NASA TECHNICAL **MEMORANDUM**

NASA TM X-3536

FILM COOLING ON THE PRESSURE SURFACE OF A TURBINE VANE

James W. Gauntner and Herbert J. Gladden Lewis Research Center Cleveland, Ohio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . MAY 1977

1. Report No. NASA TM X-3536	2. Government Acces	sion No.	3. Recipient's Catalog	No.		
4. Title and Subtitle FILM COOLING ON THE I OF A TURBINE VANE	5. Report Date May 1977 6. Performing Organization Code 8. Performing Organization Report No. E-8764					
7. Author(s) James W. Gauntner and H						
9. Performing Organization Name and Ad Lewis Research Center	10. Work Unit No. 505-04					
National Aeronautics and S Cleveland, Ohio 44135	pace Administration		 Contract or Grant Type of Report ar 			
12. Sponsoring Agency Name and Addres National Aeronautics and S Washington, D. C. 20546		Technical Memorandum 14. Sponsoring Agency Code				
15. Supplementary Notes	· · · · · · · · · · · · · · · · · · ·					
Film-cooling-air ejection perimental data are presedured. J75-size turbine vane that located downstream of the tiveness of film-convection cooling separately; (2) the cooling effectiveness relate exceed a certain threshold tion cooling alone.	tted. This investigated had a double row of some leading-edge region. In cooling was higher addition of small qualities to the zero-injective to the zero-injective.	ion was conducted in staggered holes in li The results showe than that of either fi untities of film-cools ion case; however,	n a four-vane cane with the primed that (1) the avoling or coing air always in (3) the injected	ascade on a nary flow and erage effectorvection acreased the film must		
17. Key Words (Suggested by Author(s)) Heat transfer		18. Distribution Statement Unclassified -				
Film cooling Turbine vane		STAR category				
19. Security Classif, (of this report)	20. Security Classif, (· -	21. No. of Pages	22, Price*		
Unclassified	Unc	lassified	17	A02		

FILM COOLING ON THE PRESSURE SURFACE OF A TURBINE VANE

by James W. Gauntner and Herbert J. Gladden

Lewis Research Center

SUMMARY

Effects of film-cooling-air ejection from the pressure surface of a turbine vane were measured in a four-vane cascade on a J75-size turbine vane. The tested vane had a double row of holes along the span inclined at 40° to the vane wall and in line with the primary flow. The test conditions investigated were a gas temperature of 1255 K, pressures of 22.7 to 45.5 N/cm², a coolant temperature of 283 K, midchord convection-coolant to primary flow ratios from 0 to 0.06, and film-coolant to primary mass flux ratios from 0 to 1.2 (film-coolant to primary flow ratios from 0 to 0.028).

On the average, a turbine vane was more effectively cooled by a combination of film and convection cooling than by either film or convection cooling separately for mass flux ratios greater than a threshold value of about 0.23. The addition of small quantities of film-cooling air always increased the cooling effectiveness on the pressure surface of a turbine vane relative to the zero-injection case. This is in contrast to what had been formerly observed on the suction surface of the same vane. The presence of film-cooling holes at 1/4 chord length from the leading edge was sufficient to decrease the cooling effectiveness along the entire pressure surface as compared with the same vane without film-cooling holes. Therefore, to obtain a beneficial effect of film cooling relative to convection cooling, the injected film must exceed a certain threshold value below which the cooling effect of the film is insufficient to overcome the roughness effect of the holes.

INTRODUCTION

The high heat-flux conditions expected in the hot-component sections of advanced gas turbine engines dictate the use of the most effective cooling schemes practical to maintain reasonable wall temperatures. Appearing in reference 1 is an analytical comparison of various cooling schemes for the walls of gas turbine engine components. These comparisons show that a combination of convection and film cooling results in a considerable reduction in wall temperatures relative to convection cooling alone. However, in

references 2 to 5, the addition of film cooling to a convection-cooled turbine vane resulted, under certain conditions, in increased wall temperatures at downstream locations. These references conclude that a laminar or transitional boundary layer on the suction (convex) surface was tripped to a transitional or turbulent boundary layer both by the film-cooling holes and by the introduction of small amounts of film injection. As a result, both the heat transfer coefficient and the vane wall temperatures increased.

The boundary layer on the pressure (concave) surface of a turbine vane is usually turbulent over the entire surface aft of the leading-edge region. Consequently, the large increases in the heat transfer coefficient and in the vane wall temperatures encountered when a boundary layer is tripped turbulent should not occur with film injection on the pressure surface. However, an increase in boundary layer turbulence due to either the presence of holes or film injection might result in higher wall temperatures by augmenting the heat transfer coefficient associated with the turbulent boundary layer. Thus, a question arises as to the effectiveness of film cooling on the pressure surface of a turbine vane for small values of film injection.

