## General Disclaimer

## One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

```
Wh Shuct of Engneving
                wahningor DC. 20001
```

FINAL REPORT
NASA GRANT: NSG-1181

Supp1. 1
Part C
$\frac{1}{2}=\frac{t \cdot x+y^{3}}{3}$
HOWARU UNTVERSITYSCHOOL OF ENGTNEERINGDEPARTMENT OF MECHANICAL ENGINEERINGWASHITNGION, D. C. 20059
FINAL REPORT
NASA GRANT: NSG-1181 - Suppl. 1
THE DYNAMICS AND OPTIMAL CONTROL OF SPINNING SPACECRAFT WITH MOVABLE TEIESCOPING APPENDAGES
Part C
EFFECT OF FLEXIBILITY DURING BOOM DEPLOYMENT
by
Peter M. Bainumi
Professor of Aerospace EngineeringPrincipal Investigator
and
Paul K. James
Graduate Research Assistant

May 1977


#### Abstract

The dynamics of a spinning symmetrical spacecraft system during the deployment (or retraction) of flexible boom-type appendages is the subject of this investigation. The effect of flexibility during boom deployment is treated by modelling the deployable members as compound sphericat pendula of varying length (according to a control law). The orientation of the flexible booms with respect to the hub, is described by a sequence of two Euler angles. The boom members contain a flexural stiffness which can be related to an assumed effective restoring linear spring constant, and structural damping which effects the entire system. It is seen that the linearized equations of motion for this system, when the boom length is constant, involve periodic coefficients with the frequency of the hub spin. A bounded transformation is found which converts this system into a kinematically equivalent one involving only constant coefficients. According to the Lyapunov reducibility theorem the stability of the reduced system can be analyzed using the standard techniques - i.e. an application of the Kelvin-Tait-Chetaev theorem. With the presence of structural boom demping only (and no damping on the hub), criteria for stability: in the Lyapunov sense may be developed and analyzed before or immediately after each deployment maneuver. The


simulation of the first-order nonlinear equations may be used to predict the dynamics of the system before, during, and after each extension or retraction.

## TABLE OF CONTENTS

Page
ABSTRACT ..... ii
NOMENCLATURE ..... iv
LIST OF IIIUSTRATIONS ..... vii
CHATIER I - Introduction ..... 1
CHAPIER II - Equations of Motion ..... 4
A. Kinetic Energy ..... 5
B. Angular Velocity ..... 6
C. Development of First Order Expression fcr the Kinetic Enerigy ..... 7
D. Deve? opment of the Equations of Motion ..... 23
CHAPIER III - Stability ..... 28
A. Application of the Lyapunov Reducibility Theorem ..... 29
B. Application of the Kelvin-Tait-Chetaev Theorem ..... 35
CHAPTER IV - Concluding Comments ..... 38
REFERENCES ..... 40

## NOMENCLATURE

| A | Linearized system state matrix |
| :---: | :---: |
| $\mathrm{a}_{\boldsymbol{i}}$ | Flexumal coordinate in the transverse $x, y$ plane |
| $b_{i}$ | Flexural coordinate out of the $x, y$ plane |
| C | Equivalent (structural) linear viscous rate damping of the booms |
| $c_{i}$ | Offset of booms from the principal x axes |
| D | Symmetric positive semidefinite danming matrix |
| G | Skew-symmetric matrix involving gyroscopic terms |
| $I_{1}, I_{3}$ | Composite principal moments of inertie $\left(I_{1}=I_{2}\right)$ |
| $I_{\mathrm{H}_{i}}$ | Hub principal moment of inertia $(i=1,2,3)$ |
| K | Symmetric stiffness matrix |
| k | Equivalent linear restoring spring constant of the booms |
| 2 | Instantaneous boom length |
| $M, M_{1}, M_{2}, M_{3}$ | System composite parameters in the equations of motion |
| M | Symetric mass inertia matrix |
| $\mathrm{m}_{\mathrm{H}}$ | Hub mass |
| $m_{t}$ | Tip mass |
| $\mathrm{dm}(\mathrm{t})$ | Arbitrary differential mass within the system |


| $\mathrm{dm}_{i}(t)$ |
| :---: |
| $Q_{a_{i}}$ |
| $Q_{b_{i}}$ |
| q |
| $\bar{R}_{\text {HV }}$ |
| $\bar{S}_{\mathrm{OH}}$ |
| $\bar{R}_{\text {OV }}$ |
| $r$ |
| $S(t)$ |
| T |
| t |
| dV |
| $W_{0,1,2,3}$ |
| ${ }^{+}$ |
| $X, Y, Z$ |
| $x, y, z$ |
| $X(t)$ |

Stored mass
Generalized force associated with the flexural coordinate in the transverse $x, y$ plane ( $i=1+4$ )

Generalized force associated with the flexural coordinate out of the $x, y$ plane ( $i=1 \rightarrow 4$ )

Position of an arbitrary volume element along the boom (wire)

Position vector of arbitrary volume element with respect to the hub center of mass

Inertial position vector of the hub center of mass

Inertial position vector of an arbitrary volume element within the system

Offsjet of the booms from the system center of mass

Bounded nonsingular transformation matrix used to transform nonautoncmous system of equations to an autonomous set

System kinetic energy
Time
Differential volume within the system
Indicates the order of magnitude of: tiee angular velocity vector components

Nomirial value of hub spin rate
Inerti il coordinate system
Hub coordinate system
State vector
$\delta$
$\varepsilon_{1}, \varepsilon_{2}$
$\theta_{1}, \theta_{2}, \theta_{2}$
$\rho$
$\psi$
$\bar{i}$
$\dot{\bar{j}}$

Superscripts
Int
Superscripts
$f$

H
I
$i$
j

Small periurbation associated with rotation about the spin axes

Transformed form of the coordinates $\theta_{1}, \theta_{2}$

Euler angles which define the orientation of the hub with respect to the inertial system

Boom (wire) mass per unit length
Angle swept out in the transverse plane by the hub spin vector

Inertial angular velocity vector of the hub

Rayleigh dissipation function

Indicates time differentiation

Associated with the final length of
the boom
Fub reference frame
Inertial reference frame
Refers to boom number ( $i=1 \rightarrow 4$ )
Index number of Lagrangian equation associated with a flexural coordinate ( $j=1,2,3,4$ )

## LIST OF ILLUSTRATIONS

## Figure <br> Page

1 Inertial and hub fixed coordinate system .................. 41
2 Variables specifying position of the wire element ..... . 42

## CHAPIER I

## Introduction

The effect of flexibility during boom deployment on the dynamics of a spinning spacecraft system is treated by modelling the deployable members as compound spherical pencula of varying length. The Euler angles, $a_{i}$ and $b_{i}$, describe Elexural coordinates within the transverse plane ard normal to this plane (Fig. 1). This model utilizing four deployable transverse booms (Fig. I. showing one boom) : nominally lying in a plane orthogonal to the spin axes will be considered. The booms are assumed to emanate from points a distance, $r$, from the center of mass of the hub and, in their undeflected state, are not necessarily aligned with the hub principal axes ( $c_{i} \neq 0, i=1 \rightarrow 4$ ).

The development by Longman and Fedor ${ }^{1}$ for treating the dynamics of a system with constant length flexible wires will be modified to include the effect of varying the length. A quadratic approximation to the kinetic energy is developed which involves a total of 14 generalized coordinates. The degree of flesibility is treated by introducing a restoring potential energy function proportional to the square of the flexural coordinates, where the proportionality (spring) constants can be varied according to the in-plane and out-of-plane resistance to bending. Boom bending in
the transverse plane and also out-of-plane can be simulated by varying the magnitude of restoring linear spring constants, which can be related to the stiffness (EI) of the boom material.

A related zecent paper by Janssens, ${ }^{2}$ considered the flexibility of fixed lengti, appendages attached to a hub which was assumed to spin at a uniform rate with no transverse components of angular velocity. The motion of the appendages was simulated as spherical pendula in a centrifugal force field having two degrees of freedom, thus neglecting the perturbing effects of the wires on the motion of the central body. The author ${ }^{2}$ has examined this simpler problem to obtain the oscillatory behavior of the pendula, which describe the nature of non-linearities in the equations of motion, and gives a description of the as jmmetry between forward and backward swings in the presense of out-of-plane oscillations. ${ }^{2}$

Twn other related problems have also been examined. The first considers stability boundaries on the extension of a pair of axial antennas whose undeformer state lies along the nominal spin axis. ${ }^{3}$ Ir was assumed that the rate of extension was sufficiently smail so that Coriois effects due to the rate of change of length could be neglected. The author ${ }^{3}$ determines how far the antennas can be extended before a stability boundary is approachei but does not simulate the actual dynamics during deployment. ${ }^{3}$ In the second problem, the author's ${ }^{4}$ concern is to determine the maximum nutation angles expected to remain after the
deployment, the maxinum bending moments, and deflections of long flexible bocms. This analysis neglects boom extension by considering boom lelgw ( 1 ) to be constant in the formulation. The spin rate $\left(\omega_{3}\right)$ is also assumed constant. ${ }^{4}$

The ofjective of the present investigation is to consider both the stability as well as the development of. the deployment dynamics of spinning spacecraft with movable flexible appendages. The final objective will be to reach conclusions about the effect of first order appendage flexibility during extension or retraction maneuvers.

## CHAPTER II

Equations of Motion

The first onder equations of motion will be developed using the Lagrangian formulation, treating flexible boom (wire) members as spherical pendula of varying length. It is assumec that the amplitudes of the flexural coordinates as well as the amplitudes of the variationai coordinates that describe the motion of the rigid part are small. It is sufficient to use a quadratic approximation tc the Lagrangian to obtain the first order equetions of motion. ${ }^{1}$ We will first examine the develorment of the quadratic approximation to the kinetic energy.

