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- ABSTRACT

. The dynamics of a spinning symmetrical spacecraft system
during the deployment (Aor.retraction) of flexible boam~-type
appendages is the subject of this investigation. The effect of
flexibility during boom dépldyment is treated by modelling the
deployable rngxnbers as compound sphericai pendula of varying
length (according to a control law). The orientation of the
flexible booms w:rth respect to the hub, is described by a sequence
of two Euier arigles- The boom members contain a flexural stiffness
which can be related to an assumed effective restoring linear
spring constant, and structural damping which effects the entire
system. It is seen that the linearized equations of ,mtion.for
this system, when the boom length is constant, involve periodic
c.o_efficients{ with the frequenéy of the hub spin. A bounded trans-
formation is found which converts this system into a kinematically
equivalent one involving only constant coefficients. According to
the Lyapunov reducibility theorem the stability of the reduced
system can be analyzed using the standard techniques - i.e. an
application of the Kelvin-Tait-Chetaev theorem. With the presence
of structural boom damping only (and no damping on the hub),
criteria for stability in the Lyapunov sense may be developed and

analyzed before or immediately after each deployment maneuver. The
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simulation of the first-order nonlinear equations may be used to

predict the dynamics of the system before, during, and after

each extension or retraction.
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NOMENCLATURE
Linearized system state matrix

Flexural ccordinate in the transverse
X,y plane

Flexural coordinate out of the x,y plane
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Arbitrary differential mass within the
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flexural coordinate in the transverse
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" . along the boom (wire)
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with respect to the hub center of mass

Inertial position vector of the hub center
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Inertial position vector of an arbitrary
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Offset of the booms from the system
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Bounded nonsingular transformation matrix
used to transform nonautonomous system
of equations to an autonomous set

System kinetic energy

Time

Differential volume within the system

Indicates the order of magmitude.of the
angular velocity vector components

Naminal . value of hub sp:"Ln rate
Inertiil coordinate system
Hub coordinate system

State vector
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CHAPTER I
Introduction

The effect of flexibility during boam deployment on the
dynamics of a spinning spacecraft system is treated by modelling
the deployé.ble members as compound spherical pendula of varying
length. The Euler angles, a; and by, describe flexural coordinates
within the tr*_ansiler'sé plane ard normal to this plane (Fig. 1).
This model utilizing four deployable transverse booms (Fig. 1
showing one boom) :nominally lying in a plane orthogonal to the
spin axes will be considered. The booms are assumed to emanate
from points a distance, r, from the center of mass of the hub and,
in their undeflected state, are not necessarily aligned with the -
hub principal axes (c; # 0, i = 1+ 4).

~ The development by Longman and Fedor® for treating the

dynamics of a systém with constant length flexible wires will be
modified to include the effect of varying the length. A quadratic
appr*c;:dmation to the kinetic energy is developed which involves

a total of 14 generalized coordinates. The degree of fleribility
is treated by ihmducing a réstoring potential energy function
proporticnal to the square of the flexural coordinates, where the
proportionality (spring) constants can be varied according to the
in-plane and out-of-plane resistance to be‘ndmg Bocm bending in
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the transverse plane and also out-of-plane can be simulated by
varying the magnitude of restoring linear spring constants, which
can be related to the stiffness (EI) of the boom material.

A related recent paper by Janssens,> considered the flexi-
bility of fixed length avpendages attached to a hub which was
assumed to spin at & m:.form rate with no transverse components of
angular velocity. The motion of the appendages was simulated as
spherical pendula in a centrifugal force field having two degrees

" of freedom, thus neglecting the pertucbing effects of the wires on

the motion of the central body. The author? has examined this
simpler problem to obtain the oscillatory behavior of the pendula,
which describe the nature of non-linearities in the equations of
motion, and gives a description of the asymmetry between forward
and backward swmgs in thé presense of out-of-plane os:::?..!.lat:i«:ms.“Z
Twn other related problems have also been examined. The
first considers stability boundaries on the extension of a pair
of axial antennas whose undeformed state lies along the nominal
spin axis.3 I;: was assumed that the rate of extension was
sufficiently smail so that Coriolis effects due to the rate of
change of length couldbe neglected. The at.n:hor3 determines how
far the antennas can be extended before a stability boundary is
approached but does not simulate the actual dynamics during

3

deployment.~ In the second problem, the author's” concern is tc

determine the maximum nutation angles expected to remain after the



deployment, the maximum bending moments,and deflections of long

ing boom lety.n (%) to be censtant in the formulation. The spin

rate (u,) is also assumed. constant."
The objective of the present investigation is to consider

both the stability as well as the development of the ceployment

!
|
I
i flexible booms. This analysis neglects boam extension by consider-
i
i
I

dynamics of spinning spacecraft with movable flexible appendages.
The final objective will be to reach conclusions about the effect
of first order appendage flexibility during extension or retraction

maneuvers.
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CHAPTER II

Equations of Motion

The first order equations of motion will be developed using
the Lagrangian Scrmulatior, treating flexible boom (wire) members
as spherical pendula of varying 1eng£h. It is assumed that the
amplitudes bf the flexural coordinates as well as the amplitudes
of the.va'riational coordinates that describe the motion of the

"prigid part are. small It is sufficient to use a quadratic
approximation tc the Lagrangian to obtain the first order equ:tions
of motion.t We will first examine the develorment of the quadratic
approximation to the kinetic energy.