An experimental film-cooling investigation was performed in a turbine vane cascade in a hot-gas environment. The purpose of the investigation was to determine the effect of small amounts of injected film on vane wall temperatures and to verify that the cooling effectiveness of a combined convection-film cooling scheme is superior to that of convection or film cooling separately at the same coolant flow rate.

The rates of coolant flow to the film-cooling holes and to the convection cooling passages in the midchord region were individually measured. Vane wall temperatures corresponding to these flow rates were measured (1) without film-cooling holes, (2) with holes but without film injection, and (3) with film injection. The data are presented as chordwise distributions of cooling effectiveness for vanes with and without film-cooling holes and with varying degrees of film injection. The mainstream environment is similar to that of reference 2, which discusses an adverse effect of film cooling on the suction-surface temperatures of a turbine vane. Included in the present report is a figure that relates the test conditions to engine conditions representative of a supersonic aircraft (SST) at cruise, that is, a gas pressure of 47.6 N/cm² and a gas temperature of 1783 K.

SYMBOLS

- a* critical velocity, cm/hr
- $\mathbf{C}_{\mathbf{D}}$ discharge coefficient
- d film-cooling-hole diameter, cm
- M Mach number

- N number of film-cooling holes
- P pressure, N/cm²
- R gas constant for mixture of air and combustion products used in this investigation, 291 J/kg-K
- T temperature, K
- V velocity, cm/hr
- W mass flow rate, kg/hr
- x* dimensionless surface distance
- Γ specific-heat function defined in eq. (4)
- γ specific-heat ratio
- μ viscosity, kg/cm-sec
- ρ density, kg/cm³
- φ cooling effectiveness, $(T_g T_w)/(T_g T_c)$

Subscripts:

- c coolant
- g hot gas
- t total conditions
- w hot-gas-side surface

Superscripts:

- e engine condition
- t test condition
- average

APPARATUS

Cascade Description

A detailed description of the cascade facility is given in reference 6. The test section was a 23° annular sector of a stator row and contained four vanes and five flow channels. A schematic of the test section is shown in figure 1. The central flow channel was formed by the suction surface of vane 2 and the pressure surface of vane 3. The two outer vanes in the cascade completed the flow channels for the two central vanes and also served as radiation shields between these vanes and the water-cooled cascade walls.

The test vane (vane 3) had two separate cooling-air systems; one for the film-cooling flow, and the second for the convection flow. The cooling-airflow rates were metered by turbine-type flowmeters.

Vane Description

A J75-size turbine vane with a span of 9.78 centimeters and a chord of 6.27 centimeters was used in this investigation. The vane material was MAR M-302. The internal cooling configuration, shown in figure 2, consisted of an impingement-cooled midchord region and a pin-fin-augmented, convection-cooled trailing-edge region. This vane was designed to have an impingement-cooled leading edge. However, for this investigation, the leading-edge impingement tube was removed, and the chamber was blocked at the tip end. Therefore, the cooling air entering the vane from the vane tip plenum was restricted to convection cool the midchord and trailing-edge regions only. The leading-edge chamber served as a plenum for the film-cooling holes, which were added to the vane after the initial series of tests. The film-cooling air entered the plenum at the vane hub and was measured separately.

Two rows of staggered holes, 0.071 centimeter in diameter, were positioned on the pressure surface, as shown in figure 2. The distance of the holes from the leading edge is given in table I. The spacing between rows was 3.5 diameters, and the holes in each row were spaced 2.2 diameters apart in the spanwise direction. There were 58 holes in the first row and 59 holes in the second row. All holes were inclined at an angle of approximately $40^{\,0}$ to the airfoil surface and in line with the mainstream flow.

The midchord supply tube contained a staggered array of 0.038-centimeter-diameter holes. There were 481 and 334 holes, respectively, on the suction and pressure surfaces. The midspan chordwise center-to-center hole spacings were 0.24 and 0.28 centimeter, and the spanwise center-to-center hole spacings were 0.20 and 0.23 centimeter on the suction and pressure surfaces, respectively. The hole-to-impingement-surface spacing was 0.076 centimeter, or two hole diameters.

The split trailing edge contained four rows of oblong pin fins and a single row of round pin fins. The oblong pin fins were 0.38 centimeter by 0.25 centimeter and varied in height from 0.18 to 0.094 centimeter. The round pin fins had a diameter of 0.20 centimeter and a height of 0.064 centimeter.

INSTRUMENTATION

Seven Chromel-Alumel thermocouples were located at the midspan on the pressure surface of vane 3, with six of the seven located downstream of the film-cooling holes

(fig. 1). The locations of the thermocouples and the thicknesses of the vane wall are given in table I. Figure 2 also shows the thermocouple locations. The construction and installation of the thermocouples are discussed in reference 7. The cooling-air temperature and pressure were measured at the inlet to the vanes. The primary-flow temperature and pressure were measured at the inlet to the vane row by means of spanwise traversing probes. These and other operational instrumentation are discussed in reference 6.

