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PULSE ANALYSIS OF ACOUSTIC EMISSION SIGNALS
 

J. R. Houghton and P. F. Packman
 

ABSTRACT
 

A method for the signature analysis of pulses in the frequency
 

domain and the time domain is presented. Fourier spectrum, Fourier
 

transfer function, shock spectrum and shock spectrum ratio were
 

examined in the frequency domain analysis and pulse shape deconvo

lution was developed for use in the time domain analysis. Comparisons
 

of the relative performance of each analysis technique are made for
 

the characterization of acoustic emission pusles recorded by a
 

measuring system. To demonstrate the relative sensitivity of each of
 

the methods to small changes in the pulse shape, signatures of com

puter modeled systems with analytical pulses are presented. Opti

mization techniques are developed and used to indicate the best
 

design parameters values for deconvolution of the pulse shape.
 

Several experiments are presented that test the pulse signature
 

analysis methods on different acoustic emission sources. These in

clude acoustic emissions associated with: a) crack propagation, b)
 

ball dropping on a plate, c) spark discharge and d) defective and
 

good ball bearings. Deconvolution of the first few micro-seconds
 

of the pulse train are shown to be the region in which the signifi

cant signatures of the acoustic emission event are to be found.
 

0,
 



ACKNOWLEDMENTS
 

The financial support for this research was provided by the
 

National Aeronautics and Space Administration Measuring Senors
 

Branch Marshall Space Flight Center under Grant No. NSG 8012 with
 

Mr. Ray C. Holder as project monitor and Air Force Office of
 

Scientific Research under Grant No. AFOSR 74-2737 with Mr. William
 

Waker as project monitor and is hereby gratefully acknowledged.
 

ii 



TABLE OF CONTENTS
 

Page
 

ACKNOWLEDGMENTS .	 ii. 

LIST OF 	TABLES . vi
 

LIST OF FIGURES. . .	 vii
 

Chapter
 

I. INTRODUCTION. .l................ 	 1
 

Nondestructive Testing .. . ....... .
 
X-ray photography........... . 2
 

Background of Acoustic Emission
 

Dye penetrants. . ............ 2
 
Eddy currents............ .. 2
 
Ultrasonic detection. .......... 3
 
Magnetized particles. .......... 3
 
Acoustic emission.......... .. 3
 

Research .. . 5
 
Signal Counting..............8
 
Signature Analysis ............ 10
 
The Present Study. .l. . ......... 11
 

II. ASSESSMENT OF PULSE ANALYSIS METHODS. ..... 13
 

Introduction ............... 13
 

Influence of the Transducer on
 

Mathematical Definition of the
 

Spectrum Analysis Methods.......... 18
 
Fourier spectrum . . .-. . . ...... 18
 
Fourier transfer function spectrum . 22
 
Shock spectrum ............. 23
 
Shock spectrum ratio . ......... 27
 

Pulse Shape Analysis ... . ....... 29
 

System......... . . ....... 33
 
Model Development ............ 34
 
Deconvolution method.. . ....... 41
 

Summary of Evaluation of Signature
 
Analysis Methods ............ 42
 

III. 	 OPTIMAL DESIGN OF THE TRANSDUCER AND
 
FILTER MEASUREMENT SYSTEM .......... 45
 

iii
 



iv
 

Introduction. ................ 45
 

Optimal design of transducer-


Summary of Optimal Design for
 

Design Strategy and Criteria.......... 47
 
Results ._...... .. . ......... 48
 

General system study results. ....... 51
 

filter system .... .. . ........ 58
 

Measurement System. ............ 76
 

IV. DECONVOLUTION OF EXPERIMENTAL PULSES ....... 79
 

Introduction.... .................. 79
 
Techniques for Testing Transducer
 
Reproduceability for Pulse Recording . 80
 

Ultrasonic transducer driven as a
 

Electrical Spark Discharge for
 

Setup of spark probe and data
 

Mathematical Models for Digital
 
Event Recorder, Tape Recorder,
 

Discussion of the Influence of Decon
volution Procedure with Experimental
 

Deconvolution with Different Transducers
 

Discrimination between AE Sources
 

Discrimination between Sound and
 

Grinding of glass powder.... . .. .... 81
 
Capacitive transducer as a standard . . 81
 
Electric spark discharge........... 81
 

steady state energy source. ....... 82
 

Acoustic Wave Calibration . ........ 83
 

collection procedure......... .... 84
 

Amplifier and Transducer Components . . 86
 
Digital Event Recorder. ........... 91
 
Tape Recorder .. . ....*... 93
 
Amplifier and Filter. ..... 93
 
Transducer. . . ..... .. 98
 
Compact Tensile Test Specimen .... ..... 98
 

Traces. .................. 104
 
Low-Pass Filter ............... 105
 
Repeatability Experiment ............ ... 108
 

Experiment. ................ 114
 

Experiment....... .. ........ 121
 

Defective Ball Bearings .......... 122
 

V. CONCLUSIONS AND RECOMMENDATIONS. ......... 148
 

Recommendations for Future Research ..... 150
 
Experiment with a known input
 

pulse shape ............... 151
 



v 

Finite element model of the
 
structure. ...... ............ 151
 

Optimization to find a model of
 
the structure.... . .. .......... 152
 

Deconvolution by analog computer.. ....... 152
 
Evaluation of digital event recorder ...... 152
 
Transducer for pulse recording........ .. 153
 

APPENDIXES...................... .. 154
 

REFERENCES. ....................... 166
 



LIST OF TABLES
 

1. 	Factors That Influence Acoustic Emission
 
Generation.................... . 7
 

2. optimal Design for Deconvolution Summary. ...... 64
 

3. 	Transducers Used for Evaluation of Acoustic
 
Emission Pulses .................. 92
 

vi
 



LIST OF FIGURES
 

1. Acoustic Emission Pulse from Ball Bearing Rig . . 14 

2. Acoustic Emission Pulse from Electrical Spark . . . 15 

3. 	Schematic Diagram of Transducer, Filter and
 
Recording System. ................. 17
 

4. 	Fourier Spectrum of Two Pulses: a) Square Pulse
 
Input; b) Unknown AE Pulse Input. ......... 20
 

5. 	Fourier Spectrum for Triangular Pulse and 
Triangular Pulse with a 17% Perturbation 
on Trailing Edge of Pulse ............. 21 

6. 	Transfer Function in Frequency Domain for Two
 
Pulses Each with Different Perturbation
 
Relative to a Simple Pulse: a) 2% Perturbation
 
on Leading Edge of Pulse; b) 2% Perturbation
 
on Both Edges of Pulse. . ............. 24
 

7. 	Shock Spectrum of Relative Motion for Triangular
 
Pulse and Triangular Pulse with a 5% Pertur
bation (Damping Ratio = 0.0001) . ......... 26
 

8. 	Ratio of Shock Spectra for Two Pulses Relative
 
to a Simple Pulse: a) 5% Perturbation in
 
Leading Edge of Pulse; b) 5% Perturbation on
 
Both Edges of Pulse . ............... 28
 

9. Fourier Transfer Function Plots for Perturbation
 
of Different Height Located at 0.125 Tp from
 
the Leading Edge of a Triangular Pulse. . ..... 30
 

10. 	 Shock Spectrum Ratio Plots for Perturbation of
 
Different Height Located at 0.125 Tp. . ...... 31
 

11. 	 Shock Spectrum Ratio Plots for Perturbation 0.15
 
Peak Height at Different Locations along the
 
Pulse................ 	 ..... .. 32
 

12. 	 Three Sample Acceleration Pulses Input at the
 
Transducer Base, Z1 vs Time x Fn . ......... 38
 

vii
 



viii
 

13. 	 Recorded Output of Three Sample Pulses,
 
Sequence as in Figure 12, Z4 vs Time Fn . ..... 39
 

14. 	 Fourier Spectrum of Three Sample Output
 
Pulses, Sequence as in Figure 13 ......... 40
 

15. 	 Deconvolution of Three Sample Pulses,
 
Z5 ,Sequence as in Figure 12. ........... 43
 

16. 	 Flow Chart for Frequency Domain and Time
 
Domain Objective Function Solution ........ 49
 

17. Square Pulse: C = 0.01; Fh/Fn= 0.1;
TpFn = 0.3. a) Time Domain;nb) Fre
quency Spectrum.................. 52
 

18. 	 Triangular Pulse: c = 0.01; Fhp/Fn = 0.1;
 
TPFn = 0.3. a) Time Domain; b)Fre
quency Spectrum. . ........... . .... 53
 

19. 	 Cosine Pulse: C = 0.01; Fhp/Fn = 0.1;
 
TpFn = 0.3. a) Time Domain; b) Fre
quency Spectrum. ................. 54
 

20. Square Pulse: = 0.01; Fhp/Fn = 0.1; 
TpFn = 8.0. a) Time Domain; b) Fre
quency Spectrum. ................. 55
 

21. 	Triangular Pulse: = 0.01; Fhn/Fn = 0.1;
 
TpFn = 8.0. a) Time Domain; b) Fre
quency Spectrum. ................. 56
 

22. 	 Cosine Pulse: 0.01; Fhp/Fn = 0.1;
 
TpFn = 8.0. a) Time Domain; b) Fre
quency Spectrum. ................. 57
 

23. 	 Frequency Domain Objective Function Field for
 
a Square Pulse: TpFn = 0.3. ........... 62
 

24. 	 Time Domain Objective Function Field for
 
a Long Cosine Pulse: TpFn = 8.0 ......... 65
 

25. Summary of Optimal Designs for Triangular
 
(A), Square (13) and Cosine (o) Pulses
 
of Various Lengths ................ 66
 

26. 	 Square Pulse: c = 1.66; Fhp/Fn = 1.43;
 
TpFn = 8.0 .................... 69
 

27. 	 Deconvolution of a Family of Short Pulses;
 
= 0.01; Fhp/Fn = 0.1 .............. 71
 



ix 

28. Deconvolution of a Family of Short Pulses; 
C = 1.66; Fhp/Fn = 1.44. ............. 72 

29. Deconvolution of a Family of Long Pulses; 
= 0.01; Fhp/Fn = 0.1 .............. 73 

30. Deconvolution of a Family of Long Pulses; 
c = 1.66; Fhp/Fn = 1.44. ............. 74 

31. Photograph of the Spark Discharge Setup. ...... 85 

32. Photograph of the Laboratory Setup for 
Acoustic Emission Research ............ 88 

33. Flow Diagram of the Components Used for 
the Spark Discharge Measurements with 
Four Different Transducers ............ 89 

34. Photographs of Selected Components Used in 
the Acoustic Emission Experiments. ........ 90 

35. Digital Event Recorder Characteristics 
and Model. .................... 94 

36. Tape Recorder Characteristics and Model........ 95 

37. Amplifier and Filter Characteristics and 
Model for Bruel and Kaerj Type 2625 System . . . 96 

38. Amplifier and Filter Characteristics and 
Model for Dunegan/Endevco Model 2649 System. . . 97 

39. Transducer Characteristics and Model for 
Bruel and Kjaer Model 4339 Accelerometer ..... 99 

40. Transducer Characteristics and Model for 
Bruel and Kjaer Model 4344 Accelerometer .i.... 100 

41. Transducer Characteristics and Model for 
Dunegan/Endevco Model D9202 Acoustic 
Emission Transducer. ............... 101 

42. Flat Plate Model and Characteristic Curve 
Derived from the Fourier Frequency 
Spectrum Curves. ................. 103 

43. Low-Pass Filter Characteristics and Model 
Used for Attenuation of Digital Event Re
corder Frequencies ................ 106 



44. 	 Block Diagram of the Master Computational
 
Routine. ..................... 107
 

45. 	 As-received Time Domain Traces for Three
 
Spark Discharges from the Dunegan/Endevco
 
Transducer .................... 109
 

46. 	 Frequency Spectrum of Pulses Shown in
 
Figure 45. .................... 110
 

47. 	 Deconvolution through the Flat Plate Model
 
of the Results Shown in Figure 45. .i.. ..... 111
 

48. 	 Frequency Spectrum of the Pulse Deconvolution
 
Shown in Figure 47 ................ 112
 

49. 	 Shock Spectrum Ratio of Similar Deconvolution
 
Pulses Shown in Figure 47. ............ 113
 

50. 	 Relative Locations of the Transducers on a
 
Single-Edge Cracked Compact Tensile Frac
ture Specimen and the Spark Probe. ........ 116
 

51. 	As-received Time Domain Trace for Spark
 
Discharges Received by Three Different
 
Transducers. ................... 117
 

52. 	 Frequency Spectrum of Pulses Shown in
 
Figure 51. .i................... 118
 

53. 	 Deconvolution through the Flat Plate
 
Model for the Pulse Shown in Figure 51 ...... 119
 

54. 	 Frequency Spectrum of the Pulse Deconvolu
tion Shown in Figure 53. ............. 120
 

55. As-received Time Domain Traces from the
 
Following Acoustic Emission Sources: a)
 
Spark Discharge, b) Ball Impacting and c)
 
A Growing Crack in A Tear Test .......... 123
 

56. 	 Frequency Spectrum of Pulses Shown in
 
Figure 55. .................... 124
 

57. 	 Deconvolution through the Flat Plate Model
 
of the Results Shown in Figure 55. ........ 125
 

58. 	 Frequency Spectrum of the Pulse Deconvolu
tions Shown in Figure 57 ............ 126
 



59. Bearing Mount Model and Characteristic Curve
 
Derived from the Fourier Frequency
 
Spectrum Curves. ................. 


