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ABSTRACT

The guiding center motion of particles in a 'nearly' drift free magnetic

field is analyzed ir order to investigate the dependence of mean drift velocity

on equatorial pitch angle, the variation of local drift velocity along the

trajectory and other properties. Consider a 2-dimensional magnetic field B .4N

somewhat resembling the field of the geomagnetic plasma sheet, which has the

following properties: (1) No y component and no y dependence (2) Bx = 0 in the

equatorial plane z = 0 and (3) Bz = Bo = constant. In such a field, , it
has been shown, particles may be trapped, but they exhibit no net drift in the

y direction: their instantaneous drifts at any time may be large, but when they

are averaged over a sufficiently long time (or, for adiabatic particles, over

a bounce period) the result is zero. Here a slight modification of this mode is

explored -- motion in ,a field in which Bz slowly varies in the x direction,

as is indeed observed in the geomagnetic tail. The mean drift <v y '>  for

adiabatic particles can now be expressed by means of elliptic integrals: it

no longer vanishes but is merely small -- if v  is the drift velocity for

equatorial particles (which is easily derived), <vy is typically between

v  and vo/3 . By cntrast, instantaneous guiding center drift velocities at
z = 0 may be 50 times larger. Explicit approximations to the twice-averaged

Hamiltonian W(d , µ, J) near z = 0 are also derived, permitting simple

representation of drift paths if an electric potential 0(0(, J ) also exists.
In addition, the use of W or of expressions for the longitudinal invariant

allows the derivation of the twice averaged Liouville equation and of the

corresponding Vlasov equation. Bounce times are calculated (using the drift-free

approximation), as are instantaneous guiding center drift velocities, which are

then used to provide a numerical check on the formulas for <vy> .

J.
J
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INTRODUCTION

It has been shown C Stern and Palmadesso, 19751 that in two-dimensional

magnetic fields of the form

B = Bx(z) 0 t B z N	 (I)

( Bz a non-zero constant, Bx (0) = 0 ) charged particles trapped in

the vicinity of the equatorial plane z = 0 where the field intensity is

weakest do not experience any net magnetic drift in the y direction. In

the guiding center mode of motion, such particles do experience a non-zero

curvature and/or gradient drift at any point of their trajectory. However,

when the effects of such drifts are summed up over one entire bounce period

between mirror points, it is found that independently of the strength 
BM

of the mirror-point field, the net effect of all such drifts cancels out

so that the guiding center merely wobbles back and forth in the neighborhood

of one fixed guiding field line (Figure 1) .

The field (1) is not curl-free and thus is not expected to be formed in

space plasmas, since a net transport of charge is required for maintaining

it ( Stem and Palmadesse, 1975) However, there do exist fields which

deviate only moderately from (1) -- in the plasma sheet of the earth's

magnetosphere, in the Jovian magnetodisk, in "spiked helmet" configurations

in the solar corona 
l 
Schatten, 1g711 and possibly in the large-scale structure

of the interplanetary magnetic field I Smith et al., 19761 . In such "nearly

drift free" fields the net drift of particles is not zero but merely small,

so that a relatively high plasma density can be contained in them without

creating too high a current density, which might disrupt the magnetic geo-

metry. Thus nearly drift free fields may be nature's way of containing high-?

N"
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plasmas effectively, and perhaps this is the reason why they seem to occur

as frequently as has been observed.

The purpose of this work ie to analyze guiding center motion in what

may well be the simplest type of a nearly drift free field, namely the field

where

k/.% = E C< 1

In such a field, as will be seen, :acteristic quantities such as bounce

times, longitudinal invariants and mean drift rates are readily expressed in

terms of elliptic integrals, and appendix A develops some.of the mathematical

tools required for handling them.

One questions which this study answers concerns the dependence of mean

drift velocities on equatorial pitch angle. For particles in the field (2)

confined to the equatorial plane z = 0 the mean drift velocity vy (which

equals the gradient drift experienced there -- see Stern and Palmadesso 119733
	

I

equation 7 ) is readily computed. How does v  vary as the equatorial pitch

angle is decreased? The results derived here (see Table 1 ) suggest that

the variation is relatively slow, so that for many purposes results obtained

for z = O can be used as a crude approximation.

The study also shows that although the average drift velocity of particles

in such fields is slow, the curvature and gradient velocities observed at

different points along their trajectory may be quite large. Thus if a distri-

bution of such particles is observed only in some selected region along their

trajectories -- e.g., near the equatorial plane -- misleading values for their

average bulk velocity could be deduced.