ANALYTICAL METHODS

The local cooling effectiveness is defined as the ratio of the difference between the gas and vane temperatures to the difference between the gas and coolant temperatures.

$$\varphi = \left(\frac{T_g - T_w}{T_g - T_c}\right) \tag{1}$$

Cooling effectiveness data are presented as a function of the dimensionless surface distance, x_* , as measured from the leading edge of the vane, with the mass flux ratio $(\rho V)_c/(\rho V)_g$ as the parameter.

The mass flux ratio is defined as

$$\frac{(\rho V)_{c}}{(\rho V)_{g}} = \frac{W(\rho_{t}/\rho)(a_{*}/V)}{(NC_{D}\pi d^{2}/4)\rho_{t}a_{*}}$$
(2)

where

$$\frac{\rho}{\rho_{\rm t}} = \left(1 + \frac{\gamma - 1}{2} \,\mathrm{M}^2\right)^{-1/(\gamma - 1)}$$

$$\rho_{t} = \frac{1}{100} \frac{P_{t}}{RT_{t}}$$

$$\frac{V}{a_*} = \left[\frac{\gamma + 1}{2} M^2 \left(1 + \frac{\gamma - 1}{2} M^2 \right)^{-1} \right]^{1/2}$$

$$a_* = (3.6 \times 10^5) \left(\frac{2\gamma}{\gamma + 1} RT_t\right)^{1/2}$$

For the data of this report the local Mach number of the gas stream was 0.425, γ was 1.305, and C_D was assumed to be unity. For these values the mass flux ratio of equation (2) reduces to

$$\frac{(\rho V)_c}{(\rho V)_g} = 0.023 \frac{\sqrt{T_t}}{P_t} W_g \left(\frac{W}{W_g}\right)$$
 (3)

where T_t , P_t , W_g , and W/W_g can be found in table II.

To relate the test performance of this cooled turbine vane to actual engine performance, both must have similar distributions of their momentum-thickness Reynolds numbers and critical Mach numbers. To achieve these similar distributions, the test temperature and pressure are related to the actual engine temperature and pressure. Equation (5) of reference 8 gives the functional relation between gas pressure and temperature for test and engine conditions that will provide the same Reynolds number and critical Mach number distributions around the vane:

$$\frac{\mathbf{P}_{g}^{t}}{\mu_{g}^{t}} \frac{\Gamma_{g}^{t}}{\sqrt{(\mathbf{RT})_{g}^{t}}} = \frac{\mathbf{P}_{g}^{e}}{\mu_{g}^{e}} \frac{\Gamma_{g}^{e}}{\sqrt{(\mathbf{RT})_{g}^{e}}}$$
(4)

where

$$\Gamma = \sqrt[4]{\gamma} \left(\frac{2}{\gamma + 1}\right)^{(\gamma + 1)/2(\gamma - 1)}$$

Figure 3 displays this functional relation for the test conditions of this report. For example, a supersonic aircraft at cruise has a turbine inlet pressure of 47.6 N/cm² and a turbine inlet temperature of 1783 K. These engine conditions are simulated by some of the data of this report, that is, a gas pressure of 31 N/cm² and a gas temperature of 1255 K. These test and engine conditions are denoted by the open circular and triangular symbols, respectively, in figure 3. The remaining three test points of this investigation are denoted in figure 3 by the solid circular symbols. A similar relation for an SST aircraft at takeoff is included for reference, with the engine operating condition denoted by the solid triangular symbol in figure 3.

TEST PROCEDURE

The investigation was conducted at the following nominal conditions:

Gas inlet total temperature, K	
Gas inlet total pressure, N/cm ²	. 5
Coolant inlet temperature, K	83
Convection-coolant to primary flow ratios	06
Film-coolant to primary flow ratios	28
Film-coolant to primary mass flux ratios	. 2

The first series of tests were made without film-cooling holes on the vane. The convection-coolant to primary flow ratio for these tests was varied from 0 to about 0.06. A double row of film-cooling holes was added on the pressure surface of the test vane, and the previous test points were repeated over a range of film-coolant to primary flow ratios of 0 to about 0.028. Over this range, the film-coolant to primary mass flux ratio varied from 0 to 1.2.

RESULTS AND DISCUSSION

The effects of film-cooling airflow from a double row of holes in the pressure surface on a turbine vane were investigated. The data from this investigation are presented in table II. However, only the results for the 31-N/cm² data set are discussed in the text and presented in the figures; these results are similar to those obtained with the other data.

