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The dynamics of a spinning symmetrical spacecraft system

during the deployment (or retraction) of flexible boan-type

appendages is the subject of this investigation. 	 The effect of

flocibility during boom deployment is tr^eated by modelling the

deployable members as compound spherica-L pendula. of varying

length (according to a control law) 	 The orientation of the

flexible booms with respect to the hub, is described by a sequence

of two Euler angles. 	 The boom members contain a flexural stiffness

which can be related to an assumed effective restoring linear

spring constant, and structural damping which effects the entire

system.	 It is seen that the linearized equations of motion for

this system, when the boom length is constant, involve periodic

coefficients with the frequency of the hub spin. 	 A bounded trans-

formtion is found which converts this system into a kinematically

equivalent one involving only constant coefficients.	 According to

the Lyapunov reducibility theorem the stability of tI'e reduced

system can be analyzed using the standard techniques 	 i.e. an

application of the Kelvin-Tait-Chetaev theorem.	 With the presence

of structural boom damping only (arid no damping on the hub),

criteria for stability- in the Lyapunov sense may be developed and

analyzed before or iamediately after each deployment maneuver 	 The

`
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simulation of the first-order nonlinear equations may be used to

predict the dynamics of the system before, during, and after

each extension or retraction.
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Introduction

The effect of flexibility during boom deployment on the

dynamics of a spinning spacecraft system is treated by modelling

the deployable members as compound spherical Wxxlula of varying

length.	 The Eisler angles, ai and bi2 describe 
f
lexural coordinates

(Fig. 1).within the transverse plane and normal to this plane

This model utilizing four deployable transverse booms (Fig. 1
M

*4 9 showing one boom) -, nciminally. lying in a plane orthogonal to the

va spin axes 
will 

be considered.	 The booms are assumed to emanate

fr-cm points a distance, r, from the center of mass of the hub and,

in their undeflected state, are riot necessarily aligned with the

ha principal axes (ci 0 C, i	 1	 4).

The development by Longman and Fedorl for treating the

dynamics of a system with constant length flexible wires will be

modified to include the effect of varying tl ,.e length. A qua&atic

approximation to the kinetic energy is developed which involves

a total of 14 generalized coordinates. The degree of flwibility

W is treated by introducing a restoring potential energy function

proportional to the square of the flexural coordinates, where the

proportionality (spring) constants can be varied according to the

in-plane and out-of-plane resistance to bending. Boom bending in



—

^	

a

2

the transverse plane and also out-of-plane can be simulated by

varying the magnitude of restoring linear spring constants, which

can be related to the stiffness (EI) of the boom material.

A related recent paper by Janssens, 2 considered the flexi-

bility of fixed l(wig-h appendages attached to a hub which was

assumed to spin at a uniform rate with no transverse components of

angular velocity. 	 The motion of the appendages was siailated as

spherical pendula in a centrifugal force field having two degrees

of freedom, thus neglecting the perturbing effects of the wires on

the motion of the central body. 	 The author2 has examined this

simpler problem to obtain the oscillatory behavior of the pendula,

which describe the nature of non-lirearities in the equations of

motion, and gives a description of the asymmetry between forward
'	 2

and backward swings in the presense of out-of-plane oscillations.

Twh other related problems have also been examined. 	 The

first considers stability boundaries on the extension of a pair

of axial antennas whose undeforrnee :fate lies along the =minal

spin axis. l 	I-c was assumed that the rate of extension was

sufficiently snail so that Coriolis effects due to the rate of

change of length could be neglected. 	 The author3 determines how

= far the antennas can be extended before a stability boundary is

approached but does not simulate the actual dynamics during

deployment. 3	In the second problem, the author's	 concern is to

determine the maximum nutation angles expected to remain after the
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deployment, the maximm+ bending moments, and deflections of long

flexible boars. This analysis neglects boar. extension by consider-

ing boom letq^, .n (A) to be constant in the formulation. The spin

rate (w3) is also assumed . constant.4

The objective of the present investigation is to consider

both the stability as well as the development of the deployment

dynamics of spinning spacecraft with movable flexible appendages.

The final objective will be to reach conclusions about the effect

of first order appendage flexibility during extension or retraction

maneuvers.

.-	 ^.
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`I	 Equations of Motion

The first order equations of motion will be developed using

the Iagrangian fcnulation, treating flexible boom (wire) members

as spherical pendula of varying length. It is assumed that the

amplitudes of the flexural coordinates as well as the amplitudes

of the variational coordinates that describe the motion of the

rigid part are small. It is sufficient to use a quadratic

approximation tc the Iagrangian to obtain the first order egp^.:ions

of motion- 1 We will first examine the develeFanent of the quadratic

appro•.dmation to the kinetic enerv.

Fig. ,. illustrates an inertially fixed coordinate system:

X, Y, Z, and a coordinate system: x, y, z, fixed to the symmetric

hub of the spacecraft and centered about its center of mass. Also

from Fig. 1, we let ROV be the vector from the cen
• of the

inertially fixed coordinates to ann, arbitrary volune element,

dV, and ROH, the vector from the center of the inertial coordinate

system to the origin of the hub fixed axes. 16, is the vector

from the origin of the hub fixed axes to the arbitrary volume

element V. The quantity, dROV/ dt I , is defined a..- the velocity

vector of the volume elemer:.t, dV, relative ra inertial space.