.r..
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THE LONGITUDINAL INTEGRAL

Consider a somewhat more general two-dimensional field which includes

both (1) and (2) as special cases

B- = Bx (z) Ax + Bz (x)	 (3)

where we assume as before that Bx (0) = 0 and that the field is weakest

at z = 0 , so that trapping can occur. Introducing Euler potentials (o(, )

B	 Vd x 7 	 (4)

a convenient choice of these functions is provided by

oC =	 J Bz dx - J Bx dz	 (5a)

J	 = y	 (5b)

We now define the longitudinal integral I for a particle with kinetic

energy W and mirroring field intensity BM by'means of

J = (2mW)1/2	( 1 - B(z)/Bm )1/2 ds

= (2mW) l/2 I	 (6)

with integration performed along a field line between mirror points. Along a

field line

1

ds _	 dz _ dx
B	 B	 Bz	 x (7)

and hence

I =	 ( 1 - B/Bm ) 1/2 (B/Bz ) dz
	

(8)

1
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However, calculations are considerably simplified if z is replaced as

integration variable by the field magnitude B . From (3)

B2 =	 B2(z) + B2 (x)	 (9)

Hence along a field line, using (7) and assuming independent variables

(d, z)

B dB =	 Bx dBx/dz + Bz (dBz/dx)('bx/'azi, ] dz

	

Bx ( d$x/dz + dB z/dx ) dz	 (10)

Thus

I _

	

	 ( 1 - B/Bm) 1/2 B2	 dB	 {I1)
Bz Bx (dBx/dz + dBz/dx)

THE LIMIT £ - ► 0

Quantities such as I derived for (2) will differ only by corrections of

order £ from their values for the drift-free limit E = 0 The calculation

will thus begin with an analysis of that limit, using

	

B z = Bo = constant	 (12a)

B2 = A2 z2/4 + BG	 (12b )

Bx(dBx/dz) = 2 a (B2 - Bo)	 (12c)

Bm
1/2 2

I = (A,/ a Bo 
Bml/2)	

S

	 (Bm - B )	 B dB	 (13 )
(B2-Bo) 2

B0

I

as-
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Here we have assumed for simplicity Bx(z) _ - B,(-z) ; in the absence of such

symmetry, I will be proportional to the sum of two integrals of the form (13),

one for z > 0 and the other for z < 0 . The calculation then proceeds as

outlined below and leads to similar conclusions, but I everywhere contains the

sum of two distinct integrals. In the present case the integral depends on two

independent parameters Bo and Bm , but only one such parameter remains if B

is replaced by the dimensionless variable u

u = B/Bo 	(14a)

um = Bm/Bo 	(14b)

Then
UM 

U2 u 
)1/2

I = (8 Bo/^► uml2)	
^ u (um "	

du
(u2 - 1) 1 2

1

(8 Bo/Num/2 ) S2 (um)
	

(15)

where 82 is expressible in terms of elliptic integrals K and E of the

argument m , where m2 = (um-1)/(um + 1) (see appendix A), namely

S2 = (2/15) (um+1)1/2 CE (2 e. - 9) + K (9 - 2 um)]	 (A-10)

THE HAMILTONIAN W FOR £ = 0

For some applications it is useful to express the kinetic energy W in

terms of (J, µ, v(, P), a procedure which makes it possible to write down

a Hamiltonian for the twice-..veraged motion C Northrop and Teller, 1960

Chen and Stern, 1815 
I. 

Substituting (6) in (15) gives

J/(2mW) 1/2 = (8 Bo /aural/2) S2 (UM)(16)

One now substitutes on the left

W = µ Bm = µ um Bo	 (17)

giving



t

_7
1

J µ-1/2 = N S2 (um) = N B2 (W/µ Bo)
	

(18)

where

N = 8 (2 m Bo )1/2 / ^	 constant	 (19)

Equation (18) clearly shows that W is independent of (o(,t ), as is

required for the drift-free property of the field in the limit 	 0 .

Furthermore, in this limit the dependence of W on µ and J may be

expressed by a function of a single variable -- namely, W/µ depends only

on the single variable F = J µ-1/2 : this property is common to geometries

free from electric fields, as was shown by Taylor [19641 .

The functional form of W is defined by the integral relation (6)

and in order to extract it explicitely that relation must be inverted,

which tends to be a difficult task. Fortunately, the most significant

applications of W only require its derivatives, which through the canonical

equations of motion C Northrop and Teller, 1960, eqs. 301 give the bounce
averaged drift rates and which also, through Liouville's theorem, allow

the twice-averaged Vl%sov equation to be expressed. These derivatives are

most easily obtained by implicit differentiation of (6), and this is the

line which will be adopted in deriving the mean drift velocities when

F' i 0 .