Fig. 2. illustrates an inertially fixed coordinate system: $X, Y, Z$, and a coordinate system: $x, y, z$, fixed to the symmetric hub of the spacecraft and centered about its center of mass. Also from Fig. 1 , we let $\bar{F}_{O V}$ be the vectc: from the cer $\cdots$ of the inertially fixed coordinates to an arbitrary volune element, dV , and $\bar{R}_{0 H}$, the vector from the center of the inerial coordinate system to the origin of the hub fixed axes. $\bar{R}_{\mathrm{HV}}$, is the vector from the origin of the hib fixed axes to the arbitrary volume element dV . The quantity, $\mathrm{d}_{\mathrm{R}} /\left.\mathrm{dt}\right|_{I}$, is defined as the velocity vector of the volune elemert, $d V$, relative to inertial space.

## A. Kinetic Energy

The kinetic energy of each element of volume can be expressed as,

$$
\begin{equation*}
d T=d\left|d \bar{R}_{O V} / d t\right|^{2} / 2 \tag{I}
\end{equation*}
$$

The total kinetic energy of the system is obtained by integrating Eq. (I) over the total volume in the system:

$$
\begin{equation*}
\text { K.E. }=(1 / 2) \iiint \rho_{V}\left(\left.\left.\frac{d \bar{R}_{O V}}{d t}\right|_{I} \cdot \frac{d \bar{R}_{O V}}{d t}\right|_{I}\right) d V \tag{2}
\end{equation*}
$$

where $\rho_{v}$ is the density (mass per unit volume). The mub and wires (booms) are assumed to be continuous, whereas the tip mass and the stored mass are considered discrete particles. Thus, the kinetic energy for the entire system can be expressed as:
$T=(I / 2) \iiint_{\text {hub }} \rho_{V}\left(\left.\left.\frac{d \bar{R}_{O V}}{d t}\right|_{I} \cdot \frac{d \bar{R}_{o V}}{d t}\right|_{I}\right) d V$

+ (1/2) $\iiint_{\text {wires }} \rho_{V}\left(\left.\left.\frac{d \bar{R}_{O V}}{d t}\right|_{I} \cdot \frac{d \bar{R}_{O V}}{d t}\right|_{I}\right) d V$
$+(1 / 2) \sum_{\text {tip mass }} m_{t}\left(\left.\frac{d \bar{R}_{O V}}{d t}\right|_{I}:\left.\frac{d \bar{R}_{O V}}{d t}\right|_{I}\right)$
$+(1 / 2) \sum_{i=1}^{4} d m_{i}\left(\left.\left.\frac{d \bar{R}_{O V}}{d t}\right|_{I} \cdot \frac{d \bar{R}_{O V}}{d t} \right\rvert\, I_{I}\right)$
stored mass

It should be noted that the last three terms in Eq. (3) include the effect of the varying length of the wires.

## B. Angular Velocity

The orientation of the hub axes relative to inertial space can be expressed by using an Euler angle transformation, where $\theta_{1}, \theta_{2}$, and $\theta_{3}$ are the Euier angles. The rotations follow the right hand sense, and are taken in the following onder ${ }^{1}$ : (1) a rotation through $\theta_{1}$ about the inertial $X$ axes, followed by (2) a rotation $\theta_{2}$ about the (intermediate) $Y^{\prime}$ axis, and then (3) a rotation $\theta_{3}$ about the resulting $Z^{\prime \prime}$ axis. After appropriate combination of the three transformation matrices, the following over-all transformation describes the orientation of the hub system unit vectors relative to the inertial system unit vectors:

$$
\left[\begin{array}{c}
\dot{x}_{H}  \tag{4}\\
\ddot{y}_{H} \\
z_{H}
\end{array}\right]=\left[\begin{array}{ccc}
c \theta_{2} c \theta_{3} & s \theta_{3} c \theta_{1}-s \theta_{1} s \theta_{2} s \theta_{3} & s \theta_{1} s \theta_{3}+c \theta_{1} s \theta_{2} c \theta_{3} \\
-c \theta_{2} s \theta_{3} & c \theta_{1} c \theta_{3}+s \theta_{1} s \theta_{2} s \theta_{3} & -s \theta_{1} c \theta_{3}-c \theta_{1} s \theta_{2} s \theta_{3} \\
s \theta_{2} & -s \theta_{1} c \theta_{3} & c \theta_{1} c \theta_{3}
\end{array}\right]\left[\begin{array}{l}
x \\
Y \\
z
\end{array}\right]
$$

where $c$, $s$ indicate the cosine and sine functions, respectively. From consideration of this specific Euler angle sequence,

$$
\begin{equation*}
\bar{\omega}=\dot{\theta}_{1} \hat{X}+\dot{\theta}_{2} \hat{Y}^{\prime}+\dot{\theta}_{3} \hat{Z}^{\prime \prime} \tag{5}
\end{equation*}
$$

Eq. (5) can be expanded by using Eq. (4) and the intermediate individual transformation matrices to yield the components of angular velocity, $\bar{w}$, in the hub system as,

## C. Development of First Onder Expression for the Kinetic Energy

In order :o develop a first order expression for the kinetic energy, $T$, we can write:

$$
\begin{align*}
& \dot{\theta}_{3}=w_{0}(t)+\delta \dot{\theta}_{3}  \tag{7}\\
& \theta_{3}=\psi(t)+\delta \theta_{3}
\end{align*}
$$

where $\delta \dot{\theta}_{3} / \mathrm{w}_{0}$ and $\delta \theta_{3} \ll 1$. In addition we assume $\left|\theta_{1}\right|,\left|\theta_{2}\right|,\left|a_{i}\right|$, and $\left|b_{i}\right|, \ll 1$. For a rigid satellite in or close to its nominal state of spin (i.e. not during a deliberate spin-up maneuver),

$$
\begin{align*}
& \omega_{0}(t)=\omega_{0}=\text { constant (about spin axis) }  \tag{8}\\
& \psi(t)=\omega_{0} t .
\end{align*}
$$

Since small angles have been assumed, we can replace, e.g. $\cos \theta_{2}$ by 1 , $\sin \theta_{2}$ by $\theta_{2}$, etc. Then, with the aid of Eq. (7), Eq. (6) can be approximated by:

$$
\bar{W} \cong \underbrace{\left[\begin{array}{c}
0  \tag{9}\\
0 \\
\dot{\theta}_{0}
\end{array}\right]}_{W_{0}}+\underbrace{\left[\begin{array}{c}
\dot{\theta}_{1} \mathrm{c} \mathrm{\psi}+\dot{\theta}_{2} s \psi \\
\dot{\theta}_{1} s \psi+\dot{\theta}_{2} \mathrm{c} \mathrm{\psi} \\
\delta \dot{\theta}_{3}
\end{array}\right]}_{W_{1}}+\underbrace{\left[\begin{array}{c}
\dot{\theta}_{1} \delta \theta_{3} s \psi+\dot{\theta}_{2} \delta \theta_{3} \mathrm{c} \psi \\
-\dot{\theta}_{1} \delta \theta_{3} \mathrm{c} \mathrm{\psi-} \mathrm{\dot{ } \mathrm{\theta}_{2} \delta \theta_{3} \mathrm{~s} \psi} \\
\dot{\theta}_{1} \theta_{2}
\end{array}\right]}_{W_{2}}+\ldots,
$$

where the three dots indicate terms of higher order than quadratic. The genemalized coordinates for the center of mass of the hub are the cartesian components of $\bar{R}_{O H}$ in inertial space. $\dot{X}, \dot{Y}$, $\dot{Z}$ represent components in the coordinate system (I) of $d \overline{\mathrm{R}}_{\mathrm{OH}} /\left.\mathrm{dt}\right|_{\mathrm{I}}$, an inertial derivative. The quantities $\dot{x}_{\mathrm{H}}, \dot{y}_{\mathrm{H}}$, and $\dot{z}_{\mathrm{H}}$ are defined as ac ronents of this vector projected into the hub (H), coordinate system ( $i_{H} y_{H} z_{H}$ ) as seen from the inertial reference frame.

The first term of Eq. (3), the kinetic energy of the hub, contains contributions due to the translational kinetic energy of the center of mass and the rotational kinetic energy about the center of mass.

$$
\begin{equation*}
T_{\text {hub }}=(1 / 2) m_{H}\left(\dot{x}_{\mathrm{H}}^{2}+\dot{y}_{\mathrm{H}}^{2}+\dot{z}_{\mathrm{H}}^{2}\right)+(1 / 2) I_{\mathrm{H}_{1}}\left(w_{I}^{2}+w_{2}^{2}\right)+(1 / 2) I_{\mathrm{H}_{3}} w_{3}^{2} \tag{10}
\end{equation*}
$$

It is assumed in the development of Eq. (10) that the hub is symmetric and homogenous (i.e. $I_{H_{1}}=I_{H_{2}}$ ). With the aid of Eq. (9), Eq. (10) may be expressed as,

$$
\begin{align*}
T_{\text {hub }}=(1 / 2) \mathrm{H}_{\mathrm{H}}\left(\dot{x}_{\mathrm{H}}^{2}+\dot{Y}_{\mathrm{H}}^{2}+{\dot{\dot{x}_{H}}}_{\mathrm{H}}^{2}\right) & +(1 / 2) I_{\mathrm{H}_{1}}\left[\left(\dot{H}_{0}+W_{1}+W_{2}\right)_{1}^{2}\right. \\
& \left.+\left(W_{0}+W_{1}+W_{2}\right)_{2}^{2}\right] \\
& +(1 / 2) I_{H_{3}}\left(W_{0}+W_{1}+W_{2}\right)_{3}^{2} \tag{11}
\end{align*}
$$

As an example, $W_{0}+W_{1}+W_{2}$ may be expressed in terms of the Euler angles and rates as follows:

$$
\begin{equation*}
\left(W_{0}+W_{1}+W_{2}\right)_{1}=\dot{\theta}_{I} \cos \psi+\dot{\theta}_{2} \sin \psi+\left(-\dot{\theta}_{1} \delta \theta_{3} \sin \psi+\dot{\theta}_{2} \delta \theta_{3} \cos \psi\right) \tag{12}
\end{equation*}
$$

$W_{3}$ is higher order than quadratic; thus it can be omitted, along with all otter higher order terms.