60. 	 Background Signal with the Bearing
 
Stationary .................... 


61. 	Acoustic Emission from a Clean Well
 
Lubricated Bearing Running With a
 
700 lb Load. ................... 


62. 	 Acoustic Emission from a Clean Well
 
Lubricated Bearing with a Load of
 
700 lb ...................... 


63. 	 Acoustic Emission from a Clean Well Lubri
cated Bearing with a 700 lb Thrust ........ 


64. 	 Acoustic Emission from a Bearing with a Cut in
 
the Race; 700 lb Thrust. ............. 


65. 	 Acoustic Emission from a Bearing with a Cut
 
in the Race; 700 lb Thrust ............ 


66. 	 Acoustic Emission from a Bearing with a Cut
 
in One Ball; 700 lb Thrust ............ 


67. 	 Acoustic Emission from a Bearing with a Cut
 
in One Ball; 700 lb Thrust ............ 


68. 	 Shock Spectrum Ratio of Deconvoluted Traces
 
of a Clean Bearing Relative to the
 
Acoustic Emission Shown in Figure 61(b). ..... 


69. 	 Shock Spectrum Ratio of Deconvoluted Traces
 
of a Bearing with a Cut in the Race
 
Relative to the Trace in Figure 61(b). ...... 


70. 	 Shock Spectrum Ratio of Deconvoluted Traces
 
of a Bearing with a Cut in One Ball
 
Relative to the Trace in Figure 61(b). ...... 


71. 	Shock Spectrum Ratio of As-received Traces
 
of a Bearing with a Cut in the Race
 
Relative to the Trace in Figure 61(a). ...... 


72. 	 Shock Spectrum Ratio of As-received Traces
 
of a Bearing with a Cut in One Ball
 
Relative to the Trace in Figure 61(a).. ...... 


73. 	 Bearing Tests: Superimposed Shock Spectrum; 
a) As-received Traces, b) Deconvoluted Traces. . 

xi 

129
 

130
 

131
 

132
 

133
 

134
 

135
 

136
 

137
 

138
 

139
 

140
 

141
 

142
 

. 146
 



xii 

74. Subroutines, R.K. Gill and Runge........ . .. 163 

75. Subroutine Low-Pass Filter .. ........... 164 



CHAPTER I
 

INTRODUCTION
 

Nondestructive Testing
 

Nondestructive testing has been one of the most rapidly
 

growing technical fields. Increasingly, design engineers are
 

specifying nondestructive evaluations of elements and are
 

accepting the additional cost of nondestructive testing (NDT)
 

particularly where there is danger to a structure of fatigue
 

stress, stress corrosion or catastrophic crack growth. Frac

ture critical analysis of designs is an important area of
 

attention at NASA, in the armed forces, and in the nuclear
 

power industry. A fracture critical component is one where
 

premature failure would result in loss of the total structure
 

or shut-down of the total system. These components must be
 

designed and verified safe by two different design processes:
 

standard design and fracture mechanics design procedures.
 

An interest in improving the sensitivity, reliability and
 

ease of nondestructive testing methods accompanies the growth
 

of fracture critical analysis in designs (1).
 

Acoustic emission techniques are relatively new in the
 

field of nondestructive testing and promise to be among the
 

most reliable techniques for in situ determination of struc

tural integrity. Following is a summary of the most
 

1
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important techniques of nondestructive testing, including
 

their methods and their limitations.
 

X-ray photography
 

This method utilizes electromagnetic radiation trans

mission through the test piece. The resolution for detection
 

of a crack or void is limited by: 1) the grain size of the
 

x-ray film, 2) the orientation of the crack relative to the
 

x-ray film plane, and 3) the thickness of the material
 

through which the x-rays pass. The sensitivity limit of
 

crack detection is approximately 3 mm. The 90 percent prob

ability of detection with a 95 percent confidence level
 

(90/95 limit) is a 12 mm crack length (2).
 

Dye penetrants
 

This method is used primarily for surface crack detec

tion by applying a penetrating dye solution, wiping the ex

cess off the surface, and then applying a developer solution
 

to draw the penetrating dye from the defect. The sensitivity
 

of this NDT method varies with the crack length, 2C, and the
 

crack depth, a. For an a/2C ratio of 0.5, the detectable
 

limit is on the order of a 2 mm crack length and the 90/95
 

limit is 4 mm.
 

Eddy currents
 

Eddy current methods detect flaws by permeability
 

changes on the surface and in the near subsurface. The
 

field of view is less than given by both the x-ray and
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dye methods; it is limited to the diameter of the field pro

jected by the detector. The detectable limit of void length
 

is approximately 1 mm and the 90/95 limit is a 3 mm void
 

length.
 

Ultrasonic detection
 

This method of detecting flaws uses a high frequency
 

pressure radiation transmitted into the test piece. The
 

radiation may be received by the transducer as through
 

transmission or as reflected transmission. The flaws are
 

detected either by a loss of energy with respect to the
 

energy received on either side of the flawed area or by the
 

reflected energy. The detectable limit of cracks is 1 mm
 

and the 90/95 limit is approximately 2 imm.
 

Magnetized particles
 

A solution with a finely dispersed suspension of mag

netic particles is used to detect surface flaws and near
 

subsurface flaws. The solution is poured over the surface
 

and a magnetizing field is applied to the specimen. At a
 

flaw location, there will be a perturbation of the flux lines
 

and the particles in solution will gather around the pertur

bation. The detectable limit of cracks is approximately
 

1 mm and the 90/95 limit is 2 mm.
 

Acoustic emission
 

The acoustic emission (AE) method of NDT is used to
 

detect high frequency pressure waves emitted by the growing
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defects. This method has been used to locate the area where
 

a crack is growing, but it has not been used to estimate the
 

crack size. The sum of the acoustic emission bursts and the
 

time rate of the emissions has been correlated with crack
 

growth rate in many materials. The AE signals from crack
 

growth have been associated with dislocation movement as the
 

plastic zone is growing and is on the order of 2 to 60 x
 

10-6 mm. A 90/95 limit has not been established for the
 

ability of this method to locate cracks. Location of cracks
 

within ± one wall thickness of a pressure vessel has been re

ported from overload proof tests (3).
 

There are several reasons why AB measurements are
 

preferable over other types of NDT tests. The AE signals
 

are detectable in both the working situation and during the
 

periodic proof testing. Also, the signals can be detected
 

remotely from the growing crack by using an array of trans

ducers. Thus costly disassembly is deferred or even avoided
 

until it is necessary to view the defect directly with other
 

NDT tools. Additional reasons for selecting AE measure

ments are the low cost of the equipment and results are
 

immediately available at the time of testing. Because of
 

the potential for this particular type of inspection, this
 

study concentrates on the AE method for flaw characteriza

tion.
 



Background of Acoustic Emission Research
 

Researchers are continually developing new methods
 

for increasing the range of application of acoustic emission,
 

e.g., in'the fields of flaw detection, indirect mechanical
 

measurement of flow and monitoring the performance of rotat

ing equipment. Present acoustic emission emphasis has been
 

directed toward the understanding of pulses generated during
 

the propagation of material defects. The equipment, elec

tronic techniques, and associated science can easily be ex

tended to the study of acoustic pulses produced by other
 

types of generating mechanisms, such as rotating equipment
 

and wearing surfaces.
 

It has been established by prior research that acoustic
 

emissions result from slip-produced pressure waves during
 

dynamic processes within a material. In other words, the
 

acoustic emission is a transient elastic wave generated by
 

the rapid release of energy within the material from a local

ized source.
 

The first serious investigation of the acoustic
 

emission phenomenon was performed by Kaiser (4). In 1950
 

he reported the results of his study on several metals, all
 

of which exhibited the acoustic emission phenomenon upon
 

loading. He attributed the acoustic emissions emanating from
 

polycrystalline specimens to slip originating in the grain
 

boundary interface. Stresses in the specimens were believed
 

to cause interactions at the interfaces of adjacent grains,
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resulting in the emissions. He also observed that the fre

quency and amplitude of the emissions had characteristic
 

spectra and were related to the stress level for a given
 

material.
 

Investigation of the acoustic emission phenomenon in
 

the USA was begun by Schofield (5,6) who did extensive re

search in the area of deformation mechanisms as sources of
 

emissions after 1955. Schofield did most of his work on
 

single crystals which were good producers of acoustic emis

sions. Numerous sources of acoustic emission in metals have
 

subsequently been identified. Table 1 lists typical material
 

factors that influence acoustic emission generation. Studies
 

also indicate that there are no simple characteristic spectra
 

of frequency and amplitude emitted for a material, and that
 

these were not the important parameters to be used for study
 

of a material.
 

Recently, studies have been conducted to again analyze
 

the frequency spectra of acoustic emissions in metals and
 

nonmetals (7-11). Beattie (11) suggests that the acoustic
 

pulse contains much more information than has been extracted
 

by conventional ring-down count analysis and that more re

fined signal processing techniques can be applied to the
 

pulse to obtain additional information about the nature of
 

the signal.
 

In a recent special publication by the Acoustic
 

Emission working Group, ASTM-STP 505, many authors presented
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TABLE 1
 

FACTORS THAT INFLUENCE ACOUSTIC EMISSION GENERATION
 

Higher Amplitude AE Pulses Lower Amplitude AE Pulses
 

Large grain size Small grain size
 

Cleavage fracture Shear deformation
 

Anisotropy Isotropy
 

Flawed material Unflawed material
 

Thick section Thin section
 

Twinning material Nontwinning material
 

Martensitic phase Diffusion controlled
 
transformations transformations
 

Low temperature High temperature
 

High strength Low strength
 

High strain rate Low strain rate
 

SOURCE: Dunegan Research, "Factors Affecting Acoustic
 
Emission Response from Materials," Materials Research and
 
Standards, Vol. 11, No. 3, March 1971, p. 4.
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state-of-the-art papers covering applications of acoustic
 

emission (12). The transient stress waves generated by the
 

rapid release of energy within a material have been applied
 

to fundamental studies of the deformation of materials, mate

rial evaluation, nondestructive testing, and evaluation of
 

structural integrity. Modern instrumentation, electronics,
 

and data processing techniques have overcome many of the dif

ficulties encountered in the past so that it is no longer
 

necessary to isolate the mechanical loading system from the
 

specimens under study to obtain the significant AE signals.
 

Present AE measurement systems
 

In order to understand and identify the pulses gener

ated by defects in materials and to associate the pulses with
 

specific phenomena within the material, an analysis of the
 

acoustic signal must be performed. Usually this analysis is
 

approached from one of two directions: signal (or pulse)
 

counting or signature (or frequency) analysis.
 

Signal counting. Much of the research today in acous

tic emission non-destructive testing is in counting pulses
 

emanating from a source undergoing plastic deformation (3).
 