Relative Effectiveness of Convection and Film-Convection Cooling

Figure 4 presents the cooling effectiveness averaged over the suction and pressure surfaces for both convection-cooled and film-convection-cooled turbine vanes. The data for the cooling effectiveness on the pressure surface were obtained from table II of this report; the data for the cooling effectiveness on the suction surface were obtained from table II of reference 2. The average cooling effectiveness is presented as a function of the ratio of the sum of the convection-coolant and film-coolant flows to the primary flow. Mass flux ratio is the parameter.

The data in figure 4 show the combination of film and convection cooling to be more effective than convection cooling alone for mass flux ratios greater than about 0.23. For mass flux ratios less than 0.23 a threshold value of film cooling exists below which con-

vection by itself is more effective. This effect is discussed in the section Adverse Effect of Holes.

For small total-coolant to primary flow ratios where most of the total coolant flow is used for film cooling, the comparison shows that convection cooling is again more effective. For example, in figure 4 see the curve for a mass flux ratio of 0.23 for small values of total coolant flow. This curve shows that film cooling without adequate convection is ineffective relative to convection cooling alone. This effect is discussed in the following section.

The main conclusion that can be drawn from figure 4 is that, on the average, a turbine vane is more effectively cooled by a combination of film and convection cooling than by convection cooling alone for mass flux ratios greater than a threshold value of 0.23.

Relative Effectiveness of Film and Film-Convection Cooling

Figure 5 shows the cooling effectiveness distributions for both film cooling by itself and combined film-convection cooling, each for the same total coolant flow. The filmcooled vane has a film-coolant to primary flow ratio of 0.02 (mass flux ratio of 0.88) but no convection cooling. As expected, the vane cooling effectiveness decreases with the distance from the film-cooling holes. The other cooling effectiveness distribution is for a combination of a film-coolant to primary flow ratio of 0.007 (mass flux ratio of 0.29) and a convection-coolant to primary flow ratio of 0.013. This effectiveness distribution is uniform over the entire surface. Near the leading edge, the vane is film cooled; near the trailing edge, the vane is convection cooled. For this comparison the average effectiveness for the film-convection-cooled vane is 0.38, compared with 0.35 for the convection-cooled vane. Thus, the film-convection-cooled vane is the more effectively cooled vane in spite of the fact that the comparison is biased in favor of the film-cooled vane. That is, the coolant that was diverted from film cooling the pressure surface must convection cool both the pressure and suction surfaces. The conclusion that can be drawn from figure 5 is that a combination of film and convection cooling is more effective, on the average, than film cooling alone for the same total coolant flow.

Favorable Effect of Film Cooling

Figure 6 presents a chordwise distribution of cooling effectiveness for a convection-cooled vane with a convection-coolant to primary flow ratio of about 0.037. It also presents similar distributions for a film-convection-cooled turbine vane with mass flux ratios of 0, 0.33, 0.49, and 0.73, all having a convection-coolant to primary flow ratio of about 0.037. The data show increasing cooling effectiveness with increasing mass

flux ratio; that is, the vane cooling effectiveness did not decrease below that of the convection-cooled vane when small quantities of air were injected into the boundary layer as had occurred on the suction surface of this vane (refs. 2 and 5).

In reference 2, a small amount of film-cooling airflow caused a laminar or transitional boundary layer to become transitional or turbulent, with an accompanying increase in the gas-side heat transfer coefficient. The effect of the increase in the heat transfer coefficient was greater than the increased benefits of film cooling. As a result, the local temperatures increased when small amounts of coolant were injected into the boundary layer. For the present study, the boundary layer on the pressure surface is already turbulent. As a result, the cool film in the boundary layer more than compensates for any increase in the heat transfer coefficient that accompanies a small amount of film injection from discrete holes. Therefore, at small values of mass flux ratio the cooling effectiveness on the pressure surface of a turbine vane always increased relative to the zero-injection case, in contrast to what had been formerly observed on the suction surface of the same vane.

Adverse Effect of Holes

Data were also taken both without film-cooling holes and with film-cooling holes but without film injection. These results, some of which are included in figure 6, show that the presence of film-cooling holes at 1/4 chord length from the leading edge, but without film injection, resulted in decreased cooling effectiveness along the entire pressure surface when compared with the same vane without holes. Therefore, to obtain a beneficial effect of film cooling relative to convection cooling, the injected film must exceed a certain threshold value. Below this value the cooling effect of the film is insufficient to overcome the roughness effect of the holes.

It is possible, though unlikely, that this adverse effect of holes may be the result of the recirculation of hot gas in through the holes at the hub and out through the holes at the tip. However, the test facility used for this investigation performed more as a two-dimensional cascade than as a three-dimensional cascade. As a result, very little spanwise static pressure gradient exists to cause recirculation of the hot gas. Surface static pressure distributions for this vane are presented in reference 9. They show less than a 2-percent difference between the hub and tip static pressures.