Fig. 1 illustrates an inertially fixed coordinate system:

X, ¥, Z, and a cpordinate gystem: x, ¥, 2, fixed to the symmetric
hub of the spacecraft and cenfered about its center of mass. Also
from Fig. 1, we let ﬁOV be the vectcr from the cenm - of the
inertially fixed coordinates to an arbitrary volume element,

dv, and RDH’ the vector from the center of the inertial coordinate

" system to the origin of the hub fixed axes. §I-1’V’ is the vector
from the origin of the hub fixed axes to the arbitrary volume
element dV. The quantity, diov / dt]I , is defined as the velocity

vector of the volume element, dV, relative to inertial space.




LI & LA

A. Kinetic Energy
The kinetic energy of each element of volume can be expressed
as,
dT = dn|dRy,/dt| %2 (1)
The total kinetic energy of the system is obtained by integrating

Eq. (1) over the total volume in the system:

e = anff f(i‘jti IR PP

where o is the density (mass per unit volume). The hub and wires
(booms) are assumed to be continuous, whereas the tip mass and the

storad mass are considered discrete particles. Thus, the kinetic

7energy for the entire system can-be expressed as:

ol (%1% )
cam [ff o[B e

(3)

+(/2) ] m

tip mass

s o T

+(U2) lam | 5 |
i=1
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It should be noted that the last three terms in Eq. (3) include
7ther effect of the varying length of the wires.
B. Angular Velocity

The crientation .of t]:é hub axes relative to inertial space

~ can be expressed by using an Euler angle transfo‘mation, where

8,5 85, and 8, are the Euler ahgles. The rotations follow the

right hand sense, and are taken in ihe following order™: (1) a
rotation through 8 about the inertial X axes, followed by (2) a
rotation 02 about the (intermediate) Y' axis,_and then (3) a rota-
tion 84 about the result:mg Z" axis. After appropriate combination
of the three transformation matrices, the following over-all trans-

formation describes the orientation of the hub system unit vectors

relative to the inertial system unit vectors:

x’HA cezce 3 s 3celfselse'2$e 3 sé lse 3+ce 1§ ezce 3 X
¥y [F{-c8,583 <6,cBy+s8,50,58, -50,c8,-CB,56,58, Y (4)
ZH 562 —selce3 ' celc93 Z

where ¢, s indicate the cosine and sine functions, respectively.

' From.consideration of this specific Euler ahgle sequence,

2 (5)




Eq. (5) can be expanded by using Eq. (4) and the intermediate
individual transformation matrices to yield the components of
angular velocity, w, in the hub system as,
w elcezce3 + 92393
u = Wy | = -élczezse3 + ézce3 (6)

w3 8,50, + 8,

C. Development of First Order Expression for the Kinetic Energy
In order ‘o develop a first order expression for the

kinetic energy, T, we can write:

93 wo('t) + 693 D

[ ]
n

84 w(t) A+.<se3

where" 693/w0. and 683 << 1. In addition we assume
lell, Iezl, la;|, and |b;|, << 1. For a rigid satellite in or
close to its nominat state of spin (i.e. not during a deliberate

spin-up maneuver),

Wwa(t) = a, = constant (about spin axis)
o 0 ®)
p(t) eyt .

Since small angles have been assumed, we can replace, e.g. -
@oé 8, by 1, sin 8, by 8,, etc. Then, with the aid of Eq. (7),

Eq. (6) can be approximated by:



8
0 1°“’ + e sy '-elseasv»e 80,C¥
w¥ |0 | + 15"’ + e + -else3c¢-ezseasap ..., (9)
%l 58,4 09,
¥ il W,

where the three doté' indicate terms of higher order than quadratic.
The generalized coordinstes for the center of mass of the
hub are the cartesian components of KOH in inertial space. )'(, X.,',
z represent camponents in the coordinate system (I) of dﬁoﬁl dt]I,
an inertial derivative. The quantities ;H’:;H’ and zH are defined
as cc.-mjonents-o_f this vector projected intc the hub (H), coordinate
system (aﬁ yI;I zH) as seen from the inertial reference frame.
The first term of Eq. (3), the kinetic energy of the hub,
contains contributions due to the translational kinetic energy
of the center of mass and the rotational kinetic energy about the

center of mass.