All pulses whose amplitude is greater than some preselected
 

baseline noise signal level are counted as a function of
 

time. Either the total number of pulses or the pulse rate
 

is used as one variable, and stress or strain and/or some
 

other mechanical variable are recorded on an X-Y-Y recorder
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to get a characteristic curve. A family of characteristic
 

curves is collected and judged for the influence of the vari

able under investigation, such as load or specimen geometry.
 

Liptai (3) has given a very useful summary of AE tech

niques using pulse counting for materials examination. For
 

unflawed specimens of beryllium in a creep test, the follow

ing relation has been found between the AE count rate, N,
 

time, t, and steady state applied stress, a:
 

N = D tM expB b (i)
 

where D, M and B are constants.
 

AE pulse counting has been shown to be useful for the
 

detection of growing cracks. Flaws and cracks act as stress
 

concentration zones, and plastic deformation will occur be

fore the average stress reaches the yield stress. In frac

ture mechanics theory it has been demonstrated that the
 

stresses near the tip of a crack in an idealized solid are
 

completely controlled by a stress intensity factor K.
 

K aV/a (2)
 

where a equals applied stress and 2a is the crack length,
 

i.e., central type of crack in infinite plate. Thus experi

ments have been conducted to define the dependence of the
 

acoustic emissions generated in the plastic zone of a crack
 

tip and K. The relation found is:
 

ZN = C (3) 
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where ZN is the total number of counts, and C and A are con

stants. The exponent A varies from 4 for 7075-T6 aluminum
 

specimens (13) to approximately 8 for beryllium (14).
 

There are many other examples where AE pulse counting
 

is being applied in research on materials failure. In the
 

bulk of this work the variables ZN and N are measured and
 

correlated with a physical measurement such as creep, corro

sion, crack growth, etc.
 

Signature analysis. In this procedure, the total
 

available frequency range of the signals is examined. Spe

cific frequency peaks are analyzed, after their preprocessing
 

(filtering and shaping) and their storage on a magnetic tape.
 

A 'typical' frequency of the generating process is sought,
 

which can then be used for future identification.
 

Graham and Alers (8) developed an experiment for the
 

analysis of a single AE burst from a growing defect in metal.
 

The frequency signature from 0 to 2 mHz of a burst was com

puted and found to be similar to acoustic 'white noise' with
 

slight perturbations from pulse to pulse. They reported dif

ferences in signatures between tensile crack growth, stress

corrosion induced crack growth, and plastic flow.
 

Frequency analysis techniques used for signal identi

fication and signature analysis present several fundamental
 

problems. There are two major sources of misinterpretation:
 

1) the frequency response of the transducer and 2) frequency
 

shifts and mode conversion within the geometry of the
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structure. It is therefore important to consider alternative
 

methods of signal analysis. In particular, a signature
 

analysis that models the nature of the pulse in the time
 

domain is desirable.
 

One powerful technique for signature analysis is called
 

pulse testing (15). In this process Fourier transfer func

tions are developed from the Fourier transforms of both the
 

input amplitude (disturbance source) and the output amplitude
 

of the measured signal. If the transducer transfer function
 

could be described adequately, it is anticipated that noise
 

and errors produced by the measuring system and external
 

generators could be minimized.
 

The Present Study
 

This dissertation is an investigation of acoustic
 

emission (AE) measurement methods for use in nondestructive
 

evaluation. The primary objective is to develop a technique
 

for examining AE pulses which could reliably discriminate
 

between AE pulses from noncritical sources and AE pulses from
 

a growing crack.
 

Different methods for analyzing individual pulses by
 

examination of signatures in the frequency domain and in the
 

time domain are developed and examined. The time domain
 

signature uses a deconvolution method which effectively re

moves the dynamic contributions of the transducer measure

ment system.
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This study also investigates the ideal characteristics
 

for a transducer and filter measurement system. The optimum
 

coefficients for the AE system described were not tested
 

experimentally because 1) the means for manufacturing an
 

optimum transducer are not available and 2) the results ob

tained with the deconvolution method appear to minimize the
 

need to optimize the system for this study.
 

Experimental tests were conducted and the results from
 

the different AE pulses examined. Mathematical models for
 

the components of the measuring system are presented in the
 

equation form and in a Bode frequency plot. Four experiments
 

were conducted to:
 

1. 	evaluate the reproduceability of the pulse record
ings
 

2. 	test the relative performance of different trans
ducers
 

3. 	test the ability of one transducer to distinguish
 
between different AE sources, and
 

4. 	test the performance of an AE transducer on a ball
 
bearing test rig for bearings with and without
 
defects.
 

The following chapters present the analysis, findings
 

and conclusions of this study. Suggestions for further re

search and improvements in the deconvolution method of AE
 

measurement are also presented.
 



CHAPTER II
 

ASSESSMENT OF PULSE ANALYSIS METHODS
 

Introduction
 

The principal methods for analysis and evaluation of
 

acoustic emission stress waves are the following: 1) fre

quency spectrum, 2) total number of acoustic emission counts
 

from a transducer ringdown, 3) count rate, 4) amplitude
 

distribution and 5) rise time of initial burst.
 

The count rate and the total number of counts are the
 

most widely used. They have been correlated with stress
 

intensity factors, applied stress, number of fatigue cycles,
 

and applied strain (12). The present state of the analysis
 

of acoustic emission signals similar to the one shown in
 

Figures 1 and 2 has been primarily in the area of simple
 

signal statistics such as the number of pulses above a given
 

pulse amplitude.
 

Several of the available methods for dealing with pulse
 

analysis have been tested for their relative sensitivity in
 

distinguishing between different types of pulses. The work
 

reported in this chapter is a theoretical analysis of the
 

pulse analysis methods with idealized geometrical pulses
 

substituted for actual test pulses. The study described
 

herein was conducted to find an analysis method selective
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Fig. I. Acoustic emission pulse from ball bearing rig.
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enough to distinguish between separate acoustic emissions
 

associated with 1) an actively growing crack and 2) extrane

ous signals of short duration.
 

A phase of this study was initiated to determine how
 

effective the available pulse analysis methods are in segre

gating pulses of different types after they have passed
 

through an acoustic emission transducer and filter measure

ment system. Since no adequate model was available to
 

describe the dynamic behavior of an acoustic emission pick

up, a simple single-degree-of-freedom model of an acceler

ometer was used for the computer model. Filters in the meas

uring system are modeled as a single-pole passive high-pass
 

filter and low-pass filter. The system is shown in Figure 3.
 

The pulse shapes, which any pulse analysis methods must
 

deal with, were considered to be 1) large changes in the
 

shape as represented by a triangle, square, and displaced
 

cosine pulse as well as 2) small perturbations on the pro

file of a large pulse. The criteria for judging the accuracy
 

of each pulse analysis method is how well each method identi

fied differences in pulse shapes.
 

The pulse analysis techniques tested on a triangular
 

pulse with small perturbations are: 1) Fourier spectrum;
 

2) Fourier transfer function; 3) shock spectrum; 4) shock
 

spectrum ratio.
 

The influence of the measuring system on the pulse
 

analysis was tested with three different analytical pulses:
 



Transducer Z2 High Pass Z3 Low Pass Z 'Data Storage Z 5 
Z1 X Fe FD econvoltion 

J_An"alysis 

J ,-,Yj (normalized) Y4 (normalized) 

Fig. 3. 
Schematic diagram of transducer, filter, and
 
recording system.
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displaced cosine, square and triangle. Fourier spectrum was
 

used to analyze the pulse at different locations in the meas

uring system. Several deconvolution methods were also used.
 

Spectrum Analysis Methods
 

Four techniques follow for signature analysis performed
 

in the frequency domain. Signature analysis in the time do

main are rise-time analysis and deconvolution. Rise-time
 

analysis is simply a study of the shape of the leading edge
 

of a pulse. Deconvolution is described later in this chap

ter.
 

Fourier spectrum
 

The Fourier transform of a pulse is the most common
 

means for characterization of a signature in both destructive
 

and nondestructive testing. The transform of a signal, f(t),
 

into the frequency domain as F(jW) is:
 

F(jw) = S f(t) exp(-jwt) dt (4) 

where w equals frequency, rad/s and j equals the square root
 

of minus one. The advantage of this frequency transform is
 

that it can treat one unique pulse. A requirement in using
 

this transform is that the detector of the pulse not exhibit
 

transient decay during the period of the pulse measurement.
 

When there is a transient decay problem in the measurement
 

system, then the Laplace transform equation is used.
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Samples of the Fourier spectra that are generated by
 

a square pulse of duration Tp are shown in Figure 4(a).
 

Figure 4(b) is a typical experimental frequency signature of
 

an actual short duration shock measured with an accelerometer
 

transducer.
 

To permit rapid visual comparison of pulses, the fol

lowing normalization process was used.
 

1. 	When the pulse width is clearly defined, the
 
frequency scale was normalized by multiplication
 
of each frequency (F) by the pulse width in
 
seconds (TP).
 

2. 	The Fourier spectrum magnitudes (Y) were normalized
 
with respect to the size of the pulse by division
 
of the Fourier magnitude by the absolute value of
 
the area between the pulse and the zero line.
 

3. 	The shock spectrum magnitudes were normalized by
 
division by the maximum value of the pulse.
 

A variety of test computations were conducted on pulses
 

of similar shape but with different heights and pulse widths.
 

For a particular pulse, whether it be a symmetrical triangle,
 

an unsymmetrical triangle or a rectangle, the signatures are
 

always the same without regard to thQ pulse height or pulse
 

width when the above normalization procedure is used.
 

Figure 5 presents the Fourier spectrum for a simple
 

triangular pulse and for a triangular pulse with a 17% per

turbation on the trailing side of the pulse. The sensitivity
 

of the Fourier analysis technique to distinguish between the
 

square pulse and the triangular pulse is relatively high, but
 

the technique does not deal effectively with the presence of
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Fig. 5. a) Fourier spectrum for triangular pulse and
 

b) triangular pulse with a 17% perturbation on trailing edge
 
of pulse.
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a small perturbation. The only significant shifts are at
 

the null magnitude frequency FxTp = 2, 4 and 6 where small
 

amplitude signals are present in the perturbated frequency
 

spectrum. It is probable that small amplitude signal dif

ferences such as this could be masked by system noise.
 

Fourier transfer function spectrum
 

A transfer function is defined as a mathematical re

lationship that relates the output signal to the input signal
 

of a system and presumes a linear relationship 0 = GI. When
 

an experimental output variable can be measured for a known
 

input variable, it is then possible to derive an approximate
 

transfer function that is representative of the system. This
 

approach to pulse measurement situations was suggested by
 

Clements and Schnelle (15), and has been used on a number of
 

nondestructive testing projects (16,'17). The equation that
 

is used for derivation of a Fourier transfer function is as
 

follows:
 

f out exp( jowt)dt 

f(t) in exp(-jwt)dt 

0 

Samples of the magnitude of the Fourier transfer func

tion as a function of frequency are shown in the plots of
 

Figure 6. The output signal is a triangular pulse with a 2%
 

perturbation of the peak height on the leading edge for the
 

top plot, and a triangular pulse with two perturbations for
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the lower plot. The input signal in both cases was a tri

angular pulse.
 

The signature analysis method demonstrates high sensi

tivity for detection of these small perturbations. If the
 

input and output signal are identical, the transfer function
 

is a straight horizontal line of magnitude 1. The straight
 

horizontal portions of the plots in Figure 6 are in the fre

quency ranges where there was a significant magnitude shown
 

on the Fourier spectrum plots of Figure 5. Thus the transfer
 

function is shown to amplify differences in Yl and Y2 at FxTp
 

of 2, 4 and 6 which is where Yl and Y2 are quite small.
 

The two plots of Figure 6 show the influence of the lo

cation and number of perturbations on the main pulse by Fou

rier transfer function analysis. For the example given, the
 

second minimum of the Fourier spectrum at FxTp = 4 appears to
 

be the most sensitive to small changes. No analysis has been
 

made that would predict this behavior. The Fourier transfer
 

function signature is altered significantly when the height
 

of the perturbation is increased from 2 to 15%.
 

Shock spectrum
 

A shock spectrum is defined as follows (18).
 

