General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

The City College
 City University of New York
 New York, N. Y. 10031.

```
Technical Report
(NASA-CE-153077) THE DETERHIHATION OF
1177-24566 SURFACE AIBBDC FROM BBTBOROLOGICAL SATEILITES (City Coll. of the City Univ. of Nev York.) 41 p HC 103/MF 101 CSCL 03B Unclas G3/43 29172
```

The Detemination of Surface Albecio from Meteorological Satellites

Winthrop T. Johnson
June l, 1977.

Grant NGR 33-013-086
NASA, Goddard Space Flight Center

Abstract

Surface albedo measurements have, in the past, been taken mainly near the earth's surface and from aircraft. In this study a surface albedo was determined from visible data collected by the NOAA-4 polar orbiting meteorological satellite. In order to filter out the major cause of atmospheric reflectivity, namely clouds, techniques were developed and anplied to the data resulting in a map of global surface albecio. Neylecting spurious surface albedos for regions with persistent cloud cover, sun glint effects, insufficient reflected light and, at this time, some unresolved influences, the surface albedos retrieved from satellite data closely matched those of a global surface albedo map produced from surface and aircraft measurements and from characteristic albedos for land type and land use.

Table of Contents

Abstract i
Introduction 1
Data Source 4
Method of Analysis 8
Results 14
Southern Hemisphere 17
No:thern Hemisphere 18
Conclusions 21
Acknowledgments 22
References 23
Appendix
Algorithm of computer program 25

List of Figures

Figure		Histogran of brightness counts versus snoothed frequencies for one grid box over the Indian Ocean.
Figure	2	Surface albedos derived from satellite data, January 31 - February 4, 1976, Southern Hemisphere.
Figure	3	Normal surface albedo, January, Southern Hemisphere. (Taken from Posey and Clapp).
Figure	4	Surface albedos derived from satellite data, January 31 - February 4, 1976, Northern Hemisphere.
Figure	5	Normal surface albedo, January, Northern Hemisphere. (Taken from posey and Clapp).
Figure	6	Weekly average snow and ice boundary map for January 26 - February 1, 1976.
Figure	7	Weekly average snow and ice boundary map for February 2-3, 1976.
Figure	8	Depth of snow on the ground, February 2, 1976.
Figure	9	Depth of snow on the ground, February 9, 1976.

Introduction

The albedo of an object is a measure of its lightrefleciing property. Usually expressed in percent, the surface albedo is the ratio of the amount of reflected radiation per unit area to the total amount of inconing incident radiation per unit area.

Reflectivity is a function of the nature of the surface, the angle of incidence, and the angle from which the measurement is taken. For liquids such as the oceans, reflectivity varies with depth, turbidity, surface roughness and current velocity. Albedos for solids such as snow, vegetation, and soil, vary with color, texture, wetness, grain size, and, in the case of snow, age. Therefore, due to the inhomogeneity of the surface, the earth's albecos range from small values, e.g., 6 to 9% for oceanic regions near the Equator, to large percentages, e.g., 70 to 55% for fresh fallen snow. Both changes in the solar zenith angle and (because of non-diffuse reflective surface properties) changes in the angle from which the reflective measurement is made also affect the measured albedo.

Prior to the advent of meteorological satellites, albedo measurements were taken exclusively near the surface and from aircraft. "These produced both regional and global maps of surface albedo (Kung, Bryson and Lenschow, 1964; Posey and Clapp, 1964).

With the introduction of satellites as meteorological observatories, global maps were first produced from vidicon (television) camera measurements (winston and Taylor, 1967; Taylor and Winston, 1968; Winston, 1971) and then from radiometric neasurements (Raschke and Bandeen, 1970; Vonder Haar and Suomi, 1971; Gruber, 1973; Flanders and Smith, 1975). However, these mans are of planetary rather than surface albedo, the difference being that planetary albedo is a measure of the earth-atmospheric reflectivity which includes effects of reflectance, scattering and absorption by air molecules, aerosols and clouds.

The major atmospheric influence on satellite measurements in the visible spectrum is the highly reflective nature of clouds. It is the aim of this study to develop techniques for filtering out cloud reflectance from satellite measurements in order to retrieve surface albedo quantities. Moreover, a global surface albedo array derived by these techniques has been constructed from five days of satellite data and evaluated in comparison to other such arrays and characteristic surface albedo values. These techniques have been computerized by the author so that weekly, monthly, seasonally, or yearly climatologies of global surface albedo can be generated.

Development of surface albedo arrays would contribute to many areas in meteorological research. For instance,
the surface albedo is one of the essential components in radiation and heat budget investigations. Since differential heating of the earth's surface provides the energy to drive the circulation of the atmosphere, the global surface albedo distribution is directly related to atmospheric circulation energetics. In atmospheric simulation models, such as the Goddard Institute for space Studies (GISS) global atmospheric circulation model (Sommerville et al., 1974), a global surface albedo is onof the input arrays necessary to run the model. Better surface albedo specification would presumably lead cu: better results in these areas.

On the question of whether or not global atmospheric models are sensitive to changes in surface albedo, tests have been conducted at GISS with the GISS global atmospheric model by Drs. W. Quirk and Y. Sud (1976) and analyzed by the author. Two five day forecasts were produced using the same initial conditions, but different global surface albedo arrays. A climatological January global surface albedo array from Schutz and Gates (1972) was used in one forecast and a daily urfated array in the other. This latter array was also initialized from the Schutz and Gates array but changed to correspond to the weekly average snow and ice boundary map produced by the Satellite Applications Group of NESS (NOAA) ${ }^{1}$. It was
1.The National Environmental Satellite Service (NESS) of the National Oceanic and Atmospheric Aciministration. (NOAA).
updated daily using a functional relationship between the model's forecast snow depth and surface albedo. After five days, surface temperature differences of 5° to $15^{\circ} \mathrm{F}$ and sea level pressure differences of 4 mb . occurred in both the U.S. and Canada in regions of systematic, non-random differences in albedo. These results indicate not only model sensitivity to albedo variations, but also a possible impact on forecast performance.

