from its initial orientation to its final commanded orientation.

LINE-OF-SIGHT STEERING

The direction of the line of sight is first determined, and a unit vector in this direction is computed.

$$
\begin{equation*}
\{\Delta r\} \doteq\left\{R_{f}\right\}-\left\{R_{I}\right\} \tag{D-1}
\end{equation*}
$$

where.
$\left\{R_{f}\right\}$ is the final desired position vector expressed in the orbiter system relative to the $\overline{C M}$ of the orbiter
$\left\{R_{T}\right\}$ is the initial position vector
$\{\Delta r\}$ is the position vector representing the change in position desired

Compute the distance to be traveled as

$$
\begin{equation*}
d=\sqrt{\{\Delta r\}^{\top}\{\Delta r\}} \tag{D-2}
\end{equation*}
$$

and the unit vector in the direction of the desired velocity as

$$
\begin{equation*}
\left\{u_{T}\right\}=\frac{1}{d}\{\Delta r\} \tag{D-3}
\end{equation*}
$$

Next, assuming an initial velocity of zero and an acceleration and velocity limit, compute the times of the acceleration discontinuities. for a trapezoidal velocity time history. Determine if maximum velocity will be reached by computing -

$$
\begin{equation*}
d_{m}=v_{m}^{2} / a_{m} \tag{D-4}
\end{equation*}
$$

If d is greater than d_{m}, then maximum velocity will be reached and the velocity command profile will be

$$
\begin{align*}
& t_{1}=\frac{V_{m}}{a_{m}} \\
& t_{2}=\frac{d_{m}-d}{V_{m}}+t_{1} \\
& t_{3}=t_{2}+t_{1} \tag{D-5}
\end{align*}
$$

and

$$
\begin{align*}
& \left\{V_{c}\right\}=a_{m} t\left\{u_{T}\right\} 0<t \leq t_{1} \\
& \left\{v_{c}\right\}=V_{m}\left\{u_{T}\right\} t_{1}<t \leq t_{2} \\
& \left\{V_{c}\right\}=a_{m}\left(t_{3}-t\right)\left\{u_{T}\right\} t_{2}<t \leq t_{3} \tag{D-6}
\end{align*}
$$

If d_{m} is greater than d, then maximum velocity limit will not be reached and the actual maximum velocity can be computed as

$$
\begin{equation*}
v_{m}^{*}=\sqrt{a_{m}^{d}} \tag{D-7}
\end{equation*}
$$

This leads to the following times and velocity commands:

$$
\begin{align*}
& t_{1}=\frac{v_{m}^{*}}{a_{m}} \\
& t_{2}=t_{1} \\
& t_{3}=2 t_{1} \tag{D-8}
\end{align*}
$$

$$
\begin{align*}
& \left\{V_{C}\right\}=a_{m} t\left\{u_{T}\right\} 0<t \leq t_{1} \\
& \left\{V_{c}\right\}=a_{m}\left(t_{3}-t\right)\left\{u_{T}\right\} 0<t \leq t_{3} \tag{D-9}
\end{align*}
$$

AXIS-OF-ROTATION STEERING

The algorithm for computing the desired angular velocity command requires the transformation matrix to the initial orientation and the transformation to the desired final orientation. The transformation from the initial orientation is then computed and the axis of rotation and the angle of rotation are extracted from this matrix.

$$
\begin{equation*}
\left[\mathrm{B}_{\mathrm{FI}}\right]=\left[\mathrm{B}_{\mathrm{F}}\right]\left[\mathrm{B}_{\mathrm{I}}\right]^{\mathrm{T}} \tag{D-10}
\end{equation*}
$$

Using eq. (A-4), we can write

$$
\begin{equation*}
\left.\left.\left[B_{F I}\right]=\left(\Gamma_{I}\right\lrcorner-\sin \theta[\underline{u}]+(]-\cos \theta\right)[\underline{u}]^{2}\right) \tag{D-11}
\end{equation*}
$$