To calculate $T_{\text {wire }}$ and $T_{\text {tip mass }}$ it is necessary to determine the inertial velocity, $\mathrm{d}_{\mathrm{OV}} /\left.\mathrm{dt}\right|_{I}$. From Fig. $I$, and with the application of Coriolis' law,

$$
\begin{align*}
& d \bar{R}_{O V} /\left.d t\right|_{I}=d \bar{R}_{O H} /\left.d t\right|_{I}+d \bar{R}_{H V} /\left.d t\right|_{I}  \tag{13}\\
= & d \bar{R}_{O H} /\left.d t\right|_{I}+d \bar{R}_{H V} /\left.d t\right|_{H}+\sigma \times \bar{R}_{H V}
\end{align*}
$$

(It should be noted that in the development of $T_{\text {hub }}$ this expression simplifies to:

$$
\begin{equation*}
d \bar{R}_{O V} /\left.d t\right|_{I}=d \bar{R}_{O H} /\left.d t\right|_{I}+\bar{d} \cdot \bar{R}_{H V} \tag{14}
\end{equation*}
$$

since $d \bar{R}_{H V} /\left.d t\right|_{H}=0$ for a differential volume element inside the hub.)

The quadratic approximation of $\bar{R}_{H V}$, written in matrix form, following Fig. 2, can be expressed as:

$$
\begin{align*}
{\left[\bar{R}_{\mathrm{HV}}\right] \mathrm{H} } & =(q+r)\left[\begin{array}{c}
\cos c_{i} \\
\sin c_{i} \\
0
\end{array}\right]+q\left[\begin{array}{cc}
-a_{i} & \sin c_{i} \\
a_{i} & \cos c_{i} \\
b_{i}
\end{array}\right]-(1 / 2) q\left(b_{i}^{2}+a_{i}^{2}\right)\left[\begin{array}{c}
\cos c_{i} \\
\sin c_{i} \\
0
\end{array}\right] \\
& +\ldots+(q+r)\left[\begin{array}{c}
\cos c_{i} \\
\sin c_{i} \\
0
\end{array}\right]+q\left[\begin{array}{c}
-a_{i} \sin c_{i} \\
a_{i} \cos c_{i} \\
b_{i}
\end{array}\right] \\
& \left.+(I / 2)+b_{i}^{2}+a_{i}^{2}\right)\left[\begin{array}{c}
\cos c_{i} \\
\sin c_{i} \\
0
\end{array}\right]+\ldots \tag{15}
\end{align*}
$$

In Eq. (15), the components of $\bar{R}_{\mathrm{HV}}$ are given in the hub coordinate system, (H).

For the case of $d V$ along the wire at an instantaneous length, qít),

$$
\begin{align*}
& -q\left(b_{i} \dot{b}_{i}+a_{i} \dot{a}_{i}\right)\left[\begin{array}{c}
\cos c_{i} \\
\sin c_{i} \\
0
\end{array}\right]-(1 / 2) \dot{q}\left(b_{i}^{2}+a_{i}^{2}\right) x \\
& {\left[\begin{array}{c}
\cos c_{i} \\
\sin c_{i} \\
0
\end{array}\right]+\ldots} \tag{16}
\end{align*}
$$

The quadratic approximation to the kinetic energy per unit mass of the volume element can be obtained by calculating,

$$
\begin{equation*}
(1 / 2)\left[d \bar{R}_{O V} /\left.d t\right|_{I}\right]_{H}^{T} \cdot\left[d \bar{R}_{O V} /\left.d t\right|_{I}\right]_{H} \tag{17}
\end{equation*}
$$

through second order.
If dV is along the wire, Eq. (13) may be expanded with the aid of Eqs. (15) and (16) to yield:

$$
\begin{align*}
d \bar{R}_{O V} /\left.d t\right|_{I} & =\left[\dot{x}_{H}-q \dot{a}_{i} \sin c_{i}-q\left(b_{i} \dot{b}_{i}+a_{i} \dot{a}_{i}\right) \cos c_{i}\right] I \\
& +\left[\dot{y}_{H}+q \dot{a}_{i} \cos c_{i}-q\left(b_{i} \dot{b}_{i}+a_{i} \dot{a}_{i}\right) \sin c_{i}\right] \bar{j} \\
& +\left[q \dot{b}_{i}+\dot{z}_{H}\right] \bar{k}+\bar{\omega} \times \bar{R}_{H V} . \tag{18}
\end{align*}
$$

In order to include the effect of the wine on the composite system maments of inertia we consider, for example, the contribution of the wire to $I_{y}$,

$$
\begin{equation*}
I_{\text {wire }}:=F_{w u} \alpha^{2}+I_{v o} \beta^{2}+I_{w o w} \gamma^{2}+m d^{2} \tag{19}
\end{equation*}
$$

where $I_{u u}, I_{v v}$ and $I_{w w}$ represent the principal moments of inertia of the wire, ( $u$ is the longitudinal wire axis, $v$ and $\omega$ are transverse axes). The term $\mathrm{md}^{2}$ represents the moment of inertia of the wire due to the offset of its center of mass from the hub $F$-incipal " $y_{H}$ " axis. $\alpha, \beta, \gamma$ are the direction cosines: ( $\hat{u} \cdot \hat{y}$ ), $(\hat{v} \cdot \hat{y})$, and ( $\hat{w} \cdot \hat{y}$ ), respectively. Assuming the wire is thin and noting that for small displacements of $a_{i}, b_{i}, \gamma \ll 1$, Eq. (19) may be approximated by:

$$
\begin{equation*}
I_{y_{\text {wize }}} \cong I_{v v} B^{2}+m d^{2} \tag{20}
\end{equation*}
$$

where $\beta^{2}=\cos ^{2} a_{i}$. The moment of inertia of the wire about the $\mathbf{v}$ axes (Fig. 2), can be expressed as:

$$
\begin{equation*}
I_{v v}=2 \int_{0}^{l / 2} \quad a^{2} \rho d q=m e^{2} / 12 \tag{21}
\end{equation*}
$$

where $\rho$ is the mass per unit length. After substitution of Eq. (21) into Eq. (20),

$$
\begin{equation*}
I_{y_{\text {wire }}}=\left(\operatorname{mt}^{2} / 12\right) \cos ^{2} a_{i}+m\left[r+(\ell / 2) \cos a_{i}\right]^{2} \tag{22}
\end{equation*}
$$

which can be simplified to,

$$
\begin{equation*}
I_{y \text { vire }}=\left(m \ell^{2} / 3\right) \cos ^{2} a_{i}+\operatorname{mm}^{2}+\operatorname{mnt} \cos a_{i} \tag{23}
\end{equation*}
$$

The contribution of the moment of inertia of the tip mass can be developed in a similar manner as:

$$
\begin{equation*}
I_{y_{t i p \text { mass }}}=m_{t}\left[\left(r+\ell \cos a_{i}\right)^{2}+\left(\ell \sin a_{i}\right)^{2}\right] \tag{24}
\end{equation*}
$$

The combined effect of the appendages can be obtained by adding Eqs. (23) and (24) to yisid:

$$
\begin{equation*}
I_{\text {apipendages }} \cong\left(m / 3+m_{t}\right) l^{2}+2\left(m / 2+m_{t}\right) r \ell+\left(m^{+} m_{t}\right) r^{2} \tag{25}
\end{equation*}
$$

for the case where $a_{i} \ll 1$. From symmetry, the wire and tip mass in the $(\dot{ \pm} x, \pm \dot{y})$ quadrant also contribute to $I_{y}$. Eq. (25) now becomes,

$$
\begin{equation*}
I_{y}=\left[2\left(m / 3+m_{t}\right) e^{2}+4\left(m / 2+m_{t}\right) l r+2\left(m_{t}+m\right) r^{2}\right]=I_{x} \tag{26}
\end{equation*}
$$

Assuming the hub is symmetrical, ( $\left.I_{H_{1}}=I_{H_{2}}\right)$ then the composite principal moments of inertia can be expressed as:

$$
\begin{equation*}
I_{1}=I_{2}=I_{H_{1}}+I_{y} \tag{27}
\end{equation*}
$$

The composite moment of inertia about the thind principal axis of the hub can be written as,

$$
\begin{equation*}
I_{3}=I_{H_{3}}+I_{3} \text { wire }+I_{3} \text { tip mass } \tag{28}
\end{equation*}
$$

The second term in Eq. (28) can be approximated as:

$$
I_{3} \text { wire }_{\underline{y} I_{\text {wire }}+\text { md }^{2}}
$$

With the aid of Eigure 2, Eq. (29) can be expanded to yield,

$$
\begin{equation*}
I_{3 \text { wire }}=\left(m \ell^{2} / 3\right)+\operatorname{mr}^{2}+\operatorname{mer} \cos a_{i} \tag{30}
\end{equation*}
$$