The explicit form of W is required mainly for deriving contours of

constant Hamiltonian K C Northrop and Teller, 19601 . In a time-independent
orthogonal to B

magnetic field for which W is known and where an electric fieldAis present

and is expressed by its scalar potential J (a(, P) , such contours are

easily drawn and provide a quick visualization of the motion of charged
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particles through the given configuration. Chen and Stern [lW5] derived

the limiting forms of W for a dipole field in the limits J = 0 (equatorial)

and µ = 0 , and proceeded to bridge these two extreme cases for intermediate

values of (J, µ) with an analytical approximation accurate within 1 910 . Here

only the form of ^W for near-equatorial particles will be developed.

.r• 4

In the limit J = 0 , (17) gives

W = µ Bo
	

(20)

Consider next a particle with a small but nonzero value of J ; in that

case it is useful to introduce a new variable w

W = u - 1	 (21a)

wm = um- 1 = lW AO ) - 1	 (21b)

S2 (um) = 82 (wm)	 (21c)

and to denote for convenience

F = J µ if 2	 (22)

Then (18) gives

FIN = S2 (W/µBo - 1)	 (23)

and one sees that in order to obtain W(µ, J) in explicit form it is required

to invert the function S2 To lowest order (obtained either by approximating

the integral in (15) for small values of wm or by inserting appropriate

series expansions of E and K in equation A-10) one finds 	 _-

g2 (wm) "' (4"2 7f/4) wm	 (24)
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leading to

W - µ Bo [ 1 + (2'1r2/X ) FIN]	 (25)

Equation (24) also leads to the approximation

I	 (2 'r 2	 (Bm - Bo )	 126)	 -

which for the geometry discussed here forms the counterpart of an approxi-

mation devised by Schulz [1971 ; eq. 10] for I in the dipole field.

Using additional terms in the expansions of K and K gives as generali-

zation of (24)

S2 	 Jf /4) 
L

W + (7/16) W2 + (19/256) wa ]	 (27)

Neglecting the last term and inverting the relation which remains then gives

	

W M µ Bo 1 + (8/7) C ( 1 * 1.5756 J µ 1/2/x)1/2 - 1])	 (28)

where N is the constant given by (19). This relation is accurate to about

1 0/0 up to u® -1.5 .
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THE BOUNCE TIME

The time for one full back-and-forth oscillation, evaluated in the limit

E = 0 by the same methods as those used for I , is

_
do

UM

(8 Bo um 2/A V )	 u du
	

112	 k29)(	
u 1 lgum -	 (u - 1)

1

The integral expressed here will be denoted by I' and one easily sees

that

I' = 2 dS2/dum	(30)

(compare Schulz [1971 , eq. 7 ). To evaluate I' it is best to

split it into two parts

_
(u2_ 

1) 1/2	 du1I	 um- u	 du
	

( _ 
u}

1 
2 (u2 - 111/`

I 1 ♦ I2	 (31)

Integrating by parts,one finds ':,hat I 1 reduces to one of the class of

integrals analyzed in appendix A , namely

I1 = 2 8 1	 (32)

The second integral may be handled by standard substitutions whi2h lead

to elliptic integrals (e.g. Milne -Thomson (1964) , page 597 ) and is

given by

.s-

i
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I2 - 2 (um +3.) 1/2 K(m)	 (33a)

where K is a complete elliptic integral of the first kind and its

argument m (which also appears in the terms of eq. 32) satisfies

M2 
_ (um- 1)/(um+l)	 (33b)

A tabulation of T = 2 um/2 I' is given in table 1 . The conversion of

these values to actual time intervals requires multiplication, by 4 Bo/ >v

in conditions appropriate to the earth's magnetotail

BL,/a
 m 1 Re

and for 1 keV protons T turns out to be approximately equal to 'r in

minutes. For 1 keV electrons, 1.36 T approximates T in seconds.