I	 4

I
I

I
I
I

I
I
I
I
I
T-

I
I
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A. Kinetic Energy

The kinetic enex-gy of each element of volume can be expressed

as,

dT = dihIc OV/dt, 2/2	 (1)

The total kinetic energy of thn system is obtained by integrating

Eq. (1) over the total volume in the system:

K.E. = (1/2ff
fV CIt I I . CIt II dV	 (2)

where P  is the density (mass per unit volume). The hub and wires

(booms) are assumed to be continuous, whereas the'tip mass and the

storad mass are considered discrete particles. Thus, the kinetic

energy for the entire system can-be expressed as:

T = (1/2)	 p	 ^V
	 . &oV 

II dVv	 dt `I	 dt 

hub

+ X1/2)	
P dIOV	 —yV	

dVv dt (I	 dt II

wires

+ (1/2)
dRoV	( oV

tip mass Mt dt II	 dt (I

4	 doV	 doV
+ (1/2)	 ^i	 dt jI * dt II

i=1
stored mass

(3)
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It should be noted that the last three terms in Eq. (3) include

the effect of the varying length of the wires.

B. Angular Velocity

The orientation of the hub axes relative to inertial space

can be expressed by using an Eider angle transformation, where

el , 8 2 , and e3 are the Euler angles. The rotations follow the

right hand sense, and are taken in -,he following order: (1) a

rotation through 8 l about the inertial X axes, followed by (2) a

rotat:^on 8 2 about the (intermediate) Y' axis, and then (3) a rota-

tion e 3 about the resulting Z" axis. After appropriate combination

of the three transformation matrices, the following over-all trans-

formation describes the orientation of the hub system unit vectors

relative to the inerd:i:al system unit vectors:

XH.	 ce 2ce 3 se 3c8l.selse2se 3 selse 3+celse2ce 3	X

Xg - -ce 2se 3 celce3+selse2se 3 -selce3-celse 203	Y	 (4)

zx	 se2	 -selce3	 celce3	 Z

where c, s indicate the cosine and sine functions, respectively.

From.consideration of this specific Euler angle sequence,

• A	 •	 • w

of = a 1 + 92Y' + e3Z„	 (5)



Eq. (5) can be expanded by using Eq. (4) and the intexmediate

individual transformation matrices to yield the components of

angular velocity, Ur, in the hub system as,

	

`I	
91ce2ce3 + 82se3

6 _ w2 = -6lce 2se 3 + 0 2C6

	

LN3J
	 81se2 + e3

C. Development .)f First Order Expression for the Kinetic Energy

In order 4:o develop a first order expression for the

kinetic energy, T; we can write:

e3 = Wa(t) + 6e3

e3 = 0(t) + se 

where' 6e3/wQ and 8e 3 << 1. In addition we assume

le.(, le 211 , aid, and ( bil, << 1. For a rigid satellite in or

close to its nominal state of spin (i.e. not during a deliberate

spin-up maneuver),

14
0(t) = ox- O = constant (about spin axis)

(8)
Vt) =a 0  .

Since small angles have been assumed, we can replace, e.g. -

Dos 9 2 by 1, sin 9 2 by e 2 , etc. Then, with the aid of Eq. (7),

Eq. (6) can be approximated by:

1

(6)

I
I
I
I
I
i
I
I
I
I
I

low
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0	 elc* + 8 2s*	 81d83s*+82d83c*

0	 + els* + 82c*	 +	 - * 1d83C*-8 2d83s +...,	 (9)

V	 d83	 8182

WO-	 Wl	 W2

where the three dots indicate terms of higher order than quadratic.

The.genera? »ed coordinates for the center of mass of the

hub are the cartesian components of R H in inertial space. X, Y,

Z represent components in the coordinate system (I) of &6/dt(I,

an inertial derivative. The quantities xH,yH,and ZH are defined

as cc.ronents of this vector projected into the hub (H), coordinate

system (;,H yH ZH) as seen from the inertia-. reference frame.

The first term of Eq. (3), the kinetic energy of the hub,

contains contributions due to the translational kinetic energy

of the center of mass and the rotational kinetic energy about the

center of mass.

Thy = (1/2) mH(XH + yH + ZH) + (1/2) Ih1(al + n►2) + (112) 1 H w3

(10)

It is assumed in the development of Eq. ( 10)_ that the hub is

symmetric and hawgenous (i.e. IH
1 `

= IV̂ ) . With the aid of

Eq. (9), Eq. (10) may he P-%-Dressed as,



9

dROV/dtlj = ('^M /dtj j + cffV/dtjj

4OH/dt1 I + dRHV /dtI H + r'rx 16

* 2 + * 2	 2
Thub = U/ 

2) MH( 
XH VH + T) + (1/2) IH, [("0+ Wl+W2)1

2
+ (Wo+"2)2

+ (1/2)	
(W.+"2) 2

3

As an example, WO+WjW2 may be-expressed in terms of tke Euler

angles and rates as follows:

W0+ W1 2+W,	 11 6, cos + e2 sin *+ (-e1
 Se3sin*+ 8 2 so3 Cos

(12)

W3 
is higher order -&-an quadratic; thus it can be CMLtted, along

with all o-&,er, higher order term.

To calculate Twim and Ttip nass 
it is necessary to deten

&^V/dt I	 Frm Fig. 'I' and with thethe inertial velocity,

application of Coriolis' law,

.-A
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(it should be rated that in tY* dwe?opment of Thub this a Tression

simplifies to:

dROV/dt' I = &R WdtjI 
+:X

(14)
iV

since dF-ldtI	 = 0	 for a differential volume element inside the

hub.)