The third term of Eq. (28) can be written as:

$$
\begin{equation*}
I_{3_{\text {tip mass }}}=m_{t} r^{2}+2 m_{t} \ell \cos a_{i}+l^{2} m_{t} \tag{31}
\end{equation*}
$$

After. substitution of Eqs. (30) and (31) into Eq. (29),

$$
\begin{equation*}
I_{3}=I_{H_{3}}+\left(m_{t}+m / 3\right) l^{2}+2\left(m_{t}+m / 2\right) l r+\left(m_{t}+m\right) r^{2} \tag{32}
\end{equation*}
$$

If we consider the four appendages, then Eq. (32) can be written as:

$$
\begin{equation*}
I_{3}=I_{H_{3}}+\left[4\left(m_{t}+m / 3\right) l^{2}+8\left(m_{t}+m / 2\right) l r+4\left(m_{t}+m\right) r^{2}\right] \tag{33}
\end{equation*}
$$

When Eq. (17) is expanded in the calculation of $\mathrm{T}_{\text {wires }}$, terms which are periodic such as $\sin \left(\psi+c_{i}\right)$ and $\cos \left(\psi+c_{i}\right)$ appear. If we consider the four appendages, then the terms can be related using the following transformations:

Let $\alpha=\psi+c_{1}$ thus,

$$
\begin{align*}
& \sin \alpha=\sin \alpha \\
& \cos \alpha=\cos \alpha \\
& \sin (\alpha+\pi / 2)=\cos \alpha \\
& \cos (\alpha+\pi / 2)=-\sin \alpha  \tag{34}\\
& \sin (\alpha+\pi)=-\sin \alpha \\
& \cos (\alpha+\pi)=-\cos \alpha \\
& \sin (\alpha+3 \pi / 2)=-\cos \alpha \\
& \cos (\alpha+3 \pi / 2)=\sin \alpha
\end{align*}
$$

Now, volume integration over each wire can be performed, with the result that the kinetic energy of the wires for constant length is calculated as:

$$
\begin{align*}
T_{\text {wires }} & =(1 / 2)\left[2\left(\dot{\theta}_{1}^{2}+\dot{\theta}_{2}^{2}\right) m \ell^{2} / 3+2\left(\dot{\theta}_{1}^{2}+\dot{\theta}_{2}^{2}\right) r m \ell\right. \\
& \left.+2\left(\dot{\theta}_{1}^{2}+\dot{\theta}_{2}^{2}\right) r^{2} m\right] \tag{35}
\end{align*}
$$

If dV were at the $i$ th tip mass, tren expansion of Eq. (17), multiplication by $m_{t}$, and substitution of $\ell$ for $q$ (for constant length), would result in the kinetic energy for the $i$ th tip mass.

$$
\begin{align*}
T_{t i p ~ m a s s} & =(1 / 2)\left(\dot{x}_{H}^{2}+\dot{y}_{H}^{2}+\dot{z}_{H}^{2}\right) m_{t}+\dot{z}_{k i} \dot{b}_{i} m_{t} \ell+(1 / 2)\left(\dot{a}_{i}^{2}+\dot{b}_{i}^{2}\right) m_{t} \ell^{2} \\
& +(1 / 2) w_{0}^{2} m_{t}\left[\ell^{2}+r^{2}+r \ell-\ell^{2}\left(b_{i}^{2}+a_{i}^{2}\right)-r \ell\left(b_{i}^{2}+a_{i}^{2}\right)\right] \\
& +(1 / 2)\left(\delta \dot{\theta}_{3}\right)^{2} m_{t}\left(r^{2}+\ell^{2}+r \ell\right)+w_{0} \dot{\theta}_{I} \theta_{2} m_{t}\left(r^{2}+\ell^{2}+2 r l\right) \\
& +w_{0} \dot{\theta}_{3} m_{t}\left(r^{2}+\ell^{2}+2 r \ell\right)+(1 / 2)\left(a_{i}^{2} w_{0}^{2} \ell^{2} m_{t}\right) \\
& -m_{t} \ell\left(\dot{a}_{i} \dot{x}_{H}+\dot{y}_{H} a_{i} w_{0}\right) \sin c_{i}+m_{t} \ell\left(\dot{y}_{H} \dot{a}_{i}-\dot{x}_{H} a_{i} w_{0}\right) \cos c_{i} \\
& -m_{t} \ell\left[b_{i} w_{0} \dot{\theta}_{1}(r+\ell)+\dot{b}_{i} \dot{\theta}_{2}(r+\ell)\right] \cos \left(\psi+c_{i}\right) \\
& -m_{t} l\left[b_{i} w_{0} \dot{\theta}_{2}(r+\ell)+\dot{b}_{i} \dot{\theta}_{1}(r+\ell)\right] \sin \left(\psi+c_{i}\right) \\
& +m_{t}\left(\dot{\theta}_{I}^{2}+\dot{\theta}_{2}^{2}\right)\left(r^{2}+2 r \ell+\ell^{2}\right) \tag{36}
\end{align*}
$$

If we consider variable length appendages, the formulation of Ref. 1 can still be used, except length is now a function of time and the position of an arbitrary volume element along the wire, (q), is a function of time. The additional terms which result for $\mathrm{d}_{\mathrm{R}} \mathrm{V} /\left.\mathrm{dt}\right|_{\text {deployment }}$ can be expressed as follows:

$$
\begin{align*}
\mathrm{d} \bar{R}_{\mathrm{OV}} /\left.d t\right|_{\text {deployment }}= & {\left[\dot{q} \cos c_{i}-\dot{q} a_{i} \sin c_{i}-(1 / 2) \dot{q}\left(b_{i}^{2}+a_{i}^{2}\right)\right.} \\
& \left.\cos c_{i}\right] \dot{i}+\left[\dot{q} \sin c_{i}+\dot{q} a_{i} \cos c_{i}\right. \\
- & \left.(1 / 2) \dot{q}\left(b_{i}^{2}+a_{i}^{2}\right) \sin c_{i}\right] \dot{j}+\dot{q} b_{i} \bar{k} \tag{37}
\end{align*}
$$

When Eq. (37) is substituted into Eq. (17), the resulting additional terms in the kinetic energy per unit mass are:

$$
\begin{align*}
& d r_{\text {deployment }}=(1 / 2) \dot{q}^{2}-q q\left(b_{i} \dot{b}_{i}+a_{i} a_{i}\right)-q \omega_{0} q a_{i}-\dot{q} \dot{\delta} \dot{q}_{j} q a_{i} \\
& -\dot{q} \dot{\theta}_{1} \theta_{2} q a_{i}+q \cdot \dot{q} a_{i} \dot{a}_{i}+\dot{q} w_{0} a_{i}(q+x)+\dot{q} a_{i} \dot{\delta} \dot{\theta}_{3}(q+r) \\
& +\dot{q} a_{i} \dot{\theta}_{1} \theta_{2}(q+r)+\dot{x}_{H} \dot{q} \cos c_{i}-\dot{x}_{H} \dot{q} a_{i} \sin c_{i} \\
& -(1 / 2) \dot{x}_{H} \dot{q}\left(b_{i}^{2}+a_{i}^{2}\right) \cos c_{i}+\dot{y}_{H} \dot{q} \sin c_{i}+\dot{y}_{H} \dot{q}_{i} a_{i} \cos c_{i} \\
& -(1 / 2) \dot{y}_{k} \dot{q}\left(b_{i}^{2}+a_{i}^{2}\right) \sin c_{i}+\dot{q} \dot{z}_{H} b_{i}+\dot{q} q b_{i} \dot{b}_{i} \\
& +\dot{r q}_{i} \dot{\theta}_{2} \delta \theta_{3} \sin \left(\psi+c_{i}\right)+r \dot{q}_{1} b_{i} \sin \left(\psi+c_{i}\right) \\
& +\dot{r q} \ddot{c}_{1} \delta \theta_{3} b_{i} \cos \left(\psi+c_{i}\right)-\dot{\theta}_{2} \dot{q}_{i} \cos \left(\psi+c_{i}\right) \tag{38}
\end{align*}
$$

The limits of integration over the differential volume in the expressicn for $T_{\text {wires }}$ can be formulated as follows:
$q(t)=\dot{q} t$, where $\dot{q}$ is assumed to be constant (fer an assumed uniform extension rate). Then, $d q=\dot{q} d t$, and

$$
\int_{0}^{\ell}(. . .) \mathrm{dq}+\int_{0}^{\ell / \dot{q}}(. . .) \dot{q} d t, 0 \leq t \leq t_{i}
$$

when

$$
t=0, q=0 ; t=\ell / \ddot{l}, q=\ell(t)
$$

when

$$
\ell \leq \ell_{f}, t_{f}=\ell_{f} / \dot{l} \text { when } t(0)=0 ; \dot{q}=\dot{l}
$$

where. $l_{f}$ and $t_{f}$ represent final length and time, respectively.

