General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF HOUSTON
HOUSTON, TEXAS
(NASA-CR-151338) SUFFICIENT STATISTICS FOR
MIXTURES OF MEASURES IN A HOMOGENEOUS FAMILY
(Houston Univ.) 18 p HC A02/MF AO1 CSCL 12A
N77-24887

Uncles
G3/65 26140


```
PREPARED FOR EARTH OBSERVATION DIVISION, JSC UNDER CONTRACT NAS-9-15000
```


Sufficient Statistics for Mixtures
 of Measuras in a Homogeneous Family

By

Charles Peters
Department of Mathematics
University of Houston

March, 1977
Report 64

```
Sufficient Statistics for Mixtures
of Measures in a Homogeneous Family
    by
    Charles Peters
        Department of Mathematics
    University of Houston
```


1. Introduction:

Let (X, Q) and (Y, \mathcal{B}) be measurable spaces and let $T: X \rightarrow Y$ be surjective and measurable. Let \mathbb{M} be a set of finite positive measures on ($\mathrm{x}, \boldsymbol{a}$). For each $\mu \in \mathscr{M}$ there corresponds a measure $\mu \mathrm{T}^{-1}$ on (Y, \mathcal{B}) defined for $F \in \mathcal{B}$ by

$$
\mu \mathrm{T}^{-1}(F)=\mu\left(\mathrm{T}^{-1}(F)\right)
$$

If f is a μ-integrable real valued function on X, then as a consequence of the Radon Nikodym Theorem, there is a $\mu \mathrm{T}^{-1}$ - integrable function $e_{\mu}(f)$ on Y satisfying

$$
\int_{F} e_{\mu}(f) d \mu T^{-1}=\int_{T^{-1}(F)}^{f d \mu}
$$

for each $F \in \mathcal{B}$. Clearly $e_{\mu}(f)$ is defined only up to sets in Y of μT^{-1} measure 0 and $f=g$ a.e. (μ) implies $e_{\mu}(f)=e_{\mu}(g)$ a.e. ($\mu \mathrm{T}^{-1}$). The linear operator e_{μ} defined as above maps the space $\mathcal{X}^{1}(x, a, \mu)$ to the space $\mathcal{L}^{1}\left(\mathrm{Y}, \mathcal{B}, \mu \mathrm{T}^{-1}\right)$ and is called the conditional expectation operator. Its value
$e_{\mu}(f)$ at $f \varepsilon \mathcal{L}^{\prime}(x, a, \mu)$ is called the conditional expectation of f given T.

The conditional probability of an event $E \in a$ is defined as

$$
P_{\mu}(E)=e_{\mu}\left(X_{E}\right)
$$

where X_{E} is the indicator function of E. The conditional probability functions satisfy
(a)

$$
P_{\mu}: a \rightarrow f\left(Y, B, \mu T^{-1}\right)
$$

where $\mathcal{G}\left(\mathrm{Y}, \mathcal{B}, \mu \mathrm{T}^{-1}\right)$ is the set of all real valued \mathcal{B}-measurable functions on Y, with equality defined as equality ace. ($\mu \mathrm{T}^{-1}$).
(b) For each $F \in \mathcal{B}, E \in Q$,

$$
\mu\left(E \cap T^{-1}(F)\right)=\int_{F} P_{\mu}(E) d \mu T^{-1}
$$

(c) $\quad 0 \leq P_{\mu}(E) \leq 1$ for each $E \in Q$ and $P_{\mu}(X)=1$.
(d) If $\left\{E_{n}\right\}_{n=1}^{\infty}$ is a disjoint sequence of events in \mathbb{Q},

$$
P_{\mu}\left({\underset{n}{ }=1}_{\infty}^{\infty} E_{n}\right)=\sum_{n=1}^{\infty} P_{\mu}\left(E_{n}\right) \text { a.e. }\left(\mu T^{-1}\right) .
$$

It should be noted that P_{μ} satisfies property (c) even when μ is not a probability measure.