The qua&-atic approximation of Rte, written in matrix farts,

following Fig. 2, can be expressed as:

cos ci -ai sin ci cos ci

V IRH Ĵ
K = (q+r) sin ci +q ai cos ci -(1/2)q(bi + al) sin ci

ef
0 bi 0

cos C.	 -ai sin ci1
+ - - • + (q-+ .rj	 sin ci + q- ai cos ci

0 b 

cos ci
2	 2f .`t ' 2) ^f (bi + ai) sin ci +	 ... (15)

0 where q = q(t)

Tn Fn. (1S) _ the rcmnnnen-rs of R__ ern given in the huh ccordi.nate



COs Ci -ai sill ci -ai sill ci

Cd 6ldt H]H = $ sin ci + q	 ai cos ci + q ai cos ci

0 bi bi

- q (b
i
b
i
 + a•iai )

oos ci

- (1/2) q (b? + a?) xsin ci
0

cos c.
i

^. El
sin ci	 + ...	 (16)

0

The quadrats approximation to the kinetic energy per unit mass of

the volume element can be obtained by calculating,

_ (1/2)[d-/dtII]H	
[(	 OV/dtl I]H 	(17)

OV

tough second order.

If dV is along the wire, Eq. (13) may be expanded with the

i #

aid of Eqs. (15) and (16) to yield:

r &OV/dt'I = CXH _ qai sin ci - q(bibi + a3ai3 Cos CJ-'2

i
+ CyH + qai cos ci - q(bibi + a ai.) sin ci]j

+ Cgbi +zH]k+wxRHV	(18)

-
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In order to include the effect of the wire on the composite

system. moments of inertia we consider, for example, the contribution

of the wire to IY

.2 
S S2 +	 Y 2 + md2	 (29)

where IUU , Iw and I w represent the principal moments of inertia

of the wire, (u is the longitudinal wire axis,v and w are transverse

axes). The term md2 represents the moment of inertia of the wire

due to the offset of its center of mass from the hub F-incipal
w	 A	 A A

"YHII axis. a, S, Y are the direction cosines: (u Y), (v ' Y),

and (w • y), respectively. Assuming the wire is thin and noting

that for small_ displacements of ai, bi, Y << 1, Eq. (19) may be

approximated by:

ZI	 ti I ' B + and	
(20)

Y wi3se	 w

where a2 = cost ai	 The moment of inertia of the wire about the

v axes (Fig. 2), can be expressed as:

V2

Iw = 2 f	 q pdq = m^.2/l2	 (21)

0
where o is the mass per unit length. After substitution of Eq. (21)

into Eq. (20)2
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IY	
((mitt/12)2-/12) Cos2 ai + m Cr+(1/2)cos ail2 (22)

ware
which can be s-*- . 1ified to,

Ty	(=2/3) cos2ai + mr 2 + MM cnS a.	 (23)
ire

The contribution . of the mar mt of inertia of the tip mass

can be developed in a similar manner as:

IY	
= Mj (r-.+ L Cos ai) I +, JL sin ai) 2 ] (24)

tip mass 

The combined effect of the appendages can be obtained by adding

Eqs. (23) and (24) to yis-ld:

	

Y '%m/3+mt)jt 2 +2(m/2+m 
t 
)rt + (M+'At)r 2	 (25)

appendages

for the case where ai < < 1. From symmetry, the wire and tip mass

in the Cix ' -:Ly) quadrant also contribute to IY. Eq. (25) now

becomes,

	I Y = [2(m/3+mt)L 2 + 4(m/2+Mt)Zr + 2(mt+m)r 2	
IX'.	

(26)

Assuming the hub is symmetrical, (I	 I ) then the compositeH, H 2

principal moments of inertia can be expressed as:

I1 = I2 = IH, + Iy	 (27)

The composite moment of inertia about the third principal axis of

the hub can be writ ten as,

I,3 - IH + I3	
+ I3

-3	 wire	 -tip mass

L71	 I

(28)



i	 14

Mie second term in Eq. (28) can be approximated as

I . 
3	 + md2 	(29)
w^	 wi'sge

With the aid of Figure 2 , Eq. (29) can be expanded to yield,

I3 . 	 = (M9213) + mr2 + mix cos ai	 (30)

The third term of Eq. (28) can be written as:

23 :..= . mtr2+'2mt&rr Gros ai + it2mt 	(31)
tip MMES

After substitution of Eqs. (30) and (31)-into Eq. (29),

	

I3 = IH3 + (i4t+ml3.)L2 + 2(mt+m/2) .tr + (mt+m)r2	(32)

If we consider the fam appendages, then Eq. (32) can be written as:

	

I3 = ?,.0 + [4("3)L + 8(mt+ml2)tr + 4(mt+m)r2 7	 (33)

When Eq. (17) is expanded in the calculation of Twires

terms which are periodic such as sin(*+c i) and cos(#+ci) appear.

If we consider the four appendages, then the tetras can be related

using the following transformations:

Let a = * + c1 thus,

1	 ,
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sin a = sin a

ADS a 2 COs a

sin (a+ w/2) a cos a

_ cos(a + a. /2) = - sin a
(34)

sin(a + 76 = - sin a

cos(a + 16 = - cos a

sin(a + 31/2) = - cos a

cos(a + U/2) = sin a

Now, volume integration over each wire can be performed.,

with -&,e result that the kinetic energy of the wires fcr constant

length is calculated as:

T= (1/2)[202 	 PnLt /3 + 2(82 + 8 2 )mZ1 + e 2	 1	 2wires

+	 2(ei + e2)r2m] 	 (35)

If dV were at the ihh tip mass, then expansion of Eq. (17)2

' multiplication by mt, and substitution of I for q (for constant

length), would result in the kinetic energy for the i.h tip mass.
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T^ mass = (L2)txH + % + zH) ^t + Zh bim t^ + tl/2) (ai+b) ^2

+ (1/2)w^ M'Cz2+r2+rz -I (bi + al) - rI(bi + a.2.^7'

+ tL2)td93 )2 mt(r2 + 12 + rte) + wO 8192 Mt(r2+Z2+2r0

* w
Q 69 3 ^tt(r2+ .t + 2ri) + (112) (ai w0 12 mt)

- attz(ai,^F + yH aiwo) sin ci + m tl(yH ai - N aiwo ) cos ci

R	 .	 .