2 2 2
(WI + Wz) + (1/2) IH3 0)3

- °2 °2 °2 :
Thub = (1/2) rnH(xH tygt zH) + (1/2) IHl

(@)

It is assumed in the devélcpne.m‘: of Eq. (10) that the hub is
symnetric and homogenous (i.e. I IHZ) . With the aid of
Eq. (9, Eq (10) may ke exoressed as,




- W2 . .2, 22, . 2
Tlmb = (1/2) mH(xH + VH + zH) + (1/2) IH1 [(ﬂ0+ W1+W2)1

2
+ (W W, +,)5]

) .
+ (1/2) IH3 (W0+W1+W2)3 . (1)

As an example, W0+W1+W2 may oe acpreésed in terms of the Euler
angles and rates as follows:

(w0+wl+w2)l= el cosy + 62 siny + (-916635m g+ 62693cos v)
(12)

W3 is higher order than quadratic; thus it can be omitted, alceng
with all other higher order terms.

To calculate T . and Ttip Tass
the inertial velocity, dﬁovldtII . From Fig. 1, and with the

it is necessary to determine

application of Coriolis' law,

dRyy/dtlp = dRyy/dt| + Ryy/dtly
= dRy/dt|; + Ry /dtly + Tx Ry

(13)



(It should be noted that in the development of T, . this expression
sinmplifies to:

dﬁov/dtlI = dﬁoﬁldtlI + ;::x?:gﬂv Qu)
since _c:lﬁﬂvlcn:lH = 0 for a differential volume element inside the
hub.) |
The quadratic approximation of R, wpitten in matrix form,
following Fig. 2, can be expr;essed as:

oS C. -a. sin c; cos C;
- i i i 2 2 — i
[PHV] - (g+r) |sin c; |*q] a; cos ¢; --(]./2)<:1(bi + ai) sin c;
0 | b ' 0
cos é’i ) ~3j Sin ¢;
+ ...+ (qg+ ¥ |sin c; +q' | a;coscy
¢ - by
cos ¢;
Y A 2 .
+.¢1/2) G(b; + a;) sinc; | + ... (15)
0 where q = q(t)

In Eq. (15), the components of EHV are given in the hub coordinate
system, (H).
For the case of av along the wire at an instantaneous

length, q\t),
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_ c?s ¢y |3g sin ¢ -a; sin e
[dRHv/dtHJH=q sine; | +q é-cc:sci +4 a; o8 ¢;
0 i bi bi
. cos c;
. . .1 s 2, 2
- q (b;b; +a;a;) |sine; | -(1/2) q (b +a;) x
0
cos ¢;
sin c; + ... _ (16)

- s B 0

The quadz-at-zi.éf':;pproximation tc the kinetic energy per unit mass of
the volume element can be obtained by calculating, i
_ T -
(v2) [dRov/dtlI]H . [dROV/dtII]H aan
through second order.

If 4V is along the wire, Eq. (13) may be expanded with the
aid of Egs. (15) and (16) to yield:

+ [y + q4; cos c; - q(bsb, + a;4;) sin ¢; 17

1

+[qBi+2H]F+Ex§HV. (18)
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In order to include the effect of the wire on the composite

- system moments of inertia we consider, for example, the contribution

ofthewimto]:y,

. 2 2 2 2
e IY QT }m #-IWB * Ian + md (19
wire ’

where I ? Iw and Iww represent the principal moments of inertia
of the wire, (u is the longitudinal wire axis,vand w are transverse

axes). The term .mdz

represents the moment of inertia of the wire
due to the offset of its. center of mass from the hub p.incipal
"yH" axis. a, B,y are the direction cosines: (u - 9), (v °§r),
and (@ - ), respectively. Assuming the wire is thin and noting
that for small displacements of a;s bi’ y << 1, Eq. (19) may be
appm}dm;fed by:
' 2 2

I Y1 8*+md

. (20)
y g .'t'ﬁ' v

where 32 = cos2 ai . The moment of inertia of the wire about the

v axes (Fig. 2), can be expressed as:
o . 2/2
- 22 - a2
Ty = 2 f Q'pdq = me%/12 (21
0
where p is the mass per unit length. After substitution of Eq. (21)
into Eq. (20),
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I, = (mt2/12) cosla, + m [p+(/2)cos a,12 (22)
Y 4 - ~ i i
which can be simplified to, !
I, . = (m£2I3) cosza. + ﬁu:'2 + mre cos a, (23)
Y sdre 1 . 7 1

The contribution of the moment of inertia of the tip mass
can be developed in a similar manner as:

Iytip mass
The combined effect of the appendages can be obtained by adding

= m [(r#2 cos e.i)2 + (2sin ai)ZJ (24)

Egs. (23) and (24) to yield:

I

v 2, 2
. 2 (m{3+mt)£ +2(m/2+mt)r2. + (nr'-mt)r (29)

appendages
for the case where a; << 1. From symmetry, the wire and tip mass
in the Qi&-#?)quadrant -a.lso contribute to IY. Eq. (25) now
becomes,

Iy = [2(:::/3«%11,‘:)9.2 + u(m/zmt)zr + 2(mt+m)r'23 = I, (26)

Assuming the hub is symmetrical, (IHA = I; ) then the composite
. 1 2
principal moments of inertia can be expressed as:

Il z I2 = IHl + Iy (27)
The composite moment of inertia about the third principal axis of

the hub can be writ+en as,

(28)
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- mgmutmmzq (28) cari be approximated as:
B 2
I, . ¥r,..  +md (29)
With the aid of Figure 2 , Eq. (29) can be expanded to yield,
I, =m¥3) +m?+mrcosa (30)
The third term of Eq. (28) can be written as:
2 2
I, ... = +2m 2r cos a, + & (31)
After substitution of Eqs. (30) and (31) -into Eq. (29),
. 2 2
13 s IHs + (mt+m/3)z + 2(mt+m/2)!.r, + (mtﬂn)r (32)

If we consider the four appendages, then Eq. (32) can be written as:
_ 2y g2 2
I, = IH3 + [u(mtfn/3)£ + 8(m+m/2)4r + 4(m mir ] (33)

When Eq. (17) is expanded in the calculation of Tires °
terms which are periodic such as sin(y+c;) and cos(y+c;) appear.
If we consider the four appendages, then the terms can be related
using the following transformations: ‘

let a = ¢+'clthus,
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sin o = sin o
o8 a =¢Cos a
gin (a+7/2) = cos a
cos(a +%./2) = - sina
‘ (34)

gin(a +® = - sin a

cos(&+16=-cos«

sin(a + 31/2) = - cos a

sin a

.cos(a + 31/2)

Now, volume integration over each wire can be performed,
with thte result that the kinetic energy of the wires fcr constant
length is calculated as:

- L3 ‘2 2 .2 02
T ives = (1(2)[2(91 + 8o)me /3 + 2(9l + ez)rmz
+ 2002 + edr’ml (35)

If dV were at the i-ﬂ—l tip mass, then expansion of Eq. (17),

multiplication by m_, and substitution of & for q (for constant
length), would result in the kinetic energy for the ] tip mass.

Qual Pg S SENE pENg PR T W TWemw oEw Woowe e e e



t:.p mass - (1/2)(::3 + yH zH) m, + zh b Mt + (1/2)(ai+bi)m,cz
+ (1/2)w0 m,_[!. +r"+m 2.2(1'.>2 + 32) rz(bi + ag)]'

+ (226602 m(x? + 22 +10) + w, 0,0, mt(r +224200)

+ Wy 693 mt(r 12 + 2re) + (l/2)(a wo z mt)

- mt"(a:.xﬁ + YI-I a.lwo) sin ey *+ mtz(yH 1 "H ay 0) cos ¢,

- mtztbiwo gl(z*z) +Db; 9.2(r+z.)] cos (y+c;)
— - mtztbiwo ez<r+z) +b; e l(rﬂ)] sin (y+c;)

+ mtcél + ég)(rz + 208+ 22) (36)

If we consider variable length appendages, the formulation
of Ref. 1 can still be used, except length is now a function of
time and the position of an arbitrary volume element along the
wire, (q), is a function of time. The additional terms which
result for dROV/dtIdeployrnent can be expressed as follows:

2

— . 4 R LI 2
dRov/dtldeploymnt = [q cos ¢; - q a; sin¢; - (1/2) q (b + a;)

cos c;]1 T+ [c'l sinci+<.1aicos c;
. 2 2 . - . -
- (1/2) q(b] + a)) sin c;J T +qb; Kk
(37)
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-~ When Eq. (37}'i3"'substitr:ted into Eq. (17); the resulting
, addltmltm mthekmet:.cmergypermtmassare

= (1/2) q -qq( +a.ia.) - q Wy qa; - q 693 qa;

-qalzqa +qqa. a +qw0a(q+r)+<'1.ai603(q+r)
+q 2(q+r)+xi_1qcosci—x1_r1aisinci

- (1/2)”1-1 c‘l(b? + a?) cos e, + YI-I q sin c;+ qu a; cos ¢;

-(UZ)JHq'b +a2) sin c; +qub +qu bi
+rqb92 663sm(w+c)+rqeb sin(y+ c;)

+ rq el 88, b; cos(y + ;) - ré,q by cos( ¥+ ¢;)

(38)

The limits of integration over the dn.fferent:.al volums in the

expressicn for T . can be formulated as follows:

wires

q(t) = qt, where c.q is assumed to be constant (fcr an

assuned uniform extension rate). Then, dq = q dt, and

.)dq-»f (.. .)qdt, 0<tc<t.