Data Source

The data for this study are derived from measurements taken by the scanning radiometer aboard the NOAA 4 meteorological satellite (Environmental Satellite Imagery, Feb. 1976; Fortuna and Hambrick, 1974; Conlan, 1973; Schwalb, 1972). The NOAA 4 is a sun-synchronous, near circular, polar-orbiting satellite completing one orbit every 115 minutes. It transits the Equator on the descending node (southbound) at approximately 0900 hours local time and at approximately 2100 hours local time on the ascending node (northbound).

The two-channel scanning radiometer measures energy in both the visible $(0.5$ to $0.7 \mu \mathrm{~m}$.$) and the infrared$ (10.5 to $12.5 \mu \mathrm{~m}$.$) sectral ranges, scanning from horizon$ to horizon across the orbital path or track. Preflight calibration consisted of corrclating the response of the
radiometer to a brightness source of known spectral energy output. The only onboard calibration is a baseline determination when the radiometer scans empty spice.

For the visible channel the instantaneous field of view is a 4 km . square at the nadir (subsatellite point), increasing to a rectangle 7.5 km . by 15 km . at a horizontal distance 1668 km . from the nadir. At the subsatellite point there is a 4 km . gap between successive crosstrack swaths of data which disappears more than 1385 km . from the subpoint. Swaths of data from successive orbits overlap 1668 km . from nadir (satellite observat:ion angle of approximately 60°) at the Equator. This distance from the subpoint decreases with increasing latitude. Forward movement of the spacecraft combined with crosstrack scanning provides global visible measurements every 12 or 13 orbits.

The brightness measurements taken by the visible channel of the scanning radiometer are recorded by an onboard magnetic tape recorder. This analog si.jnal is later transmitted to one of two ground receiving stations and retransmitted to NESS in Suitland, Maryland for processing.

Processing includes earth location, normalization, digitation, cropping and mapping. Each data spot must be earth located in order to determine the solar zenith angle at the time of observation for that spot. The data are then
normalized to an overhead sun using a cosine function factor of the solar zenith angle. The analog signal is converted into digital brightness counts from zero to 254. This is a linear conversion whereby each digital count epresents a range of 40 foot lamberts (i.e., digital brightness count 0 represents 0 to 39 foot lamberts, etc.). Digital brightness count 255 is used for missing data.

Gaps in the data stream occur periodically off the Eastern U.S. coast near Bermuda due to insufficient data recording capabilities of the onboard recorder, the location of the two ground receiving stations, and shifting orbital tracks.

Fox mapping purposes, one day of data, beginning with the orbital pass where the satellite transits the Equator at approximately 0700z, is grouped together. In regions where data are collected from more than one pass, the latest data are retained. This results in lines of discontinuty on visual displays between data retained from successive passes, and especially between data retained from the first and last pass of the day. The digitized data are then placed into two 2048×2048 square grids, each overlaying a hemispheric polar stereographic map. These are made available on magnetic tape through the Satellite Data Services Branch of the National Climatic Center. Data for five days, January 31
through February 4, 1976, have been used in this study. At the time this data set was being processed, the digital code for missing data, 255, was not being inserted into polar grid points which had a solar zenith angle equal to or greater than 90°. Any brightness recorded by the radiometer, whether real or spurious was left intact in the data stream. This resulted in non zero digital counts, usually multiples of 10 , for grid points in the polar night region. Fhotographic and facsimile maps exhibit a spotty appearance in these regions due to this non zero field.

This same spotty appearance occurs on maps over portions of Antarctica and the Weddell Sea, northern Russia and Scandinavia for the days studied. Again the reason for this is an insufficient amount of reflected light. These areas are scanned on the last orbital pass for that day, thus all the data collected, no matter how far away from the satellite (i.e., large satellite observation angles) are mapped. Any previous measurements for this region from earlier passes are simply deleted. Since the satellite overflies a region in the morning its crosstrack scanner measures regions "toward" the sun and "away" from the sun. Regions viewed "away" from the sun would have a greater solar zenith angle. This larger anlar zenith angle coupled with the retention of all data on the last pass leads to saving data collected in the polar regions
with insufficient illumination.

Method of Analysis

The data on tape are in digitized counts of reflected brighiness from both the surface and the atmosphere. To retrieve a surface reflected brightness the atmospheric reflected brightness must be filtered out. Since clouds are the mijjor contributors to atmospheric reflection of visible light, techniques were developed and applied to the data to filter out this cloud effect. No attempt was made at this time to filter out the less influential atmospheric effects such as reflectivity due to atmospheric aerosols or Rayleigh scattering.

The earth's surface was assumed to be an isotropic surface (i.e., with no preferential direction of reflected energy) thereky eliminating the effect of measurements taken at different satellite observation angles and solar zenith angles. This assumption was also used by Winston and Taylor (1967), Taylor and Winston (1968), and Flanders and Smith (1975), for studies of brightness, long wave radiation and albedo.

The cloud filtering technique was based on the premise that clouds increase the amount of light reflected back to snace. For example, over a dark surface the brightness count for a particular grid point is higher on a cloudy day than on a cloudless day. In this study, groups of grid
point brightness counts were analyzed in the form of histograms. An increase in the modal brightness value is nenerally obscrved on cloudy versus cloudless days. As sky conditions change from clear to thin cirrostratus to lower, thicker stratus, the modal brightness also shifts to higher brightness values: Overcast stratiform cloud conditions over the analyzed region gave only one . brightness neak. Open and closed cellular cumulus, cumulonimbus and regions only partially overlain by clouds resulted in bimodal histograms. In this later jase, the lower end peak, (i.e., the peak with the lower brightness count) and adjacent brightness counts were taken to represent the surface reflectivity. The higher end peak presumably represented cloud reflection.

The first cloud filtering technique employed was developed to eliminate any higher brightness peaks and save only the lower surface representative peak. In order to carry out a low end modal searching process tie hemispheric data (2048 X 2048 grid points) were regrouped intc quare grid boxes consisting of 80 grid points on a sidf: (approximately 800 km.). This formed a $25 \times 25 \mathrm{grid}$ box array for each hemisphere. A histogram of brightness counts versus frefuency was then constructed ${ }^{2}$ fron the 6400 grid point values for each grid box. As an example, figure 1 is a histogram constructed from one grid box over the
2.A special computer program was designed to automate construction of the histogram, as well as the search for modal hrightness, and determination of characteristic surface albedos. The fortran colc for tie program is given in the 1 prendix.