The transformation T is called a sufficient statistic for M if for each $E \in a$ there is a \mathcal{G}-measurable function $P(E)$ on Y such that for each $\mu \varepsilon \mathcal{M}, P_{\mu}(E)=P(E)$ a.e., $\left(\mu T^{-1}\right)$. The set \mathcal{M} is dominated by a measure λ (perhaps not in \mathbb{M}) if for each $\mu \varepsilon \mathbb{M}, \mu$ is absolutely
continuous with respect to $\lambda_{,}$(written $\mu \ll \lambda$,) M is homogeneous if it is dominated by each of its members. A measure λ is equivalent to \mathbb{M} if λ dominates m and $\mu(E)=0$ for each $\mu \varepsilon \mathscr{M}$ implies $\lambda(E)=0$. The notation and terminology used in this paper are taken from (Halmos and Savage; 1949), as are the following three theorems. The notation $\frac{d \mu}{d \lambda}(\mathbb{C}) \mathrm{T}^{-1}(\mathcal{B})$ means that there is an element of the equivalence class $\frac{\mathrm{d} \mu}{\mathrm{d} \lambda}$ of Radon-Nikodym derivatives which is $T^{-1}(B)$ measureable.

Theorem 1: If $\nexists 1 / 2$ is dominated, then a statistic T is sufficient for $\mathbb{7}$ if and only if there exists a measure λ equivalent to $7 M$ such that for each $\mu \in \mathbb{M}, \quad \frac{d \mu}{d \lambda}(\epsilon) T^{-1}(\mathcal{B})$.

Theorem 2: If \mathcal{M} is dominated, then a statistic T is sufficient for \mathbb{M} if and only if T is sufficient for each pair $\{\mu, \nu\}$ of elements of \mathbb{M}.

Theorem 3: If \mathbb{M} is homogeneous, then a statistic T is sufficient for \mathbb{M} if and only if $\frac{d \mu}{d \nu}(\epsilon) T^{-1}(\mathcal{B})$ for each $\mu, \nu \in \mathbb{M}$.

2. Homogeneous Families:

Henceforth, we will assume that m is homogeneous. Let $c(w i)$ denote the cone generated by $M($, excluding the zero measure. That is, $C(t h)$ is the set of all finite linear combinations, with strictly positive coefficients, of elements of \mathcal{M}. Elements of $C O n$ are termed mixtures of elements of \mathbb{M}. Clearly, C(IO) is also homogeneous; hence, the spaces $\mathcal{F}\left(\mathrm{Y}, \mathcal{Q}, \mu \mathrm{T}^{-1}\right)$ are all the same for $\mu \varepsilon C(7 W)$ and may be denoted simply by \mathcal{F}. For $\mu \varepsilon C(M O), P_{\mu}$ maps a to \mathcal{F} and it is clear from the definition of a sufficient statistic that T is sufficient for a subset 72 of $C(\eta)$ if and only if the conditional probability
functions P_{μ} for $\mu \in \mathcal{N}$ are all equal.
Lemma 4: If \mathbb{M} is dominated, $\mathbb{M} \subset \mathrm{C}(\mathcal{M})$, and T is sufficient for \mathbb{M}, then T is sufficient for \mathbb{N}.

Proof: Let λ be that measure equivalent to $\mathcal{I} \eta$ whose existence is assured by Theorem 1. If $\mu \in \mathrm{CO}(\mathbb{O}$, then μ can be written

$$
\mu=\sum_{i=1}^{k} \beta_{i} \nu_{i}
$$

with $\beta_{i}>0, \nu_{i} \in \mathcal{M}$ for $i=1, \ldots, k$. Hence,

$$
\frac{d \mu}{d \lambda}=\sum_{i=1}^{k} \beta_{i} \frac{d \cup i}{d \lambda} \quad(\epsilon) T^{-1}(B)
$$

Thus T is sיfficient for $C(H)$ and hence is sufficient for \mathcal{H}.

