N77-2 24161

SEASAT B ORBIT SYNTHESIS (Report No. BCL-OA-TFR-76-7)
by
F. G. Rea and J. M. Warmke


```
NATIONAL AERCNAUTICS AND SPACE ADMINISTRATION
                                    Office of Applications
(Contract No. NASw-2800, Task No. 8)
```

July 1976

F. G. Rea;-Principal Author

Approved by: A. C. Robinson, Project Manager

SEASAT B ORBIT SYNTHESIS

by

F. G. Rea and J. M. Warmke

INTRODUCTION

The objective of Task 8 was to apply Battelle's Interactive Graphics Orbit Selection (IGOS) computer program to the synthesis and analysis of specific SEASAT orbits. The quick response capability of IGOS facilitates a close communication between mission planners and the needs of the user community. For this reason, technical direction of the effort was performed by the Jet Propulsion Laboratory (JPL).

SUMMARY

Technical effort consisted of three phases: additions were made to Battelle's Interactive Graphics Orbit Selection (IGOS) program, IGOS was exercised via telephone lines from JPL, and candidate SEASAT orbits were analyzed by Battelle.

The additions to the program enable clear understanding of the implications of a specific orbit to the diverse desires of the SEASAT user community.

If the proper terminal hardware can be arranged at JPL, direct exercise of the code is preferable to exercise by Battelle with mail delivery of the output.

BACKGROUND

IGOS is an interactive graphics program accessible via remote graphics terminals and telephone line connection to Battelle's computer. The program has been structured to facilitate its use by analysts with a minimum of IGOS specific training.

The program was developed by Battelle's Columbus Laboratories (BCL) for the Marshall Space Flight Center (MSFC) under contract NAS8-26491. The program, as originally developed, was oriented primarily toward orbit synthesis. The original output was limited to an altitude/inclination circular orbit design space on which the analysts can indicate those orbits which do not satisfy specific mission requirements. ${ }^{*}$ The original version of IGOS has been delivered to MSFC and to the Goddard Space Flight Center (GSFC). **

Additional MSFC funding was received in January 1976, to expand IGOS orbit analysis capabilities. This effort was conducted concurrently with Task 8. The expanded version of the program includes the capability to generate maps of selected portions of the Earth and plot orbit swath patterns on them. This capability is extremely valuable to the mission analyst who needs to clearly communicate, to the user community, the coverage of specific candidate orbits.

TECHNICAL DISCUSSION

Technical effort on Task 8 was divided into the following phases: IGOS modification, IGOS exercise by JPL, and SEASAT/IGOS exercise by Battelle. Each phase is described separately in the following paragraphs.

[^0]
IGOS Modifications

The IGOS program is described in the two appendices included with this report. Appendix A gives a sample IGOS session with copies of the output and description of the dialog. Appendix B is a full IGOS users manual. Page B-11 is a summary of each command, with references to the page numbers giving a full description of the command. Page $B-48$ is an alphabetic index to the full manual including instructions for accessing the Battelle computer and other general information. The manual is republished periodically to reflect recent modifications and additions. Care should be taken to ensure that a correct version of the manual is being used.

Task 8 effort began by reviewing the expanded IGOS capability and evaluating its applicability to interfacing with the SEASAT user community. While the mapping feature developed by MSFC is a significant feature, maps of orbit swath over a long time period are very difficult to interpret. Also, SEASAT application requires consideration of sensor swaths of specified widths which are not nadir centered. Finally, in addition to the ocean coverage for data acquisition, the communication with specific tracking sites is a concern in SEASAT orbit evaluation.

Task 8 effort was therefore used to develop the IGOS commands shown in Table 1.

TABLE 1. IGOS COMMANDS DEVELOPED UNDER TASK 8

Command	Description	Sample Use*	Instructions ${ }^{*}$
SETSWT	Defines a sensor ground swath	A-3	B-21
SHWSWT	Shows sensor ground swaths	--	B-22
SWATH	Selects a ground swath	--	B-23
STPLIVG	Produces an orbit longitude step plot	A-27, 29	B-24
STPTOD	Produces an orbit time-of-day plot	A-31	B-25
TRKSIT	Draws tracking site masks	A-39	B-43
CHGSIT	Adds or changes tracking site date	--	B-44
SHWSIT	Shows tracking site data	A-37	B-45

$+$
Page numbers of Appendices A or B.

IGOS Exercise by JPL

JPL has a large number of Tektronix terminals (4002 and 4014) suitable for exercising IGOS at Battelle via FTS telephone lines. However, most of these terminals do not have either authority to access outside (of JPL) phone lines, or a hard copy unit. JPL personnel were successful in exercising IGOS on terminals without hard copy and have become familiar with its command structure and output. However, without a hard copy unit, the output cannot be reproduced for dissemination to the user community. Administrative action has been undertaken at JPL to gain access to the necessary terminal/hard copy/phone line combination. In the meantime, BCL was directed to perform extensive IGOS exercises and mail the output to JPL.

SEASAT/IGOS Exercise by Battelle

Order JPL direction, Battelle conducted several exercises, each of which produced several hundred IGOS plots. These plots resulted from combinations such as those shown in Table 2.

TABLE 2. SEASAT/IGOS EXERCISE

Plot Type	Orbits	Swaths	Time Periods	Sun Angle	Longitude	Latitude	Total
Mercator map of ground trace	8	1	3	1	-	-	24
STPLNG plot	8	4	1	2	3	-	192
Polar projections	8	3	3	1	-	-	72
STPTOD plots	3	4	1	1	1	3	36
TOTAL PLOTS							314

Each exercise produced copious output for presentation to the user community, and for evaluation of the acceptability of the candidate orbits. However, each exercise also identified several other potential candidate orbits which seemed likely to reduce the less desirable features of the previous set. This led to the definition of the next exercise.

CONCLUSIONS AND RECOMMENDATIONS

The Task 8 funded modifications to IGOS provide the necessary graphical output to effectively communicate the implications of candidate orbits to the SEASAT user community.

The exercise of the program by Battelle and the mailing at large numbers of plots to JPL is feasible but cumbersome. This approach leads to iterative exercise with large numbers (hundreds) of plots. A closer relationship between IGOS, the analyst, and the user is extremely desirable.

Further effort in this area is recommended in one of the following modes:
(1) Access to the proper terminal hardware at JPL and exercise by JPL personnel in close communication with the user community, or
(2) Increased funding of BCL with BCL personnel communicating directly with the users.

Either mode will take full advantage of the efficiency and convenience inherent inlthe interactive graphics approach of IGOS.

APPENDIX A

The capabilities of the Interactive Graphics Orbit Selection program are illustrated by the following samp,le terminal session. The work session includes most of the commands available to the analyst for evaluating satellite Earth coverage and tracking requirements for any orbit and sensor ground swath of interest. The displays shown were taken directly from the terminal screen. To distinguish user entries from program generated output, all analyst entries appear in boxes on the displays. A short narrative accompanies each terminal display to describe the IGOS commands entered by the analyst and the illustrated computer responses. For a more detailed explanation of the IGOS commands', i.e., command descriptions, argument values, and options not demonstrated in this sample work session, reference should be made to the IGOS User's Manual.

Abstract

After successful terminal identification and procram access, the work session begins with the welcome, the date and the time. The first program inquiry is about the subtitle to appear on all IGOS plots generated during the session (i.e., IGOS SAMPLE WORK SESSION). The first command, UNITS, specifies that the units on all lineal input and output data is kilometers. To define the initiation of all orbits during the session, a "LAUNCH" from WTR is requested for the default time of midnight GMT on January 1. Two satellite sensor ground swaths, single and double, are defined with the command, SETSWT, for reference later in the session. The satellite sensor ground swath, single, views all surface areas located 230 to 330 km to one side of the subsatellite center line. Double is an asymmetric ground swath which observes all surface locations 150 to 500 km to one side of the subsatellite center line and 200 to 450 km on the opposite side. An orbit selection plot request for altitudes ranging from 700 to 800 km and inclinations ranging from 87.0 to 108.0 degrees initiates orbit investigations.


```
WELG:OME TO I G O.S
SESEION:UC こ376 092906
ENTEP CISRVE COMINENTS--
IGOS SAMPLE WORK SESSIIN
EX.TIME, O.च̈́
-- UNITS,KM,KM
UNITS, INFUT=KM, OUTPUT =KM
EX.TIME, Ö EG
    LHUINCH,WTF
LMUNCH FROM WTR
                16.00 LOCAL TIME
    iOHiGITUDE= -120.60.LATITUDE= 34.00
    AZIMUTH LIMITS= 170.00 TO 302.00
    LAUNCH AT .0 DAYS. .00 HRS.( E+00 SEC.)
EX.TIME, O.30
-- SETSWT,SINGLE,230,330,0,0
NEW SWATH
    Sinule
        己.0゙̄6- 2.964 DEGREES ( 230.0- 330.0 KM)
EX.TIME, O 3?
--. SETSWT,DOUBLE,-500,-150,200,450
NEW SWHTH
    DOUBLE
        -4.492- -1.347 DEGREES ( -500.0- -150.0 KIM)
            1.797- 4.042 DEGREES ( 200.0- 450.0 KM)
EX.TIME, 0.42
-- ORBSEL.700.800.87:108
```

An orbit design space is created with the axis shown generated from the ORBSEL request on page $A-3$.

Using QPLT, a request is made for the contours of orbits on the display with a Q that can be expressed in the form integer $+5 / 10$. The program responds with the curve for orbits with a Q of 14-1/2.

E OPLT.5.10
IgOS SAMPLE WORK SESSION 06/23/76 092906 NO. 1
$+$

Superimposed on the display created on page A-7 is the Sun synchronous line and a curve for the orbits characterized by a Q of
14-1/3. A "MARK" is done three times to define three orbits for reference later in the session. Mark A identifies a Sun synchronous orbit with a Q of $14-1 / 2$. Mark B is an orbit inclined 87 degrees with a Q of $14-1 / 2$. Mark C is an 87-degree inclined orbit with a Q of $14-1 / 3$. Using SELECT, orbit B is chosen for further
investigation.