The following additional terns result for $T_{\text {wires }}$.

$$
\begin{align*}
T_{\text {wires }_{\text {depl } 1}}= & (2 / 3) m i^{2}+(1 / 2) \sum_{i=1}^{4} w_{0} a_{i} m_{i} \dot{l}^{2}+(1 / 2) \sum_{i=1}^{4} a_{i} \dot{\delta} \dot{\theta}_{0}+r_{i} \dot{l}^{2} \\
& +(1 / 2) \sum_{i=1}^{4} a_{i} \dot{\theta}_{1} \theta_{2} r m_{i} \dot{i}^{2}+(1 / 2) \sum_{i=1}^{4} \dot{z}_{H} b_{i} m_{i} \dot{i} \tag{39}
\end{align*}
$$

If we sonsider $T_{\text {tip mass }}$, where the expansion of Eq. (17) is similar to that for $T_{\text {wires }}$, then multiplication by $m_{t}$ and substituting $\dot{i}$ for $\dot{q}$ yields:

$$
\begin{equation*}
T_{\text {tip mass }}^{\text {depl }}=2 m_{t} \dot{l}^{2}+\sum_{i=1}^{4} e_{t} m_{0} a_{i} r+\sum_{i=1}^{4} e_{t} a_{i} \delta \dot{\theta}_{3} r+\sum_{i=1}^{4} \ddot{\ell}_{H} b_{i} m_{t} \tag{40}
\end{equation*}
$$

To consider the kinetic energy due to the stored mass of the rods inside the hub, the following assumptions are mede:
(1) at full extension there is no stored mass;
(2) the mass is stored at a point inside the hub, a distance $r$ from the hub center;
(3) the extersion rate is the same for all rods;
(4) the wires are homogenous.

The extended mass per unit volume along the wire can be defined as:

$$
\begin{equation*}
m(t)=\rho \ell(t) \tag{41}
\end{equation*}
$$

where $0 \leq t \leq t_{f}$, and $\rho$ is the mass per unit length. The stored mass per unit volume can be defined as:

$$
\begin{equation*}
\operatorname{dm}_{i}^{\text {stcred }}=\left(\ell_{f}-\ell(t)\right) \rho \tag{42}
\end{equation*}
$$

where $\ell(t)$ resprsents the instantaneous length. Since the stored mass is inside the hub, then Eq. (14) can be used to express $d \bar{R}_{O V} /\left.d t\right|_{I}$, where;

$$
\begin{equation*}
\bar{R}_{\mathrm{HV}}=r\left(\cos c_{i} \bar{i}+\sin c_{i} \bar{j}\right) \tag{43}
\end{equation*}
$$

If we substitute Eqs. (14) and (43) into Eq. (17), and apply the same procedure, the terms which result for the combined effect of the four locations, jield:

$$
\begin{align*}
T_{\text {stored mass }} & =(I / 2) \sum_{i=1}^{i} \rho_{i}\left(\ell_{f}-i(t)\right)\left[4\left(\dot{x}_{H}^{2}+\dot{y}_{H}^{2}+\dot{z}_{H}^{2}\right)+4 r^{2}\left\{w_{0}^{2}\right.\right. \\
& +\left(\dot{\theta}_{I} \theta_{2} j^{2}+\left(\delta \dot{\theta}_{3}\right)^{2}\right\}+8 r^{2}\left(w_{0} \dot{\theta}_{3}+w_{0} \dot{\theta}_{I} \theta_{2}+\delta \dot{\theta}_{3} \dot{\theta}_{I} \theta_{2}\right) \\
& \left.+8 r^{2} \dot{\theta}_{I} \theta_{2} \delta \theta_{3}+2 \dot{r}^{2}\left(\dot{\theta}_{I}^{2}+\dot{\theta}_{2}^{2}\right)+2 r^{2}\left(\dot{\theta}_{I}^{2}+\dot{\theta}_{2}^{2}\right)\left(\delta \theta_{3}\right)^{2}\right] \tag{44}
\end{align*}
$$

Eqs. (11), (35), (36), (39), (40) and (44) can now be combined to provide the quadratic approxima ion of the kinetic energy for the entire system; which can be writ"en as:

$$
\begin{align*}
& T=(1 / 2) M\left(\dot{x}_{\mathrm{H}}^{2}+\dot{y}_{\mathrm{H}}^{2}+\dot{z}_{\mathrm{H}}^{2}\right)+I_{3} w_{0}\left(\delta \dot{\theta}_{3}+\dot{\theta}_{1} \theta_{2}\right)+(土 / 2) I_{3} w_{0}{ }^{2} \\
& +(I / 2) I_{1}\left(\dot{\theta}_{1}^{2}+\dot{\theta}_{2}^{2}\right)+(1 / 2) I_{3}\left(\delta \dot{\theta}_{3}\right)^{2}+M_{1}\left(w_{0}+\delta \dot{\theta}_{3}\right) \sum_{i=1}^{4} a_{i} \\
& +(1 / 2) M_{3} w_{0}^{2} \sum_{i=1}^{4} a_{i}^{2}+M_{2} \dot{z}_{H} \sum_{i=1}^{4} b_{i}-(1 / 2) M_{1} w_{0}^{2} \sum_{i=1}^{4}\left(a_{i}^{2}+r_{i}^{2}\right) \\
& +(1 / 2) M_{3} \sum_{i=1}^{4}\left(a_{i}{ }^{2}+\dot{b}_{i}\right) \\
& +M_{2} \sum_{i=1}^{4}\left[-\dot{x}_{H}\left(\dot{a}_{i} \sin c_{i}+w_{0} a_{i} \cos c_{i}\right)+\dot{y}_{H}\left(\dot{a}_{i} \cos c_{i}\right.\right. \\
& \left.\left.-w_{0} a_{i} \sin c_{i}\right)\right]+M_{1} \sum_{i=1}^{4}\left[\dot{\theta}_{1}\left[b_{i} \sin \left(\psi+c_{i}\right)-w_{0} b_{i} \cos \left(\psi+c_{i}\right)\right]\right. \\
& \left.-\dot{\theta}_{2}\left[\dot{b}_{i} \cos \left(\psi+c_{i}\right)+w_{0} b_{i} \sin \left(\psi+c_{i}\right)\right]\right\}+(2 / 3) m \dot{l}^{2} \\
& +(1 / 2) \sum_{i=1}^{4} w_{0} a_{i} r m_{i} \dot{i}^{2}+(1 / 2) \sum_{i=1}^{4} a_{i} \delta \dot{\theta}_{3} \mathrm{rm}_{i} \dot{i}^{2} \\
& +(1 / 2) \sum_{i=1}^{4} a_{i} \dot{\theta}_{1} \theta_{2} \mathrm{rm}_{i} \dot{i}^{2}+(1 / 2) \sum_{i=1}^{4} \dot{z}_{H} b_{i} m_{i} \dot{i}+2 m_{t} \dot{i}^{2} \\
& +\sum_{i=1}^{4} w_{0} a_{i} r m_{t} \dot{i}+\sum_{i=1}^{4} a_{i} \dot{\delta \theta_{3}} r m_{t} \dot{i}+\sum_{i=1}^{4} a_{i} \dot{\theta}_{1} 1_{2} r m_{t} \dot{i} \\
& +\sum_{i=1}^{4} \dot{z}_{H} b_{i} m_{t} \dot{i}+(1 / 2) \sum_{i=1}^{4} \rho_{i}\left(l_{f}-\ell(t)\right)\left[4\left(\dot{x}_{H}^{2}+\dot{y}_{H}^{2}+\dot{z}_{H}^{2}\right)+4 r^{2}\left[w_{0}^{2}\right.\right. \\
& \left.+\left(\dot{\theta}_{1} \theta_{2}\right)^{2}+\left(\delta \dot{\theta}_{3}\right)^{2}\right]+8 r^{2}\left(w_{0} \delta \dot{\theta}_{3}+w_{0} \dot{\theta}_{1} \theta_{2}+\delta \dot{\theta}_{3} \theta_{1} \theta_{2}\right) \\
& \left.+8 r^{2} \dot{\theta}_{1} \dot{\theta}_{2} \dot{\delta} \dot{\theta}_{3}+2 r^{2}\left(\dot{\theta}_{1}^{2}+\dot{\theta}_{2}^{2}\right)+2 r^{2}\left(\dot{\theta}_{1}^{2}+\dot{\theta}_{2}^{2}\right)\left(\delta \theta_{3}\right)^{2}\right] \tag{45}
\end{align*}
$$

where the varying length terms (containing $\dot{\ell}$ ) and the stored mass terns are additions to the constant length terms developed in Ref. 1. In connection with Eq. (45) the following panameters have been defined:

$$
\begin{aligned}
& M=m_{H}+4 m+4 m_{t} \\
& M_{1}=\left(m_{t}+m \ell / 3+m_{t} r+m r / 2\right) l=M_{3}+r M_{2} \\
& M_{2}=\left(m_{t}+m / 2\right) \ell \\
& M_{3}=\left(m_{t}+m / 3\right) l^{2}
\end{aligned}
$$

where $m=m(\ell)$, and are defined similarly to those given in Ref. 1 Terms associated with tre stored mass in Eq. (45) can be included with the composite moments of inertia expressed in Eqs. (27) and (33), and also with $M_{1}, M_{2}$, and $M_{3}$ - These quantities can now be redefined in modified form as:

$$
\begin{align*}
& M=m_{H}+4 \rho \ell(t)+4 m_{\text {stored }}+4 m_{t}=\text { constant }  \tag{46a}\\
& \text { where } \quad m_{\text {stored }}=\rho\left(\ell l_{f}-\ell(t)\right) \\
& M_{1}=\left(m_{t} \ell(t)+(1 / 3) \rho[\ell(t)]^{2}+m_{t}+(1 / 2) r \ell(t)\right) \ell(t) \\
& M_{2}=\left(m_{t}+(1 / 2) \rho \ell(t)\right) \ell(t) \\
& M_{3}=\left(m_{t}+(1 / 3) \rho \ell(t)[\ell(t)]^{2}\right. \tag{46c}
\end{align*}
$$

$$
\begin{align*}
I_{1} & =I_{H_{1}}+\left[2\left(m_{t}+(1 / 2) \rho \ell(t)\right)[\ell(t)]^{2}\right. \\
& +4\left(m_{t}+(1 / 2) \rho \ell(t)\right) r \ell(t)+2\left(m_{t}+\rho \ell_{f}\right) r^{2}  \tag{46e}\\
I_{3} & =I_{H_{3}}+\left[4 \left(m_{t}+(1 / 3) \rho \ell(t)[\sim(t)]^{2}\right.\right. \\
& \left.+8\left(m_{t}(1 / 2) \rho \ell(t)\right) r \ell(t)+4\left(m_{t}+\rho \ell_{f}\right) r^{2}\right] \tag{46f}
\end{align*}
$$

For varying length, $m$ has been defined in Eq. (41), assuming the mass per unit length, ( $p$ ), of each appendage is the same.