In any event, a threshold value of injected film is required to cool the vane to the condition that existed before holes were added. As shown in figure 4, the threshold mass flux ratio was about 0.23.

SUMMARY OF RESULTS

An investigation into the effects of film cooling on wall temperatures on the pressure surface of a turbine vane gave the following results:

- 1. On the average, a turbine vane was more effectively cooled by a combination of film and convection cooling than by either film or convection cooling separately for mass flux ratios greater than a threshold value of about 0.23.
- 2. Adding small quantities of film-cooling air always increased the cooling effectiveness on the pressure surface of a turbine vane relative to the zero-injection case. This is in contrast to what had been formerly observed on the suction surface of the same vane.
- 3. The presence of film-cooling holes at 1/4 chord length from the leading edge, but without film injection, resulted in decreased cooling effectiveness along the entire pressure surface when compared with the same vane without the film-cooling holes. Therefore, to obtain a beneficial effect of film cooling relative to convection cooling, the injected film must exceed a certain threshold value. Below this value the cooling effect of the film is insufficient to overcome the roughness effect of the holes.

Lewis Research Center,

National Aeronautics and Space Administration, Cleveland, Ohio, February 9, 1977, 505-04.

REFERENCES

- 1. Colladay, Raymond S.: Analysis and Comparison of Wall Cooling Schemes for Advanced Gas Turbine Applications. NASA TN D-6633, 1972.
- 2. Gladden, Herbert J.; and Gauntner, James W.: An Adverse Effect of Film Cooling on the Suction Surface of a Turbine Vane. NASA TN D-7618, 1974.
- 3. Yeh, Frederick C.; et al.: Comparison of Cooling Effectiveness of Turbine Vanes with and without Film Cooling. NASA TM X-3022, 1974.
- 4. Lander, R. D.; Fish, R. W.; and Suo, M.: The External Heat Transfer Distribution on Film-Cooled Turbine Vanes. AIAA Paper 72-9, Jan. 1972.
- 5. Gladden, H. J.; and Gauntner, J. W.: Experimental Verification of Film-Cooling Concepts on a Turbine Vane. ASME Paper 75-WA/GT-21, Nov./Dec. 1975.
- 6. Calvert, Howard F.; et al.: Turbine Cooling Research Facility. NASA TM X-1927, 1970.

- 7. Crowl, Robert J.; and Gladden, Herbert J.: Methods and Procedures for Evaluating, Forming, and Installing Small-Diameter Sheathed Thermocouple Wire and Sheathed Thermocouples. NASA TM X-2377, 1971.
- 8. Colladay, Raymond S.; and Stepka, Francis S.: Similarity Constraints in Testing of Cooled Engine Parts. NASA TN D-7707, 1974.
- 9. Gladden, Herbert J.; et al.: Aerodynamic Investigation of Four-Vane Cascade Designed for Turbine Cooling Studies. NASA TM X-1954, 1970.

TABLE I. - THERMOCOUPLE LOCATION

Thermo- couple	Distance from leading edge, cm	Dimension- less loca- tion	Vane wall thickness, cm							
Pressure surface, L = 6.53 cm										
a ₉	1. 07	0. 163	0. 152							
10	2. 10	. 321	. 254							
11	2.77	. 424	. 254							
12	3. 62	. 554	. 254							
13	4. 33	. 663	. 254							
14	4. 93	. 755	. 191							
15	5. 58	. 854	. 127							

^aFilm-cooling holes were located between thermocouples 9 and 10, at 1.60 and 1.85 cm from leading edge (0.245 and 0.284 dimensionless location).

TABLE II. - Concluded.