The application of an acceleration shock pulse to the
 
base of a single-degree-of-freedom vibration system
 
results in a time response of the mass. The maximum
 
value of the time response for a given pulse shape de
pends on the natural frequency and the damping of the
 
vibrating system. The plot of the maximum response of
 
the oscillator against the natural frequency of the
 
oscillator is the shock spectrum of the pulse.
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Fig. 6. Transfer function in frequency domain for two
 
pulses each with different perturbation relative to a simple
 
pulse: a) 2% perturbation on leading edge of pulse and b)
 
2% perturbation on both edges of pulse.
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The equation of an undamped system initially at rest is:
 

(X-Z)max = [ - Z( ) sin w(t- ) d max (6) 

The relative displacement between oscillator mass and
 

the base for a shock input is normally calculated by Du

hamel's integral for linear systems (18). A pseudo-relative
 

acceleration is then found by multiplying the displacement by
 

(natural frequency)2. An improvement on the Duhamel's inte

gral approach has been developed recently (19) where the dif

ferential equation of motion is solved directly for the par

ticular pulse input using the Runge-Kutta-Nystrom method
 

(20). One of the advantages of the Runge-Kutta shock spec

trum is that the relative acceleration peak values are found
 

directly and different damping models may be used. The
 

Runge-Kutta method is similar to setting up the differential
 

equation on an analog computer and picking off the peak am

plitude at each natural frequency selected in the frequency
 

band for the spectrum.
 

The shock spectrum was derived for a damping ratio of
 

0.0001. The resultant shock spectrum for a triangular-shaped
 

acceleration pulse and the spectrum for a triangular pulse
 

with a 5% perturbation are shown in Figure 7. This method of
 

representation of a pulse signature shows only a slight z
 

change in shape between the two pulses for frequencies above
 

FxTP = 3. Other perturbations resulted in only minimal dif

ferences in shock spectrum, and it was concluded that the
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Fig. 7. Shock spectrum of relative motion for triangu
lar pulse and triangular pulse with a 5% perturbation (damp
ing ratio = 0.0001).
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shock spectrum signature does not produce an improvement on
 

the Fourier spectrum signature.
 

Shock spectrum ratio
 

Following the approach suggested by the Fourier trans

fer function method, a pseudo-transfer function was derived
 

by dividing the shock spectrum of the output function by the
 

shock spectrum of the input function as shown in Figure 8.
 

A sketch of the shape of the acceleration pulses used and
 

their relative positions in the ratio is shown in the upper
 

left corner of each plot. It is apparent from the plots that
 

the shock spectrum ratio is sensitive to a small perturbation
 

and when more than one perturbation is present the plot is
 

significantly different. An advantage of this method for
 

signature derivation is seen in the broad peak and low magni

tude of the deviation, i.e., from 1.0 to 1.6, as contrasted
 

with the sharp peaks over a narrow frequency band for the
 

Fourier transfer function seen in Figure 6. Also, note for
 

FxTp = 2 and 4 where the shock spectrum is low (Figure 7),
 

that the shock spectrum ratio plots (Figure 8) is a well

behaved function.
 

One application of the Fourier transfer function and
 

the shock spectrum ratio signatures is the definition by
 

size and location of the perturbation on a larger pulse. A
 

series of five test computations for different perturbation
 

heights at the same location on a triangular pulse are shown
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in Figures 9 and 10. The highest peak with the Fourier
 

transfer function, Figure 9, occurred at FxTp = 4.5, and the
 

peak decreased as the perturbation height increased. The
 

changes in the peak height with perturbation height was not
 

linear. The peak seen at FxTp = 2.0 did increase linearly
 

with perturbation height. The shock spectrum ratio results,
 

Figure 10, showed a peak at FxTp = 2 and 4. These peaks in

creased linearly with the perturbation height. The shock
 

spectrum ratio results are considered to be more useful for
 

the analysis of perturbations. Five additional computations
 

were made with the 15% perturbation moved across the width of
 

the pulse from 7.5 to 17.5% of- Tp. The results are shown in
 

Figure 11 and it appears that the features of the signature
 

above FxTp = 2.3 are influenced significantly by the location
 

of the pulse.
 

Influence of the Transducer on
 

Pulse Shape Analysis
 

Graham and Alers (9) have determined the frequency
 

spectrum of AE pulses. Their results suggested that it was
 

possible to detect variations in the pulse shape for pulses
 

from different acoustic emission sources, but the frequency
 

spectrum approach is hampered by an inability to classify how
 

much the original acoustic signature was modified by filter

ing and attenuation in the measurement system. Typical
 

charactistics of commerically available AE transducers are
 

as follows.
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1. 	Natural frequency: between 100 and 500 kHz,
 
primarily because of the good transmission
 
through the material of pulse information in
 
this frequency range.
 

2. 	Transducer damping: low for extended periods
 
of ringing ( = 0.01).
 

3. 	Filtering; high-pass for frequencies above
 
approximately 50 kHz to mask out unwanted back
ground noise.
 

An analysis of the modifying influence caused by the
 

measurement system was made by modeling the transducer as a
 

simple single-degree-of-freedom accelerometer and a filter
 

as a single-pole passive filter. This simple model is not
 

fully representative of an AE transducer, since laboratory
 

measurements indicate that AE transducers have many modes of
 

resonance as would be expected from a distributed parameter
 

system.
 

Mathematical Definition of the System
 

The system is shown schematically in Figure 3. To
 

avoid obscuring the overall issue and following conventional
 

usage (21), the transducer will be modeled by a simple
 

single-degree-of-freedom lumped parameter piezoelectric
 

accelerometer. For this study the filters are simple single

pole and -zero passive networks. Higher order representa

tions of filters and transducers will be used in later
 

studies.
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Model development
 

Figure 3 shows schematically the mass of the transducer 

plus the mass effect of the piezoelectric material (M), sup

ported by an effective spring stiffness (R) of the piezoelec

tric material, and internal plas external damping within the 

transducer, modeled by an equivalent viscous damper (C). The 

transducer is designed to respond to an input acceleration 

(force) at the base, Zl(t)t . The force transmitted through 

the 'spring' corresponds to a shear or compressive stress in
 

the piezoelectric material. A voltage Z2 is generated pro

portional to the strain between the mass and the foundation
 

(or base), i.e., 

Z2 = Rpu(X-Z1), volts (7) 

where Kpu is a constant.
 

The signals of interest are Z2 . the transducer output;
 

Z4, the system output; and Z5 the reconstructed (deconvolut

ed) input. Generation of Z5 (t) is considered later. in
 

operation form Z2 and Z4 are given respectively by
 

Z2 (t) _ -K pu (8) 
(8)


D2 + 2 w DD+ 2
l(t) 


and
 

tin general the argument (t) expressing the time de-- 

pendence of the signals will be suppressed for convenience;
 
retention will be for clarity or for emphasis, as in Z5 (t)
 
below.
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z 4 (t) 	 _ Kpu(ipD (9) 

EZl(t) (D2 + 2 w1D + w2(D + ahp) (D + wi) 

where:
 

D = operator for d/dt
 

= C/2 'RI? 

n = V/M, transducer natural frequency (2 rfn) 

whp = 	corner frequency of first-order high-pass fil
ter (2 fn )
 

ulp = corner frequency of first-order low-pass filter
 
(27flp)
 

Kpu is redefined to include M, Kp+ Kpu/M.
 

The solution of equation (9) is relatively straight

forward when the input signal Zl(t) is simply described
 

mathematically. When the pulses are irregular in shape and
 

occurrence, solutions may be impossible (or at least imprac

tical) to obtain analytically. Accordingly, it is useful to
 

also employ numerical integration in such cases, and even

tually in general. After some algebraic manipulation of
 

equation (9), the system differential equation is:
 

d4Z4 d3 Z4 	 d2Z4
 
dt 4 
 (2Cnn+fhp twlpdt3 _n 2+2 wn(hp+Wlp)+hpOlP t2
 

2 
_w 2 (+(hp+"ip)+2nwhpwlp4'7tadz 4
-n	 +29w 


2 a•t.(10
 
(10)
-whpwlpwn Z4 -u 1 -w 
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One advantage of this form is that 'initial conditions'
 

(residual values from previous pulses) can be handled without
 

difficulty, thereby facilitating treatment of arbitrarily
 

shaped and spaced signals.
 

Preliminary system design studies using equation (10)
 

to generate Z4 for given inputs Z1 showed the low-pass filter
 

to be redundant, since the transducer already acts as a low

pass filter. Therefore a modified transfer function exclud

ing the low-pass filter was used in the studies presented
 

here. The modified system operator form and differential
 

equation are, respectively
 

Z4 -KPUD 

1 (D2 + 2nD + n2)(D + ) (11) 

and
 

d3Z4 d2Z4 2 dZ4
 
d t2
dt3 = (2 wn + whp) -_ + 24nhp)-dt
 

eh1 (12)

-W2whpZ4-K pu- 1
 

Equations (11) and (12) (or (9) and (10)) are used to
 

determine the fidelity of the data signal Z4 to the test in

puts Z1 by comparing the frequency spectra. To solve equa

tions (10) or (12), a fourth-order predictor-corrector
 

Runge-Kutta integration scheme is used (20).
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Several pulse shape configurations were used to demon

strate the influence of the measurement system on the pulse
 

shape. Three pulses of different shapes with equal pulse
 

widths were selected for testing. The square, cosine and
 

triangular pulse are shown in Figure 12. The damping ratio
 

for the transducer was 0.01 and the high-pass filter corner
 

Fhp/Fn = 0.1 are reasonably representative of present pulse
 

counting designs.
 

The pulse shapes that come out of the transducer-filter
 

system are shown in Figure 13 in the same relative positions
 

as their input pulses. The Fourier spectrum of each output
 

signal Z4 were computed and are shown in Figure 14. The Fou

rier spectrums for the input signals would be similar to
 

those shown in Figures 4(a) and 5(a) for the square and tri

angle. The distinguishing characteristics of the Fourier
 

spectrum for these simple pulse shapes are modified signifi

cantly by passage of the pulse through the measurement sys

tem. The output signal pulse shapes for a triangle and a
 

cosine can have nearly the same Fourier spectrum. Hence, it
 

can be concluded that the transducer and filtrating systems
 

presently used for AE pulse signature analysis are a major
 

deterrent in the search for a unique signature from AE sig

nals coming from defects.
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Deconvolution method
 

An alternative to pulse counting and frequency spectra
 

analysis is time domain reconstruction of the pulse or pulse
 

train. It would be a step forward if the transducer and its
 

modifying effects on the signal could be eliminated by com

puting the shape of the signal before it entered the trans

ducer. That is, utilizing recently-developed laboratory

compatible digital storage units; if one had the correct com

puter routine, the digitized transducer output could be man

± t
ipulated (deconvoluted) to determine the approximate orig
 

inal shape of the pulse at the base of the transducer. Al

though intriguing, this approach does not appear to have been
 

reported. To implement the deconvolution idea, a computer
 

routine is required to manipulate the data signal Z4 in terms
 

of the assumed or known dominant instrumentation system
 

parameters. The result, Z5 in Figure 3, is then a reshaped
 

time-domain pulse' based on the recorded output shape. To
 

implement this approach equation (12) is expressed in suit

able finite difference form:
 

Z5 (i) = Z5 (i-l)- At [ 2 Z (i)+(wn2 +2 wnhp)(Z4(i+l) 
pu n hp4 

( i )+Z 4 (i 1)-Z 4 (i-))/2At + (2 wn+hp) (Z4 (i+l)-2 Z 4 - ) At 

Deconvolution is defined as identifying an input in
 
the time domain, given the output and the system transfer
 
function.
 

2 
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+ (Z4 (i+2)-2Z4 (i+l)+2Z4 (i-1)-Z 4 (i-2)/2At3) (13) 

where i, i+l, ..., i-1, etc. represent values at present,
 

future and past discrete times. At is the sampling period.
 

Thus Z5 (i) is the estimate of the corresponding Zl(t), based
 

on Z4 (i), which is the signal actually recorded and the only
 

true knowledge available when real signals are treated.
 