- m lCbfo '111(r+0 + bi e. 2(r+tr) I cos Wc1)

- NI(biwo 9 2(r+0 + bi 9 1(r+0] sin (*+ci)

+ m t(;2 + 92)(r2 + 2rt + !L2 )	 (36)

If we consider variable length appendages, the formulation

of Ref. 1 can still be used, except length is now a function of

time and the position of an arbitrary volume element along the

wire, (q), is a function of time. The additional terms which

result for &R V/dtjdeployment can be expressed a3 follows:

_ 
--/

^OV/dtideployment ' [q cos c i - q ai sin ci - (1/2) q (bi + a?)

cos ci] 1 + Cq sin ci + q ai cos ci

- (1/2) q(bi + a.) sin ci] j + q bi ;c

(37)
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ktm--Eq. (37) -is- -subs tituted into Eq. MY $ the rest1tire

addit4wal term in the kLmtia wwv per uat mass are: •

*2
dT	 (312) q -qq(bibi+aei)'- q w, q ai - q 69	 q ai
deploymmt

(q+r)+	 - q ai ai + q wo ai(q+r) + q ai 6e 38192q &1	 q

+ q ai Ole
2 (q+r) + xliq cos ci - x	 ai sin ci

(1/2)x*, q(b,? + a,?) cos ci + yH q sin c.+ yjiq ai cos ci

(1/2)yliqllb2 + a.3) sin c	 + q* z*, b	 + q* q b
+ 

rqbie 2 $6 3 sn( ►+ ci) + rq 61bi sin(*+ ci)

+ rq C1 89 3 bi cos(* + ci)	 r9 q bi cos(	 ci)2

(38)

The limits of integration over the differential vols in ths

express	 n	 can be formulated as follows:ic-	 for Twires

q(t) z qt, where q is assumed to be constant (for an

assumed uniform extension rate).	 Then, dq z q dt, and

.)dq	 )A dt 2	0 < tf	 -1-f
0	 0

when
t	 0 1 q	 0; t	 q

when
I 

< 
I
v tf	 If /I

	
when	 t(0)	 0; q	 I

Sp
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where. if and tf represent final length and time,

respectively.

The following additional tents result for Twires'

4	 4
TwireS	 - (2/3)mg2 + (1/2)	 w0airmix2 + (1/2)	 ai de-niij.1

depl:	 i=1	 i=1

4. 2 	4
+ (1/2)	 S ai^lg2rmil	 + (1/2)	 zHbimiz	 (39)

i-1	 i=1

If we insider Ttip mass' Where the expansion of Eq. (17)

is similar to that for T s , then multiplication by m, t and substi-

toting I for q yields:

4..	 4	 4	 . .
Ttip massdepx- = 2mti2 +	 RmtwOaI +	 gntai" F +	 ZzHbin^t

i=1	 i=1	 i=1

(40)

To consider the kinetic energy due to the stored mass of

the rods inside the hub, the followng assumptions are made:

(1)	 at full extension there is no stored mass;

(2)	 the mass is stored at a point inside the hub,

a distance r from the hub center;

(3)	 the extension rate is the same for all rods;

(4) the wires are homogenous.
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The extended mass per unit volume along the wire can be defined

as:
M(t) = p1t(t)	 (41)

where 0 < t < tf, and p is the. mass per unit length. The stored

mass per unit volume can be defined as:

dm.	 = ( 't - I(t))p	 (42)
.	 1 stcred	 f

where L(t) resprsents the instantaneous length. Since the stored

mass is inside -&-e hub, then Eq. (14) can be used to express

&^V/dt ( I , where;

R = r(cos c  i + sin ci j)	 (43)

If we substitute Eqs. (14) and (43) into Eq. (17), and apply the

same procedure, the terms which result for the combined effect

of the fots locations, ;field:

Tstored mass = (1/2)

It

 pi(1 ^,M) C4(xH + yH	 + zH2 	 )_+4r two
i=1

+ (e i * 2 ' + (6*3 ) 2. + 8r2 (w0 a* 3 + w0 81 92 + '*3@182)

+ 8r.. a  e 2 ae 3 + 2;^2 (81+ s2)  + 2r2 (81+ 82)(603)27

(44)

Eqs. (11), (35), (36), (39), (40) and (44) can now be

combined to provide the quadratic approxima_ion of the kinetic

energy for the entire system; which can be writ-'--en as:
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•2 + •2 + •2 ) + I w (d e + 0162
) + (J2) I w 2T = (L2)M(

xH yH zji	 3 0	 3  	 3 0

4
+ (1/2) II(ei+ AZ) + (1/2) I3 (de3 ) 2 + M1(w0 + de3) E aii=1

4	 4	 4
+ (L2) M3 w^ 1 2 + M2 zH E bi - (1/2) M1 w02	 (ai + 1,j)

i=1 	 .2	 i=1	 i=1

+ (1/2) M3	 (ail + bi)

	

4	 i=1	 -
+ M2	 [- IH(Ai sm ci + w0 ai cos ci) + yH (ai cos ci

i=1

4 .
- w0 i sin ci)] + Ml 	 {81 [bi sin (*+ci

) - w0bi cos(*+ci)7
i=1

- a2[bi cos (*+ci) + w0 bi sin (*+ci)7} + (2/3)m¢2

	