Read-	Gas total	Con total	Coc flor	Coolert	Convention		Thompson I lead to (6 - 0)						
ing	inlet	Gas total inlet	Gas flow per vane	Coolant inlet	Convection- coolant to	Film-coolant to primary	Thermocouple location (fig. 2)				:) T		
-	tempera-	pressure,	channel,	temper-	primary	gas flow ratio	9	10	11	12	13	14	15
	ture, K	N/cm ²	kg/hr	ature, K	flow ratio		Vane wall temperature, K						
66	1258	31.0	1670	281	0.01365	No holes	1203	1074	1013	960	941	906	910
67 68	1264 1261			281	. 00199		1238	1224	1220	1215	1197	1185	1183
69	1201			293 293	. 0628 . 0534		1146	889 912	782 807	723 746	713 789	682 704	664
70	1274	1	\ \ \	292	. 0521	i i	1154	918	814	752	739	709	691
71	1277		1 1	292	. 0458	!	1160	939	838	775	759	730	713
72	1275			291	. 0308		1175	993	904	841	820	793	782
73 74	1281 1281			290	. 0234		1186	1029	950	889	865	842	833
75	1281			289 289	. 0185 . 0147		1192	1054 1078	984 1017	926 962	900 935	878 917	870 909
76	1286	1		288	. 00942		1209	1113	1064	1015	988	971	964
77	1283				. 00524		1214	1147	1112	1074	1047	1035	1030
78	1283			1 1	. 00167		1227	1186	1168	1144	1120	1111	1108
79 80	1283 1287			900	. 00063		1233	1219	1220	1214	1191	1184	1179
81	1280			292 292	. 0550 . 0442		1169 1172	923	815 843	754 782	743 766	713 737	697 722
82	1278			291	. 0407		1172	955	855	793	777	749	735
83	1279			290	. 0318		1185	993	900	839	819	793	783
84	1279			289	. 0177		1200	1059	987	930	906	886	882
85 86	1283 1266	i		289	. 0105	, ,	1213	1106	1052	1002	977	960	957
87	1266			294 293	. 0526 . 0420	0	1150 1157	921 952	819 856	755 791	744 776	709 742	679 715
88	1262			290	. 0119		1178	1085	1030	977	952	932	921
89	1264			289	. 00653		1192	1131	1091	1048	1023	1006	1000
90	1263			289	. 00357	*	1194	1159	1132	1100	1077		1059
91 92	1268 1264			292 291	0	. 0200 . 0144	881	722 800	833	931	985	1021	1029
93	1262			290		. 0144	940 992	888	910 983	995 1050	1034 1074	1053 1085	1065 1093
94	1264			289		. 00660	1098	1047	1093	1128	1129	1130	1133
95	1263]]	289		. 00493	1177	1159	1163	1172	1158	1154	1153
96	1286			287	†	. 0128	951	765	840	887	917	925	933
97 98	1287 1284				. 00490 . 00547	. 00698	1073	954	980	987	989	985	986
99	1283			,	. 00541	. 00979 . 00605	1000 1104	841 994	899 1004	930 1002	947 998	949 990	953 989
100	1283			286	. 00559	. 00398	1185	1100	1077	1047	1030	1017	1012
101	1284			1 1	. 00747	. 00528	1135	1026	1014	998	989	978	974
102	1286	<u> </u>	!	!	. 00762	. 00765	1033	885	926	941	949	945	945
103 104	1288 1287	~31.0	~1670	286	. 00759 . 00761	. 00935 . 0106	998 976	829 794	884 857	910	927	928	929
105	1286	1	1010	285	. 0128	. 0107	973	767	815	890 838	912 857	915 852	917 849
106	1288			1	.0129	. 00892	1003	810	848	862	874	867	862
107	1273			1 1	. 0130	. 00645	1055	897	904	897	896	884	878
108	1274			200	. 0129	. 00517	1126	986	958	930	920	903	895
109 110	1272 1260			290 289	. 0131 . 0131	. 00285 . 00416	1177 1150	1067 1034	1015 986	968 948	946 930	924 910	913
111	1260			1	.0130	. 00539	1107	970	948	926	916	899	891
112	1259				. 0129	. 00686	1036	877	893	891	892	880	874
113	1259			. 1	. 0131	. 00858	997	819	853	864	873	864	860
114 115	1272 1274			284	. 0384	. 00519	1109	878	815	773	768	737	714
116	1274				.0381	.00757	1009 952	754 673	746 689	733 695	740 712	715 692	695 673
117	1278			!	. 0382	. 0130	931	645	668	680	701	685	673
118	1278			7	. 0381	. 0165	896	604	631	652	680	669	660
119	1267			293	. 0368	. 00890	989	730	734	728	737	714	694
120	1265 1270			293	. 0369	. 00744	1016	769	759	745	749	723	703
121 122	1270			292 292	. 0377	. 00595 . 00428	1070	833 920	793 842	763 790	760 779	732 745	709 721
123	1268	. ↓		292	. 0399	. 00428	1150	943	857	797	783	749	721
124	1263	45. 5	2450	281	.01474	No holes	1207	1059	997	951	938	917	899
125	1264	[[[. 02053		1198	1019	946	898	887	864	843
126	1259				. 03040		1195	973	891	840	833	808	781
127 128	1260 1250			•	.03807	,	1185 1237	939 1223	852 1220	1218	798	770 1196	735 1200
129	1276			294	. 00136	0.00651	1054	829	826	1218 823	1204 826	804	791
130	1277				. 0241	. 00784	1007	767	787	797	808	789	778
131	1282			<u> </u>	. 0240	. 00962	970	710	748	769	788	773	763
132 133	1277 1275	i v	Y	295	.0241	. 0117	940 914	666 635	715 688	745	770 755	758 746	750
			7 1							725			740