Indian Ocean. The bottom row of numbers are the brightness counts from zero to 255. Above these are the corresponding frequencics or number of values of that brightness measured within the grid box. For instance, for brightness value 16 there are 264 measurements of a 16 brightness count out of 6400 total measurements. A three point smoothing operator of the following form was used on brightness values 2 through 253 to reduce the "noise" in the histogram:

$$
s F_{n}=1 / 3\left(F_{n-1}+F_{n}+F_{n+1}\right)
$$

where

$$
\begin{aligned}
& \mathbf{S F}_{\mathrm{n}}=\text { smoothed frequency for brightness count } n . \\
& \mathrm{F}_{\mathrm{n}}=\text { frequency of brightness count } n . \\
& F_{\mathrm{n} \pm 1}=\text { frequency of brightness count } n \pm 1 .
\end{aligned}
$$

Again using brightness count 16 as an example, the frequencies of brightness count 15, 16 and 17 (369,264 and 258 respectively) are added together and then divided by 3 to give the smoothed frequency for brightness count 16 (i.e., 297). A two point smoother was applied to brightness values 1 and 254 with the next higher and lower brightness counts respectively.

In other words the actual frequencies of brightness counts 1 and 254 were added to brightness counts 2 and 253 and then divided to 2 to give smoothed frequencies for brightness counts 1 and 254.

The smoothed frequencies in figure 1 appear in a row
just above the actual frequencies. The stars are used to give a more graphic representation of the smoothed frequencies for each brightness count. Each ztar represents 2 frequencies un to a possible 240 frequencies (i.e., 120 stars).

Initially a mode was determined fron the lowest 35% of the data (i.e., frequencies being added together starting with brightness count 1 and reaching 35% of the data). However, for regions of clear skies the low end mode did not correspond to the mode for the entire histogram. It did correspond to the lower end mode in the bimodal case. Modes from clear sky regions were studied and an empirical relationship was derived between the mode and the beginning of the peak (basically, the first brightness count with a frequency of 4 or more). This range was then used as a criterion to distinguish modes of clear skies from modes of partly cloudy skies for modal values from more than 35% of the data. Modes from the first 80% of the data and then from 10% less dats down to 50% and then 5% less data to 40% were checked against the range critesion for clear skies. The first mode which had a range within the limiting criterion or the mode for the lowest 35% of the data was saved. This mode was then used in calculating a mean brightness.

In figure 1 a low end modal search process was carried
out for the first 80% of the smoothed frequencies. The modal brightness value was 21 with a mode of 330 smoothed frequencies. The range between the modal brightness value and the first brightness value of four or more (i.e., brightness count 1 in this case) is 21 which is less than the clear skies criterion and so no further low and modal searching with successively smaller percentages of data was conducted. Next the number of brightness counts between the mode and the beginning of the brightness peak was added to the modal brightness count and used to define the end of the brightness peak. In figure 1 the number of brightness counts between the modal brightness count of 21 and the beginning of the brightness peak, namely brightness count 1 , were computed. This range of 20 was then adided onto the modal brightness count in order to designate the end of the brightness peak. Brightness count 41 was thus defined as the end of the brightness peak in this case. A mean brightness count was calculated from smoothed frequencies of brightness count 1 to the brightness count marking the end of the brightness peak. The mean brightness count was 21.8 for figure 1 . These mean brightiness counts represent the mean surface brightness for that grid box. Surface representative means were calculated for each grid box for each of the five days. These means, however, are in terms of brightness counts
representing specified internals of energy expressed in foot lamberts. To convert these means into albedo measurements, each value must be multiplied by a constant conversion factor derived by Gruber (1974). It takes into account a solar constant of $1.94 \mathrm{ly} . \mathrm{min}^{-1}$ and the percentage of total incoming solar radiation effectively sensed in the visible spectral range of the radiometer.

The first cloud filtering technique was used to capture a surface representative mode for clear or partly cloudy sky conditions. A second filtering technique had to be applied to the data to eliminate mears from regions with overcast conditions where the satellite could not effectively "sce" the earth's surface. A five day minimum scanning procedure based on the work of McClain and Baker (1969) in the reduction of cloud contamination in snow brightness measurements and snow boundary delineation for satellite data was used. A similar multiday minimum scanning procedure was used by Chen (1975) for monthly minimum planetary albecio mapping from satellite data.

From five days of calculated mean albedos for each grid box only the lowest mean albedo was retained as the surface representative albedo. In this final scanning procedure the means had to have been calculated from a sample of at least 2000 frequencies, that is, the number of smoothed frequencies from brightness count 1 to the brightness count
marking the end of the modal peak had to exceed 1999. This eliminated the cases where the low end mode occurred very close to the beginning of the peak thus giving a lower than representative mean.

Results

Hemispheric surface albedo maps generated from the application of two cloud filtering techniques on five consecutive days, January 31 to February 4, 1967, are given in figures 2 and 4. The 25×25 grid overlaying the geographical hemispheric map shows the boundaries of each grid box. The lowest surface representative mean albedo (which passes the limiting criteria) for the five days is written in each box. An I for any box denotes insufficient light occurred in the northern hemisphere in the polar night region and in both hemispheres due to the retention of all data from the last pass. A 99 found in four of the grid boxes in the northern hemisphere means that no surface representative albedo was determined from the data. The reasons for this will be discussed later.

For most grid boxes the albedos are close to characteristic surface albedos for specific types of surfaces. Albedos for water surfaces generally fell in the 5 to 12\% range with higher albedos in the higher northern latitudes. Non snow and ice covered land regions had albedos of from 7 up to 35% in desert regions. Snow and ice covered areas
exhibited higher albedos than its characteristic non covered form. Albedos for Antarctica were from 80 to 91\%. It must be noted that the scanning radiometer was only able to distinguish a reflective brightness up to a corresponding 91\% albedo. At this point the instrument was "saturated".