In order to characterize sufficient statistics for $\boldsymbol{N} \subset \mathrm{C}(\mathbb{m})$, it suffices, by Theorem 2, to consider a pair

$$
\mu_{I}=\sum_{i \in I} B_{i} \mu_{i}
$$

and

$$
\mu_{J}=\sum_{j \in J} \beta_{j} \mu_{j}
$$

in η, where I and J are finite sets; $\beta_{k}>0$ for $k \in T u J$; and the measures $\left\{\mu_{i}\right\}_{i \in I}$ are distinct members of $l!$, as are the measures $\left\{\mu_{j}\right\}_{j \in J}$. The set $C()$ of all finite mixtures of elements of \mathcal{M} is said to be identifiable (Teicher, 1960, 1961; Yakowitz 1969) if each element of C(170 can be expressed in only one way as a linear combination with positive coefficients of elements of ${ }^{1} / \ell$, except for the order of the summands. Equivalently, $C(T N$) is identifiable if the set T is linearly independent over the real numbers.

The concept of identifiability is very important in establishing the uniqueness and consistency of various estimators of the so called mixing parameters $\left\{\beta_{i}: 1 \in I\right\}$ in a mixture μ_{1} (Yakowitz, 1969).

Given a mixture μ_{1} in $C(M)$ we have for each $E \in Q, F \in B$,

$$
\begin{aligned}
\int_{F} P_{\mu_{I}}(E) d_{\mu_{I}} T^{-1} & =\mu_{I}\left(E \cap T^{-1}(F)\right) \\
& =\sum_{i \in I} \beta_{i} \mu_{i}\left(E \cap T^{-1}(F)\right) \\
& =\sum_{i \in I} \beta_{i} \int_{F} P_{\mu_{i}}(E) d_{i} T^{-1} \\
& =\sum_{i \varepsilon I} \beta_{i} \int_{F} P_{\mu_{i}}(E) \frac{d_{i} T^{-1}}{d d_{I} T^{-1} d \mu_{I} T^{-1} .}
\end{aligned}
$$

Let I_{1}, \ldots, I_{r} be the equivalence classes in I modulo the relation $i \equiv k$ if and only if $P_{\mu_{i}}=P_{\mu_{k}}$; that is, if and only if T is sufficient for the pair $\left\{\mu_{i}, \mu_{k}\right\}$. Then we have

$$
\begin{aligned}
& \sum_{E T J} B_{i} \int_{F} O_{\mu_{i}}(E) \frac{d \mu_{i} T^{-1}}{d \mu_{I} T^{-1}} d \mu_{I} T^{-1} \\
&=\int_{F} \sum_{\ell=1}^{r} \sum_{i E I}^{\sum}{ }_{\ell} B_{i} \frac{d \mu_{i} T^{-1}}{d \mu_{I} T^{-1}} P_{\mu_{I_{\ell}}}(E) d \mu_{I} T^{-1},
\end{aligned}
$$

where $P_{\mu_{I}}(E)$ is the common value of the $P_{\mu_{i}}$ (E) for $i \varepsilon I_{\ell}$. Thus,

$$
P_{\mu_{I}}=\sum_{\ell=1}^{r} \frac{d \mu_{1} \ell^{T^{-1}}}{d \mu_{I} T^{-1}} P_{\mu_{i}}
$$

where ${ }^{H} I_{\ell}$ is the mixture

$$
\mu_{I_{\ell}}={ }_{i} \sum_{\ell} \beta_{i} \mu_{1}
$$

Whenever the conditional probability function $P_{\mu_{I}}$ of a mixture μ_{I} is written in this fashion with I_{1}, \ldots, I_{r} being equivalence classes modulo the relation \equiv, we will say that $P_{\mu_{I}}$ is written in normal form.

Definition 5: The set $C(T)$ is conditionally identifiable with respect to the statistic T if for each pair $\left\{\mu_{I}, \mu_{J}\right\}$ in $C(\not \omega)$, whenever $P_{\mu_{I}}=P_{\mu_{J}}$ and $P_{\mu_{I}}, P_{\mu_{J}}$ are expressed in normal form

$$
\begin{aligned}
& P_{\mu_{I}}=\sum_{\ell=1}^{r} \frac{d_{\mu_{I}} T^{-1}}{d \mu_{I} T^{-1}} P_{\mu_{I_{\ell}}} \\
& P_{\mu_{J}}={ }_{k=1}^{S_{L_{1}}} \frac{d \mu_{J_{k}} T^{-1}}{d \mu_{J} T^{-1}} P_{\mu_{J_{k}}},
\end{aligned}
$$

then $r=s$ and for each $\ell=1, \ldots, r$ there exists exactly one $k=1, \ldots, r$ such that $\frac{d \mu_{I} T_{\ell}^{-1}}{d \mu_{I} T^{-1}}=\frac{d \mu_{J_{k}}^{T-1}}{d \mu_{J} T^{-1}}$ and $P_{\mu_{I}}=P_{\mu_{J_{k}}}$. The set $C(m)$ is marginally identifiable with respect to T if the set $\left\{\mu T^{-1} \mid \mu \varepsilon \mathcal{M}\right\}$ is linearly independent over the real numbers.