The corresponding time rates of change of the (new) composite parameters and of the (news) composite moments of inertia can be written as:

$$
\begin{align*}
& \dot{M}=0  \tag{46~g}\\
& \dot{M}_{1}=2 m_{t} \dot{l \ell}+\rho i \ell^{2}+m_{t} \dot{i}+r \rho i \ell  \tag{46h}\\
& \dot{M}_{2}=m_{t} \dot{q}+\dot{\rho} \ell  \tag{46í}\\
& \dot{M}_{3}=2 m_{t} \dot{\ell \ell}+\rho \dot{\ell \ell}{ }^{2}  \tag{46j}\\
& \dot{I}_{1}=4 m_{t} \dot{l \ell}+2 \rho \dot{i l}{ }^{2}+4 m_{t} \dot{i}+4 r \rho i \ell  \tag{46k}\\
& \dot{I}_{3}=8 m_{t} \dot{l \ell}+4 \rho \dot{l} \dot{l}^{2}+8 m_{t} r \dot{l}+8 r p \dot{l} \ell  \tag{461}\\
& \text { where } \ell=\ell(t) \text { and } \dot{i}=\dot{\ell}(t)
\end{align*}
$$

D. Development of the Equations of Motion

The fourteen generalized coordinates selected are; $X, Y, Z$, $\theta_{1}, \theta_{2}, \theta_{3}, a_{1}, a_{2}, a_{3}, a_{4}, b_{1}, b_{2}, b_{3}$ and $b_{4}$. We note that $X, Y$ and 2, are inerially fixed coordinates and do not appear in Eq. (45), thus they are cyclic. Lagrange's equations of motion:

$$
\begin{equation*}
\dot{d} \partial t\left(\partial T / \partial \dot{q}_{i}\right)-\partial T / \partial q_{i}=Q_{i} \quad i=1,2, \ldots 14 \tag{47}
\end{equation*}
$$

where $Q_{i}$ for the wires (booms) is the generaiized force derivable from a potential energy function which is assumed to be proportional to the square of the flexural coordinates, $a_{i}$ and $b_{i}$, and involves a linear structural restoring spring constant, $k$; also $Q$ is derivable from a Rayleigh Cissapative function, $\mathcal{F}$ (i.e. $\mathcal{F} \propto \dot{a}_{i}^{2}$ and $\mathcal{F} \propto \dot{b}_{i}^{2}, i=1-4$ bocns), involving assumed linear viscous structural rate damping, C. Eq. (47) may be developed in the coordinates, $q_{i}$, to yield:

$$
\begin{align*}
& d / d t(\partial T / \partial \dot{X})=C_{1}=p_{1} ; d / d t(\partial T / \partial \dot{Y})=C_{2}=p_{2} ; \\
& d / d t(\partial T / \partial \dot{Z})=C_{3}=p_{3} \tag{47a}
\end{align*}
$$

where $P_{1}, P_{2}, P_{3}$ are the constant generalized momenta associated with $X, Y$ and $Z$, respectively. If we choose the inertial axes such that there is no momentum of the spacecraft relative to the inertial axes at time $t=0$, then the constant momenta are zero, therefore $C_{1}=C_{2}=C_{3}=0$. Eq. (47) can be developed for this system as a
set of fourcteen equations of motion. Furthennore if we keep $\dot{x}_{H}, \dot{y}_{H}$ and $\dot{z}_{H}$ as coordinates, then solving the linear differential equations with variable coefficients (when $\ell$ is constant), is made easier. ${ }^{1}$ The equations of motion can be expressed as follows:

$$
\begin{align*}
& M \ddot{x}_{H}-\left(m_{i} \dot{i}+\rho \dot{l l}\right) \sum_{i=1}^{4}\left(\dot{a}_{i} \sin c_{i}+w_{0} \cos c_{i}\right)-M_{2} \sum_{i=1}^{4}\left(\bar{a} \sin c_{i}\right. \\
& \left.+w_{0} \dot{a}_{i} \cos c_{i}+\dot{w}_{0} a_{i} \cos c_{i}\right)=0  \tag{48a}\\
& M \bar{y}_{H}+\dot{M}_{2} \sum_{i=1}^{4}\left(\dot{a}_{i} \cos c_{i}-w_{0} a_{i} \sin c_{i}\right)+M_{2} \sum_{i=1}^{4}\left(\ddot{a}_{i} \cos c_{i}\right. \\
& \left.-w_{0} \dot{a}_{i} \sin c_{i}-\dot{w}_{0} a_{i} \sin c_{i}\right)=0  \tag{48b}\\
& M \bar{z}_{H}+\dot{M}_{2} \sum_{i=1}^{4} \dot{b}_{i}+M M_{i=1}^{4} \ddot{b}_{i}+\sum_{i=1}^{4} \cdot \rho_{i}\left[\bar{b}_{i} \ell \dot{\ell}+b_{i}\left(\dot{l}^{2}+\ell \bar{\ell}\right)\right] / 2 \\
& +\sum_{i=1}^{4} m_{t_{i}}\left(\dot{b}_{i} \dot{l}+\ddot{l} b_{i}\right)=0  \tag{48c}\\
& \dot{I}_{3} w_{0} \theta_{2}+I_{3}\left(\dot{w}_{0} \theta_{2}+w_{0} \dot{\theta}_{2}\right)+\dot{I}_{1} \dot{\theta}_{1}+I_{1} \ddot{\theta}_{1}+\dot{M}_{1} \sum_{i=1}^{4}\left[\dot{b}_{1} \sin \left(\psi+c_{i}\right)\right. \\
& \left.-w_{0} b_{i} \cos \left(\psi+c_{i}\right)\right]+M_{1} \sum_{i=1}^{4}\left[\left(\ddot{b}_{i}+w_{0}^{2} b_{i}\right) \sin \left(\psi+c_{i}\right)\right. \\
& \left.-\dot{w}_{0} b_{i} \cos \left(\psi+c_{i}\right)\right]+\sum_{i=1}^{4} r \rho_{i}\left\{\dot{a}_{1} \theta 2 \dot{l}^{2}+a_{i}\left[\dot{\theta}_{2} \ell \dot{l}^{2}\right.\right. \\
& \left.+\theta_{2}\left(\dot{l}^{3}+2 \ell \ddot{l}\right)\right]!/ 2+\sum_{i=1}^{4} m_{t_{i}}\left[\dot{a}_{\dot{i}} \theta^{2} \dot{l}+a_{i}\left(\dot{\theta}_{2} \dot{l}+\theta_{2} \ddot{l}\right)\right]
\end{align*}
$$

$$
\begin{align*}
& +4 \sum_{i=1}^{4} \rho_{i} r^{2}\left(l_{\dot{i}}\left(\ddot{\theta}_{2} \delta \theta_{3}+\dot{\theta}_{2} \delta \dot{\theta}_{3}\right)-\left[\ddot{\ell}_{2} \delta \theta_{3}+\ell\left(\ddot{\theta}_{2} \delta \theta_{3}\right.\right.\right. \\
& \left.\left.\left.+\dot{\theta}_{2} \delta \dot{\theta}_{3}\right)\right]\right\}=0  \tag{48d}\\
& \dot{I}_{1} \dot{\theta}_{2}+I_{1} \ddot{\theta}_{2}-\dot{M}_{1} \sum_{i=1}^{4}\left[\dot{b}_{i} \cos \left(\psi+c_{i}\right)+w_{0} b_{i} \sin \left(\psi+c_{i}\right)\right] \\
& -M_{1} \sum_{i=1}^{4}\left[\left(\ddot{b}_{i}+w_{0}^{2} b_{i}\right) \cos \left(\psi+c_{i}\right)+\dot{w}_{0} b_{i} \sin \left(\psi+c_{i}\right)\right] \\
& +4 \sum_{i=1}^{4} \rho_{i} r^{2}\left\{\ell_{f}\left(\ddot{\theta}_{1} \delta \theta_{3}+\dot{\theta}_{1} \delta \dot{\theta}_{3}\right)-\left[\ddot{\ell}_{1} \delta \theta_{3}+\ell\left(\ddot{\theta}_{1} \delta \theta_{3}+\ddot{\theta}_{1} \delta \dot{\theta}_{3}\right)\right]\right\} \\
& -I_{3} w_{0} \dot{\theta}_{1}-(1 / 2) \sum_{i=1}^{4} a_{i} \dot{\theta}_{1} r \ell \rho \dot{\ell}^{2}=0  \tag{48e}\\
& \dot{I}_{3}\left(w_{0}+\delta \dot{\theta}_{3}\right)+I_{3}\left(\dot{w}_{0}+\delta \ddot{\theta}_{3}\right)+\dot{M}_{1} \sum_{i=1}^{4} \dot{a}_{i}+M_{1} \sum_{i=1}^{4} \ddot{a}_{i} \\
& +(1 / 2) \sum_{i=1}^{4} \rho_{i} r\left(\dot{a}_{i} \ell \dot{l}^{2}+a_{i}\left[\dot{l}^{3}+2 \ell \ell \ddot{\ell}\right]\right)+\sum_{i=1}^{4} r m_{t_{i}}\left(\dot{a}_{i} \dot{l}+a_{i} \ddot{\ell}\right) \\
& -4 \sum_{i=1}^{4} \rho_{i}\left(\ell_{f}-\ell\right) r^{2} \dot{\theta}_{1} \dot{\theta}_{2}=0  \tag{48f}\\
& M_{1}\left(w_{0}^{2} a_{j}+\dot{w}_{0}+\delta \ddot{\theta}_{3}\right)+\dot{M}_{1}\left(w_{0}+\delta \dot{\theta}_{3}\right)+M_{3}\left(\ddot{a}_{j}-w_{0}^{2} a_{j}\right) \\
& +M_{3} \dot{a}_{j}+M_{2} \sum_{j=1}^{4}\left[\left(-\ddot{x}_{H}+\dot{y}_{H} w_{0}\right) \sin \varepsilon_{i}+\left(\ddot{y}_{H}+\dot{x}_{H} w_{0}\right) \cos c_{i}\right]
\end{align*}
$$