In response to the selection of Orbit B on page A-9, altitude, inclination and launch data are printed. Additional data for orbit B are requested with the ORBDEF command.

```
MARK=B ON UG.23.76 O92906 NO. 1 IGOS SAMPLE WORK SESSION
    TO1 G&F EIRGULAR, INCLINATION= 86.99 DEG.
LAUNCH HT .OS OD OH OM OS OR .E+00
FOR MORE INFG ENTER ORBDEF COMMAND
EX TIME 1.OO
```

The data request on page A-11, combined with an ORBSHW command, produces a full page of orbital information on B. Additional data include Q, nodal and apsidal periods, relative motions of the node with respect to the Sun, Earth, and perigee, and a plot of the orbital gaps between ascending nodes for coverage purposes. The ascending node orbital gap plot indicates that a satellite in Orbit B views all possible surface area it sees in the first two days. This is due to the Q of about $14-1 / 2$. Orbit coverage study proceeds with a GNDTRK request for a plot of the Earth's surface for all longitudes and a latitude range of -80 to 80 degrees.

```
    LALINCH DELTH-U= 24569 3 F/S. AZIMUTH= 179.3 WITH OD DEG. PLANE CHANGE
    MHRN 1B TO1 O4H(KM). INC. * 86.99. FROM WTR OT AT OD OH OM OS
    SUN ANGLE =:8OG SENSOR = G 614.8 TO 014.8(KM)
    FERIODIMIN:, GEPLERIAN= 98.8138, NODAL= 98 9427. APSIDHL= 98.8784 0=14.4995444
RELATIUE MOTIUN NODE-INERTIAL NODE-EARTH NODE-SUN PERIGEE-NODE
DEGINODAL PERIUD -0.02496 -24.82837 0.0927 -0.2342?
        DEGIDAY -0.36328 -361.34889 1.3489 -3.40951
    N300, MSLENDIHIG NOLE UREITHL GHFS UERSUS TIME
```

\square IGOS SAMPLE WORK SESSION 06/23.76 092906 NO. 2

The ground track display is show for the GNDTRK request on page A-13. The default longitude-latitude projection is to be used for all plotting on this display. Intervals of 10 degrees are indicated on the axes. Note that the current orbit and

Superimposed on the display created on page $A-15$ by the MAP command is a projection of the Earth.

\square IGOS SAMPLE LORK SESSION $06 / 23$ r76 092906 NO. 3

To examine Orbit B's behavior, a PASS request is made to plot the subsatellite center line on orbital passes 1 through 15 to show approximately one day's coverage. The origin of the first pass reflect's the WTR launch selected on page A-3.

\square IGOS SHMPLE HORK SESSION
MABS.1.15.1
06 23/76 O92906 NO. 3

A "ZOOM" is done for a more detailed look at longitudes -130 to -60 degrees and 20 to 60 degrees latitude. Note the boxed in area on the display.

ON MAD

DAYS

\square IGOS SHMPLE WORK SESSION OE, 23, T6 O929e6 MO. 3

The result of the 200 M request on page $\mathrm{A}-21$ is a magnified plot of the United States.

A PASS command is used to superimpose on the map of page A-23 one-day coverage for the United States, orbital passes 1 through 15 , from Orbit B with the sensor ground swath, Double. The dashed line indicates the subsatellite center line and the cross-hatched bands to either side of the center line are the surface areas viewed by the satellite. The asymmetry of the sensor's ground swath is evident in this presentation. One can conclude from this display that full United States coverage is not possible in one day from Orbit B using the sensor, Double. The Q of 14.5 implies the satellite will repeat this coverage pattern every two days.

```
MARK 1B 701.944(KM). INC. 86.99. FROM WTR , AT OD OH OM OS
SUN ANGLE=180.0 DOUBLE = -500.0 TO -150 0 ANL 200.0 TO 450.0 (KM)
```


The longitude viewed versus time from launch plot (STPLNG) is an alternate graphical presentation of coverage data. The example shown illustrates the LNGB plot option. The latitude of interest requested, 40 degrees, is the middle of the latitude range for the display on page $A-25$. The plot specifies first-day coverage of all longitudes when viewed at 40 degrees latitude. Note the double longitude bands present due to the definition of the sensor, DOUBLE. With the LNGB option, full coverage of the longitude range can be determined from the right vertical axis. Full coverage does not occur in one day.

The STPLNG plot is given for one month's coverage at 40 degrees latitude with the LNG plot option. Careful examination of the figure indicates that the satellite coverage pattern repeats every two days. Recall that Q is 14.5 for Orbit B. If full Earth coverage is desired, a sensor with a wider ground swath is necessary for Orbit B.

A time of day plot (STPTOD) is requested for 40 degrees latitude and -95 degrees longitude and one year coverage. Daily satellite observations occur throughout the year, and during the period of approximately 5 to 7 months after launch, the location is viewed twice a day.

This is an example of the GNDTRK and MAP commands to see the Northern Hemisphere above 50 degrees latitude using the north polar projection.

A $702-\mathrm{km}$ circular orbit inclined 87 degrees is the current orbit being investigated. Thirty-two orbital passes, about two days coverage, are superimposed on the map display on page A-33
with the PASS command. The satellite sensor ground swath, SINGLE, views the surface areas indicated, which are located 230 to 330 km to one side of the subsatellite center line. This orbit and sensor swath combination achieves excellent North Pole coverage.

A SHWSIT request is used here to list the tracking sites defined in Class 1. Before plotting the Class 1 sites on page A-41, the argument labels and current values for the command TRKSIT are summoned to refresh the memory using the LIST command. The command SUNANG is used to impose a daylight requirement on all Earth observation displays during the remainder of the work session. The GNDTRK request for longitudes -200 to -20 degrees and 10 to 90 degrees latitude will plot an appropriate region on the Earth's surface containing the Class 1 tracking sites.

```
        CLHSS 1 TRACKING SITES
            LCiNG LAT
                            64 96?
35.333
35.200
47.500
UALUE
    (1) CONEi UALUE
    (2) OOLE2 .E+O0
    (3. COEE3 .E+00
    E+00
ALT.(KM) ALT(KM)= 701.9
    10.0 0 320 RHD(DEG)= 17.47
FAIREAIN:S -: +?.533
GOLDSTI:HE -116.283
    RUSMO:1 -®2.E83
SHUE COUE -53.000
EK.TIME: 3:#ヨ:
    MRGUME:YIST,TRKSIT
    (4) OO「E4
```

LAT.

```
MIN.ELE.
```

```
MIN.ELE.
```

```
MIN.ELE.
```

```
    10.0 0.932 RAD(DEG)= 17.46
    10.0 (3.360 RAD(DEG)= 17.47
    10.0 .000 FHD(DEG)= 17.48
    UNITS RAINGE
    1..200E+00 TO 1.0000E+01
    1.0000E+00 TO 1.0000E+01
    1.0000E+00 TO 1.0000E+01
    1.3000E+00 TO 1.0000E+01
EX TIME, 3?.2T
-- Eunarig.g0
SUN ANGLE: 90.00
EX.TIME, 3?. 30
-- GNDTRK,-200,-20,10,90,200,LL
```

Superimposed on the map generated by the GNDTRK command on page A-37 and MAP, is the range of each site in Class 1 by the command TRKSIT.

ON MAP

DAYS

Orbital passes for a two-day period are added to the display on page A-39 with a PASS request, under a 90-degree Sun angle requirement. With a 90 -degree Sun angle, only the daylight areas of orbital passes are plotted. Therefore, daylight monitoring occurs primarily at the Goldstone and Rosmon sites.

```
MARK 1E 701 944(kM). INC. = 86.99, FROM UTR , AT OD OH OM OS
```

SUN ANGLE. 90.0 SINGLE 230.0 TO 330.0 (KM)

$\stackrel{?}{7}$

IGOS SAMPLE WORK SESSION
06, 23:76 as29e6 NO 9

The command END terminates the sample work session with IGOS. Before control returns to the computer's operating system, the last program inquiry asks if a copy of the work session's activity file is to be sent to the central site. LOGOUT must be used to end the user's communication with Battelle's operating system. The result is a listing of computer statistics for the session.
CM S.120 SEC
S5 E2.000 SEC
$\mathrm{CH} \quad \exists 332 \dot{0}$ CHARS
CONNECT TIPIE 0 HRS. 40 MIN.
06/23.76 LOGGED OUT AT 10.08.03.

APPENDIX B

BANNER

XXXXXXX	$\begin{array}{r} x \times x \times x \times x \\ x \times x \times x \times x x x \\ \hline \end{array}$		$x \times x \times x \times x$		$\begin{array}{r} x \times x \times x \times x \\ \times x x \times x \times x x \end{array}$	
$x \times \times x \times x \times$						
$x \times x$	$x \times$	$x \times$	$x \times$	XX	XX	$x \times$
$x \times x$	$x \times$	XX	$x X$	XX	$x \times$	XX
XXX	$x \times$	XX	XX	XX	XX	
XXX	x \%		$x \times$	XX	XX	
XXX	XX		XX	XX		
$x \times x$	XX	XXXXXX	$X X$	XX		
$\bar{x} \bar{x}$	XX	XXXXXX	XX	XX		$x \times$
$x \times$.	XX	XX	XX	X \times		Xx
XXX	XX	XX	XX	XX	$x \times$	$x \times$
xx x	$x \times$	x x	$x \times$	$x \times$	XX	XX
$x \times x \times x \times x$	$\overline{x \times x \times x \times x \times x}$					
$x \times x \times x \times x$	$x \times X X X X X$		- XXXXXX		$x \times x \times X X X$	

> INTERAC IVVE GRAPHIC S OR B I T SELCYIUN

BAT TELLE COLUMBUS LABBORATORIES
NASA/MSFC NASA/GSFC NASA/HEADQUARTERS JPL/SEASAT

IGOS IS AN INTERACTIVE GRAPHICS PROGRAM AVAILABLE TO REMOTE USERS VIA 1200 BAUD BELL OR FRS TELEPHONE LINES: THE PROGRAM IS DESIGNED AS AN AID TO PRELIMINARY EARTH ORBIT MISSION DESIGN,

IGOS GENERATES ORBIT SELECTION PLOTS WHICH IDENTIFY THOSE ORBITS WHICH SATISFY MISSION REQUIREMENTS SPECIFIED BY THE USER,

ORBIT ANALYSIS COMMANDS MAY THEN XE USED TO DISPLAY THE DETAILS OF PARTICULAR ORBITS SELECTED FROM THE ORBIT SELECTION PLOT, OK ORBITS AREIT RARILY DEFINED RY THE USER:
all features have been designed tu include internally stored da ta and EFFICIENT CALCULATIONS, WHILE THIS HAS NECESSITATED SOME MATHEMATICAL APPROXIMATIONS, IT PERMITS RAPID EVALUATION OF MISSION ALTERNATIVES, 1 OS IS . THERE ORE, AN AUTOMATED HANDBOOK FOR PKELIMI NARY MISTI ON ANALYSIS AND NUT A SUBSTITUTE FOR DETAILED FINAL ANALYSIS.