NORMALIZED CALCLWION FCR E # 0

Before calculating the motion of charged particles in the field (2) ,

it is useful to transform the equations to dimensionless form, since that

reduces the number of independent variables and therefore allows the

same result to be used for a large variety of situation . auch transfor-

mations are usially accomplished by scaling, -- e.g. dividing all distances

by a scale length. In the present system a natural scale length is

	

L	 -	 Bo ,, 'a
	

(34)

One can visualize L as follows. In the limit E= 0 any field line

follows a parabola

	

e(	 - AZ 2 /4  + P ox = constant	 (35 )

r r
I
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Along this parabola the direction of B gradually rotates from being

orthogonal to the x axis to being parallel to it. The point at which B

has rotated by 450 -- half its total rotation range -- occurs when Bx= Bz

and is L/2 above or belowthe equatorial plane. As noted at the end of

the preceding section, in the earth's magnetotail L ar 1 	 We now use

L to define scaled distances

3 3 Z/L	 (36a)

= x/L	 (36b)

and also introduce a scaled magnetic field

emu, = B j Bo	 (37a)

and a scaled Ruler potential

C(' =	 at /BoL	 (37b)

The dependence of ^ and 1M1 on I is depicted in Figure 2 .
With these variables, the basic relations become

u = 2 N + (1 t 2 b ) z	 (38)

of 	 + 't2 /4 - S2/4
	

(39)

1i Bx/'a z = a -b ux/I

	

'D Bzleb x	 ^ a uz/'at

Substituting in (11)

	

j

UM

I = 4L	
(1 I/um)1/2 uZ du

UX du d + du d
u(o) 

z 	 ( xj Z	 z/

4 ^	 -

G

(40a)

(40b)

(41)



,.

-	 f

3
L^

From (3$} the sum in the denominator is simply (I t 0/2 The cents

of are also easil :r Aerived, but their functional dependence must be trans
-formed from {,) to (u, oj`) in order to suit the integration. If terms of

order £ 2 or smaller are neglected, one finds

U2	 ^2A +i +E
12/4++ 1 + t	 ^/)	 (42)

(1 +,) ux	 u2

uX ( u2 - 1 - 
£x,)1/2 (I + f ) "112	 {3)

From (38), (39) sad (43), using (39) only to lowest order

uZ 1 + Eg/2

1 + ( E /2) (oC + uX )

1 + t E/2)( W + u2 - 1)	 (4+)

Substituting everything in (41) one obtains the form of I to order le as

UM

I = y um1/2	 (u - um ) 112 u2 du
(^+5 }

uo t1+(F/2 }{C< '+ u2 - 1) (u2- 1 - hoc')

where
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Note that the dependence on .t' must be preserved even if we choose to

deal with the field line at' - 0 , since ObI/q o(' is required in the

calculation of mean drift velocities. Introducing a new variable w (not

related to w in equation 21) through

	

wv = u2 - E d 	 {4'a)

we get

	

uw L 1 +£(c(' /2w2 }1 	 (48)

um u	 (wm - w) Cl - £( d'/2 w wm)] (49)

Thus to order £
wm

1/2
I =(wm w }	 1 + 

E	
+ w2-	 dw

	

{ 	 _ 	 _ o(	 1)
 w2 - 

1 1 2	 C	
w2	 4 w w

.:72
m	 {	 )	 2	 m	 2

1

1/2	 S2 
(vm) t	 { d' So/2 - o(' S1/4 wm - { at ' - 1) S2 /2 - S4/2)

UM

(50)

f



where by (47b)

wm = wm (um, of ' ) = wm(W/who, 0( ' )	 (53)

The last two relations implicitely express the functional relationship

W = W ( a( , µ, J)	 (54)

Differentiating by a('

O	 ,a c(' I I' + - I' r 1 D wm Z W t I wm	

(55 )'?a	 -	 -jwm \ ^o -a um ^d	 °a of

Only errors of higher order are committed if we set both 	 and 'I wzq/pa um

equal to 1 and if we evaluate (in the expression below) 'aI'nt wm only

to ihf- lowest order. This gives

i WW ft	 - µ	 'a I' ds2 '^wm
ad	 f1s2/ dum	 10(' + dum 7i d'	 (56)

From (48)

'J wm/-ao(' - - E/2 um	 (57)

hence

"aW	 EIA L	
Iso/2 - S 1/4 um - S2 /2 - ( ds2/ "M) /2 

umJ 
(58)

ad - - ds2 dum



t'

An independent numerical integration of guiding center drifts in the field

(2) was performed which

	

	 served as a check
which

on the analytical formula (58) and also provided information about the mean

drift velocity in various portions of the orbit and about the time spent

by the particle in these portions. In performing these numerical checks some

additional scaling was introduced, in the following way.