$$
\begin{aligned}
& +\dot{M}_{2} \sum_{i=1}^{4}\left(\dot{x}_{H} \sin c_{i}+\dot{y}_{H} \cos c_{i}\right)-(1 / 2) \sum_{i=1}^{4} \rho_{i} r l \dot{l}^{2}\left(w_{0}\right. \\
& \left.+\dot{\theta}_{3}+\dot{\theta}_{1} \theta_{2}\right)-\dot{\theta}_{1} \theta_{2} r \dot{i} \sum_{i=1}^{4} m_{t_{i}}+k a_{j}+\dot{c a}_{j}=0 \\
& M_{2} \ddot{z}_{H}+\dot{M}_{2} \dot{z}_{H}+M_{3} \ddot{b}_{j}+\dot{M}_{3} \dot{b}_{j}+M_{1} \sum_{i=1}^{4}\left[\left(\ddot{\theta}_{1}+2 w_{0} \dot{\theta}_{2}\right) \sin \left(\psi+c_{i}\right)\right. \\
& \left.+\left(-\ddot{\theta}_{2}+2 w_{0} \dot{\theta}_{1}\right) \cos \left(\psi+c_{i}\right)\right]+\dot{M}_{1} \sum_{i=1}^{4}\left[\dot{\theta}_{1} \sin \left(\psi+c_{i}\right)\right. \\
& \left.-\dot{\theta}_{2} \cos \left(\psi+c_{i}\right)\right]+M_{1} w_{0}^{2} b_{j}+k b_{j}+\dot{C}_{j}=0 \\
& \text { where } \\
& \dot{M}_{1}=2 m_{t} \dot{\ell l}+\rho \dot{\ell} \ell^{2}+\text { roil } \quad \text { in } E q \text {. ( } 48 \mathrm{~g} \text { ); } \\
& \dot{M}_{2}=(\rho l \dot{l} / 2) \quad \text { in Eq. ( } 48 \mathrm{~h} \text { ). }
\end{aligned}
$$

In Eqs. ( 48 g ) and ( 48 h ), $j=1,2,3,4$; i.e. these equations represent a set of eight Lagrangian equations corresponding to the coordinates $a_{1}-a_{4}$ and $b_{1}-b_{4}$, respectively. The terms $k a_{j}, k b_{j}, C a_{j}$ and $\mathrm{Cl}_{\mathrm{j}}$ in these equations, are associated with the generalized fire $Q_{i}$ for the wires (booms) due to the effect of a linear (structural) restoring spring constant, $k$, and structural damping represented by $C$, (a linear viscous rate damping constant), which is assumed
to exist in the four booms. Both $k$ and $C$ are assumed to be the same for each boom; and associated with a potential energy function and a Raleigh dissapative function, respectively.

Since Eqs. (48a), (48b) and (48c) yield first integrals where $\dot{x}_{H}, \dot{y}_{\mathrm{H}}$ and $\dot{z}_{\mathrm{H}}$ can be related to the constant generalized momenta $\mathrm{p}_{1}, \mathrm{p}_{2}$, and $\mathrm{p}_{3}$, respectively, then $\ddot{x}_{\mathrm{H}}, \ddot{y}_{\mathrm{H}}$ and $\ddot{z}_{\mathrm{H}}$ are zero and can be eliminated from these equations. Eq. (48) can be reduced to a set of eleven equations by solving Eqs. (48a), (48b) and (48c) for $\dot{x}_{\mathrm{H}}, \dot{y}_{\mathrm{H}}$ and $\dot{z}_{\mathrm{H}}$ respectively and substituting them into Eqs. (48g) and (48h). In Eqs. (48), we will now assume that the tip mass, $m_{t_{i}}$, and mass per unit length, $\rho_{i}$, are the same for the four appendages.

## CHAPIER III

## Stability

To examine stability before and imediately after deployment, we assume $i=\ddot{i}=0$. Eq. ( 48 ) for constant length ${ }^{l}$, can be recuced to the following set of ten equations by solving for $\delta \ddot{\theta}_{3}$ in Eq. (48f) and substituting the results into Eq. (48g).

$$
\begin{align*}
& I_{1} \ddot{\theta}_{1}+I_{3} \dot{w}_{0} \dot{\theta}_{2}+M_{1}\left[\left(\ddot{b}_{1}+w_{0}^{2} b_{1}\right) \sin \left(\psi+c_{1}\right)\right. \\
& +\left(\ddot{b}_{2}+w_{0}^{2} \dot{b}_{2}\right) \cos \left(\psi+c_{1}\right)-\left(\ddot{b}_{3}+w_{0}^{2} b_{3}\right) \sin \left(\psi+c_{1}\right) \\
& \left.-\left(\bar{b}_{4}+w_{0}^{2} \cdot b_{4}\right) \cos \left(\psi+c_{1}\right)\right]=0  \tag{49a}\\
& I_{1} \ddot{\theta}_{2}-I_{3} w_{0} \dot{\theta}_{1}-M_{1}\left[\left(\ddot{b}_{1}+w_{0}^{2} b_{2}\right) \cos \left(\psi+c_{1}\right)\right. \\
& +\left(\ddot{b}_{2}+w_{0}^{2} b_{2}\right) \sin \left(\psi+c_{1}\right)+\left(\ddot{b}_{3}+w_{0}^{2} b_{3}\right) \cos \left(\psi+c_{1}\right) \\
& -\left(\ddot{b}_{4}+w_{0}^{2} b_{4}\right) \sin \left(\psi+c_{1}\right)=0  \tag{49b}\\
& \left(M_{3}-M_{1}^{2} / I_{3}\right) \ddot{a}_{j}+\left(M_{1}-M_{3}\right) w_{0}^{2} a_{j}+M_{2}\left[\left(-M_{2} \sum_{i=1}^{4}\left(\dot{a}_{j} \cos c_{i}\right.\right.\right. \\
& \left.-w_{0} a_{i} \sin c_{i}\right) w_{0} \sin c_{j}+M_{2} \sum_{i=1}^{4}\left(a_{i} \sin c_{1}\right.
\end{align*}
$$

$$
\begin{gather*}
\left.\left.+w_{0}{a_{i}}^{\cos c_{1}}\right) w_{0} \cos c_{j}\right] / M+k a_{j}+\dot{c a}_{j}=0 \\
j=1,2,3,4 \text { equations }  \tag{49c}\\
M_{3} \ddot{b}_{j}+M_{1} w_{0}^{2} b_{j}+M_{1}\left[\left(\ddot{\theta}_{1}+2 w_{0} \dot{\theta}_{2}\right) \sin \left(\psi+c_{j}\right)\right. \\
+\left(-\ddot{\theta}_{2}+2 w_{0} \dot{\theta}_{1}\right) \cos \left(\psi+c_{j}\right)+k b_{j}+\dot{C b}_{j}=0  \tag{49d}\\
j=1,2,3,4 \text { equations }
\end{gather*}
$$

The hrmogenous system of linear differential equations can be expressed in state vector ferm: ${ }^{5}$

$$
\begin{equation*}
\dot{X}(t)=A(t+T) X(t) \tag{50}
\end{equation*}
$$

where $X(t)$ is $a(20 \times 1)$ column matrix of the coo:dinates ard velocities and $A(t+T)$ represents a ( $20 \times 20$ ).matrix. Typical periodic coefficients in $A(t+T)$ are:

$$
\sin \left(\psi+c_{i}\right) \text { and } \cos \left(\psi+c_{i}\right)
$$

which occur in Eqs. (49a), (49b) and (49d) for constant length.
A. Application of the Lyapunov Reducibility Theorem

The Lyapunov reducibility theorem ${ }^{5}$ may be applied to reduce the linear system of differential equations with periodic coefficients to a kinematically similar system of differantial equations. (A recent application of this theorem in studying the stability of a dual-spin spacecraft with a Elexiole momentum wheel is given in

Ref. 6.) The theorem states that there is a bounded nonsingular transfermation matrix $S(t)$ witt. a bounded inverse $S^{-1}(t)$ such that a matrix $D$, deffined by:

$$
\begin{equation*}
D=S^{-1} A S-S^{-1} \dot{S} \tag{51}
\end{equation*}
$$

is a constant matrix. We can then relate

$$
\begin{equation*}
X=S(t) Y \tag{52}
\end{equation*}
$$

and obtain the system

$$
\begin{equation*}
\dot{Y}=D Y \tag{53}
\end{equation*}
$$

as the kinematically equivalent of Eq. (50). The bounded transformation of the form of Eq. (52) for the present system can be expressed:


In Eq. (5u) if $Z=\left[\varepsilon_{1} \varepsilon_{2} \ldots b_{4}\right]^{T}$, then

$$
Y=\binom{Z}{\dot{Z}}
$$

Thus, the kinematically equivalent systen can be expressed in terms of the 2 matrix and the cinstant coefficient matrices, M, G, D, K, as:

$$
\begin{equation*}
M \ddot{Z}+\dot{G}+\dot{Z} \dot{Z}+M Z=0 \tag{55}
\end{equation*}
$$

$M$ is the symmetric mass inertia matrix, $G$ is a skew symmerric matrix involving gyroscopic terms, $D$ is a symetric positive semidefinite damping matrix and $K$ is a symmetric stiffness matrix. These matrices can be expressed as follows:

$$
\begin{aligned}
& \text { - HO } 0 \text { O } 0 \text { g } \\
& \sum_{1}^{-1} \Sigma^{-1} \sum_{1}^{-1} \\
& \mathrm{H}^{H} 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad \begin{array}{lllll}
0^{-1} & 0^{-1} & 0^{-1} & 0^{-1} \\
0 & \frac{5}{5} & 0^{n} \\
0^{2}
\end{array} \\
& \Sigma^{-1} \sum_{1}^{-1} \sum_{i}^{-1}
\end{aligned}
$$

$$
00000
$$

(57)

$$
000000
$$

$$
000000
$$

$$
000000
$$

$$
0 \text { o } 0 \sum_{\sum_{2}^{3}}^{\sum}
$$

$$
0 \quad \sum_{\sum_{i}^{3}}^{\sum_{N}^{3}} \circ \sum_{i}^{\sum}
$$



$$
000 \sum_{\substack{\sum_{i}^{3}}}^{\sum_{i}^{N}} 00
$$

$$
0{\underset{c}{m}}_{\substack{m \\-1}}^{\substack{H}} 000
$$

$$
\begin{align*}
& K=\left[\begin{array}{cccccccccc}
G & 0 & 0 & 0 & 0 & 0 & D & E & -D & -E \\
0 & G & 0 & 0 & 0 & 0 & -E & D & E & -D \\
0 & 0 & A & B & -C & -B & 0 & 0 & 0 & 0 \\
0 & 0 & B & A & -B & C & 0 & 0 & 0 & 0 \\
0 & 0 & -C & -B & A & B & 0 & 0 & 0 & 0 \\
0 & 0 & -B & C & B & A & 0 & 0 & 0 & 0 \\
D & -E & 0 & 0 & 0 & 0 & E & 0 & 0 & 0 \\
E & D & 0 & 0 & 0 & 0 & 0 & F & 0 & 0 \\
-D & E & 0 & 0 & 0 & 0 & 0 & 0 & F & 0 \\
-E & -D & 0 & 0 & 0 & 0 & 0 & 0 & 0 & F
\end{array}\right] \tag{59}
\end{align*}
$$

where, in Eq. (59),

$$
\begin{aligned}
& A=k+r M_{2} w_{0}^{2}\left[1-M_{2}\left(\sin ^{2} c_{1}-\cos ^{2} c_{1}\right) / \mathrm{m}\right] \\
& B=2\left(M_{2}^{2} w_{0}^{2} / M\right) \sin c_{1} \cos c_{1} \\
& C=M_{2}^{2} w_{0}^{2} / M\left(\sin ^{2} c_{1}-\cos ^{2} c_{1}\right) \\
& D=M_{1} \cdot w_{0}^{2} \sin c_{1} \\
& E=M_{1} w_{0}^{2} \cos c_{1} \\
& E=M_{1} w_{0}^{2}+k \\
& G=I_{3} w_{0}-I_{1} w_{0}^{2}
\end{aligned}
$$

B. Application of the Kelvin-Tait-Chetaev Theorem

In the equation:

$$
\begin{equation*}
M \ddot{Z}+D Z+G Z+K Z=0 \tag{60}
\end{equation*}
$$

we assume that $M$ and $D$ are symmetric positive definite, $\sigma$ is skew symmetric, and that none of the eigenvalues of the symmetric matrix, $K$, is zero. Then the stability of the solutions of Eq. (60) is the same as the stability of the solutions of the truncated equation ${ }^{7}$

$$
\ddot{Z}+K Z=0 .
$$

If $M, K$, and $D$ are positive definite, the zero solution of Eq. (55) is asymptotically stable; if $M$ and $K$ are positive definite and $D$ is
positive semidefinite with $(D \neq 0)$, the solution of Eq. (55) is stable in the sense of Lyapunov but not asymptotically stable. ${ }^{7}$ The Kelvin-Tait-Chetaev Theorem can be applied to this particular system, where $D$ is positive semidefinite in the absence of damping on the main hub, by ex:mining the.M and $K$ matrices fompositive definiteness. If, for a firticular set of system parameters, any of the principal minor subdeterminants of either the $M$ or $K$ matrices, Eq. (56) $c=$ [q. (59), is negative, then the system will be unstable in the Lyapunov sense.

## C. Extension of Stability

A recent extension of the Kelvin-Tait-Chetaev theorem to establish asymptotic stability of linear systems where the damping matrix is only positive semidefinite, was presented by Mïller ${ }^{8}$ and is summarized briefly, here.

The mechanical system,

$$
M \ddot{Z}+(D+G) \dot{Z}+K Z=0
$$

with the fxf matrices

$$
M=M^{T}>0, D=D^{T} \geq 0, G=-G^{T}, K=K^{T}
$$

is then asymptotically stable if the fxf matrix $K$ is; (a) positive definite, and ( $b$ ), that the rank of an eugmented matrix, $S$ be: Rank of $S=\operatorname{Rank}\left[\Gamma: F \Gamma ; F^{2} \Gamma: \ldots: F^{n-1} \Gamma\right]=n \quad(n=2 f)$
with

$$
F=\left[\begin{array}{c:c}
0 & E_{f} \\
\hdashline-M^{-1} K_{1}^{\prime} & -M^{-1}{ }_{G}
\end{array}\right], r=\left[\begin{array}{c}
0 \\
M^{-1} D
\end{array}\right]
$$

where $F$ is a ( $2 f \times 2 f$ ) matrix and $\Gamma$ is a ( $2 f \times f$ ) matrix. Condition (a) is a result of applying Sylvester's theorem when the principal minors of matrix K are positive definite. ${ }^{8,9}$ This extension of the Kelvin-Tait-Chetaev theorem which tests the system for asymptotic stability can be applied to tris particular system. K can be tested for positive definiteness for a particular set of system parameters and the augnented matrix, $S$, can be constructed as previously indicated ard tested for a rank equal to $n$ (twenty, for this system). If the rank of $S$ is $n$ then the system will be asymptotically stable in the Lyapunov sense, even when there is no damping on the main (hub) part of the satellite.

## CHAPTER IV <br> Concluding Comments

The rotational equations of motion for a spinning spacecraft system with deployable appendages and the criteria for the stability of such a system when the appendages areata fixed length, have been developed. The future analysis of this system will include the following:

1. an attempt to identify mode shapes for constant extension rates,
2. an application of the Kelvin-Tait-Chetaev theorem and its extension tc predict the stability of this syster before and after deployment maneuvers for different values of system parameters.
3. a computer simulation of the equations of motion with first order flexibility present and then absent. $\left(a_{i}=b_{i}=\dot{a}_{i}=\dot{b}_{i}=0\right)$
4. a computer simulation of the equations of motion with first order flexibility, in-plane bending only.
5. an attempt to relate the EI (flexural rigidity) of the wires tc an effective restoring linear spring constant, $k$.

Conclusions regarding the effect of flexibility on the system during extension os retraction as well as an the stabibitity of the system before or imiediately after extension or retraction, (mmerical results) will be forthcoming.

## REFERENCES

1. "Dynamics of Flexible Spinning Satellites with Radial Wire Antennas," R.W. Longman and J.V. Fedor, Acta Astronautica, Vol. 3, January-February 1976, pp. 17-37.
2. "Dynamics of Spinning Satellites Modeled as a Rigid Central Body and Spherical Pendulums as Appendages," F. Janssens, Proceedings of ESA Symposium on Dymamics and Control of Non-Rigid Spacecreft, May 1976.
3. "Bounds on the Extension of Antenras fcr Stable Spinning Satellites," L. Meirovitch, J. Spacecraft and Rockets, Vol. 11, No. 3, 1974, pp. 202-204.
4. "Dynamics of Spin-Stabilized Satellites During Extension of Long Flexible Booms," C.B. Cherchas, J. Spacecraft and Pockets, Vol. 8, No. I, Jenuary 1971, pp. 802-804.
5. Stability of Motion, W. Hahn, Springer-Verlag, Berlin, Heidelberg, 1967, Pp. 296-304.
6. "Nutation Stability of a Dual-Spin Satellite under the Influence of Applied Reaction Torques," P.M. Bainum, and J.V. Fedor, J. Spacecraft and Rockets, Vol. 10, No. 5, May 1973, pp. 295-300.
7. "The Kelvin-Tait-Chetaev Theorem and Extensions," E.J. Zajac, J. Astronautical Sciences, Vol. XI, No. 2, pp. 46-49, Summer 1964.
8. "Asymptotische Stabilitāt von Linearen Mechanischen Systemen mit Positiv Semidefiniter Dämpfungsmatrix," P.C. Miller, Institut B für Mechanik, Technische Universität Niinchen, August 1921.
9. "Zur Passiven und Aktiven Satelliten-Lageregelung mit Stabförmigen Drehpendeln," K. Popp, Doktcr-Ingenieurs Dissertation, Technischen Universität Minchen, November 1972, pp. 37, 38.


Fig. 1. Inertial and hub fixed coordinate systems.


Fig. 2. Variables specifying position of wire element.