THIS USERS MANUAL DESCRIBES ACCESS TO THE IGUS PROGRAM, I GUS OPERATION. AND THE DETAILS OF EACH IGOS COMMAND,

AN ALPHABETIC INDEX IS INCLUDED ON THE LAST PAGE OF THIS MANUAL.

THE BATTELLE INTERACTIVE COMPUTER SYSTEM MAY BE ACCESSED BY 1200 BAUD
TELEPHONE LINES AT THE FOLLOWING NUMBERS,
BELL
(AREA CUDE 614) 421-1280
FTS
Y41-8045, ASK BATTELLE DPEKATOK FOK EXTENSION 1176
OR
943-6600, ASK FTS OPERATOR FOK 421-7280,
When a steaij audio tode is heard pace the calbing data set in lhe data mode, thie terminal will then display the battelle computir REQUEST TU LOGIN, RESPUND BY TYPING LOGIN (CARRIAGE RETURN),

THE COMPUTER WILL THEN KEQUEST YUUR USER NAME AND PASS WORD FOK ACCESS TO THE SYSTEM, WHEN SUCCESSFUL LOGIN IS COMPLETE THE SYSTEM WILL KESPOND WI TH COMMAND-,

EXAMPLE LUGIN-
BATTELLE INTERCUM 4,5
DA TE 04/09/76
T1ME $14,40,28$
PLEASE LOGIN
LOGIN (CR)
ENTER USER NAAT-JANICE (CK)

WITH USER-ID FV
EQUIP/PURT $76 / 005$
COMPAND-
IF NO AUDIO TOME IS HEARU, SEE HELH LATER IN THE MANUAL, AFTER LOGGING IN PROCEED TO EEG!IV FOR FURTHER INS TRUCTIONS,

AFTER LOGIN THE IGOS PROGRAM IS OBTAINED BY TYPING-
ATTACH,PROFIL,ID=IGUS (CK)

THE OPERATING SYSTEM WILL RESPOND WITH COMMAND- TO BEGIN IGOS EXEC.
CION ENTER-
BEGINLIGUS (CR)
(CR) INDICATES STRIKING THE CARRIAGE RETURN KEY, A (CR) TRANSMITS ALL
COMMANDS AS DISPLAYED ON THE SCREEN TO THE COMPUTER: PRIOR TO (CR)
TYPING ERRORS MAY BE CORRECTED BY USING THE BACKSPACE KEY AND OVER-
TYPING THE ERRONEOUS CHARACTERS AND COMPLETING THE ENTRY:
1 GUS EXECUTION HAS BEGUN WHEN THE COMPUTER ASKS -
WHAT KIND OF TERMINAL AGE YOU USING?
ENTER THE AFPROPFIATE CODE AND (CK) FOR IERMINAL IDENTIFICATION,

$$
\begin{aligned}
& \text { CUE = NONE IF tERMINAL = NONE } \\
& \text { COMPUTEr } \\
& \begin{array}{ll}
T 4002 & \text { TEKTKONIX } 4002 \\
14012 & \text { TEKTRONIX } 4012 \\
\text { T4014 } & \text { TEKTRONIX } 4014
\end{array}
\end{aligned}
$$

AFTER SUCCESSFUL TERMINAL IDENTIFICATION THE COMPUTER RESPONDS WITH-

$$
\begin{aligned}
& \text { WELCoME TO I G OS }
\end{aligned}
$$

ENTEr CURVE COMMENTS- IS THE TIME IN HF MINSECI
ANY REMArKS ENTERED WILL APPEAR AS A SUBTITLE ON ALL IGOr PLOTS GEN-
RATED DURING THE SESSIOn, THE CoMPUTER IS READY FOR THE F InST I OS
COMMAND AFTER I T RESP ONuS WITH
EX,TIME \#\#\#

- LINDICATES THE PROGRAM IS WAITING FOR THE NEXT COMMAND, ON SOME TERMINALS AN AUDIO TONE (BEEP) IS ALSO PRODUCED, FOR A LIST OF ALL CURFENI LGOS CUMMANDS ENIER LIST,ALLE THE LIST GROUPS THE COMMANDS BY IGOS MODES:

FOR INSTRUCTI OINS ON EINTERING A COMMAND ENTEK COMMAND?
FUR A DISCUSSIUN OF IGOS MODES ENIER MODES?
FOR A DISCUSSION OF THE PAGE WARNIIVG ENTER PAGE?
FOR A DISCUSSION OF ERROK MESSAGES ENTER ERRORS:

HELP
IF THE AUDIO TONE IS NOT HEARD, THE BAT TELLE COMPUTER MAY GE MOMEIV-
TARILY UNAVAILAELE, A KECORDED STATUS MESSAGE MAY BE HEARD BY UI ALING
BELL
(AREA CODE 614) 424-6666
FTS
Y43-660U, ASK FTS OPERATOR FOR 424-6666
HELP WITH IGOS MAY GE OBTAINED BY CCALLING BATTELLE BELL
(AREA CODE 614) 424-6424
FTS

$$
941-8045
$$

ASK BATTELLE OPERATOR FOR

FRED REA	EXT, 1119
JANICE WARMKE	EXT, 3228
JERRY PITTENGER	EXT, 212
UAVE NIPPERI	EXT, 2602

IGOS COMMANDS ARE USED TO INITIATE PROGRAM FEATUKES AND SUPPLY OK CHANGE DAIA ASSOCIATED WITH THAT YEATURE, COMMANDS ARE ENTERED lN THE FORM NAME, ARG1, ARG2, - - , AKGN XAMPLE -OKBSEL, $100,250,10,110$
the iname specif ies the comand and the argunents define the data, the ARGUMENT VALUES ARE RETAINED AND WILL BE USED IN FUTURE EXECUTIUIVS OF THE COAMANL, IF ONLY A FEN ARGUMENTS ARE TO BE CHANGED NULL OR BLANK FIELDS MAY BE USED TO SKIP ARGUMENTS. AN ALPHABETIC COUE IS AL SO ASSOCIATED WITH EACH COMIAND ARGUMENT, FOR EXAMPLE THE CODES FOK THE ORBSEL ARGUMEIVTS ARE HAIN,HMAX, DIMIN, DIMAX. TO AVOID HAVING TO ENIER MANY BLANK FIELDS THE FURM CODE, VALUE OR CODE FVALUE CAN BE USEU, FOR EXAMPLE THE FULLOWING ARE EQUIVALENT ORBSEL; , 30.90
ORBSEL, , 30,90
OR BSEL, D IMIN $=30$, DIMAX, 90
ORBSEL, DIMAX,90, DIMIN, 30
URESEL,DIMIN,3 ©,90
THE NUMERICAL VALUES OF IHE ARGUMENTS MUST GE ENTERED IN A FLOATING POINT FORMAT WITH THE DECIMAL POINT OPTIUNAL, THE EXPONENTIAL FORMAT IS NOT ACCEPTABLE,

EXAMPLES

> VALID

INVALID
$100 \quad 100100,00 \quad 1, E 2 \quad 1,0 E 02 \quad 0,1 E 3$
, 01 -. 11000000 1, E-2 -1, E-2 1.E6
FOR a lis t of the afgument codes, current values, units, and allunable RANGE OF DATA HOR ANY COMMAN ENTER LIST, COMMAND EXAMPLE-LIST, UKBSEL

FOR A UISCUSSION OF ANY COMMAND ENTER THE COMMAND FOLLOWED BY A? ? FOR EXAMPLE OHZSEL?

IGOS MODE DESCRIBES THE TYPE OF INF ORMATION ON THE SCREEN EXAMPLES

 ARE DIALOG, UR USEL AND GNUTRK, THE DIALOG MUDE IS USED FOR DIALUG BETWEEN THE PKOGKAM AHD THE USER. WHILE IN THE UIALOG MODE ERROK MESSAGES WILL उE DISFLAYED, THE UIVER MODES ASSUME A PLOT IS OEIVG GEIVERATED AND ERROR KESSAGES AKE NUT DISPLAYED. THE DI ALOG MOUE IS INITATED GY ENTERING ANY COMMAND ASSOCIATED WITH THAT MODE OR BY REOUESTING A IEACH (?) IYESSAGE, IHE OTHER MODES ARE INITIATED BY ENTERING A COMAAND GF THE SAME NAME, COMMANDS ASSOCIATED WITH THESE MODES WILL NOT BE EXECUTED UNLESS THE MODE HAS BEEN INITIATED. WHEN A COMMAND IS ENTEGED THAT WILL INITIATE A MODE A PAGE WARINING IS IS SUED PRIOR TO ERASING THE SCREEN. FOR A DISCUSSION OF THE PAGE WARIVING ENTER PAGE?IGOS MODES = DIALOG \begin{tabular}{ll}
SELECT

\& | ORBSEL |
| :--- |
| SIPTOD |\quad GNDTKK

\end{tabular}

THE PAGE WAFNING IS ISSUED TO PERMIT THE USER TO OBIAIN A COPY OF THE SCREEN PRIOR TO ITS traSURE BY THE PROGRAM, TO CONTINUE WITH THE ERASURE ENTER A GLANK. IF A NON BLANK ENTRY IS MADE THE COMMAND REQUIRING THE EPASURE WILL BE DELETED AND A NEW COMMAND REOUESTED,

THE FOLLOWING ERRORS ARE DETECTED BY IGOS
INVALID COMMAND THE COMMAND IS NOT IN THE IG OS COMMAND LIST
NOT WITH $X X X X X$ THE COMMAND IS NOT VALID WITH MODE $X X X X X$
TOO MANY FIELDS THE NIMBLE OF ARGUMENTS GIVEN EXCEEDS THE NUMBER DEF ANE FOR THAT COMMAND

XXX TO LARGE THE VALUE OF XXXX IS ABOVE THE VALID RANGE $X X X X$ TO SHALL THE VALUE OF XXX IS BELOW THE VALID RANGE XXXX-INVALID

THE CODE XXX IS NOT DEFINED FOR THIS COMMAND
LIST, ALL WILL DISPLAY THE MODE REQUIREMENTS.
LIST, COMMAND WILL DISPLAY THE ARGUMENT CODES, THEIR CURRENT VALUES, UNITS, AND VALID RANGES,