Besides a relative closeness of most computed albedos to the characteristic surface albedos, some computed values showed discrepancies. For these grid boxes daily hemispheric photographs produced from the same scanning radiometer data were studied. The first problem was one of persistant cloud cover over the grid box for the five days. This did not necessarily mean an overcast condition over the entire grid box. Boxes with as low as 7 tenths sky cover produced unusually high albedos. These albedos have been labeled on the maps with a bar to denote persistant cloud cover and do not represent a surface albedo.

Other grid boxes with unusually high albedos were a result of clouds and sun glint. Sun glint occurs only $2 v e r$ the water and appears as a bright area. This mirror iffect happens when the viewing angle is equal to the angle of incidence of the sunlight. In the photographs this takes the form of bright swaths along the satellite track or bright spots. Albedos recorded for these regions are generally around 35\%. A combination of cloudy days, missing
data for one or more days, and the occurrence of sun glint on the day with the lowest mean albedo for that region, produced higher than expected albedos.

The reason for unusually higher albedos from some grid boxes is not as clear. In these cases clouds were present covering less than 7 tenths of the grid box area on the day of lowest mean albedo. These are denoted by a filled in triangle in the lower right corner of the grid square. Further study needs to be conducted to determine why the high albedos are present and how to correct this situation in the computer program.

One further point should be kept in mind when viewing the surface representative albedo maps. When a grid box covers two or more types of surfaces the lower albedo (provided enough cases for that surface are present) will represent the entire grid box. The most numerous example of this is for grid boxes covering both land and water. If the water has a lower albedo as is usually the case then the albedo for the water would represent the entire grid box. However, if clouds covered the water for the five days then the land albedo would be retained.

A comparison between global surface albedo arrays derived from characteristic albedos for surface types, from readings taken near the ground and from aircraft, and the global surface albedo array derived from satellite data follows.

Posey and Clapp (1964) compiled four monthly average global surface albedo mans drawing exclusively upon the work of Budyko (1958) for onen ocean values and defining characteristic albedos for different land use types and surface conditions for non open ocean areas. The average January surface albedo map, figures 3 and 5 will be used for comparison.

Southern Hemisphere

Discounting grid boxes with persistent cloudiness, sun glint and unresolved errors, the satellite albedos derived for the open oceans exhibit a fairly good agreement with Posey and Clapp. The range is from 5 to 128 as opposed to 6 to 98 for Posey and Clapp. The satellite derived maps show more geographical fluctuation owing to the fact that these are five day minimums rather than monthly means. The systematic stepwise increase in albedo found in Posey and Clapp is not present in the satellite derived maps.

Antarctic albedos are generally higher, 80. to 91% than the neax uniform 80% albedos of Fosey and Clapp. Four grid boxes in the eastern section of the continent which cover both land and water depict the case where the land albedo is higher than the water since the water is covered by persistent clousis. The retricved albedo would then be the lower, cloud albedo for these cases. Thus these boxes are marked for further study.

											11	12	13	1h45：10	16	17				21	22.2		
1													20	10^{11}									
2							14	7	5	5	5	5	，	12.12	8	10	13	92					
3						6	7	7	6	14	8	8	10	1215	14	9	8	22					
4					8	7	6	10	6	10	15	21	30	11113	11	9	11	21	36	1			
5				5	8	7	5	？	6	8	5	月．	8	16／12	1 n	13	31	11	123		10		
6			－	5	6	8		10	6	8	5	6	4	16111	－	9	21	7			6 d		
7		¢	8	7	6	7	7	6	7	6	7	7	11	12172	10	7	7		6.6	9	910	鹤	
8		15	6	8	7		11	6	9	翟	8	2n	11	13138	23	6	5	7	79	8	77	8	．
9		19	7	6	8	㿑	7	－	11	21	$\underline{17}$	［18	45	］ 6	$\underline{11}$	18	6	5	57	8	9.	12	
10	6	9	in	8	7	12	7	18	16	4.5	2	19	［2．	I I	1	33	12.	6	6	6	A	10	． 1
11	6	6	7	9	7	6	6	15	7	${ }^{\circ}$	36	65	5	I＇I	I	40	46	7	76	6	6 ：		110
12	2	29	6	6	6	8	7	7	8	56	53	68	8 8	＋15	31	I	131	13	3	9	11］ 9	12	16
13		618	81	7	7	2	7	7	11．	3^{8}	8	81	87	I．	25	23	8	11	7	2^{8}	7	11	
14	6	616	6	6	8	$?$											17			1 T	1210	13	
15		17	9	8	\bigcirc	8	6					1		$7{ }^{6}$	10	8			B 13	2	10	21	
16	b	7	19	8	7	8	7	6	9		16	TIT		15.12	12	9	13	7	8	10	10		
17		6		6	8	9			8	12	8	91	10	99	11	器	7				$14!9$	13	
18		9	ho	9	6	7	11		12	7	9	8	8	9：9：		6	7						
19		6	16	6							6	7		11.81		5	8				6： 0		
20			6			12	23					． 6		6		8					55		
21														518	6						10		
22						15	12	11	9	81	6	7	9	510		10		6	66	6.			
$\underline{6}$						18			10			11	7	8.10	7	9			61				
44								12	13		9	2	6	8.7	5	8		5					
25．														¢，									

Fig．2．Surface albedos derived from satellite data， January 31 －February 4，1976，Southern Hemisyhere． Albedos are given in percent．A bar over an albedo indicates persistent cloud cover over five days．A double asterisk above an albedo indicates sun glint contamination．A A in the lover right corner of the grid box means that the albedo was unrepresentative for reasons as yet unclear．

Fig.3. Normal surface albedo, January, Southern Hemisphere. Solid lines in Antarctic waters are northern houndary of pack ice (heavy) or boundary of ice regions (light). No snow boundary indicated. Numbers are albedo in percent. (Taken from Posey and Clanp).

Australian albedos do not show the large range of alledos found in Poscy and Clapp. Numersus reasons for these differences such as grid size, solar zenith angle at time of obscrvation, uncharacteristic soil wetness, changes in land use since 1964, etc., could be ascribed for these differences but the cause(s) is unclear at this time.