=0,q=0;t= /2, q = (%)

22 2gy tp = L./0 when t(0) =05 q=2¢
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_where. Le ard t represent final length and time,

respectively.
The following additional terms result for T . .
Z 2 % L] .7
T . (2/3)m£ + (1/2) wgasmm, 2t + (1/2) ) a; fe.ma,i”
W§epl.- | rl i 5104 i
+ (1/2) Za elezrm z + (1/2) Z 2, Pim; ¢ (39)

i=X i=1

If we consider T tip mass’ where the expansion of Eq. (17)
is similar to that for Twlres’ then multiplication by m, and substi-

tuting 2. for q yields:

4
T.. = om 32+
tip mass depl. © 2m, 2 :.Zlm,‘w a.r + mtalae3r + 121 zszlmt

(40

To consider the kinetic energy due to the stored mass of
the rods inside the hub, the following assumptions are made:
(1) at full extension there is no stored mass;
(2) the mass is stored at a point inside the hub,
& distance r from the hub center; |
(3) the extension rate is the same for all rods;

(4) the wires are homogenous.
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The extended mass per unit volume along the wire can be defined

as:
m(t) = p2(t) (41)

where 0 < t < ti, and ¢ is the mass per unit length. The stored
mass per unit volume can be defined as:

dm. = (L. - 2(t))p 42)
1 i £

where 2(t) resprsents the instantaneous length. Since the stored
mass is inside the hub, then Eq. (14) can be used to express
dKOV/dtII , where; -

?Hv = r(cos ¢; 1 + sin c; ED) (43)
If we substitute Eqs. (14) and (43) into Eq. (17), and apply the
same procedure, the terms which result for the combined effect
of the fowr locations, jield: -

T

- 4 - 5 ey g -
stored mass (1/2) z pi("f‘»\t)) ['-l(xH tygt Z) + b {wy

i=1l

+

- ) 2 - 2 2 L] [ 3 . -
(3192’ + ( 593) } +8p (wb 885 + wg 6,8, + 5639192)

2

202, o2 2,°2 . 2 2
+ 8r¢ p 884 + 27 (elf 92) + 2r (el + 92)(593) ]

;o
(44)
Eqs. (11), (35), (36), (39), (40) and (44) can now be
combined to provide the quadratic approxima:icn of the }ddﬁe‘t;ic

energy for the entire system; which can be writ:en as:

U . L




SR b R i B bl ik R Rt 4 s s el

T2 (U2MGE + 72+ 20 + Ty gl 80, + 818,) + (/) Ty wg

2

s 1,62+ 6d) + (WD T (563)2 + M (g + 605 zl a;
i

+ (U/2) My W) ; a4 M,z z b, f - WD My o2 zl(a + b2
i=1
. .2
LR (a;? + b))
+le§l[-xﬁ(a sine; +wy a; cosc)+yH(a cos ¢;

4 .
- wga; sin ci)] + My izl{el [b; sin (y+c;) - wgb; cos(y+e;)]

- ézfﬁi cos ﬁw+ci) *+ wy by sin (¢+ci)]} + (2/3)m.i2

+ (1/2) zw a;m; 22+ (U2) z a; 68, m;e?

i=1 . i=1

+ (1/2) 2 aalaznn 2+ W) Z szml thz

i=1 i=1
Iy

4 . . . .
Z W p+ J a. 68 L+ J a8.8, rme
* i1 0% =1 t 3 M i1 1 12,77t

Y : : 2,02, 02 2.2
+ iglzﬁpimtz + (1/2) iglpi(zf-z(t)) [uCxg + vy + z) + ur” [

. 2 . 2 2 * . *
+ (9192) + (66 ) ]+ 8r (w 80, + wy 8,8, + 5939132)

. 62 2
+ 8p elezse3 + 2r (e +0 ) + 2r? (e +85) (663) ]

(45)
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where the varying length terms (containing ;.) and the stored mass
terms are additions to. the constant length terms developed in Ref.
1. In connection x;with Eq. (45) the following parameters

have been defined:

M.=mH+um+"mt
M = (m +m/3+mr+m/2)e =My + M,
M2=(mt+m/2)z :
M, = (m, + w3)e?

where m = m(2), and are defined similarly to those given in Ref. 1
Terms associated with the stored mass in Eq. (45) can be

included with the composite moments of inertia expressed in

Egs. (27) and (33?, and also with 'Ml, -M:z, a.nsz- These

quantities can now be redefined in modified form as:

M= Ty + Lpa(t) + '-l»mst ; ¢ ll»mt = constant (46a)
where My ored = p(zf - (%))

M = (m 2(6) + (1/3)ols (012 + m, + (/2)r2 () ()

(48b)
M, = (m + (1/2)p 2 (1)) 28D (46c)
My = (g + (1/3) pa(0)[2(£2]? (46d)