Theorem 6: If $C(-m)$ is both marginally identifiable and conditionally identifiable with respect to a statistic T, then $C(\mathbb{T})$ is identifiable. Proof: Suppose $\mu_{I}=\sum_{i \in I} \beta_{i} \mu_{i}=\sum_{j \in J} \beta_{j} \mu_{j}=\mu_{j}$, where the measures in each sum are distinct members of M. Then, expressed in normal form,
and we may assume without loss of generality that

$$
\frac{d \mu_{I} T_{\ell}^{-1}}{d \mu_{I} T^{-1}}=\frac{d \mu_{J} T_{\ell}^{-1}}{d \mu_{J} T^{-1}}
$$

and

$$
P \mu_{\ell}=P \mu_{J} \quad \text { for } \quad \ell=1, \ldots, r \text {. }
$$

Since $\mu_{I} T^{-1}=\mu_{J} T^{-1}$, it follows that $\mu_{I_{\ell}} T^{-1}=\mu_{J_{\ell}} T^{-1}$. For $1, k \in I_{\ell}$, $\mu_{i} T^{-1} \neq \mu_{k} T^{-1}$, for otherwise, since $P \mu_{i}=P \mu_{k}$, we would have $\mu_{i}=\mu_{k}$, contradicting the assumption that $\left\{\mu_{1}: i \in I\right\}$ are distinct. Similarly, the $\mu_{j} T^{-1}$ for $j \in J_{\ell}$ are all distinct. Since $C(7 O)$ is marginally identifiable, I_{ℓ} and J_{ℓ} have the same number of elements and for each $1 \varepsilon I_{\ell}$ there is a unique $j(i) \varepsilon J_{\ell}$ such that $\beta_{i}=\beta_{j(i)}$ and $\mu_{i} T^{-1}=\mu_{j(i)} T^{-1}$. Since $P_{\mu_{i}}=P_{\mu_{j(i)}}$, it follows that $\mu_{i}=\mu_{j(i)}$ for each i\& I_{ℓ}. Therefore, there is one to one map j from I onto J such that $\beta_{f(i)}=\beta_{i}$ and $\mu_{j(1)}=\mu_{i}$ for each $i \varepsilon I$. Hence, $C(M)$ is identifiable, and the proof is complete.

For conditionally identifiable sets of measures, the following theorem and its corollary provide some characterizations of sufficient statistics. Theorem 7: If $7 \boldsymbol{M}$ is homogeneous, $C(M)$ is conditionally identifiable with respect to a statistic T, and μ_{I}, μ_{J} are in $C(m)$, then T is sufficient for the pair μ_{I}, μ_{J} if and only if there exist partitions $I=I_{1} \cup \ldots \|_{r}$ and $J \neq J_{1} \cup \ldots J_{r}$ such that for each $\ell=1, \ldots, r$:
(a)

$$
d\left(\sum_{i \in I_{l}} \beta_{i} \mu_{i}\right) / d\left({\underset{j}{i} J_{l}}^{\beta_{j}} \mu_{j}\right)=\frac{d \mu_{I_{l}}}{d \mu_{J_{l}}}=\frac{d \mu_{L}}{d \mu_{j}}
$$

and
(b) T is sufficient for the set $N_{\ell}=\left\{\mu_{k}: k \varepsilon I_{\ell} u J_{\ell}\right\}$.

Proof: First suppose such partitions exist. By (b) T is sufficient for the set N_{1} and hence, by lemma 4 , it is sufficient for the pair $\left\{\mu_{I_{1}}, \mu_{J_{1}}\right\}$. It follows from (a) and Theorem 3 that T is sufficient for the pair $\left\{\mu_{I}, \mu_{J}\right\}$.