Agreement is very close, 7 to 13% compared to 7 to 10%, for most albedos in Southern Africa. The portion of Southwestern Africa with albedos from 18 to 30% is not appearant on the satellite derived map.

Slightly higher albedos, up to 5% occur over most of South America except along the western coast.

Northern llemisphere
llost open water albedos are again close to those given by Posey and Clapp. Fluctuations of albedos for the same latitude still exist, however, at high latitudes the increase of albedo with increasing latitude is found in both maps in the North Atlantic and North Pacific oceans.
lligh albedos from 49 to 59% due to sea ice are found in three grid boxes: one covering the Bering Straits, another extending from the southwestern edge of Greenland across to Labrador and a third in the Shelikhov Gulf, north of the Sea of Okhotsk between Siberia and the Kamchatka Penninsula. In order to verify the existence of sea ice in these areas at the time the observations were made,

Fig.4. Surface albedos derived from satellite data, January 31 - February 4, 1976, Northern Hemisphere. Albedos are given in percent. A bar over an albedo indicates persistent cloud cover over five days. A double asterisk above an albedo indicates sun glint contamination. A 4 in the lower right corner of the grid box means that the albedo was unrepresentative for reasons as yet unclear. An albedo of 99 represents missing data.

- Fig. 5. Nornal surface albedo, January, Northern Henisphere. Numbers are albedos in percent. Heavy dashed line over northern oceans is boundary separating ice navigable to ice breakers fron that navigable to heavy ships: over land, snow boundary (or line of 50% rrobability of snow). Light solid line mainly in Artic Occan, boundary of solid pack ice. Light solid lines over land are discontinuities in albedo, following land-use boundaries. (Taken from posey and Clapn).
weekly average snow and ice boundary (WASIB) maps for the periods January 26 to February 1, 1976 and February 2-8, 1976 are included, figures 6 and 7. These maps are produced by the Satellite Applications Group of NESS (NOAA) using photographs derived from data from NOAA-4 and SAS-1 satellites. Sea ice boundary extents are denoted by circles. The lowest representative surface albedo for the Bering Straits grid box was recorded on January 31, 1976 when sea ice was present. Ice conditions changed the following week according to figure 7. Ice conditions for the other regions remained the same for the two week period.

Four 99 values appear in the Northern Hemisphere. A value of 99 means that no surface representative albedo was recorded for any of the five days. This resulted when an insufficient number of cases comprising the low end peak was present for each of the five days. Mostly cloudy skies over the five days wouli cause such a condition.

Surface representative albedc: for Central America, the northern portions of South America and Africa are in close agreement with those of Posey and Clapp. The higher albedos for the Sahara desert stand out well in both maps, with the satellite derived values slightly higher, 35% as opposed to 30%.

The albedos are also in close agreement in the Arabian Penninsula except for grid points covering both land and

Fig.6. Weekly average snow and ice boundary map for January 26 - February 1, 1976.

Fig.7. Neekly average snow and ice boundary map for February 2-8, 1976.
water. For these the lower albedos for water predominate. Albedos are somewhat lower in Iran, Afghanistan and Pakistan for the satellite derived maps and slightly higher in India, Southeast Asia and the non desert areas of China. The desert regions of China, exhibit albedos of 20 to 30% in Posey and Clapp whereas they range from 16 to 24% in the satellite derived albedo maps.

The snow boundary extending from the Caspian Sea to the Pacific Ocean on the WASIB maps and on Posey and Clapp, denoted by a dashed line, lie close to each other except the former displays snow cover in the Himalayan Mountains. Albedos to the north of the snow boundary are similar with 40 and 50\% albedos near the boundary and decreasing to the upper $20^{\prime} \mathrm{s}, 30^{\prime} \mathrm{s}$ and 40% albedos farther to the north on both maps.

In Europe the snow extent on the WASIB maps is more widespread than on the Posey and Clapp map. Higher albedos of 31 to 47% occurred in the non snow covered regions of 13% in Posey and Clapp.

The snow boundary line for North America was fairly close for the Posey and Clapp and the WASIB maps. Judging froin the depth of snow on the ground maps, for February 2 and 9, 1976 (figures 8 and 9) extensive melting of snow in the midwest and western plateau regions was indicated for the week preceding February 2, 1976, with widespread snowfall in

Fig. 8. Derth of snow on the ground, February 2; 1976. (Taken from Weekly Weather and Crop Bulletin, February. 3, 1976).

Fig.9. Depth of snow on the ground, Fobruary 9, 1976.
(Taken from Weekly Weather and Crop Dulletin, February.10, 1976).
the following week. Kelting snow and snow free areas characteristically have lower albedos than the same regions with fresh fallen snow. As expected albedos in the north central U.S. and Rocky Mountain states have lower albedos, 16 and 17%, than 45 and 55% for Posey and Clapp. The non snow covered southern states have icentical albedos. The grid boxes in the southwestern states and south into Mexico display differences possibly linked to ground wetness and a mixture of soil types. Except for lludson Bay, both maps exhibit similar albedos over Canada. Alaska's albedo of 38% is the same for Posey and Clapp except near the southern coast where Posey and Clapp note a 62% albedo region. Conclusions

The cloud filtering techniques applied to satellite scanning radiometer data in the visible spectrum enabled the production of a global surface albedo map with quite reasonable values. Open water albedos were generally 7 to 11% and increased to 21% in the higher northern latitudes. Three regions with extensive sea ice had albedcs of 49 to 59\%. Non snow and ice covered land albedos ranged from 7 to 16% with albedos from the mid $20 s$ to 35% for desert regions. Snow covered lands displayed high albedos from the mid 20 s to 63\%. Albedos for Antarctica were normally high ranging from 80 to the radiometers upper limit of 91%. Incorrect albedos did, however, still remain in the
global albedo map. Disregarding regions of insufficient reflected light due to the tilt of the earth and data retention procedures used on the last pass of the satellite, some unusually high albedos were caused by persistent clouds over the regions for five days, by a combination of clouds and sun glint, and by other not as clearly defined influences. Further study needs to be undertaken using more days for minimum surface albedo retrieval, and a smaller minimum sample size than the 2000 used in this study for a representative surface albedo determination for each grid box.