-
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. ' 2

Il 2 IHI + [2(mt + (1/2)p2(t))[2(t)]
+u(m, + (U2Dpt()r e (1) + 2m + ptdrl (4
_ ey 12

I3 = II-I3 + [4(mt + (1/3)p2(t)[o(1)]
+ 8(m (L/2)p2(E))ra(t) + b(m, + pt)r’] (46£)

For varying length, m has been defined in Eq. (41), assuming the
mass per unit length, (p), of each appendage is the same.
The corresponding time rates of change of the (new) ccmposite

parameters and of the (new) composite momerts Of Inértia ean bé

tpitten as:
M =0 (46g)
&1 = 22 + o222 + rmt;, T (46h)
M =mt* et (461)
':’3 z thiz + p;u.z (463)
=z umt;.z + 20;’.12 + umty.. + urp;w. (46k)
I3 = Smti;.z + '491;.22 + 8mtr~9: + 8rpfu (461)

where £ = 2(t) and 5.=;.(t)
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D. Development of the Equations of Motion
The fo\mteen gengralized coordinates selected are; X, Y, Z,

815 855 83, ap5 35, Ay, a',*, b;, b,. by and b,. We note that X, Y

ard Z, are inertially fixed coordinates and do not appear in Eq. (45),
thus they are cyclic. Lagrange's equations of motion:

dat(aT/aq) - 3/ 3qg = Q 1= 12,018  (7)

where Q; for the wires (booms) is the generalized force derivable

from a potential energy function which is assumed to be proportional

to the square of the flexural coordinétes, a; and bi’ and involves

a linear str'ucttmal. restoring sprang constant, k; also Q is derivable
-2

from a Rayleigh dissapative function, F (i.e. oc a; and

: 7-" oc b?_ » 1=1 - 4 boams), involving assumed linear viscous

structural rate damping, C. Eq. (47) may be developed in the
coordinates, Q5 to yield:
d/Gt(3T/3%)

Cl = pys d/dt(aT/3yY) = (':2 = Pys

A/dt(aT/3z) = C, = p, (47a)

where Pys> Pps Py are the constant generalized momenta associated
with X, Y and Z, respectively. If we choose the inertial axes such
that there is no momentum of the spacecraft relative to the inertial
axes at time t = 0, then the constant momenta are zero, therefore

Cl =Cy=C3=10. Eq. (47) can be developed for this system as a
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set of fourteen equations of motion. Furthermore if we keep

;‘H’ YH and 71-1 as coordinates, then solving the linear differential
equations with variable coefficients (when % is constant), is made
easier.l The equations of motion can be expressed as follows:

4

- . . u . -
Mx, - (me+o22) J (a; sinc; +wycosc;) - N, Z (a sin ¢;
o i3l i=l
+ Wy @; oS ¢ ”}dai cos c_:l) =0 (48a)
- . 4 . L S
M Vg * M, Z (ai s ¢; - Wy a; sin ci) + Mz Z (ai cos ¢,
izl i=1l
- Wy @ sinc; -wya; sin ci) =0 (u43b)
- . 8§ . 4 - u - . -2 -
Mz +M) ] Bi+M, :Z by + I p; [b; 22 +b,(2° + 22)1/2
i=1 i= i=1l
% . e . |
+ (b: 2 +2¢b.) =0 : ‘ (48¢c)
if1 mti i i
. . . . . . o+ 4 .
I3 Wpd, + Iy(wg8, + Wy 8)) + Ilal*'I_lalﬂwl_igl (bs sin & + ;)
. Yo L2
- Wy by cos(y + ¢l + M 'El [(b; +wy b;) sin (y + c;)
. . 4 . e c
- Wg by cos (p + e )]+ igl ro, {a;8,22" + a; [8, 22
4 .
‘3 e .. .
o, (27 + 22 20)11/2 + lél rmtl [a;0,0 + az(8, 2 +8,1)]
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4 2 - .. .o -
+ y igl p; T{2:(0,80, + 0,80,) - [2,92593+ 200,86,
+ 92533)]} =0 (48d)
. - . T -
I,6, +1I;8,- M igl [bi cos (¥ +¢;) + Wy b; sin (v + ci)]
y 5 R
- J.Zl [(bi +uy Db;) cos (y +e) + Wy b; sin(y + ci)]
5o, . .. .. . .. .
- +.:
+u iZlair- {2(6,60, + 8,60,) - (26,60, +2(0,480,%:0,80,)]}
. 4 . ‘
- I3 Wy 8 - (1/2) Z a; 8, rep 2° = 0 (48e)
. 1=1
. . . . e o, L
I3 (Wg +68,) + I(wy + 685) + My z a; + M) Z a;
i=1 i=1
- I" . -.2 03 ® e u o ’ e
+ (1/2) 121 pirla; 22° + a; [2° + 2002]) + igl rmti(aiz + a;8)
u 5 v -
-4 iglpi (2 -0)r° 0,6, = 0 (u8f)