Suppose that T is sufficient for the pair $\left\{\mu_{I}, \mu_{J}\right\}$. Then, expressed in normal form,

$$
{ }_{\ell=1}^{\sum_{=1}^{r}} \frac{d \mu_{I_{\ell}} T^{-1}}{d \mu_{I} T^{-1} P \mu_{I_{\ell}}}=\ell_{\ell=1}^{\sum_{=1}^{r}} \frac{d \mu_{J_{\ell}} T^{-1}}{d \mu_{J} T^{-1}} P_{\mu_{J_{\ell}}}
$$

and we may assume without loss of generality that

$$
\frac{d \mu_{I_{\ell}} T^{-1}}{d \mu_{\mathrm{I}} \mathrm{~T}^{-1}}=\frac{\mathrm{d} \mu_{J_{\ell}} \mathrm{T}^{-1}}{\mathrm{~d} \mu_{J} \mathrm{~T}^{-1}} \text { and } P_{\mu_{\mathrm{I}_{\ell}}}=P_{\mu_{J_{\ell}}} \quad \text { for each } \ell
$$

The condition $P_{\mu_{I_{\ell}}}=P_{\mu_{J_{\ell}}}$ is equivalent to (b). By Theorem 3, there exists a representative $f \in \frac{d \mu_{I}}{d \mu_{J}}$ which is $T^{-1}(\mathcal{B})$ measurable. If $g \varepsilon \frac{d \mu_{I} T^{-1}}{d \mu_{J} T^{-1}}$, then goT is $T^{-1}(\mathcal{B})$ measurable and for each $F \in \mathcal{Z}$,

$$
\begin{aligned}
\int_{T^{-1}(F)}^{g \cdot T} d \mu_{J} & =\int_{F} g d \mu_{J} T^{-1}=\mu_{L} T^{-1}(F) \\
& =\int_{T^{-1}(F)} f d \mu_{J}
\end{aligned}
$$

It follows that $g-T=f$ a.e. $\left(\mu_{j}\right)$. Thus,

$$
\frac{d \mu_{I} T^{-1}}{d \mu_{J} T^{-1}} \cdot T=\left\{g \cdot T \left\lvert\, g \varepsilon \frac{d \mu_{I} T^{-1}}{d \mu_{J} T^{-1}}\right.\right\} \in \frac{d \mu_{I}}{d \mu_{J}} .
$$

Since T is also sufficient for the pair $\left\{\mu_{I_{\ell}}, \mu_{J_{\ell}}\right.$ \}, a similar argument gives

$$
\frac{d \mu_{I_{\ell}} T^{-1}}{d \mu_{J_{\ell}} T^{-1}} \cdot T=\frac{d \mu_{I_{\ell}}}{d \mu_{J_{\ell}}}
$$

for each ℓ. Since $\frac{d \mu_{I_{l}} T^{-1}}{d \mu_{J} T^{-1}}=\frac{d \mu_{I} T^{-1}}{d \mu_{J} T^{-1}}$ for each ℓ, it follows that (a) holds for each $\mathcal{\sim}$ and the proof is complete. Corollary 8: If m is homogeneous and $C(H)$ is conditionally identifiable with respect to a statistic T, then T is sufficient for a pair $\left\{\mu_{I}, \mu_{j}\right\}$ in $C(M)$ if and only if there exist subsets $I_{1} \subset I$ and $J_{1} \subset J$ such that:
(a)

$$
\frac{d \mu_{I_{1}}}{d \mu_{J_{1}}}=\frac{d \mu_{I}}{d \mu_{J}}
$$

and
(b) T is sufficient for $N=\left\{\mu_{k}: k \varepsilon I_{1} \cup J_{1}\right\}$.

Proof: That T sufficient implies the existence of I_{1} and J_{1} satisfying
(a) and (b) is inmediate from Theorem 7. Conversely if I_{1} and J_{1} satisfy
(a) and (b), then T is sufficient for $\mu_{L_{1}}, \mu_{J_{1}}$ by (b) and hence, by (a), T is sufficient for μ_{I}, μ_{J}.