The mean drift velocity <v Y >  may be derived from (58) by the relation

	

q <vy^* _ "d = - 
f	

f (um )	 (59)
0

where f(um) is the function defined by (58) ; note that since 7t Wf'D d is

expressed in terms of the derivatives of I (see eq. 55) , we are actualiy

using equations (27) of Northrop and Teller [ 1960] , rather than equations

(30) there. Let a scaling velocity vo be defined

Vo = 4 k m v2/q Bo	 (60)

As will be seen below (equation 72), v o is the gradient drift velocity for

equatorial particles U = 0), also given by equation (7) of Stern and

Palmaddesso [1975] . By (59)

v 
	 = - 2 vo f(um)/um	 (61)

One may also devise a "scale time" to for the bounce motion

to = L/v = Bo/;k v	 (62)

so that (29) becomes

E ^ I
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UM

	

' = 8 to um/2	 u2(um- u)(u2- 1)] -1/2 du	 (63)
i

Table 1 lists <v,> /vo and T/4to for selected values of um , obtained

by means of (58) and (63), and Figures 3 and 4 represent these functions

:graphically.

Let vy (without averaging brackets) be the guiding center drift velocity

of particles with given vo and um , computed for various points of the

trajectory. For such particles

	v y) -r _ f vy dt	 (64)

This relation allows { v y > to be derived numerically, but one must proceed

with caution, because the integral has to be evaluated to an accuracy of the

first order in E . Transforming the integration variable by means of a

zero-order relation between t and some other variable (e.g. u or z )

may lead to a finite error even if v  in the integrand is given eorrectly

to order E . One may, however, us (7), which is exact, to obtain

	

v  >	 = 
J (v

y/v,, ) ds

J	 Zm

4 um/ 2	 vy u dz
_

v	 f uz (um 
.7	 (65 )

0

where z  corresponds to the mirror point. Note that at the uVper limit

the integrand diverges, so that a different mode of numerical integration may

be required for the vicinity of the mirror point: one convenient device for

accomplishing this is described in appendix B .

t
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THE	 DRIPT VRJ=3 'Y

All guiding center drifts in the field (2) are in the	 y	 direction and

therefore can be added or subtracted algebraically. This follows from the

observation that the components constituting these drifts (see below) are

aligned either with	 B x V e	 or with	 V x B` . In the first case

B X V B2 	-	 y t - a3 Z2/4 ♦ Bp k )
IV

N

and in the second one

b x B	 =y t hj2)tl - E)N	 M
(67)

The two principal components of ivy	 are the gradient drift

v =	(vj /20B2 )(B X VB) (68)

and the curvature drift

vc	 =	 (°a	 /W B)	 B x (B - VB )
N	 N NM

=	 (v2,, /WB)	 C(Vx B)+ B X VBI (69)

where	 W = qB/m	 is the gyration frequency. Then by (60)

v2j /2W B2	=	 2 vo/(k um u B) (70)

v2X /WB	 =	 4(vo/ku2 )(1 - u/um ) (71)

Thus

vg
3 	( -
	 + E )	 (72)

E UM u
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vc 	 =	 2 
6

(1 - 
um )	

+

2

u	 -	 t 01	 (73)

These results may now be inserted in (65) to obtain a numerical estimate

of < v,'> . Note that although vy may be separated in ( 72) and (73) into

parts of order vo and vo/g , the contribution of the latter part to

<vy> does not vanish but is merely of order vo , because the integration

path differs slightly from its limit for f- =  0 . This prevents one from

calculating <v y )• through (65) by summing up terms of the same order and

instead, one must include terms of lower order , the contributions of which

almost (but not completely) cancel out.

This in its turn demands a computing accuracy exceeding by a factor lf4-

the accuracy of the final result: the advantage is that a relatively simple

formula (65) can be used, avoiding the cumbersome transformations which lead

to (58). In practical evaluations, the numerical result agreed within a few

percent with (58); as an additional check, the time	 was also integrated

numerically, and the results were compared with (29).