EACH OF THE FULLOWING IGUS COMMANUS IS DISCUSSED IN DETAIL ON THE PAGES INDICDTED,

PAGE

IGOS COMMAND
12 UNITS-DEFINES INPUT AND OUTPUI UNITS (NM OR KM)
13 ORBSEL-OKBIT SELECTION
14 RESET-KESETS ALL DATA TO DEFAULT VALUES
15 END-ENDS IGOS EXECUTION AND RETURNS CONTROL TO OPERATING SYSTEM
16 TABLE-PRINTS TABLES OF IGUS KESULTS (INO LONGEK SUPPURTED)
17 GNDTRK-GROUND TKACK DISPLAY
18 SENSOK -DEFINES DATA FUR THE $1 G O S$ SENSOK MODEL
19 ORBUEF-ORGIT DEFINITION
20 SUNANG-DEF INES SUIV ANGLE REQUI REMENT
21 SETSWT-DEF INES SENSOR GROUND SWATH DATA
22 SHWSWT -SHOWS SENSUR GKOUND SWATH DATA
23 SU:ATH-SELECTS A GROUND SWATH
24 SIPLNG-PRUDUCES THE GRBIT STET LONGI TUDE CUVERAGE PL OT
25 STPTOU -PRUDUCES THE ORBI T STEP TIME OF DAY CCVERAGE PLOT
26 LIST-LISTS THE $1 G 0$ COMMANDS AND THEIR ARGUMENTS
27 LAUNCHajer ines The LaUNCH SI It FOR BEGINNING AN ORBIT
28 VEH-SELECTS AN EXPENDA ALE LAUNCH VEHICLE
?9 PLD-DIRAKS A LAUNCH VEHICLE PAYLOAD CONTOUR
30 QHLT-DRÁN THE CONTUURS OF A SPECIFIED ORBIT 0
31 LABEL-PERMITS TYPING INF ORMATI ON ON THE SCREEN (TEKTRONIX ONLY)
32 SUN-DRAWS SUN SYMCHKONUS CONTUURS
33 KAD-DRANS THE OUTLINE OF THOSE OREITS WHICH HAVE EXCESS RADIATION
34 Hí -DKANS VERTICAL HATCHES IN THE EXCESS RADIATIUN OUTLINES
33 DECAY-PLUTS THE ORBIT DECAY AND LAUNCH VEHICLE INJECTIUN EKRURS
36 ZOUM-USES THE CURSOK TO ZOUM IN DN A PLOT KEGION (TEKTRONIX ONLY)
37 MARK-MARKS WITH THE CURSOR A YOINT FOR LATER REFERENCE (TEKTRUNIX ONLY)
38 SELECT-SELECTS A PKEDEFINED MARK
39 COV-THE IGOS COVERAGE MODEL 10 NOTE ORBITS WITH INSUFFICIENT COVERAGE
40 HC-CRUSS HATCHES THE FOKBIDDEN ORAITS IN THE COVEKAGE FLUI
41 MAP-DRANS AN EARTH MAP BACKGKUUND
42 PASS-DRAWS ORBIT PASSES ON THE GROUND TKACK PLOT
43 TRKSIT-DKAWS THE TRACKING SITE MASKS ON THE GROUND TRACK PLOT
44 CHGSIT-TU ADD TKACKING SITE DATA OR CHANGE EXISTING SITE DATA
45 SHWSIT-SHOWS THE DATA FOR A CLASS OF TRACKING SITES
46 OKESHW—FRUDUCES THE NODAL GAP PATTEKN ON THE OREIT DEFINITIUN PLOT

UNITS-DEFINES INPUT AND OUTPUT UNITS (NM OR KM)

THE INPUT UNITS OPTICN CONTROLS INTERPRETATIUN OF THE ARGUMENT VALUES PERTAINING TO LINEAL GUANTITIES, THE INPUT OPTION MAY JE CHANGE DUFING AN EXERCISE TO FACILITATE EXTRACTING DATA FROM SOURCES WITH ! NCOMPATITIBLE UNITS,

THE OUTPUT UNITS OPTION MAY BE USED TO EXPRESS THE RESULTS IN THE DESIRED UNITS.

COMMAND UNITS IS VALID IN ALL NODES.
ARGUMENT DEFAULT VALUE AND UNITS VALID RANGE
(1) INPUT
(2) OUTPUT

ALPHA OETIC
ALPHABETIC

ORBSEL-ORUIT SELECTION
THE ORBIT SELECTION PLOT USES THE SCREEN AS A DESIGN SPACE, ORBITS
ARE PRESUMED TU BE CIRCULAR WITH THE HOKIZONTAL AXIS REPTESENTING INCLINATION AND THE VERTICAL AXIS REPRESENTING ALTITUDE ANY PUINT ON THE PLOT IS A PARTICULAR CIKCULAR OKBIIT, VARIOUS CUMMANDS MAY BE USED TO INDICATE THUSE OFEITS WHICH DO NOT MEET THE MISSION DE SIGN
KEQUIREMENTS,
THE ARGUMEN TS ARE
HMIN = THE MINIMUM ALTITUOE
hMAX = THE MAXIMUM ALTITUDE
DIMIN = THE MINIMUM INCLINATIUN
DIMAX = THE MAXIMUM INCLINATION
COMMAND OKOSEL IS VALID IN ALL MODES, IT WILL ERASE THE SCREEN AYD INITIATE A ORLSEL PLUT, THE FOLLONING COMMANDS MAY THEN BE USED TO ENHANCE THE PLOT, VEH PLD UPLT HC LABEL SUN RAD HR UECÄY ZOOM MARK CO V

ARGUMENT DEFAULT VALUE AND UNITS
(1) HMIN
(2) HMAX
$\frac{1.0000 \mathrm{E}+02 \mathrm{NM}, \quad 1.8520 \mathrm{E}+02 \mathrm{kM}}{2.500 \mathrm{UE}+02 \mathrm{NM},} 4.630 \mathrm{UE}+02 \mathrm{kM}$
VALID RANGE
(3) DIMIN $1,0000 E+01$ DEG $E+00$
(4) DIMAX
$\begin{array}{ll}1.0000 E+01 & D E G \\ 1.1000 E+02 & D E G\end{array}$
$\begin{array}{lll}E+00 & T O & 1,0000 E+20 \\ , E+00 & T O & 1,0000 E+20\end{array}$
$\frac{10}{T O}-1.8000 E+02$

KESET-RESETS ALL DATA TO DEFAULT VALUES

COMMAND RESET IS VALID IN ALL MODES.
NO ARGUMENTS

EHD-ENDS IOS EXECUTION AND RETURNS CONTROL TO OPERATING SYSTEM
BEFORE CONTROL RETURNS TU THE OPERATING SYSTEM, THE COMPUTER ASKS:
DO YOU WANT BATIELLE TO RECEIVE A COPY OF THE DAYFILE(Y/N)?--
A Y RESPONSE (YES) AUTOMATICALLY ROUTES A COPY OF THE ACTIVITY FILE TO BATTELLE, N RESULTS IN NO DAYFILE, NOW THE OPERATING SYSTEM HAS CONTHOLe,

COMMAND END 15 VALID IN ALL MODES,
ND ARGUMENTSTABLEIGOS MANUAL $00 / 23 / 76$ PAGE16
TABLE-PRINTS TABLES OF IGOS RESULIS (NO LONGER SUPPORTED)
COMMAND TAULE IS VALID IN ALL MODES.
AR GUME NT DEF AULT VALUE AND UNI TS

	VALID RANGE
$1, E+00$	TO
1,00000	$1,0000 E+\frac{01}{U 1}$

(2) $1 T 2$, $\mathrm{E}+00$10 1.0000E+U1

GNDIRK
$1 G O S$ MANUAL $06 / 23 / 76$ PAGE_17
GNDTRK-GROUND TRACK DISPLAY
THE GROUND TRACK PLOT IS A MAP OF A PORTI OIV OF THE EARTHS SURFACE, THE ARGUMENTS LEFINE THE REGION OF INTEREST, THE RESOLUTION OF TAE WORLD MAP THAT MAY EE ADUED TO JHL PLOT, AND THE PLOT PROJECTION,

LNG1, LNG2 = THE LONGITUDE RANGE
LAT1,LAT2 = THE LATITUDE KANGE
FINE = THE DISTANCE BETWEEN THE CLOSEST MAP POINTS TO GE PLOTTED DIVIDED INIO THE MAP WIDTH FINE $=0$ WILL SKIP ALL MAP POINTS AND SAVE EXECUTION TIME,
PRJ= THE PKOJELTION OPTI UN
THE PROJECTION OPTICNS ARE

LL =L AT ITUDE-LONGITUDE

$M=M E R C A T O K$
PN =PULAR ABOUT THE NOKTH POLE $P S=P U L A R$ ABOUT TME SOUTH POLE

FOR EXAMPLE $-160,180,-90,90,100, L L$ WILL PRODUCE A LNG-LAT PLUT OF THE ENTIRE EARTH WITH A REASONABLE NUMBER OF POINTS ON THE MAP.