Nevertheless, a comparison of global albedo maps, one derived from satellite data and the other from surface and aircraft measurements and characteristic albedos for specific land use and land types showed two quite sinilar maps for all surface conditions. Acknowledgnents

The research reported in this paper was carricd out at the Goddard Institute for Space Studies (GISS) under a grant (NGR 33-013-036) from the Coddard Space Flight Center (NASA) to The City College. This work could not have been accomplished without the conneration and assistance of the staff of GISS, including Robert Jastrow, director, Milton Halem, William @uirk and Poger Van Norton, and also the staff of The National Environmental Satellite Service (NOAA) including Jay Winston, Arnold Craber and Edward Honpe. I vould like to express my gratitude to my acvisor, Jerone Spar for his excellent guidance and encouragement.

References

Budyko, M.I. 1958. Tenlovoi balans zemnoi poverkhosti. (The Heat Balance of the Earths Surface). Gidroneteorologiaheskoe izdatel'stvo, Leningrad, 1956 (Translated by Nina A. Stepanova, Office of Climatology, U.S. Weather Bureau, Nashington, D.C., 259 pp.).

Chen, T.S. 1975. Monthly minimum and maximum albedos. Unpublished report, 19 pp. National Environmental Satellite Service, NOAA.

Conlan, Edward F. 1973. Operational products from ITOS scanning radioneter data. NOAA Tech. Rent. NESS 52, 57 pq.

Environmental Satellite Imagery, February, 1976. National Oceanogranhic and ntmosnheric Administration. Environmental Data Service, 92 pp.

Flanders, Donald H. and william L. Smith, 1975. Radiation budget data from the meteorological satellites, ITOS 1 and NOAA 1 . MOA Tech. Rent. NLSS 72, 21 pp.

Fortuna, Joseph J. and Larry N. llambrick, 1974. The operation of the MOAA polar satellite system. NOAA Tech. Rent. NESS 60, $1-17$.

Gruber, Arnold, 1973. Review of satellite measurements of albedo and outgoing long-wave radiation. NOAA Tech. Rept. NESS 48, 13 pp.

Gruber, Arnold, 1974. Calibration of NOAA 2 visible scanning radiometer. Unpubl.ished report, 6 pi.., National Environnental Satellite Service, NOA.

Kung, Ernest C., Feid A. Bryson anc Donald i. Lenschow, 1964. Study of a continental surface albedo on the basis of flight measurements and structure of eartin's surface cover over North America. Mon. Hea. Rev., 92. 543-564.

McClain, E. Paul and Donald r. Baker, 1969. Experimental large-scale snow and ice mapping with composite minimum brightness charts. ESSA Tech. Rent. NESCTM 12, 20 pp.

Posey, Julian W. and Phillip F. Clapp, 1954. Global distribution of normal surface albedo. Geofisica Internacional, 4, 33-48.

Quirk, William and Yogjsh Sud, 1976. Personal Commanication.
Raschke, E. and $\mathbf{N} . \mathrm{R}$. Bandeen, 1970. The radiation balance of the planet liarth from radiation measurements of the satellite Nimbus II. J. Appl. Meteor., 9, 215-238.

Schutz, C. and A.T. Gates, 1972. Sunplemental Ciobal Climatic Data: January. The Rand Corp., P-

Schwalb, A. 1972. Modified version of the improved miros operational satellite (ITOS D-G). NOAA Tech. Rept. NESS 35, 49 pp.

Sommerville, R.C.J., P.H. Stone, M. Halem, J.E. Hansen, J.S. llogan, L.M. Druyan, G. Russell, A.A. Lacis, W.J. Quirk and J. Tenenbaum, 1974. The GISS model of the global atmosphere. J. Atmos. Sci., 31, 84-117.

Taylor, V. Pay and Jay S. Winston, 1968. Monthly and seasonal mean global charts of trightness from ESSA 3 and ESSA 5 digitized pictures, February, 1967 February, 1968. ESSA Tech. Rent. NESC 46, 9 Pp., and 17 charts.

Vonder Haar, Thomas H. and Verner E. Suomi, 1971.
Measurements of the earth's radiation budget from satellites during a five year period. part l: Extended time and space means. J. Atmos. Sci., 28 , 305-314.

Winston, Jay S. and V. Ray Taylor, 1967. Atlas of world maps of long-wave radiation and albedo, for reasons and months based on measurements from TIROS IV and TIROS VII. ESSA Tech. Rept. NESC 43, 32 Ep.

Winston, Jay S., 1971. The annual course of zonal mean albedo as derived from ESSA 3 and 5 digitized picture data. ilon. Wra. Rev., 99, 818-827.