Table 2 contains a sample result for a field with L = 0.01, for particles

mirroring at ^ = 1.4 , um = 1.2227. The fourth column tabulates values of

the integaand of (65), multiplied by the step size Az = 0.05 (for brevity,

only every alternate step is tabulated). while the 5th column gives the inte-

I

.r

grand of (63), multiplied by 2 um/2 A z . Analytical and numerical results

for the total displacement and time (equator to mirror point) are
listed, and the disp' .acements obtained analytically are shown in Figure 5 .
Note that the displacew-pt ie negative near the equator, where curvature drift

dominates, but is pozf-t'ive near the mirror points (the net drift is also posi-

tive). Note also that the drift ' velocity deduced for the point at the top of

the table is about 50 times larger, and in the opposite direction, than the

i
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A certain amount of caution should be excercised when the preceding results

are applied to observations, because the average drift velocity will not in

general equal the plasma's bulk velocity V 	 orthogonal tc the magnetic

field , To emphasize this point, consider the current density 3j carried

in a direction orthogonal to B by a plasma of particles of a single kind
N

only, e.g. electrons. If at any given point f is the distribution fanetion of

such particles and n their density, then their bulk velocity is

V♦ - (lfn)
J
 v, f d3v,	 (74)

ry	 A►  	 dw

and

jl = n q VA.N

On the other hand, if 4< vd> is the mean guiding center velocity and M
OW

the magnetic moment density, then

n gCMd> ♦ QK N 	 (76)

Unless V 9 M vanishes <Md> will in general differ from V A. . In particular,

one can envision static equilibria in which the plasma distribution function is

everywhere isotropic: by (74) Vj and	 both vanish, but <vd > may be

quite large.

As a concrete example, let B = B(x, Y) ^2 , n = constant and let all

particles have the same vj	Then no curvature drift exists and all particles

share the same gradient drift velocity, given by (68). However

M = - 2 Bv`	 B	 (77)

Vx^ _ 
- nmv;	

x VB	 (78)N	 2 Br-

and J.& of (74) vanishes (this still holds if populations of this kind with

different vi are superposed). Thus V = 0 while clearly <^ d > j 0

(75)
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THE CBBERBD VALTZ OF E

from
Bowling and Wolf [1974] have concluded 	 observations that at 30 RE

the average thickness of the plasma sheet is ow 2.5 RE , over which Bx changes

from 10 y to - 10 y . This implies

= 2 rOBx/1 z - 16 y /RE 	(79)

On the other hand, Behannon [1970 reports that at 30 RB , B z 1.87 y

and that the average value of B z changes from x = -20 % to x = - 40 R$

(x being negative on the nightside) by about 2.5 y , giving

k = 2 't BZ/'b x - 0.25 y/%	 (80)

Thus f,- 1/64 , which means that the order of approximation used here is

indeed an appropriate one for the geomagnetic tail at 30 % . At x - -20 FS

the plasma sheet is about twice as thick, suggesting X is close to half

its above value, while k I Behannon, 19701 is about twice the value

of (80) : fi is thus considerably larger, but the approximation will still hold.

GENERALIZATION

One can in principle extend the preceding calculation to more general

fields of the nearly drift-free type, e.g. to fields wi:h B z as in (2)

but with B. expanded in a more general fashion

Bx(z)	 = 2 ^ z f c2 Z2 + C3 23	 ...	 (81)
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where the series is presumed to converge and where even-numbered coefficients

vanish in a symmetric configuration. The complexity of the calculation,

however, increases rapidly with the addition of terms, and the use of

numerical formulas such as (65), with appropriate generalizations of (72)

and (73), may Well be quicker and less prone to errors than an analytical

approach. u.-.re we shall sketch out one relatively simple generalization -- the

derivation of the bounce time T in drift-free fields (Bz = Bo = const.)

where B. has the more general expansion ($1). To keep the calculation short

we will also assume that all even powers in (81) vanish, so that all bounce-time

integrals reduce to 4 times the integral between z = 0 and the mirror point

on either side. Thus

B - Bx(z) x } Bo z	 (82)J%f

Dividing by Bo and introducing new variables

u = ux (z) X + 
ti	

(83)

By (7), and with the notation used earlier, this gives

d. /v,,

UM

_ (4u1/2 / v )	 (um- U)-1/2 u ('7t Z/'b u ),d du	 ( )

1

Let the function Bx (z) in (81) have an inverse

z(B.)	 _	 ak Bx
	 (84)

k=1

where again in the symmetric case k only takes odd values, since z and BX

reverse signs together, and where a l = 2/)1 . Defining L and 3 as in (34),(36)



Ir

i

_23 _

UX

where

Ak	 ak B0-1 	 (86)

Thus

dz/du - (1/JI) d; /du ==	 k Ak u (u2- 1) (k/2 - 1)	 (87)

Defining t o as in (62)

_	 to um/ 2 	 k Ak Tk (um )	 (88)

k=1

where

UM
Tk = J (um u)-112 u2 (u2- 1)

(k-2)/2 du	 (80

1

Because k is odd, any Tk (except for T1 , which appears in (29) and

which has been derived earlier) may be expressed as a linear combination of

integrals of the type

UM

Vk =	 [ (u2- l) /(um- u) I 1/2 uk du	 l )

1

e.g.