IF OREIT GROUND TRACKS ARE TO BE HLOTTED USING THE PASS COMMAND
THE COMMAND ORGDEF MUST BE ENTERED PRIUR TO THE COMMAND GNDTKK.
COMMAND GNDTRK IS VALID IN ALL MODES, IT WILL ERASE THE SCREEN AND INITIATE A GNLTRK PLUT: THE FOLLOWING COMMANDS MAY THEN BE USED TO ENHANCE THE PLOT, MAP PASS ZOOM TRKSIT

AR GUMENT	defallit value and units	VALID RANGE	
(1) LNG1	-1.8000t +02 LEG	-3,6000E+02 TO	1,8000E+02
(2) LNG 2	$1.8000 E+02 \mathrm{DEG}$	$-1,8000 E+02$ TO	$3.6000 t+02$
(3) LATI	-8.000 OE + 01 DEG	-9,000UE+01 T0	$9.0000 E+01$
(4) LAT2	$8,0000 E+01$ DEG	$-9,0000 \mathrm{E}+01$ 10	$9,0000 t+01$
(5) FINE	$1.0000 E+02$, $\mathrm{E}+00$ TO	1,0000E+0S
(6) PRJ	LL ALPHABETIC		

SENSOR-DEFINES DATA FOR THE IGOS SE INSOR MODEL
THE IGUS SENSUK MODEL COMPUTES A NADIR CENTERED CIRCLE OF GROUND AREA VIENED BASED UN THE MOST FESTRICTIVE OF THE FOLLOWING LIMITATIONS DEFINED BY THE ARGUMENTS,

RNG $=$ MAXIMUM SLANT RANGE (NM OR KM)
ELE = MINIMUM ELEVATION ABOVE THE HORIZON (DEGREE)
$F O V=M A X I M U M$ SENS OR FIELD OF VIEW (HALF CONE ANGLE -DEGREE)
ARES/LRES = MINIMUM FESOLUTION (APPARENT ANGLE/ SURFACE DISTANCE ES
DEGREE , NM OK KM,
FOR EXAMPLE $1200,40,40,1,10$ ESTABLISHES A SENS OR MODEL FOR THE MUS T RESTRICTIVE OF A 1200 iNM MAXIMUM SLANT RANGE, A 40 DEGREE MINIMUMELEVATION AEOVE THE HORIZON, A 40 DE GREE MAXIMUM HALF CONE ANGLE FOR THE SENSOR FIELD OF VIEK, AND A MINIMUA RESOLUTIUN OF, 1 DEGREE APP ARENT ANGLE EQUALS 10 NM IN SUKFACE DIS TANCE.

THE CIKCLE SIZE VARIES WITH ORBIT ALTITUDE, TO BYPASS THE SENSOR MODEL AND KEOUEST USE OF A SPECIFIC SWATH WIDTH USE THE COMMAND SNATH. SEE SWATH FOK HOW TO ENTER AN ARBITRARY SWATH WIDTH,

COMMAND SENSOK IS VALID IN ALL MODES,

ORBDEF-ORBIT UEFINIIION
AN ORBIT IS DEFINED BY ENTERING THE FOLLOWING 6 ORBITAL ELEMENTS
1 APOGEE
2 PEKIGEE
3 JivCLINATION
4 LONUITUDE OF ASCENDING NODE
5 ARUUMENT OF PERIGEE
O TIME OF FEKIGEE (RELATIVE TO OO GMT JAN1)
THE TIME OF PERIGEE IS ENTERED IN DAYS, HOURS, MINUTES, SECONDS AS A SINGLE DECIMAL NUMBER, FOR EXAMPLE, 43 DAYS, 13 HOURS: 55 MINUTES, AND 0 SECONDS WCULD BE ENTERED AS 43135500.

THE LAUNCH COMMAND IIAY BE USED PRIUR TO ORBDEF TO AVOID CUMEERSUME ENTRY OF THE LAST THREE ORGITAL ELEMENTS, THEY ARE THEN COMPUTED To place the perigee directly over the launch site at launch time,

AFTER ENTEKING ORBDEF FURTHER STUUY OF THE ORBIY MAY BE MADE WI IH THE COMMATUS STPLNG, STPTOD, GNDTKK, UK OKBSHW,

COMMAND ORODEF IS VALID IN ALL MODES, IT WILL ERASE THE SCKEEN AND INITIATE A CRGDEF PLOT. THE FULLOWING COMMANDS MAY THEN BE USED TO ENHANCE THE PLOT, ORBSHW

AR GUMENT	DEFAULT VALUE	ND UNITS	VALID RANGE		
(1) $A P G$	$1.5000 \mathrm{E}+02 \mathrm{NM}$,	2,7730E +02	$2 K M \quad, E+00$	T0	1. $0000 \mathrm{E}+20$
(2) PER	$1.5000 \mathrm{~L}+02 \mathrm{NM}$,	2,7780E+02	$2 \mathrm{KM} \quad, E+00$	TO	1.0000E+20
(3) INC	$2.8500 E+01$	DEG	, $\mathrm{E}+00 \quad$ TO	1.8000t	$+02$
(4) LON	, E+00	DEG	$-3,6000 E+0210$	3.6000 E	
(5) ARP	- $E+00$	DEG	$-3,6000 t+02$ T0	3.60005	+ 02
(6) TOP	, E+00	DHMS	$-1,00005+20$ T0	1,0000E	+20

SUNANG-DEFINES SUN ANGLE REQUIREMENT
THE SUN ANGLE $1 S$ THE ANGLE BE TWEEN THE EARTH-SUN AND EARTH-SATELLITE
VECTORS, WHEN THE SUG-SATELLITE POINT IS AT LOCAL NOON THE SUNN AVE
IS ZERO, AT LOCAL MIDNIGHT THE ANGLE IS 180.
THE VALUE LIMITS THE LOCAL LIGHTING CONDITIONS FOR PORTIONS OF THE
EARTH CONSIDERED VIEWED IN THE OUTPUT FROM THE PASS, STPLNG AND
STPTOD COMMANDS,
COMMAND SUNANG IS VALID IN ALL MODES,
ARGUMENT DEFAULT VALUE AND UNITS VALID RANGE
(1) ANG $1.8000 E+02 \mathrm{DEG} 1,0000 \mathrm{O}+00 \mathrm{TO} 1,80 \mathrm{UOE}+02$

SETSWT-DEFINES SENSOR GKUUND SWATH DATA
THE SWATH IS DEFINED $3 Y$ ENTEHING AN ALPHABETIC NAME AND TWO OR FUUR DISTANCES RELAI IVE TO THE SUB-SATELITE CENTER LINE (NEGATIVE=LEFI), EACH PAIR UF DISTANCES DEFINES THE START AND STOP OF A SWATH, FOR EXAMPLE

SETSWT,SINGLE, $-100,100,0,0$ DEFINES A SWATH NAMED SINGLE WHICH EXTENDS 100 NM OR KM UN E!THER SIDE OF THE CENTER LINE.

SETSWT, DOUBLE, $-700,-300,400,800$ DEFINES A SWATH NAMED DOUELE WHICH EXTENDS FROM 300 TO 700 ON THE LEFT AND FROM 400 TO 800 ON THE RIGHT.

THE SWATH NAME AND GROUND SWATH DATA ARE SAVED FOR LATEK REFERENCE, UP TO TEN SENSOR GRCUND SWATHS MAY BE DEFINED, REFERENCE TO A PAKTICULAR SENSOR MAY BE MADE USING THE COMMAND SWATH:

THE UNITS (NM UR KM) ARE DETERMINEU BY THE SELECTED UNI TS OPTIUN,
WHEN USED WITH AN ELLIPTICAL ORGIT THE SWATH IS ASSUMED PRUPORTIUNAL TO THE ALTITUDE WITH THE DEFINED VALUES AT THE AVERAGE ALTITUDE,

THE NAME SENSOR IS FESERVED FOR THE IGOS SENSOR MODEL AND THE ARGUMENT VALUES WILL BE IGNOPED.

TO UPDATE GRDUND SWATH DATA RE-EITER THE APPROPRIATE SENSOK NAME FOLLOWED BY THE NEW DATA IN A SECOND SETSWT COMMAND,

COMMAND SEISWI IS VALID IN ALL MODES.

AR GUMENT	DEFAULT	UE	UNI T		VALID RANGE		
(1) NAME	ALPHABETIC						
(2) $\times 1$	E +00	NM,	, E+UO	KM	-1, $10000 \mathrm{E}+20$	10	1.0000E+20
(3) $\times 2$, E+00	NM,	, $\mathrm{t}+00$	KM	-1,0000E+20	TO	1,0000E+20
(4) $\times 3$, $\mathrm{E}+\mathrm{O} 0$	NM,	, $\mathrm{E}+00$	KM	-1,0000E+20	10	$1.0000 E+20$
(5) $\times 4$, $\mathrm{E}+00$	NM,	, $5+00$	KM	-1,0000E+20	TO	$1,0000 \mathrm{E}+20$

SHWSWT-SHOWS SENSOR GROUND SWATH IATA
THE COMMAND SHWS'N LISTS THE SENS UR GROUND SWATH DATA FOR ALL SWATHS
THAT MAY OE REFERENCE U USING THE COMMAND SWATH, EACH SWATH WAS PE-
VIOUSLY DEF INED WITH THE COMMAND SE TSWT,
COMMAND SHWSHT
IS VALID IN ALL MODES,
NO ARGUMENTS

SWATH-SELECTS A GROUND SNATH
THE COMMANU SWATH IS USEU TO REFERENCE A PAKTICULAR SENSOR GROUND SWATH FOR PROGFAM USE, SWATH REOUIKES PKIOK USE OF THE COMMANUS SETSWT AND ORBDEF,

THE FIRST ARGUMENT IS THE ALPHAOETIC NAME OF THE GROUND SENSOK SWATH SELECTED, A LIST OF AVAILABLE SENSOR GROUND SNATHS MAY BE GE TATIVEU USING THE COMMAND SHWSAT, THE NAME SENSOR WILL FORCE USE OF THE IGOS SENSUR MODEL,

THE SECOND ARGUMENT DEFINES OR CHANEES THE SUN ANGLE REQUIREMENT, THE ANGLE BETWEEN THE EAFTH-SUIV AND EAKTH-SATELLI TE VECTORS liN DEGREES, FOR MORE INFOKMATION, SEE THE COMMAND SUNANG, SUN ANGLE IS OPTIONAL, EXAMPLE-

SWATH,SINGLE, $70 \quad$ KEQUESTS THE SENSOR GROUND SWATH, SINGLE, SWATH ALSO PRUUUCES OUTPUT TO IDENT IFY THE GROUND SENSOR SWATH SELECT $E D_{1}$ COMMAND SWATH IS VALID IN ALL MODES.
ARGUMENT
DEFAULT VALUE AND UNITS
VALID RANGE

(1) NAME	SENSOR	
(2) SUNANG	$1.8000 E+02$ DEGABETIC	

STPLNG-PRODUCES THE ORBIT STEP LONGITUDE COVERAGE PLOT
A LONGITUDE COVERAGE PLOT IS A GRAPH OF SATELLITE COVERAGE OF A PARTICULAR RANGE OF LONGITUDES AT A SPECIFIC LATITUDE VERSUS TIME IN DAYS FROM LAUNCH, THE ARGUMENTS DEFINE THE REGION OF INTEREST, THREE graphical representations are available thru the plot option,

DAY1, DAY2 = TIME PERIOD (DAYS FROM LAUNCH) LNG1. LNG2 = THE LONG ITUDE RANGE (DEGREES)	
LAT = LATITUDE (UEGKEES)	
LY = THE PLOT OPT	1 ON
THE PLUT OPTIONS ARE-	
LONG $=$ PLOTS LUNGI TUDE CUVERAGE VERS US TIME	
$\begin{aligned} \text { LNG }= & \text { PLOTS LUNG OPTION AND CUMULATIVE LONGITUDE } \\ & \text { COVERAGE LINE FOR DEF INED TIME PERIOD, }\end{aligned}$	
LNGB=	PLOTS LUNG AND LNG OPTIONS US ING A BAR GRAPH
	REPRESENTATIDN .