青

CCMPILER OPTIONS－NANE＝NAIN，CPT＝CO．LINECNT＝55．SI 2E＝040OK．
SCLHCE，EGCCIC．NCLIST，NODECK．LQAD．MAP，NOECIT，ID．NOXREF

```
C TEST 10 HISTCGFAMS ONTO DLTFUT TAPE **FCR MCFE THAN CNE INPUT TAPE AT A TIME
C
    VS SACCTHED FREGUENCIES. SEAFCHES FCR LCW ENC FREQUNCY CISTRIGUTION OF RO
    PER CENT TO ZEPER CENT, GIVES NEANS ANC I STANCARD CEVIATICN CF DATA
    FROMESVOI IG IHISE (IHISE CAN POSSIELY BE 2S4)
    NUVAL ARRAYS INITIALIZED AS ALLLO BFIGHTNESS VALUES (OEFAULT)
    CREATES TAPE CF HISTOGAANS AND LCN END STATISTICS CA A 25 X 25 GRID
    FOR S CAYS. NORIHEGN CR SCUTHERN HEMISPFERE.
            DIMENSICN IAFREC(25E,25).ISFFEG(256.25).LENDSF(256).IFFREO(256)
            LGGICAL*1 ABVAL(64J゙,25):NT(E192)
            UATA NLNREC,N.IFSTCA,FNEAN,FSCEV,NLNF,IFHISG.IFHISE,MODEF,
            : FPCENJ/O.25.1150.S9.,C..C.O.0.0.0./
C
    POSITION GUTFLT TAPE
        4 DO S LK二1,700
        5 REAU(Y,ENO=E)IDAY
C
    REAUS PASSED LNWANTED INPLT DATA
        6 NUMREC=0
            DC 35 K=1.12
            NC ZESK=1,IE
            NUAHEC = NUNFEC+1
            CALL VAEOE(-B,NT,NBYTES,ICK)
        35 IF(ICK.NE.1) WRITE(G.4C)NUNREC.NBYTESSIOK
```



```
C DU É J2S=1.25
C
C READ DATA INTC 25 NBVAL AFRAYS
            lG4CC=-16C
            COSES KJ=1.40
            I64CC=164CC
            IVALE=-110
            IIVALH=35CE
            NLMHEC=NL,NREC+1
            CALL VFEDiE(-8,NT,NGYTES.ECK)
            IF(ICK.NE.I) WRITE(S.4C)NLMREC,NEYTES,IOK
            DJ ES 125=1.25
            DJ EE I 25=1.25
            IVALE=IVALE+15B
            NA=C
            D'J 75 KC=IVALG.IVALE.2
            NA=NA+1
    75 NUVAL(IG4CC+NA.1253=NT(KC)
            IIVALBS=IIVALB+IEO
            11VALE= IIVALB+15S
            CC :SEKO=IIVALS.IIVALE.2
            LC SS KO=IIVALG.IIVALE .2
            85 NHGALINO
    65 criviluit
```

1 SN cous
IST, COOO
ISN COUT
ISN COOB
ISN 6009
ISN coio.
ISV COI1
15:4 0013
ISN 0002
ISN COOB
ISA COU4
ISN $\mathbf{~ O O 1 4}$
ISN $\operatorname{col} 5$
ISN coll
ISN $0: 17$
ISN COIB
1 SN 0019
ISN CO20
ISN cuz
SN CSZ1
SN cue:
Is:ccer
$15 \mathrm{~N} \quad 0 \mathrm{E} 5$
$15 N$ CC20
ISn cizz
ISA 0u28
ISA 4023
15A cozo
ISA tocis

$15 N$	
15	Scin

15: CO 32
ISN OUS3
1 SN OO3 34
ISN 0035
ion こjコロ

```
C
```

C
SQRT B.V. IN ARRAYS INTC ACTLAL. FRECUENCY DISTRIEUTION ARRAY IAFREO
SQRT B.V. IN ARRAYS INTC ACTLAL. FRECUENCY DISTRIEUTION ARRAY IAFREO
DO i7S LO=1.N
DO i7S LO=1.N
CO 115 LE=1.256
CO 115 LE=1.256
115 IAFREO(LE,LO)=0
115 IAFREO(LE,LO)=0
17E CUNTINLE
17E CUNTINLE
CO1EELA=1.N
CO1EELA=1.N
DO14E LC=1.6400
DO14E LC=1.6400
OU15E KFREG=1,256
OU15E KFREG=1,256
KBV=K!- REC-1
KBV=K!- REC-1
IF(KEV.NE.NBVAL (LC.LA)) GC TC }15
IF(KEV.NE.NBVAL (LC.LA)) GC TC }15
IAF:REG(KIFREO.LA)=IAFREC(KFREC.LA)+\&
IAF:REG(KIFREO.LA)=IAFREC(KFREC.LA)+\&
1AFIREGOR|
1AFIREGOR|
55 CONTMN
55 CONTMN
145 CONTINLE
145 CONTINLE
185 CONTINLE
185 CONTINLE
C
C
APPLY ·ENVY SMDOTHER CN ACTGAL FFEQUENCIES
APPLY ·ENVY SMDOTHER CN ACTGAL FFEQUENCIES
DO 4ב HGG=1.N
DO 4ב HGG=1.N
IF(IAFREG(E`6.NG).CT.0&OOC) GC TO 43 IF(IAFREG(E`6.NG).CT.0\&OOC) GC TO 43
DO 47 NH=1.256
DO 47 NH=1.256
ISFREQ(N:H.NG)=I AFREG(NT,NG)
ISFREQ(N:H.NG)=I AFREG(NT,NG)
IF(NH,EG.E)ISFREG(NH,N(})={IAFREC(NH,NG)+IAFREQ(N++1,NG))/2
IF(NH,EG.E)ISFREG(NH,N(})={IAFREC(NH,NG)+IAFREQ(N++1,NG))/2
IF(N:-EM, ES4)ISFREG(NH,NG)=(IAFREO(NF,NG)+IAFREQ(NH-1,NG))/2
IF(N:-EM, ES4)ISFREG(NH,NG)=(IAFREO(NF,NG)+IAFREQ(NH-1,NG))/2
IF(NF.GT.E.AND.NH.LT.2\subseteq4)
IF(NF.GT.E.AND.NH.LT.2\subseteq4)
I ISFIREQ(NH,NG)=(IAFFEG(NH-1,NG)+IAFREO(NH,NG)+IAFREG(NH+1,NG))/3
I ISFIREQ(NH,NG)=(IAFFEG(NH-1,NG)+IAFREO(NH,NG)+IAFREG(NH+1,NG))/3
47 CONIINLE
47 CONIINLE
43 CONTINLE
43 CONTINLE
C
C
WRITE GLT HIETCGRANS
WRITE GLT HIETCGRANS
OO E\#NI=1,N
OO E\#NI=1,N
WRITE(O.50) J25.NI IFSTDA
WRITE(O.50) J25.NI IFSTDA
50 FUNMATI/:/%/."**HISTCGFAM J ROW=*.I3.4X.*I COLUMN=., 13.4X.
50 FUNMATI/:/%/."**HISTCGFAM J ROW=*.I3.4X.*I COLUMN=., 13.4X.
1 'CAy='.1E)
1 'CAy='.1E)
IF(IAFREQ(ZEG.NI).LE.G20C) GC TO 141
IF(IAFREQ(ZEG.NI).LE.G20C) GC TO 141
WRITEIE,SR)(IAFFEO(2SG,NIM

```
            WRITEIE,SR)(IAFFEO(2SG,NIM
```



```
        WRITE(G)IFETCA,FMEAN, (IAFHEG(LH,NI),LH=1,25E), IFFREQ,FSDEV,FSDEV.
```