T3 = V2

T5 n V4 - 2

By equations (A-8) and (A-6) these integrals can be expressed in terms nf

the integrals Sk of appendix A , using the relation

f	 I

..-

!•
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Vk a (2/um) I (k + 5/2)	 t 2 -	 (k + 3/S) °k	 (91)

If even-numbered values of k Fre also allowed in the expansion of B 

the calculation i s modified somewhat and integrals of the type (89)

corresponding to even values of k also appear. Such integrals do not have

to be expressed in terms of elliptic integrals but instead may be integrated

in closed form after a substitution w - um - u , since their integrand is

then a polynomial in w multiplied by w-1/2 .

CONCLUSION

This work derives for the first time the properties of adiabatic motion in

a tail-like two-dimensional magnetic configuration possessing a finite

Z T3,/"2x , which is essential for a net cross-tail drift. It derives

instantaneous and average drift velocities, bounce times, longitudinal invariants

and approximations to the adiabatic Hamiltonian, and the results are suitably

scaled to reduce as much as possible the number of independent parameters.

The mean drift velocity is (as expected) much smaller than the instantaneous

drift velocities encountered at typical points on the trajectory. It i ,- com-

parable to the drift velocity v 	 of particles confined to the Equatorial

plane, which are sensitive only to the small gradient ^,- B  : as pitch angles

decrease, this velocity becomes smaller and for the range investigated here it
pairs of

levels off around v o/3 . It is interesting to note that ifAneutral paints and

strong dawn-to-dusk electric fields are formed in the tail during 4^jhstorms (as

is widely believed), the gradient of B 	 will reverse its direction on Lhe

anti-sunward side of such points and particles drifting there will lose energy
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This slow drift suggests that in the plasma sheet of the magnetospheric

tail particles advance in the dawn-dusk direction rather slowly, at speeds

of the order of 1 - 2 %/hour . If an electric field of, say, 40,000 volts

exists across the sheet, the earthward convection of such particles will be

considerably more rapid. The present calculation does not apply to non- adiabatic

protons, which constitute an important part of the plasma sheet's population,

but because the present geometry differs only slightly from one which is

drift-free even for non-adiabatic orbits C Stern and Palmadesso 
1
19,51 , the

cross-tail motion even then is expected to be relatively slow.

It should be readily possible to extend this work to the magnetodisk

configuration observed near Jupiter. More generally, the results derived here

make available for a tail-like configuration quantities which are already

well-known for the dipole case and should make possible the generalization

of calculations for the dipole geometry to such configurations as well.

a- a



Appendix A : A CLASS OF I)MRALS

In the study of particle motion in nearly drift free configurations one

frequently encounters integrals of the form

u m

u)1/2

Sk (um,	
u k
	 m -u	 du

U2_

These integrals and their derivatives are readily expressed in terms of

complete elliptic integrals K(m) and E(m) of the first and second kind

e.g. Milne-Thomson, 19641	 of the argument

m	 (u 
m 

1) (u
m
 1)	 (A-2)

In what follows, unless otherwise is stated, K and E will be understood

to be evaluated for the above argument. The first two integrals of this type,

corresponding to k 0 a:. 1 may be expressed by standard substitutions

or by consulting tables (.Gradshte_,:n and Ryzh [1965] 	 integrals 3.141.4,

3-141.22 and 3.141-23); in either case oie finds

/
So	2 (u,+ 1)1 

2 
(K %)	 (A-3)

S1 	 (2/3) (um +1) 1/2 um E	 K	 (A-4)

For higher values of k a recursion formula ma
y be developed. Let

2_	 da
Qk	 (u
	 1) (um- u) 1/2 uk	(A-5)

where the implied limits of integration, here and in subsequent formulas, are

always those of (A-1) Multiplying numerator and denominator by (U'- 1) then gives

Ab. =



I	 i	 1___	 ___ -1 - _	 I	 l	 J --
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Qk-2	
Sk	 -	 Sk-2 (A-6)

On the other hand, integrating	 (A-1)	 by parts

S 
	 =	 J uk-1 (u

m- u) 1/2 	 d 
1(U 

2_ 1)1/2,

- (k- 2
) Qk-2 + (um/2)	 Vk-2 (A-7)

where	 Vk-2	 is defined in (90) and may be integrated by parts

Vk-2	 =	 - 2 1 (u2- 1) uk-2 d C(%- u)1/2J

=	 2 (k - 2) Qk-3 + 2 Sk-1 (A-8)