FOR EXAMPLE-
STPLNG, $10,40,-50,120,0, L U N G$ WILL HRODUCE A SATELLITE COVERAGE PLUT FOR DAY 10 THRU DAY 40 AFTER LAUNCH OF LONGIUUDES - 50 TO 120 DEGKEES AT THE EQUATUK

THE COMMAND OKBDEF MUST BE ENTERED PRIOR TO THE COMMAND STPLNG TO
DEFINE THE SATELLITE ORBIT.
AFTER THE AXES ARE DRAWIV AND PERIODICALLY THROUGHOUT THE PLUTING, THE COMPUTER NLLL PAUSE, TYPE A BL ANK AND A RE TURN TO CONTINUE, A NUNBLANK WILL TE KHINATE THE PLOT AND ASK FUR A NEW CMMAND;

COMMAND STPLNG IS VALID IN ALL HODES, IT WILL ERASE THE SCHEEN AND INIIIATE A STHLNG PLOT. THE FULLOWING COMMANDS MAY THEN BE USED TO ENHANCE THE PLUT, ZOCM

AR GUME NT	DEFAULT VALUE AND UNITS	VALID RANGE	
(1) DAY1	1,000 OE +00 DAYS	, $\mathrm{E}+00$ TO	1.0000t 20
(2) DAY2	$1,1000 E+01$ DAYS	, E+00 TO	1.0000E+20
(3) LNG 1	E $\mathrm{F}+00$ DEG	$-3.6000 E+0210$	$3,6000 t+02$
(4) LNG 2	$3.6000 \mathrm{E}+02 \mathrm{DEG}$	$-3,6000 E+02 T 0$	3,6000t+02
(5) LAT	E + O O DEG	$-9,0000 E+01$ T0	9,0000E+01
(o) LY	LONG ALPHABETIC		

STPTOD-PROUUCES THE OREIT STEP IIME OF DAY COVEKAGE PLOT
A TIME OF DAY COVERAGE PLOT IS A GRAPH OF LOCAL TIME OF DAY SATELLITE COVERAGE OF A PARTICULAR LUNGITUDE AND LATITUDE VERSUS TIME IN DAYS FROM LAUNCH, THE AFGUMENTS DEFINE THE LOCATION AND TIMES OF INTEREXT,

DAY1. DAY2 = TIME PERIOD (DAYS FROM LAUNCH)
TOD1, TOD2 = LOCAL TIME OF DAY RANGE (HOURS 0-24)
EXAMPLE TOD1=3, TOU2 $=17$ IS 3 AM TO 5 PM
LNG = LONG ! IUDE (DEGREES)
LAT = LATITUDE (DEGREES)
FOR EXAMPLE-
STPTOD,1, $366,6,18,-82,28$ WILL PRUDUCE A PLOT OF SATELLIIE COVERAGE FOR ABOUT A YEAR (DAYS 1 THRU 366 AFTER LAUNC(H) DURING THE HOURS 6 AM TO 6 PM OF -82 DEGREES LONGI TUDE AND 28 UE GREES LATITUDE

THE COMMAND OKBDEF MUST BE ENTERED PRIOR TO THE COMMAND STPTOD TO DEFINE THE SATELLITE UKSIT,

AFTER THE AXES ARE DFANIN AND PERIUDICALLY TKROUGHOUT THE PLOT ING, THE COMPUTER WILL PAUSE, TYPE A EL ANK AND A REIURN TO CONTINUE, A NDIV BLANK WILL TERMINATE THE PLOT AND ASK FOR A NEW COMMAND:

COMMAND STHTOD IS VALID IN ALL MODES, IT WILL ERASE THE SCREEN AND IWITIATE A STPTOD PLOT, THE FOLLOWING COMMANDS MAY IHEN EE USED TO ENHANCE THE PLOT, ZOOM

AR GUMENT	DEF AULT VALUE AND UNITS	VALID RANGE
(1) DAY1	E+00 DAYS	$E+00 \quad 10 \quad 1.0000 E+20$
(2) DAY2	1.1U0 OE +01 DAYS	$1 E+00$ TO 1.0000 +20
(3) TOD 1	, $\mathrm{F}+00 \mathrm{O}$ HRS	E $E+00 \quad$ TO 2. $4000 t+01$
(4) TUD2	2,400 OE + 01 HRS	, $t+00$ T0 2, 4000t+01
(5) LNG	E + O O DEG	$-3,6000 E+02$ TO $3.6000 E+02$
(6) LAT	,$E+00$ DEG	-9,000 UE +01 T0 9,0000E+U1

LIST-LISTS THE IGOS COMMANDS AND THEIR ARGUMENTS \qquad
THE COMMAND LIST, NAME WILL LIST THE ARGUMENTS, CURRENT VALUES. UNIS, \qquad
and valid ranges of the command named.
LISt, ALL WILL PRODUCE A PAGE LISTING THE IGOS COMMANDS GROUPED BY
SCREEN MODE, \qquad
COMMAND LIST IS VALID IN ALL MODES.
\qquad (1) COMANU

DEFAULT VALUE AND UNI TS
VALID RANGE

LAUNCH-DEFINES THE LAUNCH SITE FOK GEGINNING AN ORBIY
LAUNCH DEFINES THE LAUNCH SITE AND TIME TO DEFINE THE DRBIT LONG, OF NOUES, ARGUMENT OF PERIGEE, AND TIME OF, PERIGEE,

LAUNCH SIIE OHTIONS AKE

```
ETR=EASTEHN TEST RANGE
WTR =WESTEKN TEST RANGE
WAL -N =WALLOPS I SLAND(NORTHERN AZIMUTHS)
WAL -S =NALLOPS I SLAND(SOUTHE RN AZIMUTHS)
SAN MARC=SAN MARCO ISLAND
```

TIME IS ENTERED IN DAYS UF THE YEAH AND GMT HOURS,
EXAMPLE-LAUNCH, WTR,15,22
THIS IS A LAUNCH FROM WIT UN JAN 13 AT 22 HUURS GMT,
COMIAAMDLAUNCH IS VALID IN ALL MODES.

AR GUME NT	DEF AULT VALUE AND UNI TS	VALID RANGE		
(.1) LSITE	NONE ALPHABETIC			
(2) DAY	. $E+00$ DA YS	, $E+00$	TO	$3.6600 E+02$
(3) TIME	E +00 HR	, $\mathrm{E}+00$	10	2.4000t+01

VEH-SELECTS A IV EXPENDABLE LAUNCH VEHICLE
THIS COMMAND GE NERATES AN INTERNALLY STORED TABLE OF PAYLOAD WE IGHT VERSUS ALTITUIUE AND INCLINATION FOK THE SPECIFIED VEHICLE, THE VEHICLE NAME AND THE KANGE OF WEIGHTS FOR THE CURPENT ORBSEL PLOT ARE DISPLAYED IN IHE UPPER LEFT CORNER OF THE PLUT, EOUI-PAYLOAD CONTOUKS MAY THEN BE ADUED TO THE HLOT USING THE COMMAND PLD.

THE VEHICLE IS SELECTED BY THE FOLLONING CODES AS THE FIRST ARGUMENI.

```
1=SCOUT-D
2=DELTA-2910
S=UELT A-2610
4= DELTA - 2310
b=SCUUT-F
```

YHE REMAINING 5 ARGUMENTS ARE USED TO SPECIFY THE LAUNCH SITES,
IF THE ARGUMENTS ARE ALL BLANK THE CALCULATIONS WILL EE MADE ASSUMING A LAUNCH FROM THE SITE NORMALLY USED BY THE VEHICLE HHICH PRODUCES THE GREATEST PAYLUAD TO EACH ORBIT, IF ANY SITE IS SPECIFIED, ONLY THOSE SITES ARE CONSIDERED.

THE FOLLOWING SITES MAY BE SPECIFIED,

> ETR=EASTERN TEST RANGE
> WTR=WESTERN TESI RANGE
> WAL-N=WALLOPS ISLAND (NORTHERN AZIMUTHS)
> WAL-S=WALLOFS ISLAND (SOUTHERN AZIMUTHS)
> SAN MARC=SAN MARCO ISLAND

BLANKS MUST BE ENTERED EY TYP ING THE WORD BLANK, (IGOS SK IPS BL ANKS)
EXAMPLE-VEH,2,BLANK,BLANK,BLANK,BLANK WILL ASSUME A DELTA FROM EITHEK ETK OR WTR,

EXAMPLE-VEH,1,WAL-N,KAL TS,WTR WILL ASS UME A SCOUT BUT WILL ELIMINATE SAN MARCO LA UNCHES:

COMMAND VEH
IS VALID IN MUDES ORBSEL
AR GUMENT
(1) IV

DEFAULT VALUE AND UNITS
VALID RANGE
(1) 1.0U00E +00

ALPHABETIC
$\begin{array}{ll}(3) L S 2 & \text { ALP HA BETIC } \\ \text { (4) LS3 } & \text { ALPHABETIC }\end{array}$
(5) LS4 ALPHABETIC
(6) $\llcorner 55$

ALPHABETIC

PLD-DRAWS A LAUNCH YEHICLE PAYLOAD CONTOUR
THIS COMMAND WILL DRAW A CONT OUR OF THOSE OKEITS TO WHICH THE SPECIFIED VEHICLE CAN DELIVER A PARTICULAR PAYLUAD WEIGHT.