 WRITE(G)IFETCA,FMEAN, (IAFHEG(LH,NI),LH=1,25E), IFFREQ,FSDEV,FSDEV.
 1 NL:YF,IFHISG.IFHISE.MCLEF,MCLEF,FPCENT
 1 NL:YF,IFHISG.IFHISE.MCLEF,MCLEF,FPCENT
 GO TG 53
 GO TG 53
 C
C
PLACE IST 80.70.60.50.45.40.35 FER CENT OF CATA INTC ARFAY LENDSF
PLACE IST 80.70.60.50.45.40.35 FER CENT OF CATA INTC ARFAY LENDSF
41 PCENEINCSF EXTENDS FRCM E.V. 1 UP TC A POSSIELE E.V\bullet OF 2S4
41 PCENEINCSF EXTENDS FRCM E.V. 1 UP TC A POSSIELE E.V\bullet OF 2S4
1+2 INCENJ=PCENI*64CO
1+2 INCENJ=PCENI*64CO
ISUM=U
ISUM=U
1HIsE=0
1HIsE=0
OO ic3
OO ic3
DC IC 3 KM=2.255
DC IC 3 KM=2.255
KBV=吅-1
KBV=吅-1
LENDSF(KM)=1SFREQ(KM,N1)
LENDSF(KM)=1SFREQ(KM,N1)
ISLM=ISUN+LENUSF(KM)
ISLM=ISUN+LENUSF(KM)
C
C
SEARCH LENDSF ARRAY (LOW E.Y. TC HIGH) FOR FIRST B.V.WITH FREGOGE.A
SEARCH LENDSF ARRAY (LOW E.Y. TC HIGH) FOR FIRST B.V.WITH FREGOGE.A
IF(IFISE.EG.O.AND.LENOSF(KM).GE.4) IHISB=KBV
IF(IFISE.EG.O.AND.LENOSF(KM).GE.4) IHISB=KBV
IF(ISCHOGE.IPCENT) GC IC 1OS
IF(ISCHOGE.IPCENT) GC IC 1OS
103 CGNJINLE

```
    103 CGNJINLE
```

```
ISN 00B8
ISN ccag
ISN CO;O
ISN COGl
ISN 60ち己
SN COG4
ON CO94
lSN coSS
1 SN c097
1 S:N 6039
IE:N ciol
13% Cl02
Isiv ciol
ISN G1OS
15NC160
IS:M cl0%
I3:% C108
I=NC1C?
!S:v 心121
\5% Cliz
15:4 cill2
1S:4 0112
ISN C114
ISN C117
ISN Cil18
1SN C120
ISN 0122
1SN 0124
1SNOL2E
ISN Cl2t
ISN C128
ISN C129
C
    MMODEBV CORKE\subseteqPCNOS '
        MUUERV=1
        KN二Kもう+1
        DC 11.3 KP=3.KN
        IF(NCI)ESF -GE.LENOSF(KF)) GO TO 113
        MJUEST =LENDSF(KP)
        MODEEV
    113 CONTINLE
ZERO MCLAL FREOUENCY CHECK (ALL B.V.=O FGR ENTIFE AFRAY)
            IF(:COESF
                                    -NE.O) GC TC 12E
            HuITE(S.12E)
    125 FUFNAT(% 4O,'MCOAL FRECLENCY EGUALS O ALL B.V FOR GRIC BOX=O')
        WRITE(9)IFSTDA,FIAEAN, (IAFNEG(LH,NI),LH=1 ,256), IFFREQ,FSSEV.FSUEV.
        I NLMH, IFHISO.IFHISE,MNCEF.MCLEEF,FPCENT
GU TC 52゙
C TO CORHECI IFISH IF FIND z ACJACENT SNCCTHEC FREUUENCIES OF O EETWEEN IFISB
C TOND MCUAL H:V
    12\epsilon IF(MCJIPV.EO.1) GO TO 1<4
        1DIFF=fUOEEV-IHISE-2
        IHISCK=NCOEBV+1
        CO 155 L.F=1,IUIFF
        1HISCK=1トISCKーI
        IF(ISFREG{IHISCK,NI).EG.O.ANC.ISFREG(IHISCK-I.NI).EO.0) GO 10 20C
    195 CONIINLE
    2CO DO 2CS LG= IHISCK,MODEEV
    2OS IF(ISFAEG(LG.NI).GE.4) GC TO 210
C
    EXTENI CF LCKE*D HISTCGRAN
C
        CHECK FCIR CLEAR SKIES HISICGFAMS{HIGH FFEO CVER SMALL RANGEJ.LE.S2I)
        IF((IMISE-IHISB).LE.S2) CC TC 148
        IFRPCENT.GI.OSZIPCENT=FCENT-C.O5
        PCENT=PCEI:1-0.OE
        PCENT=PCE
        C IrISE CAN GE g.v. 2SA
        148 IF(IFISE.GI.2S4) [HISE=254
C COMPUTE MEAN ANO STANDARD DEVIATION OF LOM END ILOW ERIGMINESS
C VALUESJ HISTGGRAM
        sur:=C.
        UEV=C.
        RNL:M=C
C
        MEANS ANO S.D. FROM FFEGUENCIES CF B.V.I TC IHISE (IHISE CAN EE 2S4)
        UO 127 KS=I.IHISE
        KU=K\leqslant+1
        SLR:=SUN#KS#ISFREO(KU,N1).
        NU:=NUv+!SFREO(KU.NI)
```


SEARCH AND PLACE HIGHEST FREGUENCIES OF LENESF ARRAY INTO
C SEARCH AND PLACE HIGHEST FREGUENCIES OF LENCSF ARRAY INTO
C MODESF. LCWESJ GRIGHTNESS VALUE SELECTED FIEST