Given a pair of mixtures μ_{1}, μ_{J} in $c(/ / 1)$, we will call their 1ikelihood ratio $\frac{d \mu_{I}}{d \mu_{J}}$ indecomposable if $I_{1} \subset I, J_{1} \subset J$ and
$\frac{d \mu_{1_{1}}}{d \mu_{J_{1}}}=\frac{d \mu_{I}}{d \mu_{j}}$ imply $I_{1}=I$ and $J_{1}=J$. It is clear from Theorem 7 that if $C(M)$ is conditionally identifiable with respect to r and a pair of mixtures μ_{I}, μ_{J} in $C(M)$ have an indecomposable likelihood ratio, then T is sufficient for $\left\{\mu_{I}, \mu_{J}\right\}$ if and only if it is sufficient for $\left\{\mu_{k}: k \in I \quad\right.$ I\}. Also, it is not difficult to see that for each pair H_{I}, μ_{J} in $C(M)$ there exist nonempty subsets $I_{1} \subset I$ and $J_{1} \subset J$ such that

$$
\frac{d \mu_{I_{1}}}{d \mu_{J_{1}}}=\frac{d \mu_{I}}{d \mu_{\mathrm{J}}}
$$

and the likelihood ratio $\frac{d \mu_{1}}{d \mu_{J_{1}}}$ is indecomposable. If μ_{I} and μ_{J} represent the probability laws for two alternarive hypothesce, then there would be two advantages in being able to identify subsets I_{1} and J_{1} satisfying these two criteria. First, the maximum likelihood decision procedure would be simpified, and second, the search for a statistic sufficient for deciding between the two hypotheses and having the property that $C(M)$ is conditionally identifiable could be restricted to those statistics sufficient for $\left\{H_{k}: I_{1} \cup J_{1}\right\}$.

3. Sufficient Linear Statistics for Mixtures of Normals:

If R is a subring of the ring introduced in Section 2 , then with the
usual definition of addition and multiplication by elements of \mathcal{X} the set of all functions $\phi: Q, J$ is a module over R. Thus, it is natural to consider \mathcal{R}-independence of a set \mathcal{A} of such functions. To be precise, \mathcal{d} \mathbb{X}-independent if whenever $\phi_{1}, \ldots, \phi_{\mathrm{m}}$ is a finite set of distinct elements of \mathcal{f} and $\gamma_{1}, \ldots, y_{m}$ are elements of R such that

$$
\gamma_{1} \phi_{1}(E)+\ldots+\gamma_{m} \phi_{m}(E)=0 \text { for each } E \in \cap \text {, }
$$

then $\gamma_{1}=\ldots=\gamma_{m}=0$. If \mathcal{K}^{\prime} is a subring of \boldsymbol{f} which contains all tie bound a don-Nikodym derivatives $\frac{d \mu T^{-1}}{d \nu T^{-T}}$ for $\mu, v \varepsilon c(\mathscr{O})$, then it is clear that λ-independence of the set $\left\{P_{\mu}: \mu \varepsilon \mathcal{M}\right\}$ implies that $C(M)$ is conditionally identifiable with respect to T.

For the remainder of this section we will assume that X is \mathbb{R}^{n}, Y is \mathbb{R}. $(k \leq n)$ and $T: X \rightarrow Y$ is linear and full rank. $Q 2$ and -13 are respectively, the Borelfields on \mathbb{R}^{n} and \mathbb{K}^{k}. We also assume that each $\mathcal{H} \mathscr{M}$ is described by a normal density function f_{μ} with mean m_{μ} and covariance Ω_{μ}, That is, for each $\varepsilon \in Q$.

$$
\mu(E)=\int_{E} f_{\mu} d \lambda n^{\prime}
$$

where λ_{n} is Lebesgue measure on \mathbb{R}^{n}.
By a suitable choice of the coordinate system, we may represent the densities f_{μ} as joint density functions $f_{\mu}(y, z)$ on $\mathbb{R}^{k} \times \mathbb{R}^{n-k}$ while representing T as the projection $T(y, z)=y$. Then the marginal densities

$$
g_{\mu}(y)=\int_{\mathbb{R}^{n-k}} f_{\mu}(y, z) d z
$$

are normal with means τ_{μ} and covariance matrices $T_{\mu} T^{1}$ (Anderson, 1958).