NO HLOT WILL GE PROUUCED IF THE AKGUMENT VALUE IS BEYOND THE VEHICLE CAPABILITY OR IF NO VEHICLE HAS BEEN SPECIFIED FOR THE CURRENT ORBSEL PLOT,

COMMAND PLU IS VALID IN MUUES ORÉSEL
ARGUAENT DEFALILT VALUE AND UNITS VALID RANGE

OFLT-EHANS THE CONTGURS UF A SPECIFIED ORBIT Q
G is the katio of satellite mean angular rate tu the oreit plaine ANGULAK RATE GELATIVE TU THE EARTH, Q IS USUALLY EXPRESSED IN THE FOLLOWING \& ORM
$0=1+N 1 / N 2$
WHERE I, N1, AND N2 ARE INTEGERS, THE FIRST TWO QPLI ARGUMENTS ARE NI AND N2, AN ORBIT WILL REPEAT OBSERVATIONS OF THE SAME EARTH SITES EVERY N2 DAYS OR I I N $2+N 1$ PASSES, THE THIRD QPLT ARGUMENT, GAP, IS PRUVIDED TO ALLOW SFECIFICATION OF A SMALL GAP DISTANCE: IF GAP IS NON-ZERO, THE Q PLOTTED WILL REPRESENT ORBITS WHICH MISS AN EXACT REPEAT BY THE GAP DISTANCE,

GPLT WILL DRA'N CONTOUFS OF EQUAL O FOK ALL VALUES OF I WHICH FALL ON THE CURRENT OKBSEL PLOT, IF A NON-INIEGER NI IS SPECIFIED ALL VALUES WHICH ARE PRIME TO NZ WILL ALSO BE P'LOTTED:

EXAMPLE-QPLT, $27,81,0$ WILL PLOT LOCID OF $1+1 / 3$
QPLT, $1,4,0$ GILL PLOT LOOC 11 OF. $1+1 / 4,1+3 / 4$
QPLT, $1,2,20$ WILL PLOT LOCII OF Q FOK 2 DAY REPETITION WITHIN 20 NM

COMMAND QPLT IS VALID IN MUUES ORBSEL

LABEL $-P E R M I T S$ TYPING INFORMATION ON THE SCREEN (TEK TRONIX ONLY)
THE COMMAND WILL CAUSE THE CROSS HAIRS TO AHPEAR ON THE SCREEN. THESE MAY BE HOVED USING THE TEKMINAL THUMO WHEELS TO POSITION THEIR INTERSECTION AT THE LOCATION OF THE DESIRED LABEL. A BLANK SHUULD THEN BE TKANSMITTED, THE CHARACTER CURSOR WLLL THEN APPEAR AND THE KEY BOARO USEU TO TYPE UNTO THE SCREEN. WHEN A CARRIALE RETURN IS TRANSMITTED THE CROSS HAIRS WILL KEAPPEAR, THEY MAY BE REPOSITIUNED FOR ADDITIONAL LABELING. OR MOVED TO THE BOTTOM OF THE PLOT IO END THE LABELING PKOCESS.

COMMAND LABEL IS VALID IN MUUES ORBSEL
NO ARGUMENTS

SUN-DRAWS SUN SYNCHFONUS CONTOURS
THREE DASHED LINES ARE DRAWIV THEY REPRESENT ORBITS WHOSE SUN-OKBIT PRECESSION RATE ARE -OMEGA, ZERO, AND TOMEGA,

UMEGA IS THE AIVGULAR RATE (DEGREES/DAY) GIVEN BY THE ARGUMEITS, EXAMPLE-SUN,1,30 WILL DRAW THE-1/SU,0, AND +1/30 UEGREES/DAY LINES, COMMAND SUN IS VALID IN MUUES ORBSEL

ARGUMENT	DEFAULT VALUE AND UNITS	VALID RANGE		
(1) DEG	, $E+00$ DEG	, E+00	10	$1,0000 E+20$
(2) DAYS	, E+00 DA YS	, E + 00	10	1,0000t+20

RAD
RAD-DRA:NS THE OUTLINE OF THOSE ORBITS WHICH HAVE EXCESS RADIATION
THE COMMAND RAL QUTLIGES THGSE OKBITS ON THE ORBSEL PLOT WITH EXCESSIVE RADIAIION EXPOSURE, THE ARGUMENTS JEFINE THE RADIATION SHECIFICATIONS AS YOLLOWS-

$$
\text { CMAL }=\text { DENSITY OF ALUMINUM SHIELD (GM/CM2) }
$$

FLUM $=$ MAX IMUIT FLUENCE
DAYS = NUMBER OF DAYS FOR ALLUWABLE FLUENCE
DUE TO THE SIZE OF THE NUMBER, FLUM IS ENTERED AS FULLOWS -
XX, XXEYY IS ENTEKED AS XX,XX $=100, Y Y-2$
$\frac{12,40 E 12}{11}$ IS ENTERED AS 1240,10
THE OUTL! NED AREAS MAY BE CROSS HATCHEU USING THE HR COMMAND,
COMMAND RAD IS VALID IN HUUES ORBSEL

AR GUMENT		DEFAULT VALUE AND UIIITS	VALID RA, ivGE	
(1)	CMAL	$1.0000 \mathrm{O}-02 \mathrm{GM} / \mathrm{CM} 2$	1.000 OE - 20 TO	1.0000t+ 20
(2)	F LUM	$5.1200 \mathrm{E}+00$	$1,00005-20$ TO	1.0000E+20
(3)	DAYS	$3.0000 E+01$ DAYS	1,000 UE 220 TO	1, $0000 \mathrm{E}+20$

HR-DRAWS VERTICAL HATCHES IN THE EXCESS RADIATION OUTLINES
THE OUTLINES GENERAIED BY THE KAD COMMAND AKE STURED AS $£ 1$ DISCKE IE ALTITUDE STRIPS, CROSS HATCHES ARE LINES DRANN AT THE SI AGTITUUS, THE ARGUMENTS CONTRQL WHICH ALTITUDES WILL BE HATCHED.

EXAMPLE- HR, 1,1 WILL HATCH EVERY ALTITUDE STARTING AT THE FIRST, HR,4.3 WILL HATCH EVERY IHIRD ALTITUDE STARTING WI TH THE

COMMAND HR IS VALID IN MUDES ORBSEL

AR GUMENT	JEF AULT VALUE AND UNITS	VALID RANGE
(1) START	1,0000E +00 LINES	$1,0000 E+00$ T0 1. $0000 \mathrm{E}+01$
(2) STEP	$1.0000 \mathrm{O}+00 \mathrm{~L}$, NES	$1,0000 \mathrm{E}+00$ T0 1,0000t+01

DECAY -PLOTS THE ORBIT DECAY AND LAUNCH VEHICLE INJECTION ERRORS COMMAND DECAY PRODUCES OKGIT DECAY AND LAUNCH VEHICLE INJECTION DIS PERSIONS (SCOUT ONLY) ON THE ORBSEL PLOT,

1HE AKGUMENTS ARE-

ALT = ALTITUDE OF INJECTION (NM OR KM)
DI = INCLINATION OF INJECTI ON (DEGREES)
$B C=$ BALLISTIC COEFFICIENI (KG/M2)
LYR = LAUNCH YEAR (EXAMPLE-1976)
YRS = TIME IN YEARS FOR DECAY
EXAMPLE - DECAY, $160,135,5,220,1977,2$
COMMAND DECAY
IS VALID IN MUDES OKBSEL
AR GUME NT
DEF AULT VALUE AND UNITS
VALID RANGE
(1) ALT
$1.7500 \mathrm{E}+02 \mathrm{NM}, \quad 3,2410 \mathrm{E}+02 \mathrm{kM}$
(2) DI
$3,7000 E+01$ DEG,$E+0$
(3) BC
(4) LYK
$2.2000 E+02 \mathrm{KG} / \mathrm{M} 2$
1,000 UE -20 TO $1,0000 E+20$
(5) YRS
$1.976 \mathrm{CE}+03 \mathrm{CAL} \mathrm{YR}$
$1,0000 E-2010-1.0000 E+20$
$1.0000 E+00$ YRS $\quad 1,0000 E-20$ TO $1,0000 E+20$

ZOOM
ZOOM-USES THE CURSOR TO ZOOM IN ON A PLOT REGION (TEKTRONIX ONLY)
THE CROSS HAIHS ARE USED TO DEFINE A PORTION OF THE PLOT FOR EXPANSION TO ACHIEVE BETTEFCLABITY.

1. THE CRUSS HAIAS WILL APPEAK ON THE SCKEEN, POSITION THEM WITH THEIR INTERSECTION AT A CORNER OF THE DESIRED REGION.
2. TRANSMIT A BLANK
3. THE PROGRAM KILL DRAW A PA IK OF LINES AT THE CROSS HAIR

4, REPOSIIION THE CHOSS HAIRS WITH THEIR IN TERSEC TI UN AT THE OPPOSITE CORNER OF THE DESIKED REGION,
5. TRANSMIT A BLANK
6. THE PROGRAM KILL DRAW A SECUND PAIR OF LINES. THE DESIGNATED AREA IS NOW OUTLINED ON THE PLOT,
\qquad WITH THE DESIGNATED AREA OUTLINED L MAY BE OBTAINED.
B. TRANSMIT A BLANK
9. THE EXPANDED PLUT WILL BE INITIATED BY THE PROGRAM,

NO ARGUMENTS

MARK-MAFKS WIIH THE CURSUR A POINT FOR LATEK REFERENCE IEKTKONIX ONLY)
THE COMMAND MARK NILL CAUSE THE CHOSS HAIRS TO APPEAR ON THE SCHEEN, THEY MAY THEN OE POSITIUNED WITH THEIR INTEKSECTION AT THE DESIREU ORBIT (POINT) ON THE ORHSEL PLOT, A BLANK IS THEN TRANSMITTED, THE PROGRAM WILL UKAW A CROSS AT THE INTERSECTION AND ASSIGN A LETTEK TO THE MARK LATER REFERENCE MAY BE MADE TO THESE ORBITS US ING THE COMMAND SELECT.