Substituting the last three equations in a way that eliminates all integrals

not of the form (A-1) yields the recursion

(%k+-! 	Sk	 =	 um(k - 1) Sk-1 + (k - 2) Sk-2- 	 um(k - 2) 
Sk-3

(A-9)

For	 k = 2	 the last term drops and one obtains

S2	=	 (2/5) um S1 + ( 3/2) So

=	 (2/15) (um + 1) 1/` C E (2 um - 9) + K (9 - 2 um), (A-10)

To obtain	 dS2 / dum one differentiates beneath the integral sign, noting

that the contribution from the upper limit vanishes. The result is equation

(30) which has already been analyzed, giving

dS2/ dum	 =	 S 1 t (um + 1) -1/2 K

_	 (2/3)(um+1)1/2 um E + 3(um+l) -1/2 (1 - 2 um ) K	 (A-11)

i

1

...
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Performing the same steps for arbitrary k

dSk/dum = 1/2 
f 

U 
k [ (u2 _ 1)(u. _ u)] -1/2 du

(1/2) dSk-2 /du M 
+ V 

k-2	
(A-12)

One can now express Vk-2 by means of (91) and thus obtain a recursion

for dSk/dum . For even values of k the recursion begins with (A-11);

for odd values one needs dS /dum which can be obtained either by

standard substitutions or from tabulations Gradshteyn and Ry7hik [19653

integral 3.132.5	 In either case

/2	 1/2
(is 1/dum	 (u. + 1) , E	 (um 1)-	 K	 (A-13)
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Appendix B : INTEMWION MM u = um

At the mirror point v4,= 0 and therefore special care is needed when (29)

or (65) are integrated near that point. The problem resembles the evaluation

of integrals of the form

A

S f (X) X- 
1/2 dX	 (B-1)

0

near their lower limit and there exist various advanced methods for handling

it [ Smith and Bewtra, 1976 1 - In this work a rather crude but effective

approach is used, as follows.

Consider the evaluation of (B-1): one first divides the range into two

parts, the main range B L X L A which is handled by conventional methods

(e.g. Simpson's rule) and the end region 0 [ X < B . In that region f(X)

is approximated by a polynomial

f(X) - f(0) + a X t b X2	 (B-2)

from which the region's contribution to the integral is found at once to be

very nearly

2 B1/2 ( f(0) + a B/3 + b B2/5 )	 (B-3)

The coefficients a and b can be evaluated using f(B) and some intermediate

value f(C), 0 4C-(  B , but computing time is saved if one directly evaluates

aB and bB2 , which appear in (B-3). An alternative approach first removes the

singularity in (B-1) by transforming to a new variable w = X 1/2 . If f is

then expanded in even powers of w , (B-3) is obtained; if odd powers are also

allowed, the result is the same as when both integral and half integral powers

are used in (B-2) .

1
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The integrals (29) and (65) readily reduce to the form (B-1) if one sets

X = um - u . Dote that over the end region (but not over the main range) (65)

must first be transformed into an integral over u , after which one intr,aduces

U = - du ; by (42) and (36a) this requires the addition of a factor

1
2-Z 	 _ 4 u 0
- u a(	 z 1 t	 (B-4)

The above factor contributes to f(X), but since f(X) is used only

numerically, z does not have to be expressed in terms of u and the above

factor can be used in the form given in (B-4).
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CAPTIONS TO FIGURES

Figure 1 -- Schematic view of the motion of a charged particle in a drift -free

magnetic field of the type discussed Lm this work.

Figure 2 -- The configuration of a magnetic field line (left scale, lower

curve) and the variation along it of u = B/B o (right scale,

upper curve) in the limit E,= 0 . Both x and z are normalized

in accordance with (36).

Figure 3 -- The variation of the mean drift velocity, in units of the equa-

torial drift velocity v o , as a function of u = B/Bo .

Figure 4 -- The quarter-bounce time, in the normalized units of Table 1,

as a function of u = B/Bo .

Figure 5 -- The field line of Table 2, divided into segments each of which

corresponds to b z = 0.05 (normalized units). Drawn at the end of

each segment is a line proportional to the net distance covered

by guiding center drifts during the particle's traversal of the

segment (actually, the displacement should be orthogonal to the

drawing). The net displacement for the entire quarter period is

about equal to the lowest displacement drawn (but in the opposite

direction); the time spent traversing that first segment, however,

is only about 1/50 of the quarter-period.
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