The conditional density functions

$$
h_{\mu}(z \mid y)=\frac{f_{\mu}(y, z)}{g_{\mu}(y)}
$$

are normal as functions of $z \in \mathbb{R}^{\mathrm{n}-\mathrm{k}}$ with means

$$
\begin{equation*}
S m_{\mu}+S \Omega_{\mu} T^{1}\left(\Omega_{\mu} T^{1}\right)^{-1}\left(y-T m_{\mu}\right) \tag{1}
\end{equation*}
$$

and covariances

$$
\begin{equation*}
S \Omega_{\mu} S^{1}-S \Omega_{\mu} T^{1}\left(T \Omega_{\mu} T^{1}\right)^{-1} T \Omega_{\mu} S^{1} \tag{2}
\end{equation*}
$$

where S is the linear operator $S(y, z)=z$. The conditional probabilities $P_{\mu}(E)$ are represented by

$$
P_{\mu}(E \mid y)=\int_{S_{y}(E)} h_{\mu}(z \mid y) d z
$$

where $S_{y}(E)=\left\{z \varepsilon \mathbb{R}^{n-k} \mid(y, z) \in E\right\}$.
Theorem 9: If \mathbb{M} is a family of Borel measures on \mathbb{R}^{n} given by n-variate normal density functions and $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is linear of rank k, then C(IW) is conditionally identifiable with respect to T.

Procf: It can readily be verified that conditional identifiability of $\mathrm{C}(\mathrm{m})$ is not aifected by the change of variables just descizibed, If μ_{I} and μ_{J} are in $c(M)$, then the Radon-Nikodym derivative $\frac{d_{\mu_{1}} T^{-1}}{d \mu_{J} T^{-1}}$ is represented by a function of the form

$$
\frac{g_{I}(y)}{g_{J}(y)}=\sum_{i \varepsilon I} \beta_{i} g_{\mu_{i}}(y) / \sum_{j \varepsilon J} \beta_{j} g_{\mu_{j}}(y) ;
$$

i.e., a ratio of mixtures of k-variate normal density functions, which is continuous. Hence, by the remarks in the first paragraph of this section, it suffices to show that the set $\left\{P_{\mu}: \mu \in \mathbb{M}\right]$ of conditional density functions is R-independent, where R is the subring of \mathcal{F} consisting of those elements of \mathcal{f} which have a continuous representative. To this end, let $P_{\mu_{1}}, \ldots, P_{\mu_{r}}$ be distinct and let $\gamma_{1}, \ldots, \gamma_{r}$ be cont uous real valued functions on \mathbb{R}^{k} such that for each $E \in \mathbb{Q}$,

$$
\gamma_{1}(y) P_{\mu_{1}}(E \mid y)+\ldots+\gamma_{r}(y) P_{\mu_{r}}(E \mid y)=0
$$

for almost :1 y. In particular, choosing for E sets of the form $\mathbb{R}^{k} \times K$, where K is a borel set in \mathbb{R}^{n-k}, we have

$$
\gamma_{1}(y) \int_{K} h_{\mu_{1}}(z \mid y) d z+\ldots+\gamma_{r}(y) \int_{K} h_{\mu_{r}}(z \mid y) d z=0
$$

for almost all y. For each $K, \int_{K} h_{\mu_{i}}(z \mid y) d z$ is a continuous function of y. Hence,

$$
\int_{K}\left(\gamma_{1}(y) h_{\mu_{1}}(z \mid y)+\ldots+\gamma_{r}(y) h_{\mu_{r}}(z|y|) d z=0\right.
$$

for each $y \in \mathbb{R}^{k}$. It follows that

$$
\gamma_{1}(y) h_{\mu_{1}}(z \mid y)+\ldots+\gamma_{r}(y) h_{\mu_{r}}(z \mid y)=0
$$