UP TO FIFTEEN MARKS MAY BE MADE ON ORBSEL PLUTS DURING ONE IGOS SESSION (A THROUGH O). THEIR COORDINATES ARE SAVED UNTIL PRUGHAM TEKMINATION,

DUE TO THE FINITE RESOLUTION OF THE TERMINAL SCREEN, MORE PRECISE MARKS MAY BE MADE BY EXPANDING THE ORBSEL PLOT SCALES, US ING THE ZOOM COMMAND, PRIOR TO MAKING THE MARKS,

COMMAND MARK
IS VALID IN MOUES ORBSEL
NO ARGUMENTS

COY -THE IGOS COVERAGE MODEL TO NOTE ORBITS WITH INSUFFICIENT COVERAGE
THE COVERAGE MODEL OUTLINES THOSE ORBITS ON THE ORBSEL PLOT WHICH DO
NOT VIEW ALL POINTS IN THE LATITUDE RANGE, LAT1,-LATZ. AT LEAST ONCE
IN THE SPECIFIED NUNEER OF DAYS, VIEWING IS DEFINED BY THE IGUS
SENSOR MODEL WHOSE DATA IS ENTERED WITH THE COMMAND SENSOR. AIN
ARGUMENT, NSAIS, IS PROVIDED TO SPECIFY THE NUMBER OF SATELLITES, FOR
MULTIPLE SATELLITES IT IS ASSUMED THAT THE ORBIT PLANES ARE POSITIONED
SO THAT THE GROUND SWATH LIE EXACTLY ADJACENT,
EXAMPLE-COV, $0,00,30$ WILL OUTLINE THOSE ORBITS THAT DO NOT VIEW ALL
POKIIUNS OF THE EARTH BETWEEN LATS 0 AND 60
DEGREES AT LEAST ONCE EVERY 30 DAYS,
THE OUTLINED AKEAS HAY BE CROSS HATCHED USING THE WC COMMAND,
COMMAND GOV IS VALID IN MOUES OKBSEL

HC-CROSS HATCHES THE FURQIDDEN ORBITS IN THE COVERAGE PLOT
The outlines generated by the cov commanis are stured as 51 di sche te ALTITUE STHTPS, CRCSS HATCHES ARE LINES DRAWNAT THE 51 ALTITUUE,

THE ARGUMENTS CONTROL WHICH ALTITUUES WILL BE HATCHED.
EXAMPLE-HC, 1;1 NILL HATCH EVERY ALTITUDE STARTING AT THE FIRST, EXAMPGE-HC, 2,3 WILL HATCH EVERY IHIRD ALTITUDE STARTING WITH THE CND, COMMANU HC IS VALID IN MUUES ORESEL

ARGUMENT DEFAULT VALUE AND UNITS VALID RANGE
(1) START
$1.0000 E+00$ LINES
$1.0000 E+00$ LINES
$1,0000 E+00$ TO $1.0000 E+01$
(2) STEP
$1,0000 E+00$ TO $1,0000 E+01$

MAP-DRA NS AN EARTH MAP BACK GR OUND
THE MAP DATA CONSIST OF $100 Q U$ DATA POINTS WHEN THE GNDTRK COMMAND IS
GIVEN A SUBSET OF THE IATA IS COPIED TO A SCRATCH FILE, THE SCRATCH
FILE CONSISTS OF THOSE POINTS WHICH LIE ON THE PORTION OF THE EARTH
BEING DISPLAYED, AND FUKIHEK APART THAN A MINIMUM DISTANCE, THE
MINIMUM DISTANCE IS THE WIDTH OF THE PLOT DIVIDED BY THE FINENESS,
IF THE FINENESS WAS SET TO ZERO NO SCRATCH FILE IS WRITTEN AND NU MAPS
CAN BE DRAWN,
COMMAND MAP
IS VALID IN MODES GNUTRK
NO ARGUMENTS

PASS-DKAWS ORBIT PASSES OiV THE GROUND TRACK PLOT
THE ARGUMENTS ARE USED TO CONTROL WHICH PASSES AND HOW THE SWATH IS PLOTTED,

EXAATPLE-PASS:1,3,7

THIS WILL DKA N PASSES 1, '2, AND 3 WITH A TYPE 7 SWATH PLOT, THE F IRST PASS BEGINS AT LAUNCH AND ENDS WITH THE FIRST ASCENDING EQUATORIAL CROSSING, SEVERAL PASS PLOTS MAY BE SUPERIMPOSED, FOR EXAMPLE PASS,1,5,7 AND PASS,6,10,7 WILL GIVE THE SAME PLOT AS PASS, 1, 10, 7

THE SWATH COUES ARE

```
1=SOLID CENTERLINE ONLY
2=SWATH EDGES ONLY
3=EDGES AND DASHED CENTEKLINE
4=CRUSS HATCHES ONLY
5=CRUSS HATCHES AND DASHED CENTERLINE
6=CRUSS HATCHES AND EDGES
7=CRUSS HATCHES+EDGES+DASHED CENTERLINE
```

IF A SUN ANGLE LESS THAN 180 DEG, HAS BEEN SPECIFIED, ONLY THE PORTION OF THE SWATH WITH ADEQUATE ILLUMINATION WILL EE PLOTTED, COMMAND PASS IS VALID IN MUDES GNDTRK

ARGUMENT	DEFAULT VALUE AND UNITS	VALID RANGE
(1) F1RSI	1.0000E + 00 PASSES	$-1,0000 E+03$ TO 1,0000E +04
(2) LAST	1,0U0 UE +0 O PA SSES	-1,000 UE +03 T0 1,0000t+04
(3) CODE	$2.0000 E+00$	$1,00005+00$ TO 7,0000t+00

TRKSIT
TRKSIT-DRAWS THE TRACKING SITE MASKS ONT THE GROUND TRACK PLOT
THE TRACKING SITE MASKS ARE CIRCLES WITH RADII COMPUTED FROM THE
ORBIT AVERAGE (SA) ALTITUDE, THE SITE ALTITUDE, AND THE MINIMUM
ELEVATION ANGLE ABOVE THE LOCAL HORIZON,
THE SITES ARE GROUPED BY CLASSES i ALL SITES WITHIN A CLASS ARE
PLOTTED AT THE SAME TIME, UP TO FOUR CLASSES MAY BE PLOT TED WITH EACH
TRKSIT COMMAND.
EXAMPLE-TRKSIT,2 PLOTS ALL CLASS 2 SITES
EXAMPLE-TKKSI 1, 4, 3, 1 PLUTS CLASS 1,3, AND 4 SITES,
TRKSIT-DRANS CLASSES OF TRACKING SITE MASKS ON THE GROUND TRACK PLOT

COMMAND THKSIT IS VALID IN MODES GNDTRK

CHGSIT-TO ADD IRACKING SITE DATA UK CHANGE EXISTING SITE DATA
the first argument is a site name, if the name matches an existing SITE NAME THE COMMAND WILL CHAN UE IHE DATA ASSOUTATED WITH THAT SITE, IF THE NAME UOES NOT MATCH THAT OF AN EXISTING SITE, A NEW SITE IS CREATED WITH DATA PHOVIUED IN THE AGGUMENT LIST,

WHEN THE DATA FOR ANEXISTING STTE IS TO BE CHANGED, ZERU ARGUMENTS WILL CAUSE THE CORRESPUNDING DATA TO REMA IN UNCHANGED,

EXAMPLE-CHGSIT,FAIRGANKS, $3,0,0,20,0$ WILL CHANGE FAIRBANKS TO A CLASS 3 SITE WITH A MINIMUG FLEVATION ANGLE OF ZU DEG, THE LAT,LONG AND.ALT WILL NOT BE CHANGED,

COMMAND CHGSI T IS VALID IN ALL MODES,
AR GUMENT
DEFAULT VALUE AND UNITS
VALID RANGE
(1) NAME

ALPHABETIC
(2) CODE
(3) LNG
(4) LAT
(5) ELE
(6) $A L T \quad E+00$
$N M, \quad t+00$
$\begin{array}{ccc}1 E+00 & T O & 1,0000 E+01 \\ -3,6000 E+02 & T 0 & 3,6000 E+02 \\ -9,0000 E+01 & T O & 9.0000 E+01 \\ 1, ~ & \text { TO }+00 & 9,0000 E+01\end{array}$

SHWSIT-SHONS THE DATA FUR A CLASS OF TRACKING SITES
THE SHWSIT COMMAND LISTS THE TRACKING SITE DATA FOR ALL SITES IN
THE CLASS SPECIFIED BY THE ARGUMENT,
COMMAND SHES! T
IS VALID IN all modes.

ARGUMENT
(1) COUE \qquad $E+00$

ORBSHW-PRQDUCES THE NODAL GAP PATTERN ON THE ORBIT DEFINITION PLOT
THE COMMAND ORBSHW PROVIDES THE FOLLOWING ADDITIONAL ORBIT INFORMATIUN UN THE ORGDEF PRESENTATION-

1, KELATIVE MOTION OF THE NODE WRT EARTH, WRT SUN AND INERTIAL IN DEGREES/NODAL PEKIUD ANU DEGKEESIDAY
2. RELATIVE MOTI OIN OF PERIGEE WRT NODE IN DEGREES/NODAL PEKI OD AND DEGREES/DAY,
3. PLOT UF DISTANCE EE TWEEN ASCENDING NODES VERSUS TIME: DISTANCE IS MEASURED IN NM OK KM AND DEGREES AND TIME IS IN DAYS AND OROITAL PASSES,

COMMAND ORBSHW IS VALIJ INMOUES ORBDEF
NO ARGURIENTS

NO tEACH MESSAGE IS available for these COMmANDS
MANUAL
1 ARGUMEN!S

SUBJECT	PAGE	SUB JECT	PAGE
	5	ORBSEL	13
BANVEF	1	ORBSH W	46
BEGIN	4	PAGE	9
CHGS IT	44	PASS	42
COMMAND	1	PLD	29
COV	39	QPLT	30
DECAY	35	KAD	33
END	13	RESET	14
ERRORS	10	SELEC T	38
GNDTRK	17	SENSOK	18
HC	40	SET SWT	21
HELP	6	SHWSIT	45
HR	34	S HW SW T	22
INDEX	48	S,TPLNG	24
INTRO	2	STPTOU	25
LABEL	31	SUMMARY	11
LAUNCH	27	SUNANG	20
LIST	26	SUN	32
LOGIN	3	SWATH	23
MAP	41	TABLE	16
MA RK	31	T RKSIT	43
MODES	8	UNITS	12
NO TEACH	4%	VEH	28
ORBDEF	19	ZOOM	36

[^0]: * Rea, F. G., "Final Report on Vehicle Systems and Payload Requirements Evaluation", Battelle's Columbus Laboratories, Contract NAS8-26491 (December 1975) ; and Rea, F. G., "Preliminary Mission Planning Using Interactive Graphics", Paper No. AAS75-051 presented at AAS/AIAA Astrodynamics Specialists Conference, Nassau, July 28-30, 1976.
 ** Pittenger, J. L., and Rea, F. G., "The Interactive Graphics Orbit Selection Frogram Description and Users Guide", Battelle's Columbus Laboratories, Contract NAS7-786 (Task 13), Report No. IGOS-TM-76-1 (May 26, 1976).