2	 2
• (1/2) 1 w0 a3.rmi ^ + (L 2) 	 ai 6A 3 rmil

i=1 .	 i=1

2• (1/2)	 aia162-rmi k + (1/2) 	 zHbimil-+ 2mtt
i=1	 i=1

4	 4	 4
+	 w0airmtL +	 ai o6 3 rmtz +	 aie192-- zmt'

	i=1	 i=1	 i=1

4	 4

+	 zfibimtt	 f+ (1/2)	 Pi(I l(t)) [4(xH +yH + zH) +4 r2 [W02

	

i=1	 i=1

+ (e a ) 2 + (Se ) 2 ] + Sr2 (w ae + w e 	 + ae a 	 )

	

1 2	 3	 0 3	 0 * 1'2 	 3 2 2

+ sr2e1e 2 ae 3 + 2r2 (e1 + e2) + 2r2 (e1 + e2) (6e 3 )

(45)

I

i

s

dim
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where the varying length terms (containing Q) and the stored mass

terms are additions to the constant length terms developed in Ref.

1.	 In connection with Eq. (45) the following parameters

' have been defined:

M = mH + 4m + 4m t

= (	 + mz/3 +	 r + mr/2)1	 =	 +Ml,	 mt 	 mt	 M3	 rM2

M2 = Wt + m/ M

M3 = (mt + m/3)L2

where m = m(l), and are defined similarly o those ( riven in Ref. 1Y	 o

' Terms associated with the stored mass in Eq. (45) can be

included with the composite moments of inertia expressed in
r
n Eqs . (27) and (33) , and also with -M- , I12, afid 113 -	 These

quantities can now be redefined in modified form as:

M = mH + 4pR(t) + 4 stored + mt = constant 	 (46a)

where	 m	 = p (!L - '(t) )stored	 f

'	 M1 = (mt JL(t) + (1/3) p (t (t)] 2 + rmmt + (1/2)r zCt)) L(t)

(46b)

M2 = (mt + (1/2)p I (t)) .Z(t-)'	 (46c)

'	 M3 = (mt + (1/3) PL(t)[Z(t)]2	 (46d)
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Il = I^ + C2(mt + (l/2)PI(t))CI(t^)]2

+ 4(mt + (l/2)PL(t))r R(t) + 2(mt + Pkf)r2 	 (46e)

I3 = Ix
3
 + [4(mt + (1/3)PL(t)C_(t)12

+ 8(mtt (1/2)pz(t))rL(t) + 4(mt + plf)r2l 	 (46f)

For varying length, m has been defined in Eq. (41), ass ining the

mass per unit length, (p), of each appendage is the same.

The corresponding time rates of-charge of the (new) composite

parameters and of the (neW) composife 'munents of Uiertia can -be

Witten as:

M = 0	 (46g)

M1 = 2mt LR + p jR2 + rmtz + r IPI L	 (46h)

M2 - m`t 
+ P"	

(46i)

M3 = 2mtU + piz2	(46j)

:1, = 4mtU + 2 p it2 + 4Y + 4rPIZ	 (46k)

I3 = 8mtit + 4p U2 + 8mtrt + 8rpII	 (461)

where z = x(t) and z = L(t)
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D.	 Development of the Equations of Motion

The fourteen generalized coordinates selected are; 	 X, Y, Z,

61, 622 832	 a1, a2 , a3 , a4, bl , b2 . b3 and b4 .	 We note that X. Y

and Z, are iner*_ially fixed coordinates and do not appear in Eq. (45),

thus they are cyclic. 	 Lagrange l s equations of motion:

d/dt(aVagi) - aT/ a qi = Qi	 i = 1,2,...14	 (47)

where Qi for the wires (booms) is the genenUized force derivable

-_ from	 function	 is	 bea potential energy	 which	 assumed to	 proportional

to the square of the flexural coordinates, a i and bi , and involves

a linear structural restoring spring constant, k; also Q is derivable

from a Rayleigh dissapa-ive function, --,^ (i.e. 'P oc ai and

oc bi , i=1 - 4 booms), involving assumed linear viscous

structural rate damping, C. 	 Eq. (47) may be developed :n the

coordinates, qi, to yield:

d/dt(aVaX) = C1 = p1; d/dt(aT/aY) = C2 = p2'

d/dt(aVaZ) = C3 = p3	(47a)

where pl' p2' p3 are the constant generalized momenta associated

with X, Y and Z, respectively. If we choose the inertial axes such

that there _s ^-o momentum of the spacecraft relative to the inertial

axes at time t = 0, then the constant m menta are zero, therefore

C1 = C2 = C3 = 0. Eq. (47) can be developed for this system as a

I
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set of fourteen equations of motion. Furthermore if we keep

YH, YH and zH as coordinates, then solving the linear differential

equations with variable coefficients (when L is constant), is made

easier. 1 The equations of motion can be expressed as follows:
..	 4	 4

M XH - (Mtn + PLO E (ai sin ci + w0 cos ci) - M2 	 (a sin ci
i^l	 i=1

+ w0 ai ms ci + waai cos-ei) = 0	 (48a)

..	 4	 4
M YH + M2 1 (ai cos ci - w0 ai sin ci) + M2 	(ai cos ci

i-=1	 i=1

- w0 ai sin ci - w0 ai sin ci) = 0	 (48b)

4	 4	 4
-	 b.	 .	 Cb- U + b . (t + ZOO/22M zFi + M2 i^1 i + M2	

b +	 pl^l i	 i^l - i 1
	 bi(t

 -

+	
Mt 

(bi Z + Lb i  = 0
i=1 i

•	 4
I3 w082 + I3 (w092 + w0 e2 ) + I1e1 * 11e1 -7 i;l Cbi sin by + ci)

4
- w0 bi cos( + ci)] + MZ 	 C(bi + wo bi) sin (.V + ci)

i=1

	

-	 4	 .