2 - e - L] e 2
Ml(wo aj + Wy * 663) + Ml(w0 + 683) + M:‘I(aj - W aj)

4

*”3‘;3'*”2 )
X

L E(-xH * yy W) sin ey * (yy + Xy Wo) cos ci]
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. T . " .
+ M, Z (%, sin ¢; + y, cos ;) = (1/2) _Z_ p 722" (W,
1=l . i=1l
. . . . b4 .
+ 605 +0,0,) - 0,0,r L Z m, + kaj + Caj =0 | (48g)
i=l "1
- .. - e v .
Mpzg + Mpzy + Myby + Mjbs + M) izl C(e) + 2wy 8,) sin(y + c;)
- . . TR
+ (=8, + 2wy 6,) cos (y +c)] + My igl [6; sin (¥ + ¢))
. ) -
- 8, cos (¢+ci)]+le0bj+kbj+ij-o (u8h)
where Ml = 2m, 22 + p.;.lz + rp;.z. in Eq. (u8g);

M, = (p22/2)  in Eq. (46h).

In Eqs. (48g) and (48h), j = 1,2,3,4; i.e. these equations represent
a set of eight Lagrangian equations corresponding to the cocrdinates
a) - a, and by - by, respectively. The temms ka, kbj, Ca; and
C];:j in these equations, are asscciated with the generalized fcrce
Q; for the wires (bocms) due to the effect of a linear (structural)
restoring spring constant, k, and structural damping represented

by C, (& linear viscous rate damping constant), which is assumed
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to exist in the fowr boams. Both k and C are assumed to be the
same for each bodn; and associated with a potential energy function
and a Raleigh dissapative function, respectively.

Since Egs. (48a), (48b) and (u48c) yield first integrals
where ;‘H’ ;’H and ;'H can be related to the constant generalized
momenta 'pl, 92’, and Py» respectively, then ;‘H’ ;’H and ;H are zero
and can be eliminated from these equations. Eq. (48) can be
reduced to é. set of eleven equaticns by solving Eqs. (48a), (u8b)
and (48¢c) for ;'H’ yH and zH respectively and substituting them into
Egs. (48g) and (48h). In Eqs. (48), we will now assume that the

are the same fcr the

tip mass, M 5 and mass perunit length, Pys
i

four appendages.
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CHAPTER III
Stability

| To examine stability before and rmediately after deployment,
we assume ;L=i=0. Eq. (48) forconstantleng'thl,canbe
reduced to the following set of ten equations by solving fer 6;3 in
Eq. (48f) and substituting the results into Eq. (48g).

.. . - 2 .
Ilel + I3w062 + Ml[(bl + W bl) sin (¢p + cl)

+

g 2 . g 2 .
(b2 + L bz) cos (¢ + cl) - (b3 + Wy b3) sin (y + cl)

(1‘34 + Wg'bu) cos (¢ + cl)] =0 (49a)

- g 2
1162 - 13"’081 - M’.L[(bl + Wy bz) cos (¢ + cl)

+ (b, + wg_ b,) sin(y + c;) + (by + wg by) cos (¥ + )

- (b, + w3 b,) sin (y + ¢;) = 0 (49b)
” 2 L
M2 /Ta; + C4-Wdeg ag + ML, igl(aj cos <,

4
- Ww.a, sin ¢, inc; +M
024 sin cl)wc sin ¢; + 1 iz

28
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+ i . + . + . =
Wy aivcos ci) W, o8 cJ]/M kaj Ca:l 0
j= 1,2,3,4 equations (43c)
s . 2 . . .
Msbj + Mywy bj + Mlthl+ 2w092) sin (¢ + cj)
+ (‘62 + 2w0 el) Ccos ('b + Cj) + kbj + @j = 0 (“gd)
j =1,2,3,4% equations
The homogenous system of linear differential equations can
be expressed in state vector form:®
X(t) = At + TIX(t) (50)

where X(t) is a (20 x 1) colum matrix of the coordinates and
velocities and A(t + T) represents a (20 x 20).matrix. Typical
periodic coefficients in A(t + T) are:

sin(yp + ci) and cos(y + c‘i)
which occur in Egs. (43a), (49b) and (49d) for constant length.