for each $y \in \mathbb{N}^{k}, z \in \mathbb{R}^{n-k}$. Let F be the set of $y \in \mathbb{R}^{k}$ where two or more of the conditional donsity functions $h_{\mu_{i}}(z \mid y)$ are equal as functions
of z. It is easily seen from (1) and (2) that the Lebesque measure of F is zero. For $y \notin F, \quad\left\{h_{\mu_{i}}(\cdot \mid y), \ldots, h_{\mu_{r}}(\cdot \mid y)\right\}$ is a set of distinct normal density functions of 2. Hence, (Yakowitz and Spragins; 1968), they are linearly independent over the real numbers. Therefore, for y F, $\gamma_{1}(y)=\ldots=\gamma_{r}(y)=0$. That is, $\gamma_{1}=\ldots=\gamma_{r}=0$ as elements of \mathcal{J}. Thus, $c(m)$ is conditionally identifiable.

If $\mu_{I}={ }_{i} \sum_{I} \beta_{i} \mu_{i}$ is in $C(M)$, then μ_{I} has a density function

$$
\mathbf{f}_{\mu_{I}}=\sum_{i \varepsilon I} \beta_{i} f_{\mu_{i}}
$$

which is a mixture of normal density functions. The following theorem is an immediate consequence of Theorems 7 and 9 .
theorem 10: Given the assumptions of Theorem 9, the statistic T is sufficient for a pair $\left\{\mu_{\mathrm{I}}, \mu_{\mathrm{J}}\right\}$ in $\mathrm{C}(77)$ if and only if there exist partitions $I=I_{1} \cup \ldots I_{r}$ and $J=J_{1} \cup \ldots U J_{r}$ such that for each $\ell=1, \ldots, r$,
(a)

$$
\begin{aligned}
\sum_{i \in I}^{\Sigma} \beta_{\ell} f_{\mu_{i}}(x) / & \sum_{j \varepsilon J}^{\sum} \beta_{j} f_{\mu_{j}}(x) \\
& =\sum_{i \in I} \beta_{i}{ }_{\mu_{i}}(x) / \sum_{j \varepsilon J} \beta_{j} f_{\mu_{j}}(x) \text { for each } x \in \mathbb{R}^{n},
\end{aligned}
$$

and
(b) $\quad \mathrm{T}$ is sufficient for the family $\left\{\mathrm{f}_{\mu_{k}}: k \in \mathrm{I}_{\ell}{ }_{U J_{\ell}}\right\}$ of normal density functions.

There is set of purely algebraic conditions which are equivalent to (b);
namely, that the expressions

$$
\begin{aligned}
& \Omega_{\mu_{k}}-\Omega_{\mu_{k}} T^{1}\left(T \Omega_{\mu_{k}} T^{1}\right)^{-1} T \Omega_{\mu_{k}} \\
& m_{\mu_{k}}-\Omega_{\mu_{k}} T^{1}\left(T \Omega_{\mu_{k}} T^{1}\right)^{-1} T m_{\mu_{k}} \\
& \Omega_{\mu_{k}} T^{1}\left(T \Omega_{\mu_{k}} T^{1}\right)^{-1}
\end{aligned}
$$

are all independent of $k \in I_{\ell} \cup J_{\ell}$ (Peters, Redner, and Decell; 1976).

REFERENCES

1. Anderson, T.W. (1958). An Introduction to Multivariate Statistical Analysis. John Wiley and Sons. New York.
2. Bahadur, R.R. (1954). Sufficiency and statistical decision functions. Ann. Math. Statist. 25, 423-463.
3. Halmos, P.R. and Savage L.I. (1949). App1ication of the Radon-Nikodym theorem to the theory of sufficient statistics. Ann. Math. Statist. 20. 225-241.
4. Peters, B.C., Redner R., and Decell, H.P. (1976). Characterizations of 1inear sufficient statistics. Tech. Report no. 59, Department of Mathematics , University of Houston.
5. Teicher, H. (1961). Identifiability of mixtures. Ann. Math. Statist. 32, 244-248.
6. Teicher, H. (1963). Identifiability of finite mixtures. Ann. Math. Statist. 34, 1265-1269.
7. Yakowitz, S. and Spragins, J. (1968). On the identifiability of finite mixtures. Ann. Math. Statist. 39, 209-214.
8. Yakowitz, S. (1969). A consistent estimator for the identification of finite mixtures. Ann. Math. Statist. 4D, 1728-1735.