WO hi COS'(P + ci}? + I rpi {a18 2It2 + a^ C8 2 z£2
1-x

4
+ 8 2 63 + 2Z ii* )]. /2 + i^l rmt. . Caie 2 R + ai (e 2 z +e2z).ji

(48c)
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4	 ..
2+ 4	 pi r(If(e2se 3 + 62683 ) - Cl^8 2d8 3+ I(e2d83

i=1

+ 8 2 so' 3A l = 0	 (48d)

4
1182 + I1 82 - M1	 Cbi cos (* + ci) + w0 bi sin (* + ci)1

i=1

4
- M1	 ((bi + w0 bi) cos (0 + ci) + w0 bi sin(^ + ci)1

i=1

4
+ 4 i^lpir2{ If( a1d83 + 8168 3 ) - [to 1de3 +t(eIso3 +.-e lse 3 AI

4
— I3 w0 81 — (1/2)	 ai 91 rlp L2 = 0	 (48e)

i=1

4	 4
I3 (w0 +683 ) + I3 (w0 + de 3 ) + M1	 ai + M7.	 aii=1	

J1

44
+ (1/2)	 pir(ai it2 + ai C^3 + 21ILD + 	 rm (ail + ail)

i=1	 i=1 ti

4
- 4

lL1pi ( lf -X)r2 e182 = 0	 (48f)

M1(w. aj 
+ w0 + 6e 3 ) + M1(w0 + do 3 )+ M3 (a.7

 - wo a.
J

)

4
+ M3aj + M2	 C(-xK + yH w0 ) sin ci + (yH + xd w3 ) cos ci l

,^ 1	 -

go-



26

P

's

a ,

I
1
I
1

I
i
1
1
1
1

:t
Ar

4	 •4	
.2

+ M2 	N sin ci + yH cos cif - (1/2)	 PirZI (w0
i=1	 i=1

4
+ de3 + a' 22 - 81e2r t	 r	 + kaj + Caj = 0

ii=1 

..4
M2zH + M2zH + M

3bj + M3bj + M1 J, C(el + 2w0 82 ) sin( ► + ci)

4
+ (- 8 2 + 2w0 e1) cos (* + ci)] + M1 	CO, sin (^ + ci)

i=1

82 cos (V+ + ci)] + M1 wo bj + kbj + Cbj = 0

where	 *1 + P * 12 + rP£^,	 in Eq. (48g);
MZ - ^t

M2 = (Pjtz/2) 	 in Eq. (48h).

In Eqs. (48g) and (48h), j = 1,2,3,4; i.e. these equations represent

a set of eight Lagrangian equations corresponding to the coordinates

a1 - a4 and b1 - b4 , respectively. The terms kaj , kbj , Caj and

Cbj in these equations, are associated with the ge-neralized fcrce

Qi for the w,res (bocrosi due to the effect of a linear (structural)

restoring spring constant, k, and structural damping represerted

by C, (a linear viscous rate daring constant), which is assumed

(48g)

(48h)
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to exist in the four booms. Both k and C are assumed to be the

same for each boom, and associated with a potential energy function

and a Raleigh dissipative function, respectively.

Since Eqs. (48a), (48b) and (48c) yield first integrals

where xH , yH and zH can be related to the constant generalized

momenta pl, p22 and p31 respectively, then xH, YH and zH are zero

and can be eliminated fran these equations. Eq.,(48) car. be

reduced to a set of eleven equations by solving Eqs. (48a), (48b)

and (48c) for xH, YH and zH respectively and substituting them into

Eqs. (48g) and (48;x). In Eqs. (48), we will now assume that the

tip mass, mt_, and mass per unit length, pi, are the same for the
i

four appendages.
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Stability

To ewe stability befare and irdiately after deployment,

we assume	 1 =	 = 0.	 Eq. (48) for constant lengthl, can be

reduced to the following set of ten equations by solving far 68 3 in

Eq. (48f) and substituting the results into Eq. (48g).

I181 + I3w082 + M1C(b1 + w0 b1) sin 4 + c1)

+ (b2 + w0 b2 ) cos (Vi + c1) - (b3 + w0 b3 ) sin (^, + c1)

- 64 + w0 b4) cos (0 + cl)] = 0	 (49a)

-	 •
I182 - I3w081 - M1C(bl + w0 b2) Cos (fir + c1)

+ (b2 + w0 b2) sin(* + c1) + (b3 + w0 b3 ) Cos	 + c1)

- 64 + w0 b4 ) sin 4 + c1) = 0	 (49b)

4
(M3-Mi /I3 )aj + (iS1-^i3 )w0 a^ + M2C(-?"2 	 (ai cos c .

it	 y

4
- w0a.i sin c 1)w0 sin c , + '1 1-2 	 (a .. sin c1	 i.1 1

28
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+ w-0 a! cos c,) w0 C:os C-
3
	 + )a.