TABLE II. - PRESSURE-SURFACE DATA

						SURFACE DAT	_						
Read- ing	Gas total inlet	Gas total inlet	Gas flow per vane	Coolant inlet	Convection- coolant to	Film-coolant to primary							
,44g	tempera-	pressure,	channel,	temper-	primary	gas flow ratio	9	10	11	12	13	14	15
	ture,	N/cm ²	kg/hr	ature,	flow ratio			Van	wall	tempe	rature	 ≥, K	
	К			K			L.,						
1	1248	22.7	1230	284	0.00813	No holes	1188	1092	1043	991	969	956	945
2 3	1252 1258			284 282	. 01536		1182 1165	1052 974	988 884	928 815	906 795	890 774	875 752
4	1262			282	. 04681		1155	927	827	755	738	715	686
5	1261			281	. 04650		1155	927	826	753	736	713	685
6 7	1260 1259			281 281	. 04272 . 03546		1157 1160	940 961	842 869	769 798	751 778	729 756	701 731
8	1256			281	. 02664	+	1173	1004	922	855	833	813	795
9	1285	1	1	283	.0461	0	1180	975	870	794	772	739	713
10	1283				. 0377		1185	1000	903	828	804 877	772 848	748 833
11 12	1283 1284				. 0249 . 0169		1199 1209	1054 1017	973 1030	903 968	940	917	904
13	1284	} }		284	.00976		1221	1142	1092	1039	1012	993	985
14	1266			290	0	. 0276	849	717	811	905	962	992	1005
15 16	1265 1266			289 288		.0186	924 969	800 959	900 955	985 1030	1024 1059	1044 1074	1054 1082
17	1268			1		. 00967	1034	958	1035	1090	1103	1111	1115
18	1267	.				. 00663	1120	1080	1121	1150	1145	1146	1148
19	1267					. 00554	1178	1155	1164	1178	1163	1160	1160
20 21	1268 1283	:		284	. 00979	. 00434	1201 1059	1190 922	1190 945	1194 948	1174 950	1168 944	1167 942
22	1284			i .	. 00976	. 00928	1023	867	904	919	929	927	925
23	1283		l		. 00916	. 0156	938	749	804	844	873	880	882
24 25	1284 1267	l (;		289	.00944	.0198	899 1188	702 1106	758 1060	805 1019	993	855 977	859 972
26	1268	∳	∳	289	. 00975	.00320	1155	1088	1043	1007	983	969	964
27	1267	~22.7	~1230	289	. 00958	. 00549	1138	1033	1008	988	972	961	957
28	1268			288	.00952	. 00750	1055 1020	925 872	943	947 920	944 925	939 923	937 922
29 30	1267 1268			288 288	. 00958	. 00951	995	832	877	900	911	911	910
31	1268	\ \ .		289	. 00951	. 00454	1164	1069	1028	997	977	965	960
32	1275			288	. 00954	. 00531	1145	1040	1011	989	989	963	959
33 34	1276 1275				.00964	.0102	1008 965	852 790	890 839	909 870	918	917 894	916 894
35	1274			+	. 00956	. 0150	946	765	817	853	877	882	883
36	1266			290	. 0126	. 0176	918	719	767	804	832	838	837
37 38	1267 1262	1 1	1 1	1 1	. 0129 . 0132	.0126	970 999	784 837	825	849 873	865 879	864 874	862 870
39	1269]	. 0132	. 00693	1063	923	925	918	913	904	899
40	1262			†	. 0133	. 00454	1150	1040	992	956	935	920	913
41	1283	\ \		283	.0337	.0198	893	634	654	675 710	703	697 718	687 705
42 43	1286 1287			283 284	. 0342 . 0341	. 0149 . 0111	938 984	681 735	699 744	743	728	737	722
44	1287			283	. 0338	. 00797	1032	807	795	778	777	756	740
45	1286			291	.0334	. 00318	1159	983	898	837	814	785	767
46 47	1267 1263			292	. 0334 . 0338	. 00363	1154 1138	976 950	892	834 824	812 804	784 778	766 760
48	1264		.		. 0341	. 00662	1054	849	816	789	782	760	744
49	1264	! !	\	,	. 0340	.00871	1011	788	779	768	768	750	735
50 51	1259 1260	25. 5	1380	281	. 01393 . 02218	No holes	1194 1180	1075 1021	1015 944	960 882	939 862	921 843	908 826
51	1250				. 02218		1170	974	884	817	799	777	754
53	1260			[. 04029	[]	1161	942	844	776	761	738	710
54	1255			1	. 00042	0.0175	1226	1214	1212	1204	1185	1174 750	1170
55 56	1272 1271			290 291	. 0239 . 0246	0.0175 .0130	911 952	669 717	703	730 760	754 775	767	744 759
57	1273			1	. 0241	. 0107	983	763	782	788	797	785	777
58	1268				. 0240	. 00908	1003	797	804	804	807	794	784
59	1268			1	. 0237 . 0238	. 00774	1025	834 905	828 872	819 847	817	801	791 806
60 61	1267 1269				. 0238	. 00623	1137	974	911	869	850	829	817
62	1267	∮	🕴	290	. 0238	. 00268	1160	1012	939	884	860	835	822
63	1265	31.0	1670	281	. 02007	No holes	1197	1035	959	901	884	864	847
64 65	1262 1257	31.0 31.0	1670 1670	280 281	. 02791 . 03633	No holes No holes	1189 1179	993 959	907 865	845 802	830 791	807 765	785 736
	1	1	1 .510	1	1	1	1,	1	1	1	1	1	1