A typical output from the deconvolution program is
 

shown in Figure 15. This figure illustrates the deconvoluted
 

signals that were generated from the original filtered sig

nals shown in Figure 13. They can be compared favorably to
 

the original signals that went into the transducer filter
 

system, Figure 12. Thus, it appears that the deconvolution
 

process can produce recognizable signals that are identical
 

to those that input to the transducer-filter-recorder, and
 

can effectively eliminate the signature identification dif

ficulties caused by the measurement system.
 

Summary of Evaluation of Signa

ture Analysis Methods
 

Four frequency domain signature analysis methods have
 

been examined and evaluated for their ability to distinguish
 

features associated with acoustic emission pulses. The Fou

rier transform method and the shock spectrum method are
 

shown to be relatively insensitive as to their ability to
 

distinguish between square, triangular and cosine pulses,
 

and even less sensitive when asked to distinguish between
 

simple pulses and the same pulse with a small perturbation.
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sequence as in Figure 12.
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Fourier transfer function and the shock spectrum ratio tech

niques have also been evaluated, in which the output trans

form is divided by the input transform at each value of fre

quency. It is shown that the Fourier transfer function does
 

amplify the difference between the simple input signal and
 

small perturbations on the simple signal, but does so only at
 

the particular frequencies associated with the near-zero
 

values of amplitude in the Fourier spectrum. The shock
 

spectrum ratio does distinguish between different types of
 

pulses, between perturbed pulses and between different types
 

of perturbations of the original pulse. A significant fea

ture of the shock spectrum is that it does not go to zero at
 

any frequency. Thus the shock spectrum ratio does not shift
 

dramatically as seen with the Fourier transfer function. Of
 

all the signature analysis techniques examined, the shock
 

spectrum transfer function is the most adequate for analyz

ing the experimental pulses.
 

The transducer-filter system was shown to have a sig

nificant influence on the Fourier spectrum, such that the
 

input pulse shape could not be discernable nor could the
 

primary output Fourier transform be used to characterize
 

acoustic emission bursts, even from simple inputs. A decon

volution system was demonstrated as a means to generate a
 

new signal that closely represents the input signal shape.
 



CHAPTER III
 

OPTIMAL DESIGN OF THE TRANSDUCER AND
 

FILTER MEASUREMENT SYSTEM
 

Introduction
 

An important consideration in pulse data recording is
 

the selection of filters (corner frequencies) and transducers
 

(natural frequencies and damping). This maximizes the infor

mation output relevant to the input signal and minimizes the
 

extraneous information in the signal. When commercial AE
 

transducers are used for sophisticated frequency analysis
 

experiments, the transducers are built primarily to meet the
 

specifications listed in Chapter II. Accordingly, this
 

chapter proposes to consider the following questions.
 

1. 	Can modern optimal design techniques be used to
 
determine the best AE transducer natural fre
quency, system damping, and filter frequencies
 
(high-pass and low-pass) for the frequency
 
analysis of an acoustic emission pulse?
 

2. 	What design criteria should be used? Are there
 
other methods which could be employed for fre
quency domain or time domain examination of the
 
pulses?
 

3. 	How much information is lost if a nonoptimal sys
tem such as the pulse counting system is used for
 
the collection of pulse data?
 

Four methods for spectrum analysis of input and output
 

pulses described in Chapter II can be considered for signa

ture analysis. The first is the Fast Fourier Transform
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approach, which is primarily used in this chapter. The sec

ond is a Fourier transfer function of the output pulse rela

tive to the input pulse. The third is to calculate the shock
 

spectrum at zero damping of input and output pulses. The ra

tio of the output and input shock spectra is a fourth method.
 

Time domain reconstruction of the pulse may be even more en

lightening than the spectral analyses. This method is to de

convolute the output pulse information to the approximate
 

shape of the original input pulse at the base of the trans

ducer by differentiation using finite difference techniques.
 

The method used for quantification of the differences
 

between the spectra of the input and output pulses is the
 

statistical standard error of estimate, which is the root

mean-square differences of a set of data and a reference set.
 

(Explicit forms are given below in equations (14) and (15).)
 

Thus, the objective function for the optimal design of the
 

transducer-filter-measurement system is to minimize the dif

ference between two pulse spectra by selection of the system
 

design variables; these may be functions of pulse shape, mag

nitude, and duration. To study the question (1) above, ana

lytical pulses (e.g., square, triangular, etc.) are used.
 

Among other things, it is shown that pulse duration does
 

affect the optimum.
 

In the following, the criterion is mathematically ex

pressed. Results are obtained using an optimal design tech

nique, described later.
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Design Strategy and Criteria
 

The variables influencing the system response and which
 

are, to some extent, under the influence of a designer have
 

already been suggested in the model development and were re

lated to the system variables following equation (10). They
 

are:
 

fn transducer natural frequency (wn/2x = i/Tn)
 

Stransducer damping ratio
 

fhp high pass filter corner frequency (Whp/2 w=i/Thp) 

flp low pass filter corner frequency (wip/2n=l/Tlp) 

where T is the equivalent time constant.
 

The independent variables are input pulse width and
 

shape. Height and rates of occurrence are not considera

tions, since at this time perfect resolution, etc. are
 

assumed. One of the variables can-be eliminated and the
 

solutions made more general by normalizing the filter corner
 

frequencies and pulse width (time) with respect to the trans

ducer natural frequency fn.
 

A suitable function for evaluating the performance of a
 

transducer-filter system is the statistical standard error of
 

estimate, since analytical signals of the general type
 

expected are used for the input ZI . This measure is also
 

suitable as a criterion for determining the feasibility and
 

value of optimal system design. With reference to Figure 3,
 

the statistical standard error of estimate may be expressed
 

in the frequency and time domains as:
 



48 

FDEV = [ (4-Y,) 2 dwj (14) 

for the frequency domain where
 

= Y4(j )
Y4 w the Fourier transform of the output Z4(t)
 

Y1 = Yj(jw), the Fourier transform of the input Zl(t)
 

Typically a is 50/pulse width. The time domain (defining 

e = Z5 (t) - Z1 (t)) is expressed as 

TDEV = [I j e2dt (15)
0 

In digital form, with 

ei = Z5 (i) - Zl(i), 

TDEV= Z e. (16) 

T and n relate to pulse duration. I(t) corresponds to the
 

time t + - until any substantial contribution to the value of 

TDEV dissappears (typically 50T). The values of these cri

teria are directly comparable: the lower the value, the 

better the performance. A flow chart showing the frequency 

and time domain evaluations is shown in Figure 16 (including 

the entry points for the optimal design phase). The sequence 

for a frequency spectrum solution is:
 

1. input an acceleration pulse, Zl(t)
 

2. solve for the system response, Z4 (t)
 

3. normalize the pulses to a maximum height of 1.0
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4. fast Fourier transform Z1 and Z4
 

5. evaluate FDEV, equation (14).
 

The sequence for the time domain solution (second stage) is:
 

1. input an acceleration pulse, Zl(t)
 

2. solve for the system response, Z4 (t)
 

3. solve for the deconvoluted pulse, Z5 (t)
 

4. evaluate TDEV, equation (15).
 

Results
 

The initial thrust of this study was to investigate
 

frequency spectrum characteristics as a criterion for evalu

ating acoustic emission data as suggested by the cited inves

tigators. As will be shown, frequency spectrum comparisons
 

and straightforward integration of the data signal Z4 were in
 

many instances inconclusive, even when treated in an optimal
 

design mode. At this point the deconvolution idea emerged
 

and was implemented.
 

To compare the various approaches, initially a compre

hensive study was made of a 'typical' system design with
 

representative input pulse shapes and pulse durations. These
 

were then followed by an optimal design study based upon the
 

frequency domain criterion, FDEV. These results are pre

sented to clearly identify the attributes of frequency domain
 

criteria (characterized here by the Fourier spectrum) vis

a-vis time domain (deconvolution) criteria and the effects of
 

signal shape and duration. In so doing, frequency spectrum
 

and deconvolution results appear simultaneously, although it
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is to be emphasized that the deconvolution approach was ini

tiated after viewing the frequency domain results. These re

sults provided a basis for an optimal system design approach
 

and results evaluation, which are described in the appro

priate section.
 

General system study results
 

Results from the frequency domain and time domain pro

grams are shown in Figures 17 through 22. The design vari

ables for these figures, ;=0.01; fhpfn=0 .1, are reasonably
 

representative of present pulse-counting designs. As it
 

turns out, these tests show a 'bad' design point for fre

quency spectrum analysis, due to a significant underdamped
 

vibration of the transducer. Figures 17-19 are for short
 

pulses, and Figures 20-22 are for long pulses, relative to 

the transducer time constant 1/f . The pulse shapes here and 

throughout are rectangular, triangular and cosine (l-cost), 

respectively. The figures N(a) show the input acceleration 

pulse Z with the transducer-filter system response Z4 and 

the deconvoluted signal Z5 superimposed. The figures N(b) 

show the frequency spectrum Y1 of the input signal Z1 and the
 

frequency spectrum Y4 of the output signal Z4. The values of
 

the objective functions in both domains are shown in the
 

figures.
 

For short pulses (TXfn=0.3 ), Figures 17-19, there is
 

very little difference in the systems' outputs Z4 (t) and
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frequency spectra Y4 for the three-different inputs. The
 

deconvoluted signal (Z5 in the (a) figures) fairly well re

produces each input, although for unknown signals, this
 

reconstruction may still be inadequate. This is investigated
 

in the optimal design section.
 

Figures 20-22 show similar results for long (TXfn=8)
 

rectangular, triangular and cosine pulses respectively. The
 

system outputs Z4 and Y4 are noticeably distorted, but they
 

do not show any resemblance to each other as with the short
 

pulses. Here the deconvolution gives very good reproduction
 

of the triangular and cosine pulses. The effect of ringing
 

of the transducer is clearly seen in Figures 20 and 21. The
 

deconvoluted signal is much less sensitive to this than the
 

transmitted signal and Fourier spectrum.
 

In all cases the values of the deconvolution criteria 

TDEV are substantially less than the frequency spectrum cri

terion FDEV. - As these measures are directly comparable, it 

is clear that deconvolution approach can provide a more sig

nificant representation of the excitation. Incidentally, in
 

all these studies, the rectangular pulses were the hardest to
 

treat mathematically, due to the greater high frequency con

tent.
 

Optimal design of transducer-filter system. Because
 

of the predisposition to investigate the frequency domain
 

characteristics and the rather disappointing results as
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indicated by Figures 17-22, the determination of optimal sys

tem design parameters to minimize the frequency domain cri

terion FDEV of equation (14) was undertaken.
 

Accordingly, FDEV is now a design objective function to
 

be minimized by selection of some combination of the system
 

design variables, for a given input signal Z1 characterized
 

by shape and duration (ratioed to fn). The necessary rela

tionship (model) is determined by the appropriate dynamical
 

equation, one of equation (10) through (13). Frombefore,
 

the design variables are:
 

fn transducer natural frequency (dominant)
 

transducer damping ratio (dominant)
 

fhp high-pass filter corner frequency
 

fip low-pass filter corner frequency.
 

The optimization procedure used here is the Davidon

Fletcher-Powell (DFP) variable-metric algorithm for minimiza

tion of an unconstrained function (22). Thus, any con

straints must be treated in an indirect manner, e.g., by pen

alty functions. The DFP method was selected because of a
 

good reputation for rapid convergence to a minimum value of
 

the objective function in a large number of cases. Since the
 

objective function calculation for the transducer-filter sys

tem is rather lengthy, rapid convergence to a good answer is
 

important from an economic point of view.
 

From practical considerations, there may be constraints
 

upon the design variables, e.g., non-negativity, reasonable
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limits, etc. A practical concern in transducer-filter sys

tems is the attenuation of the signal. Accordingly, a mini

mum tolerable output/input signal ratio in the range con

cerned is specified. After observing several design solu

tions during the program development stage, it was arbitrar

ily decided that any solution with a signal ratio below 10%
 

would be unacceptable.
 

The design limits and associated penalty functions,'g n,
 

were expressed as follows:
 

f0.0 for 0.0<'< 2.0
 
gl 7t4c, 
 otherwise
 

0-0 for 0 .05 <fhp/fn<2 .0
 

92 [(fhp/fn )4 otherwise
 

.0 for0.5<flp/fn
 
g3 [(flp/fr )4 otherwise
 

In the studies, the input pulse shape and time duration
 

were fixed for each optimization run. A range of pulse
 

shapes and durations were run. The flow chart of Figure 16
 

shows the general approach.
 