3
	 Caj = 0

^- j= 1,2,3,4 equations 	 (490

M3bj + MlwO bj + Ml[(8 + 2w09 2 ) sin	 + cj)

+ (-82 + 2w0 91) cos (0 + cj ) + kb 	 + Cbj = 0	 (49d)

j = 1,2,3,4 equations

The knmgenmus system of linear d? fferem:ial. equations can

be expressed in state vector fcrm:5

X(t) = Aft + T)X(t)	 (50)

where X(t) is a ( 20 x 1) column matrix of the coo::dinates and

velocities and Aft + T) represents a (20 x 20)•matrix.	 Typical

periodic coefficients in A(t + T) are:

sin(* + ci)	 and	 cos ( * + c..)t

which occur in Eqs. (49a), (49b) and (49d) for constant Iergth.

A.	 Application of the Lyapunov Reducibi l ity Theorem

the Lyapunov reducibility theorem may be applied to reduce

the linear system of differential equations wi.t^. periodic coefficients

" to a kinematically similar system of diff errritial equations.	 (A

recent application of this theorem in studying the stability of a

dual-spin spacec-"&ft with a flexible rwment= wheel is given Ln
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Ref. 6.) The theorem states that there is a bounded

tralsfCcOation matrix SUI with a bounded inverse !f .1 (t) such that

a ==,Ix D, defined by-.

D S -1 AS - S-1	 (151)

is a cmurMnt matrix. We can then relate

X = S(t)Y	 (52)

and obtain the system	
6

Y z DY	 (53)

as the kinematically equivalent of Eq. (SO). V  bounded trans-

formation of the fcm of Eq. (52) for the present system, can be

expressed:

0	 cos * -sin 0

82	sin* cos	 E2

a,	 l 0 	 a,

a2	a2

a3
	a3

a4	a4

b,	 1	 b,

b2 	b2

b-	 1	 b
z	 3

b4	b4

(54)
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In Eq. (510 if Z z Ce
l 9 

2— 
b 43 T , then

Z

Y= )
(i

	

Thus, the kiatically eTliva	 system can be expressed

in terms of the Z matrix and the c—nstant coefficient matrices,

M9 G9 D, K. as:

-GZ*	 + n = aIAZ +	 + L	 (55)

M is the symmetric mass inertia matrix, G is a skew symmetric

matrix involving gyroscopic terms, D is a symmetric positive

semidefinite damping matrix and K is a symme txic stiffness matrix.

These matrices can be expressed as follows:

a%_ M

. 

I
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r-4

cn ci
r-I

cir)	 M	 cy) C4

C-1 r-4	 04

7r
I

Ch	 M C%j

H	 H

M C14N r-: C4

cn

H	 H N
C4	 C4CM	 r-i

C"	 cn
H

-	 ^
c:n C4,r-IY

C14 0	 -"4

Q	 U3 8 U)

r-q

E

P-4

X:I

U

r-^

u u

f-i

0

O	 o

r.	 w

-4
r.
P4
U3

U3

ul

r-4
r-4
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0C

C	 (58)
C

0
 C^

C
C

C

K=

G 0 G 0 0 0 D E -D -E
0 G 0 0 0 0 -E D E -D
0 0 A B -C -B 0 0 0 0
0 0 B A-B C 0 0 0 0
0 0 -C -B A B 0 0 0 0	 (59)
0 0 -B C B A 0 0 0 0
D-E 0 0 0 0 F 0 0 0
£ D 0 0 0 0 0 F 0 0
-D E 0 0 0 0 0 0 F 0
-E -D 0 0 0 0 0 0 0 F

1	 !	 Ir	 ,a
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where, in Eq. (-9),

A = k + r M2wn C1 - M2 (sin2 cl - cos2 ci)/r l

B = 2(4 w0/M) sin cl cos cl

C = 4 120/M (sin2 cl - cos2 cl)

DM wO sin cl

E= Ml wO cos cl

F = 
M1 w0 + k

G = I3 w0 - Ilw2

B. Application of the Kelvin-Tait-Chetaev Theorem

In the zquation:

MZ +DZ + GZ + KZ = 0 	 (60)

we assume that M and D are symmetric positive definite, G is

skew symmetric, and that none of tte eigenvalues of the symmetric

matrix, K, is zero. Then the stability of the solutions of Eq.. C60)

is the same as the stability of the solutions of the t-r-incated

equation?

MZ+la =0.

If M, K, and D are positive definite, the ze-ro solution of Ea. (55)

is asymptotically stable; it M and K are resitive definite and D is

1	 I ---.._. _ - :. j 

r°
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-	 positive semidefinite with (D A 0), the solution of Eq. (55) is

stable in the sense of Lyapunov but not asymptotically stable.7

The Kelvin-Tait-Chetaev Theorem can be applied to this particular

system, where D is positive semidefinite in the absence of damping

on the main hub, by er- ;mining the .M.and K matrices for pbsitfvedefi-

niteness. If, for e a particular set of system parameters, any of

the principal minor subdet-erminants of either the M or K matrices,

Eq. (56) cr Eq. (59), is negative, then the system wi11 be unstable

in the Lyapmov sense.

C. Extension of Stability

A recent extension of the Kelvin-Tait-Chetaev theorem to

establishtotic stabilityof linear stems where the 	 i.^Y^ 	 system	 ^P "ig

matrix is only positive semidefinite, was presented by ,,filler8

and is summarized briefly, here.