A. Application of the Lyapunov Reducibility Theorem

The Lyapunov reducibility theor'ems

may be applied to reduce
the linear system of differential equations with periodic coefficients
tc a kinematically similar system of differential equaticns. (A
recent applicaticn of this thecrem in studying the stability of a

dual-spin spacecraft with a flexible momentum wheel is given in
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Ref. 6.) The theorem states that there is a bounded nonsingular
transfermation matrix S(t) with a bounded inverse s~1¢t) such that
a matrix D, defined by:

-1 =

D=stas-sts (£1)

is.a_gcnstam: matrix. We can then relate

X = s(v)Y (52)

and obtain the system .
Y=DY (S3)

as the kinematically equivalent of Eq. (£0). The bounded trans-

formation of the form of Eq. (S2) for the present system can be

expressed:

] 01- ::os y ~siny sl_
8, siny cosy €,
3 !
%2 22
ay |= a,
% 2
bl By
! 5
B by

L b"" -4 L b"" o




3l

In Eq. (54) if Z = [:lez.,.bu]T, then

z
Y={.
y/
Thus, the kinematically equivalent systen can be expressed
in terms of the Z matrix and the c¢:nstant coefficient matrices,
M, G, D, K, as:
Mi+GZ+TZ+XZ =0 (55)
M is the symmetric mass inertia matrix, G is a skew symmetric
matrix involving gyroscopic terms, D is a symmetric positive
semidefinite damping matrix and K is a symmeiric stiffness matrix.

These matrices can be expressed as follows:

o
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where, in Eq. (29),
A= k+rM2w§ [l-Mz(sinzcl-coszcl)/rMJ

B = ﬂ@w?msmclmSﬁ

C= M%wgm (sin2 ¢ - c-.'c.as2 cl)

D= leg sin ¢y

E= legcoscl'
- 2
F-~le0+k

2

G= I, w lwo

3% -1

B. Application of the Kelvin-Tait-Chetaev Theorem
In the equation:
MZ +DZ + GZ + KZ = 0 (60)
we assume that M and D are symetric positive definite, G is
skew symmetric, and that none of tre eigenvalues of the symmetric
matrix, K, is zero. Then the stability of the solutions of Eq. (60)

is the same as the stability of the solutions of the truncated

equation7

\Z + KZ = 0.
If M, K, and D are positive definite, the zero solution of Eq. (55)

is asymptotically stable; if M and K are positive cdefinite and D is
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positive semidefinite with (D # 0), the solution of Eq. (55) is
stable in the sense of Lyapunov but not asymptotically stable.7

The Kelvin-Tait-Chetaev Theorem can be applied to this particular
system, where D is positive semidefinite in the absence of damping
on the main hut, by ex:mining ¥he.M and K matrices forpositivedefi-
niteness. If, for a particular set of system paremeters, any of
the principal minor subdeterminants of either the M or K matrices,
Eq. (56) c» Lq. (59), is negative, then the system will be unstable

in tre Lyapunov sense.

C. Extension of Stability

A recent éctensiop of the Kelvin-Tait-Chetaev theorem to
establish asymptotic stability of linear systems where the damping
matrix is only positive semidefinite, was presented by b’n:illex'8
and is summarized briefly, here. |

The mechanical system,

M+ (D+G)Z +IZ =0
with the fxf matrices
M=M >0,D=0D >0,G=-G, K=K

is then asymptotically stable if the fxf matrix K is; (a) positive

definite, and (b), that the rank of an augmented matrix, S be:
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o ! g, 0
with F= SRR B
Ml e M1p

}

where F is a (2f x 2f) matrix and T is a (2f x f) matrix. Condition
(a) is a result of applying Sylvester's theorem when the principal '
minors of matrix K are positive d<=_finite.8’9 This extension

of the Kelvin-Tait—Chetaev. theorem which tests the system for
asymptotic stability can be applied to this particular system. K
can be tested for positive definiteness for a particular set of
system parameters and tre augmented matrix, S, can Le constructed

as previously i:1dic';ated ard tested for a rank equal to n (twenty,
for this sysfem) If therank of S is n tren the system will be
asymptotically stable in the Lyapunov sense, even when there is

no damping on the main (hub) part of the satellite.



I ONE S0 Omd omd el Beed ey

CHAPTER IV
Concluding Comments

The rotational eqﬁations of motion fer a spinning spacecraft
system with deployable appendages and the criteria for the stability
of such a system when tl'-xe. appendages areata fixed length, have
been developed. The future analysis of this system will include
the following:

1.' an attempt to identify mode shapes for constant

extension rates.,

2. anapplication of the Kelvin-Tait-Chetaev theorem

and its extension tc predict the stability of this
system before and after deployment maneuvers for
different values of system parameters.

3. a computer éium.lation of the equations of motion

with first order flexibility present and then
absent. (a; = b; = a; = b; =.0)

4., a computer simulation of the equations of motion

with first order flexibility, in-plane bending only.

S. an attempt to relate the EI (flexural rigidity) of

the wires tc an effective restoring linear spring

constant, k.

38
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Conclusions regarding the effect of flex:.b:.l:.ty on the system
during extension cr retraction as well as on the stability of the
system before or imucdiately after extension or retraction,

(numerical results) will be forthcoming.
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Fig. 2. Variables specifying position of wire el
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