Results for frequency domain criterion. Minimizations
 

of FDEV of equation (14) with the appended penalty functions
 

of equations (17) using the DFP algorithm with short and long
 

square pulses -T = .3/fn and 8.0/f n iespectively, were under

taken. However, the objective function field was essentially
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flat with no clear minima. Furthermore, FDEV was large
 

indicating a poor fit. This can be inferred from the (b)
 

plots in Figures 17-22, and is seen even more clearly in Fi

gure 23, which shows the objective function variation for
 

three lines drawn through the field of FDEV for a short
 

duration square pulse, Txfn = 0.3. The field is quite flat
 

with a slight gradient towards higher values of the design
 

variables. To a slight extent this is a function of the test
 

pulse shape. The results for longer pulses and different
 

shapes showed similar patterns. Figure 23 also shows the
 

ineffectiveness of the low-pass filter which was still in the
 

system.
 

Consequently, these approaches were not considered to
 

give better solutions to the problem. Trials with the other
 

frequency domain analysis approaches mentioned previously did
 

not appear to be substantially more definitive than the Fou

rier spectrum analysis and were not pursued. Some general
 

study results akin to Figures 17-22 for other frequency
 

domain measures were presented in Chapter II with the same
 

overall conclusion.
 

It may be premature to dismiss all such procedures for
 

AE pulse analysis, but there seemed no reason to pursue them
 

here as design criteria. As is well known, selection of
 

meaningful design criteria is vital to achieving valid opti

mal design and performance.
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Optimal design for deconvolution criterion. Chrono

logically, it was at this point that the deconvolution ap

proach emerged and that the composite results of Figures 17

22 were completed for that set of transducer'variables.
 

Optimal system design for deconvolution used TDEV of
 

equation. (15) as the objective function (to be minimized) and
 

the penalty functions of equations (17) to refle6t the con

straints. Comprehensive results are given in Table 2 (with
 

annotations) and Figures 24-25 fora range of pulse shapes
 

and durations. The more exhaustive studies of Figure 24 were
 

made with triangular and cosine input pulses, lengths from
 

0.3/f n to 20/fn. Because of generally similar results and
 

the relatively greater computational effort required with
 

rectangular pulses, fewer studies were made with long rec

tangular pulses.
 

The design strategy was to initiate the search using
 

known typical designs and signals, for which the results of
 

Figures 17-22 provided the basis. Because of the lengthy
 

computations, subsequent searches were initiated at these
 

'better' points using finer criteria for locating the opti

mum. The general trend of coarse vs precise optima can be
 

seen in Table 2. Note that in Table 2 and in Figures 17-22,
 

25, that the magnitude of the objective TDEV are low for non

optimized designs, the possible exception being the short
 

square pulse and very lightly damped system in Figure. 17.
 



TAL 2 

OPTIMAL DESIGN FOR DECONVOLUTION SUMMARY
 

Pulse 
Shape 

T*fn 
C 

Initial values 
fhp/fn TDEV 

Final values 
C* fhp/fn TDEV* 

No. of 
Iterations (Notes), Conents 

Cosine 0.3 
0.3 
1.0 
3.0 
7.0 
8.0 
8.0 

10.0 
10.0 
13.0 
17.0 
17.0 
20.0 

Triangular 0.3 
1.0 
3.0 
7.0 
8.0 

10.0 
17.0 
20.0 

Square 0.3 
0.3 
8.0 
8.0 
8.0 
8.0 

.01 
2.0 
1.8 
1.8 
1.8 
.01 

2.0 
1.8 
1.5 
1.8 
1.8 
1.5 
1.5 
.01 

1.8 
1.8 
1.8 
.01 

1.8 
1.8 
1.8 
.01 

2.0 
.01 
.01 

0.01 
1.G 

.1 
0.9 
0.01 
0.01 
0.01 
.1 

0.9 
0.01 
0.7 
1.8 
0.01 
0.9 
0.9 
.1 

0.01 
0.01 
0.01 
.1 

0.01 
0.01 
0.01 
.1 

o.q 
.1 
.1 

0.01 
1.6 

.0807 
0.00756 
0.00753 
0.00745 
0.00135 
.0156 

0.00119 
0.00195, 
0.000982 
0.000960 
0.00131 
0.000447 
0.000462 
0.0637 
0.00682 
0.00671 
0.00393 

0.00114 
0.00128 
0.155 
0.0573 
.0314 
.0314 

0.0499 
0.0436 

1.63 
-0.013 
2.01 
1.98 

1.81 
1.44 
1.44 
1.96 
1.71 
1.71 
1.45 
1.91 

-0.03 
1.85 
1.97 
1.55 
1.206 
1.46 
1.40 

2.0 

1.66 
1.93 
1.47 

1.80 0.00756 
1.73 0.00722 
1.94 0.00740 
1.43 0.00110 

1.15 0.00113 
0.88 0.000968 
0.88, 0.000968 
1.90 "0.000255 
1.06 0.000268 
1.06 0.000268 
0.87 0.000252 
1.98 0.0068 
1.89 0.00661 
2.00 0.00666 
1.49 0.00183 
1.58 0.0018 
1.206 0.00160 
1.46 8.000614 
0.94 0.000635 

0.9 0.0537 

1.43 .0262 
0.859 0.0443 
1.53 0.0436 

1 
3 
6 
1 

8 
7 
7 
6 
4 
5 
4 

7 
6 
8 

2 
7 
6 
. 
7 

4 
7 

(1)Fig. 19 
Flat field 
Strange: T pulse = 1/fn 

No improvement
(1)Fig. 22 

Confirmation Test 

Confirmation Test 

(1)Ftg. 18 
Strange: T pulse 1I/fn 

(1)Fig. 21 
Incomplete: Time limit 

(1)Fig. 17 
Flat field 
(1)Fig. 20 
Fig. 26 
Supplemental Run 
Incomplete: Time limit 

Note (1) Current practice design, see respective Figures 17-22.
 

~. 
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Nevertheless, in some instances the relative change is quite 

substantial. As it turns out and as might be anticipated, 

numerical implementation of the deconvolution algorithm also 

can affect'the magnitudes of the results, but not the rela

tive values.
 

The extremely low values of TDEV for the optimal de

signs are desirable. It is seen in Figures 24 and 25 that
 

the optima depend to some extent upon the nature of the
 

signal and can therefore be chosen to maximize information

relevant to the signal type expected or sought. It is
 

notable that the optimal transducers are generally quite 

overdamped and the high-pass filter frequency corner is 

above the transducer natural frequency (or low-pass cutoff) 

for all cases, i.e., fhp > n. Accordingly, significant 

attenuation results, but it is a known quantity and never
 

exceeds the attenuation constraint. This also minimizes the
 

'ringing' and possible false counts of other methods. In
 

Table 2, it is seen that poor results are obtained if the
 

pulse length is about equal to the transducer time constant;
 

thisis the only case in which a lightly-damped transducer
 

c=. 01) shows to advantage. It would appear that this is a 

situation to be avoided. 

A comparison of the objective functibn fields for the
 

frequency domain and time domain objectives in Figure 23 and
 

Figures 24 and 25 respectively gives some indication of the
 

degree of success one can expect using the optimal design
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approach (within our ability to'graphicaily display the
 

results)- That is, although deconvolution for systems with
 

a wide range of transducer damping ratio and time constant
 

and high frequency filter corner gives very good results for
 

the simple known test signals of this study, optima do exist
 

and may be essential in dealing with unknown signals where
 

the only known data is transducer system output Z4'(in Fig

ure 3). The objective function field hape for the time
 

domain solutions is shown in Figure-i24 for the long cosine
 

pulse Txfn = 8.0. Calculated points are indicated by
 

circles, and contours indicated are as suggested by a number
 

of trial points. The existence of a long narrow trough with
 

a relatively flat valley floor is interesting. Such valleys
 

have been observed to cause design problems in most texts on
 

optimal design.
 

Figure26 shows a specific example which is represen

tative of the general situation: an optimal transducer-

I' 

filter system for deconvoluting a long rectangular pulse, 

Txfn = 8.0. (This is also a 'difficlt' case.) The optimal 

design has 4* = 1.66¥ fhp/fn* = 1.43, with TDEV* = 0.0262. 

The search was initiated with the design of Figure 20. The 

design is-within the region described by the penalty func

tions. This is significant, since it can be assumed that at 

least one minimum is not limited by the constraints, i.e., 

the practical constraints do not-exclude all relative minima. 

Comparing Figures 20(a) and 26(a) one can see a significant 



69 

1 

z 
Z !
 

z5
 

0__ Z4 TTDEV--O.0262 

0!
 

0 10 
 20
 
(a) TxFn 

Ih 1% /0 * i F 
TpOE
0 F n2 4 6 ==.8.0. 

(ii) PFxTp F 

Fig. 26. Square pulse: =1.66; Fhp/Fn =1.43;
 
Tpn= 8.0.
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improvement in the 'optimally' deconvoluted pulse even though
 

the value of objective function only changes from 0.0314 to
 

0.0262; that is, the human eye perceives a better match of
 

the deconvoluted pulse and the original pulse. Figures 20(b)
 

and 26(b) show the Fourier spectra for these two systems. In
 

Figure 26(b), the output Y4 clearly shows a reduced tendency
 

for 'ringing' of the transducer and false bounts as pointed
 

out above. The transducer damping predictably influences the
 

fnxTp = 8 region. Also, note that FDEV (the frequency spec

trum criteria of equation (14) has increased for the optimal
 

deconvolution solution.
 

As further tests of (a) frequency vs deconvolution cri

teria and (b) the optimal design approach, Figures 27-30 are
 

presented. Figures 27 and 28 compare deconvoluted results
 

for a sequence of different long pulses (relative to trans

ducer time constant), with the system output Z4 superimposed.
 

Figures 29 and 30 show the same comparison for a sequence of
 

short pulses. Figures 27 and 29 are for the 'conventional'
 

system described above; Figures 28 and 30 are for the
 

'optimal' system.
 

Figures 26-30 clearly show the significance of the
 

deconvolution approach to transient pulse signal analysis,
 

regardless of optimization. These clearly corroborate the
 

previous figures for cases where there may be residual
 

effects of different pulses and unknown-times of occurrence.
 

The transducer output Z4 is obviously useless as a means for
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distinguishing the height and shape -of pulses. Deconvolution
 

of the transducer signal closely reproduces the shapes in the
 

pulse train.
 

Within the accuracy of the figures, the differences be

tween the conventional and the optimal deconvolutions are
 

almost imperceptible. In general, most current acoustic
 

emission transducers are for pulse counting and are described
 

as having 'high Q' resonance (i.e., low damping ratio), and
 

their associated filters are set to pass only the fundamental
 

resonant frequencies. Thus, pulse-counting pickups can be
 

used for pulse deconvolution in the time domain with a slight
 

degradation of the information. However, the optimal design
 

studies show that for best pulse shape deconvolution, the
 

damping of the transducer should be greater than critical
 

damping, and the high-pass filter corner should be above the
 

resonant frequency. The differences may be significant when
 

dealing with real signals, as previously suggested.
 

Comparison of Figures 1 and 2, the sample AE record

ings, with Figure 29, suggests that a pulse counting acoustic
 

emission system would count significantly more than the ac

tual number of defect acoustic events. Note that if the
 

natural frequency of the transducer is greater than or less
 

than the fn used for the derivation of Figure 29, then the AE
 

counting system would indicate a correspondingly higher or
 

lower count respectively. Hence, the intuitive lack of cor

relation of AE counts and the number of defect events is
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theoretically verified and is shown to be due primarily to
 

the resonant response of the system rather than a response to
 

the actual defect.
 