From (D-11); we see that

$$
\begin{equation*}
[B]=\frac{\left[B_{\mathrm{FI}}\right]^{\mathrm{T}}-\left[\mathrm{B}_{\mathrm{FI}}\right]}{2}=\sin \theta[\underline{[u]} \tag{D-12}
\end{equation*}
$$

Eq. (D-12) can be used to compute the axis of rotation if θ is not equal to 180°. Compute

$$
\begin{align*}
& W_{1}=\left(B_{32}-B_{23}\right) / 2 \\
& W_{2}=\left(B_{13}-B_{31}\right) / 2 \\
& W_{3}=\left(B_{21}-B_{12}\right) / 2 \tag{D-13}
\end{align*}
$$

and

$$
\begin{equation*}
\{w\}=\sin \theta\{u\} \tag{D-14}
\end{equation*}
$$

so

$$
\begin{equation*}
\sin \theta=\sqrt{\{w\}^{\top}\{w\}} \tag{D-15}
\end{equation*}
$$

$$
\begin{equation*}
\{u\}=\frac{1}{\sin \theta}\{W\} \tag{D-16}
\end{equation*}
$$

If $\sin \theta=0$, then it must be determined if the angle of rotation is 0 or 180° and if $\theta=180^{\circ}$, what is the axis of rotation. The trace of $\left[B_{F I}\right]$ is examined: if the trace is 3 , then $\theta=0$; if the trace is 1 , then $\theta=180^{\circ}$.
: To determine the axis of rotation for the case where $\theta=180^{\circ}$, the following formulas can be used
$[\mathrm{Cl}]=\frac{1}{2}\left(\left[{ }^{\left.\left[B_{F I}\right]-r_{I}\right)}=\frac{1}{2}(1-\cos \theta)[\underline{u}]^{2}=\left[\underline{u_{1}}{ }^{2}=\left[\begin{array}{ccc}-\left(u_{2}^{2}+u_{3}^{2}\right) & u_{1} u_{2} & u_{1} u_{3} \\ u_{1} u_{2} & -\left(u_{1}^{2}+u_{3}^{2}\right) & u_{2} u_{3} \\ u_{1} u_{3} & u_{2} u_{3} & -\left(u_{1}^{2}+u_{2}^{2}\right.\end{array}\right]\right.\right.\right.$.
and

$$
\begin{equation*}
\sum_{i=1}^{3} u_{i}^{2}=1 \tag{D-17}
\end{equation*}
$$

From the diagonal elements of [C] the magnitudes of the components of $\{u\}$ can be determined using the following formulas.

$$
\begin{align*}
\operatorname{Abs}\left(u_{1}\right) & =\sqrt{\frac{1}{2}\left(c_{11}-c_{22}-c_{33}\right)} \\
\operatorname{Abs}\left(u_{2}\right) & =\sqrt{\frac{1}{2}\left(c_{22}-c_{71}-c_{33}\right)} \\
\operatorname{Abs}\left(u_{3}\right) & =\sqrt{\frac{1}{2}\left(c_{33}-c_{11}-c_{22}\right)} \tag{D-19}
\end{align*}
$$

Next, determine the component with maximum magnitude and assume it to be positive. Assuming u_{j} is this element, then

$$
\begin{equation*}
u_{i}=\frac{C_{j i}}{u_{j}} \quad j \neq i \tag{D-20}
\end{equation*}
$$

The same technique is used for the determination of the magnitude of the commanded angular velocity, as was used in the line-of-sight steering.

DISTRIBUTION:
F. Barnes/LEC
E. Copeland/LEC

D: Peticolas/LEC (7)
K. Richards/LEC
D. Scott/LEC
M. Voss/LEC
.F. Williams/LEC
C. Coliwell/MDAC
E. Pyron/MDAC

JSC /C. Gott/FM4
R. McAdams/FM4
E. McHenry/FM6
H. Sullivan/FM6
R. Weber/FM4

[^0]: *See Appendix A for a development of the equations used in this routine.

[^1]: *See Appendix A.

[^2]: *The same coordinate syṣtems are used as defined in Appendix A.