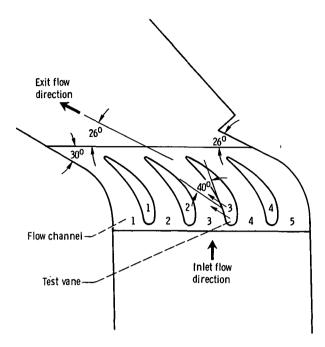


Figure 1. - Schematic of cascade test section.

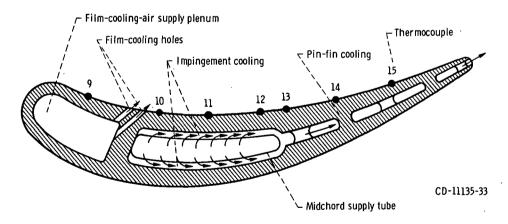
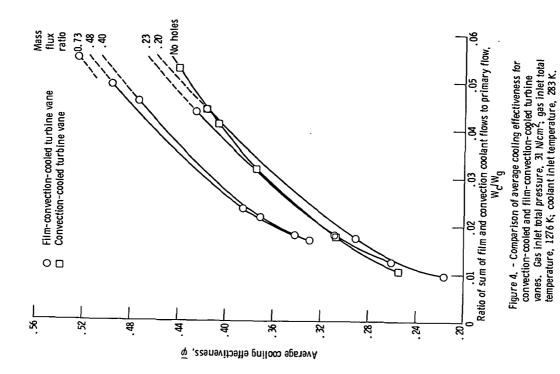



Figure 2. - Cross-sectional midspan view showing internal cooling scheme and thermocouple locations.

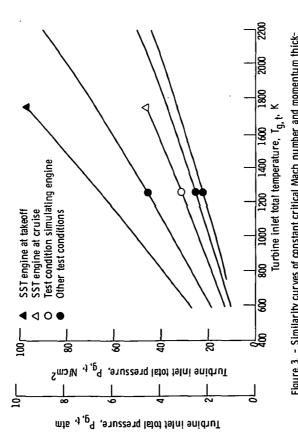


Figure 3. - Similarity curves of constant critical Mach number and momentum thickness Reynolds number distributions around turbine vane.

15

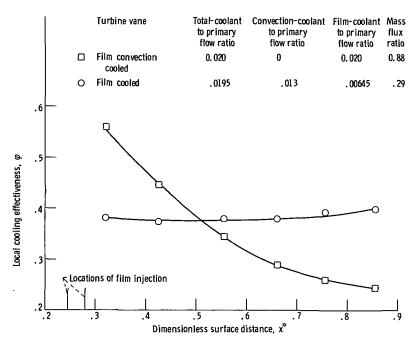


Figure 5. - Comparison of cooling effectiveness distributions for film-cooled and film-convection-cooled turbine vanes. Gas inlet total pressure, 31 N/cm²; gas inlet total temperature, 1255 K; coolant inlet temperature, 283 K.

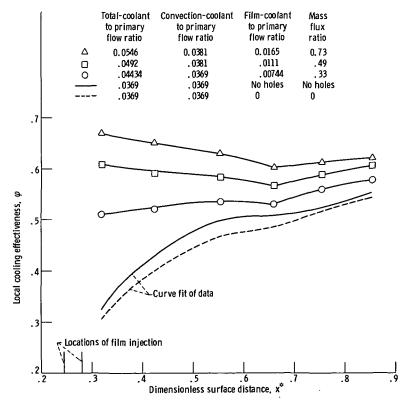


Figure 6. - Effect of mass flux ratio and holes on turbine vane cooling effectiveness. Convection-coolant flow ratio, 0.03; gas inlet total pressure, 31 N/cm², gas inlet total temperature, 1255 K; coolant inlet temperature, 283 K.

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300

SPECIAL FOURTH-CLASS RATE BOOK

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION

PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546