Summary of Optimal Design for
 

Measurement System
 

Deconvolution of a pulse has been demonstrated to be a
 

superior approach for transient pulse analysis. Reshaping of
 

a transducer output back to the original input pulse is pos

sible and gives an accurate representation of the generating
 

pulse in the time domain. If the transducer response curve
 

has a low frequency cut-off or if high-pass filters are used
 

in the measurement system, then the DC components of a pulse
 

will be absent from the output signal. This characteristic
 

of AE measurement systems frequently makes the pulse shape
 

virtually unrecognizable in the time domain. Frequency
 

analysis methods have been tested and shown to be similarly
 

ambiguous for segregation of different pulse shapes. Using
 

deconvolution, in principle any definable transducer and
 

filter system can be used to reconstruct pulse characteris

tics, i.e., to generate time domain signatures.
 

The following major points about the selection of de

sign variables have been demonstrated.
 

1. 	Any definable transducer and filter system can be
 
used for measurement of pulses by means of the de
convolution method. The time domain signature
 
thus generated becomes the basis for analysis.
 

2. 	The use of a low-pass filter for frequencies above
 
the transducer natural frequency is unnecessary.
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3. 	The output pulse shape (Z2 in Figure 1) for a pulse

duration shorter than half the transducer natural
 
period is relatively insensitive to the shape of
 
the input pulse.
 

4. 	The frequency spectrum of the signal output from a
 
measurement system with filtration of low fre
quency components relative to the frequency spec
trum of the original pulse is significantly dif
ferent such that most criteria for comparison of
 
these spectra may not be meaningful.
 

5. 	The deconvolution method can 'bring back' informa
tion about the original pulse even after filtering.

This method was operational for the pulses of short
 
duration for which the frequency spectra of all
 
pulse shapes were similar. Optimization can im
prove these results, but may not be necessary.
 

6. 	There is a wide and relatively level plateau for
 
the relative standard error between an input pulse
 
and the deconvoluted output pulse, per Figure 24.
 
Within this area designers will be nominally suc
cessful for many choices of the design variables.
 
In general the shapes of the input pulses do not
 
have a significant influence on the determination
 
of the optimum design location.
 

7. Item 5 and 6 above notwithstanding, there are
 
families of optimal selections for transducer and
 
filter system parameters which give superior decon
voluted output signals. These may be significant
 
when working with actual hardware and unknown
 
characteristics.
 

The optimal design results (*, fhp/fn*) are certainly
 

new 	and different from the expectations of engineers accus

tomed to working in the field of signal conditioning. In
 

obtaining these results modern rational design techniques on
 

a rather complex design problem have been demonstrated.
 

Acoustic emission transducer manufacturers describe their
 

pickups as having a high Q resonance, or low-damping ratio,
 

and 	their filters are set to pass only the fundamental res

onant frequencies. The optimal design study has shown that
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acoustic emission pickups can be used for pulse deconvolution
 

in the time domain with a slight degradation of the informa

tion, but that for best pulse shape deconvolution the damp

ing of the transducer should be larger than critical damping
 

and the high-pass filter corner should be above the resonant
 

frequency.
 



CHAPTER IV
 

DECONVOLUTION OF EXPERIMENTAL PULSES
 

Introduction
 

Deconvolution of experimental data requires that an
 

acceptable mathematical model for each of the components in
 

the measurement system be created. When commercial equipment
 

is available, a frequency response curve is frequently pro

vided or, at a minimum, a specification is given for the
 

bandwidth (± 3 db magnitude limit). Response information
 

such as this or experimental frequency response curves can
 

be used to create component models of arbitrary complexity.
 

After reasonable models have been developed for the trans

ducers, filters, tape recorder and digital event recorder,
 

deconvolution calculations can address the following quest
 

tions.
 

1. Can a simple source be found that will produce
 
acoustic emissions with a repeatable shape?
 

2. Assuming a source with repeatable shape is avail
able, will the output of a given transducer have
 
signals of repeatable or similar shape? If yes,
 
then the deconvolution of the signals should show
 
a repeatable shape representative of the source.
 

3. 	When different transducers are used to record AE
 
signals from the same source, will the deconvolu
tion signatures be recognizeable as having come
 
from the same source?
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4. 	When more than one AE source is recorded with the
 
same measuring system can the deconvolution sig
natures be distinguished from each other?
 

5. 	Can a major defect, e.g., on a thrust ball bear
ing race, be detected using the present level of
 
deconvolution signature analysis?
 

In the following sections, a description of the model
 

equations that were used for the components of the measuring
 

systems are presented. Four sets of experiments are per

formed in order to evaluate: 1) the reproduceability of the
 

pulse recordings; 2) the relative performance of the trans

ducers; 3) the ability to distinguish between AE sources; 4)
 

the performance of an AE transducer on a ball bearing test
 

rig. The ball bearing tests were conducted using bearings
 

with small slots (defects) cut in the race by electro-dis

charge machinery, and compared to an undamaged bearing.
 

Techniques for Testing Transducer
 

Reproduceability for Pulse Recording
 

The search for an experiment for the evaluation of AE
 

transducers leads to the area of transducer calibrations at
 

high frequencies. Calibration of AE transducers is an un

finished area in the AE industry today. The Acoustic Emis

sion Working Group, a subsection within the American Society
 

of Testing and Materials is actively concerned that the cali

bration methods should be worked out and eventually published
 

as a proposed standard. Experiments in the literature use
 

different approaches to evaluate an AE transducer or an AE
 

experiment. These are summarized as follows.
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Grinding of glass powder
 

Graham and Allers (8) described an experiment they used
 

to simulate an AE source similar to growing cracks. An elec

tric drill was used to grind and break small glass fragments
 

held in a socket. This was a repeatable source and the fre

quency response curves were similar to that of an AE from a
 

gowing defect in metals.
 

Capacitive transducer as a standard
 

Graham (8) and Breckenridge (23) have described experi

ments in which a highly sensitive capacitor plate directly
 

above the specimen surface has been used to detect single

shot AE signals. The capacitive transducer output can be
 

compared to a piezoelectric transducer's output, and a cali

bration curve for different frequencies can be derived. The
 

disadvantages of this experiment are: the pulses must be
 

large to get a significant signal from the capacitive trans

ducer, and the AE measurements are usually of through trans

missions, i.e., longitudinal waves, whereas the significant
 

AE signals picked up by AE transducers are thought to be
 

predominantly surface waves or Rayleigh waves.
 

Electric spark discharge
 

Bell (24) discharged a high-voltage electric spark from
 

an electrode to the metal test specimen. This experiment was
 

considered a similar excitation as in AE crack growth situa

tions and produces the required Rayleigh waves. The major
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advantage is that the AE event was individual and unique.
 

Feng (25) improved on the spark discharge experiment by
 

adding a second electrode. Thus the pulse from the dis

charge is only acoustically coupled to the specimen and from
 

there onto the transducer. Dr. Feng's experiment is used
 

by Dunegan/Endevco for the frequency response curve provided
 

with each AE transducer. The spark discharge can be a short
 

Dirac-type pulse when it leaves the electrode area, but the
 

mechanical medium of the plate used for transmitting the
 

wave to the transducer can have several resonant frequencies
 

and some mode conversions. The wave that passes under the
 

transducer cannot be expected to be a short-duration pulse,
 

but it can be shown to be repeatable.
 

Ultrasonic transducer driven as a
 

steady state energy source
 

Prior to spark discharge, Dunegan/Endevco used the
 

ultrasonic driver directly coupled back-to-back with an AE
 

transducer for their calibration experiment. This experi

ment excites an entirely different set of resonant frequen

cies, and the frequency response curves are significantly
 

different than the response curves from an electric spark
 

discharge. The longitudinal coupling was thought to be
 

responsible for some of the major differences. This obser

vation may also hold true for the capacitive transducer
 

calibration.
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One of the significant problems in AE transducer cali

brations is that the measurement system is intended to look
 

through a very high frequency window, typically 50-350 klz
 

The frequency range is well above the first and second reson

ant frequencies of the mounting block and transducer case.
 

The frequencies are also well beyond the upper limit, approx

imately 20 kHz, of laboratory verifiable sine-wave steady
 

state acceleration.
 

Of the various evaluation experiments described above,
 

the spark discharge method of Feng seems to be the best for
 

the purposes of this study. It is portable; it has a demon

strated repeatability and it can be used for on-the-site
 

calibration of the transducer.
 

Electrical Spark Discharge for Acoustic
 

Wave Calibration
 

Two spark calibration probes were built and tested for
 

this project. The first had 12-inch leads from the capacitor
 

to the electrodes and the electrodes were mounted 1800 from
 

one another. This design produced considerable electromag

netic interference in the area of the experiment and appeared
 

to have multiple discharges during each event. A discussion
 

with engineers working on spark-discharge experiments in the
 

Vanderbilt Chemical Engineering Department revealed that
 

there can be a problem with fields interacting with the dis

charge when the electrodes are mounted at 900 and at 1800.
 

Thus, to avoid reverberations during the discharge, the
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electrodes should be mounted at an angle between 890 and 850.
 

The 	second spark-probe design was constructed with much
 

shorter leads from the capacitors to the electrodes, and the
 

angle between the tungsten electrodes was approximately 880.
 

The 	capacitance was 0.025 pF, and the power supply was
 

current-limiting to provide 10 PA at 3500 volts. A photo

graph of the spark probe over a specimen and of the experi

mental setup with the power supply is shown in Figure 31.
 

Setup of spark probe and data
 

collection procedure
 

The procedure for collection of spark discharge data
 

was 	as follows.
 

1. 	Set the spark gap at 0.5 mm, the power supply volt
age at 3,500 volts and place the probe over the
 
fatigue crack tip on the compact tensile specimen.
 

2. 	Record the transducer output signals as they come
 
in at a frequency of approximately ten per minute.
 
The recorder tape speed was 60 ips for a 100 to
 
300,000 Hz recording band.
 

3. 	Play the recorded signals back and identify the AE
 
burst on the oscilloscope, noting the footage
 
counter value at each pulse.
 

4. 	Replay the pulse with the tape speed at 1 7/8 ips
 
and capture the leading edge of the burst with the
 
digital event recorder at 100,000 samples per
 
second.
 

5. 	Play back the captured pulse on the X-Y-T plotter
 
to determine if the stored pulse is satisfactory
 
and complete. For the best results the digital
 
event recorder should be used over the full ampli
tude range of ± 5 volts on ± 128 steps.
 

6. 	Assign the pulse an identification and record it
 
by punching it on paper tape. The identification
 
code is N.TOOP where N is the number of pulses
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HOLTAGE
 

Fig. 31. Photograph of the spark discharge setup.
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recorded in this mode, T is the type of test iden
tification and P is the transducer identification.
 

7. 	Convert the binary words on the paper tape to ASCI
 
code with a special computer program worked out on
 
a PDP 8 minicomputer, and teletype punch a new
 
tape.
 

8. 	Feed the ASCI coded tape for the particular pulse
 
via a teletype terminal into the DISC storage of
 
the larger computer in preparation for the decon
volution computation and Fourier frequency analy
sis.
 

Mathematical Models for Digital Event
 
Recorder, Tape Recorder, Amplifier and
 
Transducer Components
 

The deconvolution equations used in the computational
 

routines were built up from a differential equation of the
 

component, or from a Bode Diagram curve fitting procedure.
 

The Bode Diagram approach makes it possible to recreate a
 

differential equation of the model from the experimental
 

frequency response curve of the component.
 

The deconvolution model was originally conceived of as 

a single inverse transfer function that would take the signal 

in one mathematical step back to the original, or starting, 

shape. In the process of the evolution of this experiment, 

the differential equation model went well beyond an eighth

order differential equation, which meant that the finite dif

ference derivatives were taking data from time intervals 

greater than five data points on each side. See Appendix I, 

Table Al. The approach now is to deconvolute stage-by-stage 

through each component in turn. This modular approach makes 
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it possible to change the model for each component as the
 

component is switched for another, or as better frequency
 

response information becomes available and the user thinks
 

that there is justification for changing the mathematical
 

model.
 

A photograph of the laboratory is shown in Figure 32.
 

The flow of signal information starts on the near end of the
 

bench on the left side and progresses down to the tape
 

recorder and digital event recorder at the far end of the
 

bench. A flow chart of an acoustic emission from the spark
 

discharge probe through all of the system components that
 

were considered to have a dynamic effect on the pulse infor

mation is shown in Figure 33. Selected closeups of some of
 

the components are shown in Figure 34.
 