The mechanical system,

MZ+(D+G)Z+rZ=0

with the fxf matrices	
T

M=MT > 0, D=DT > 0, G=-GT, K=KT

is then asymptotically stable if the fxf matrix K is; (a) positive

definite, and (b), that.the rank of an augmented ratrix, S be

I
Rank of S = Rank Cr:Fr :F 2 r	 :Fn-1 f ] = n (n = 2f)

I
t

IL
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Ff	
Owith	 F=	 - - - r -	 , r=

-M-1 K î -M- lG 	 9-1 D

where F is a (2f x 2f) matrix and r is a (2f x f) matrix. 	 Condition

(a) is a result of applying Sylvester's theorem when therindP	 Pal

minors of matrix K are positive definite. 8 ' 9	This extension

of the Kelvin Tait-Chetaev theorem which tests the system for

asymptotic stability can be applied to tris particular system. 	 K

can be tested for positive definiteness for a particular set of

system parameters and tre augmented matrix, S, can he constructed

as previously indicated and tested for a rank equal to n (twenty,

for this system) .	 If the rank of S is n then the system will be

asymptotically stable in the Lyapunov sense, even when there is

no damping on the main (hub) part of the satellite.

I

1
t
I

E	 w



CHAPTER N

Cancl4ding Corm eats

The rotational equations of motion for a spirming spacecraft

system with deployable appendages and the criteria for the stability

of such a system when the appendages art- at a fixed length, have

been developed. The e future analysis of this system -rill include

the following:

1. an attempt to identify made shapes for constant

extension rates.

2. an application of the Kelvin-Tait-Chetaev theorem

and its extension tc predict the stability of this

system before and after deployment maneuvers for

different values of system parameters.

3. a computer simulation of the equations of motion

with first order flexibility present and then

absent. (ai = bi = a  = b 	 0)

4. a computer simulation of the equations of motion

with first order flexibility, in-plane bending only.

S. an attempt to relate the El (flexural rigidity) of

the wires tc an effective restoring linear spring

constant, k.

38
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n 	 Conclusions regarding the effect of flexibility on the system

during extension -.r retraction as well as = the stability of the

system before or imii-^diately after extension or retraction,

_-	 (numerical results) Will be forthcoming.



1. "Dynamics of Flexible Spinning Satellites with Radial Wire
Antennas," R.W. Longman and J.V. Fedor, Acta Astronautica,
Vol. 3, January-February 1976, pp. 17-37.

2. "Dynamics of Spinning Satellites Modeled as a Rigid Central
Body and Spherical Pendulums as Appendages," F. Janssens, 	 am-

Proceedings of'ESA Symposium on Dynamics and Control of
Non-Rigid Spacecraft, May 1976.

3. "Bounds on the Extension of Antennas fcr Stable Spinning
Satellites," L. Meirovitch, J. Spacecraft and Rockets, Vol.
11 9 No. 3 3 1974 2 pp.. 202-204.

4. "Dynamic: of Spin-Stabilized Satellites During Extension of
Long Flexible Booms," C.B. Cherchas, J. Spacecraft and Rockets,
Vol. 8, No. Z, January 1971, pp. 802-804.

S.	 Stability of Motion, W. Hahn, Springer-Verlag, Berlin,
Heidelberg, 1967, pp. 296-304.

6. "Nutation Stability of a Dual-Spin Satellite under the
Influence of Applied Reaction Torques," P.M. Bainum, and
J.V. Fedor, J. Spacecraft and Pockets, Vol. 10, No. 5, May
1973 3 pp. 295-300.

7. "The Kelvin-Tait-Chetaev Theorem and Extensions," E.J. Zajac,
J. Astronautical Sciences, Vol. XI, No. 2, pp. 46-49, Summer
1964.

8. "Asymptotische Stabilitat von Linearen Mechanischen
Systemen mit Positiv Sem_definiter Dampfungsmatrix," P.C.
Diller, Institut B fir MwIw ik, Technische Universitat
Munchen, August -571.

9. "Zur Passiven and AJ-iven Satelliten-Lage regelung mit
Stabformigen Drehpendeln," K. Popp, Doktcr-Ingenieurs
Dissertation, Technischen UnLversitat "Wfunchen, November
1972, pp. 37, 38.

1	 40

I



;H)

X

IlVEtZTIAL AMS (T)0

Fig. 1. Inertial and 'nub fixed c.00rdi-ate systems.

Y

c

1
.1

t
1
1
i
1
1
1
1
1
1
1
1
1
1
1
1

41



t

i

i

a

42

Z

1	 y

I	 IJf	 i13 Mass

FLUB CENTER	 1	
4

I OF MASS ^	 bi

I	 rI
I	

a I
I

C.

X

1	 /

Fes• 2. Variables specifying position of wire

t	 ,y	 -A-	 r	 -


	GeneralDisclaimer.pdf
	0017A02.pdf
	0017A02_.pdf
	0017A03.pdf
	0017A03_.pdf
	0017A04.pdf
	0017A05.pdf
	0017A06.pdf
	0017A07.pdf
	0017A08.pdf
	0017A09.pdf
	0017A10.pdf
	0017A11.pdf
	0017A12.pdf
	0017A13.pdf
	0017A14.pdf
	0017B01.pdf
	0017B02.pdf
	0017B03.pdf
	0017B04.pdf
	0017B05.pdf
	0017B06.pdf
	0017B07.pdf
	0017B08.pdf
	0017B09.pdf
	0017B10.pdf
	0017B11.pdf
	0017B12.pdf
	0017B13.pdf
	0017B14.pdf
	0017C01.pdf
	0017C02.pdf
	0017C03.pdf
	0017C04.pdf
	0017C05.pdf
	0017C06.pdf
	0017C07.pdf
	0017C08.pdf
	0017C09.pdf
	0017C10.pdf
	0017C11.pdf
	0017C12.pdf
	0017C13.pdf
	0017C14.pdf
	0017D01.pdf
	0017D02.pdf
	0017D03.pdf
	0017D04.pdf
	0017D05.pdf
	0017D06.pdf
	0017D07.pdf
	0017D08.pdf
	0017D09.pdf
	0017D10.pdf