The equations used to represent the forward-looking
 

transfer function, i.e., the conventional input/output
 

representation, and a brief discussion of the model are
 

presented below. A series of frequency response figures
 

of each component are presented and they include the
 

following information:
 

1. 	the manufacturer's response plot for the component,
 
if available
 

2. 	experimental check points when they have been made
 
in the Material Science Department's NDT Laboratory
 

3. 	the plot for the mathematical model
 

4. 	the coefficients used for the mathematical model.
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Fig. 32. Photograph of the laboratory setup for
 
acoustic emission research.
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HIGH VOLTAGE SPARK DISCHARGE 
POWER SUPPLY9 PROBE 

1 

SOLID STRUCTURE 

Z23 Z2 11 Z2c Z2 j 

ACCELEROMETER ACCELEROMETER AE PICKUP AE PICKUP 
IK4339 4344 /E D9202 PCB 392A 

Z3 

AMPLIFIER, 
FILTER 

AMPLIFIER 
FI LTER 

POWER 
SUPPLY 

TB&K 7625 Z4 _D/E 2649 

H7TAPE RECORDER j 
Ampex P 2200 

X-Y-T 	PLOTTEP DIITAL EVENTZo OSCILLOSCOPE 
HP74ARECORDER iTektronix 555 
HP704AB&K 	 Type 75021I 

IPAPER 	 TAPi PUNCH
 
I,K Type 831 

Binary 8 bit tape 

I 	 COMPUTER 
DEC PoPe 

1ASCII 	 coded paper tape 
Fig. 33. Flow diagram of the components used for the
 

spark discharge measurements with four different transducers.
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a) Closeup of ball-bearing rig
 

b) Ball-bearing rig
 

4 

d) Digital event recorder, x-y
 
plotter and paper tape punch
 

c) Tape recorder
 

Fig. 34. Photographs of selected components used in
 
the acoustic emission experiments.
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The transducer models received the most attention and,
 

in each case, a different model was selected than that sug

gested by the manufacturer's literature. The reason for this
 

discrepancy may be the way in which the manufacturer derives
 

his natural frequency data for publication or it may be due
 

to the way in which the transducer is mounted on the struc

ture. As will be explained later in this chapter, the
 

natural frequencies used for the model were selected by
 

examination of the Fourier spectrum of the pulses recorded
 

during the spark calibration experiment. A summary of the
 

transducer parameters are shown in Table 3 with the manufac

turer's values in the first column and the final model values
 

in the second column. Each of the models for the transducers
 

used had two resonant frequencies and one of these usually
 

fell near the natural frequency given by the manufacturers
 

except for the Dunegan/Endevco AE transducer which is speci

fied by the manufacturer in a different manner.
 

Digital Event Recorder
 

This component was responsible for a cluster of high
 

frequency signals around the digitization frequency (3.2 mHz)
 

in a region at half the digitization frequency (1.6 mHz), and
 

at one-fifth digitization frequency 0.64 mHz. The model
 

shown below was used for deconvolution purposes to eliminate
 

the one-fifth digitization frequency. The two higher fre

quencies were present but did not interfere in the results
 



TABLE 3
 

TRANSDUCERS USED FOR EVALUATION OF ACOUSTIC EMISSION PULSES
 

Manufacturer 
Model No. 
Serial No. 

Resonant Frequencies 
Specified Experimental 

Damping 
Ratio 

Low-Pass 
Frequency 

(kHz) (kHz) (kHz) 

Dunegan/Endevco 
San Juan D9202 
Capistrano, CA ABi 350-800 98 & 180 0.05 45 

Bruel & Kjaer
Cleveland, OH 

4344 
552940 128 70 & 128 0.01 0.005 

Bruel & Kjaer 4339 
349554 32 28.5 & 68 0.01 NA 

PCB 392A 
118 NA NA NA 

NA = information not available.
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significantly. The equation for the digital event recorder
 

is
 

Z6 - DIWD32 (D+D2 )(3 

(18)
Z5 WD23 (D+wDl)(D2+ZDWD 3 D+wD 3 

The signal location Z5 and Z4 are indicated in Figure 33 and
 

a plot of the frequency response is shown in Figure 35.
 

Tape Recorder
 

Z F 
FRECORD T222 2 (19) 

Z4 (D+wTI) (D +2tT1T2D+wT2) 

A plot of the frequency response and identification of the
 

coefficients used for the particular solution of (19) is
 

shown in Figure 36. A simple check of the frequency response
 

was made in the laboratory and these results are also shown
 

on the plot.
 

Amplifier and Filter
 

Z4 - FILTER (20) 

Z3 (D + oFI ) 

The coefficients and the frequency response plot for the two
 

filters used are shown in Figures 37 and 38.
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Figure 35 Digital event recorder characteristics and mdel. 
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Figure 36 Tape recorder characteristics and model. 
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Kaerj Type 2625 system.
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Figure 38 	 Amplifier and filter characteristics and model for Dunegan/Fndevco 
Mdel 2649 system. 
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Transducer
 

The first transducer model had a single degree of free

dom as used in the analytical development in Chapters II and
 

III and the value for fn was taken from the manufacturer's
 

literature. When the spark discharge repeatability experi

ments were conducted (discussed in detail in the next sec

tion), the Fourier spectrum of the recorded trace was seen
 

to have two or three predominate frequencies near the trans

ducer fn value. See Figures 47 and 52. The deconvolution
 

plots using the manufacturer's value for f. were not con

sidered acceptable and a better value for fn was located from
 

the Fourier spectrum plots. After several trials two of the
 

predominate frequencies on these plots were selected as
 

representative of the transducer and were used for the mathe

matical model coefficients. The model equation is as follows:
 

z3 Fpuwp1 k2 2 (21)
 

Z2 (D2+2clwpiD+pl2)(D2+2C2wp2D+p 22 )
 

The coefficients and frequency response plots for the models
 

of the three transducers used are shown in Figures 39 to 41.
 

The response curve suggested by the manufacturer's informa

tion is also included on each plot for reference purposes.
 

Compact Tensile Test Specimen
 

The model developed for the aluminum plate compact
 

tensile specimen is an approximation arrived at as follows.
 



99 

.
40-

A MANF. 
'20

0

-40

-6o01
 
II I I T I10 100 1K 10K 1OOK iM lOM 

FREQUENCY Hz 

COMPONENT: Accelerometer transducer 

TYPE: Bruel and Kjaer Model 4339 s/n 349554 
2 2 

MODEL FUATION: Z F w 
3 pu P1 P2 

= 2 2 2 2 
Z (D + 2 c m D+ )(D±+2 D+wc 

2 i Pi PI 2 P2 P2 
2 

where F = 1.2 mV / M/ s 
Pu 

0 
PI 

= 28,500 x 2 

= 68,000 x 2 
P2 

= 0.01 
1 

= 0.01 
2 

Figure 39 Transducer characteristics and model for Bruel and Kjaer 
Model 4339 accelerometer. 
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Figure 40 Transducer characteristics and model for Bruel and Kjaer Model 
4344 accelerometer.
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1. 	All of the test traces recorded on the compact ten
sile specimen with the Duneqan/Endevco transducer
 
were deconvoluted to the base of the transducer
 
(Z2 	in Figure 33). These included traces from the
 
repeatability experiment, different transducers ex
periment and discrimination between AE sources ex
periment.
 

2. 	A frequency spectrum of each deconvolution trace
 
was computed.
 

3. 	Dominant frequencies were identified which appeared
 
in most of the frequency spectra. These were as
sumed to be resonant frequencies excited by differ
ent experiments and thus inherent frequencies in
 
the plate.
 

4. 	Another deconvolution step was performed with a
 
model using the frequencies selected. If the fre
quency spectrum of this deconvolution trace ap
proached the pattern of the frequency spectrum sig
natures shown in Chapters II and III for analytical
 
pulses, then it was considered to be a viable model
 
for the test specimen.
 

This model was not considered to be developed enough to give
 

the 	true deconvolution of the wave shape at the initiation
 

site, but it does serve as an approximation. The model equa

tion for an approximation of the specimen is as follows:
 

2 2
 
S22 2 22$22
 

Zl (D2+2cS!m51 D+s22 ) (D2+2CsS2s 2D+S22)(2
 

The 	frequencies used for the model and the response curves
 

are 	shown in Figure 42.
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Discussion of the Influence of
 
Deconvolution Procedure with
 
Experimental Traces
 

Deconvolution is similar to passing a signal through a
 

transfer function that is the inverse of the frequency plots
 

shown in Figures 35 to 42. When this is done, the areas that
 

are attenuated are amplified and vice versa. Thus any noise
 

that is on the tape recording of the pulse will be magnified,
 

particularly if it is at 1 Hz or below. The corrections pro

vided by deconvolution modeling are as much as 200 dB at 1 Hz.
 

High frequencies such as the digitization frequency and
 

its submultiples are well above the frequency range of the
 

measuring system components, but the deconvolution process
 

picks them up and amplifies these signals by 100 dB or more
 

for frequencies above 2 mHz. This accumulation of high

frequency 'information' was detected during the present work
 

and the low-pass filter was added to attenuate signals above
 

300 kHz.
 

As the fall-off rate on the high frequency end of a
 

model and the rise rate on the low frequency end are given
 

steeper slopes in the more complex models to match the exper

imental response curves, the consequences are an increase in
 

the very high frequency 'information', and an effect similar
 

to DC drift in the very low frequencies. Until these prob

lems are overcome it seems prudent to stay with the simpler
 

models.
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Low-Pass Filter
 

Clusters of high frequency were observed above 400 kHz
 

in the traces after deconvolution through the modules listed
 

above. To keep these from masking possible lower frequency
 

information, a low-pass filter stage was introduced. An
 

.2xtromely rapid roll-off filter was used,
 

12
 
Z =3lL-p 

(D2+ lp2D+ lp22)3(D+lp
2 )6 

(23)
 

z I 


It should be noted that this step was not a deconvolution but
 

a means of clearing out frequency information above 300 kHz
 

that was considered to be superfluous. The frequency re

sponse of the low-pass filter at one-third the roll-off rate
 

shown in Figure 43.
 

A block diagram of the executive section of the compu

tational routine is shown in Figure 44.
 

Construction of models which will duplicate the dynamic
 

behavior of measurement systems is complicated, and the
 

models can become very complex. Models were created that
 

were better fits to the Bode plots shown in the previous
 

figures, but they were not used because of the adverse ef

fects on the pulse information.
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Figure 43 	 Low-pass filter characteristics and model used for attenuation of 
digital event recorder frequencies. 
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Repeatability Experiment
 

The objective of this experiment was to determine if
 

the output of a transducer has a similar shape when excited
 

by one type of AE generator (Question 2, Chap. I, p. 79).
 

Several records were made of the same event with three dif

ferent transducer systems. As an example of how repeatable
 

the input pulses were, a set of spark discharge data from the
 

D/E transducer measurement system was computed and the re

sults are shown in Figures 45 to 48. The first figure is of
 

three traces as they are received and the following figures
 

are the frequency spectrum of the as-received traces and the
 

deconvoluted signature of the same traces. Comparing the two
 

figures one would say that the as-received pulses are more
 

alike than the deconvoluted pulses. The overall image of the
 

pulses in Figure 47 is similar and the small disparities are
 

attributed to the fact that no two of the spark discharge in

puts are exactly alike. A Fourier spectrum of the deconvo

luted signatures is shown in Figure 48 and a shock spectrum
 

ratio relative to Run No. 3.1002 is shown in Figure 49. The
 

shock spectrum ratio results is a straight horizontal line
 

for identical pulses and in Figure 49 one can see some hori

zontal sections in the curve. The frequency band from 0 to
 

250 kHz is representative of signatures from pulses from a
 

similar AE source. The signatures above 250 kHz show large
 

variation and will be ignored for the present.
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In general, the spark discharge equipment was found to
 

be very repeatable within the first 60 to 100 us from the
 

leading edge of the pulse recording. For the sake of close
 

examination of the best information about the AE source, it
 

was necessary to confine the signature to the first 40 us of'
 

the pulse. It seems that after this time, large signals ap

pear which dwarf the initial information of the pulse signa

ture. These large signals may be higher energy packages
 

traveling in a different mode of vibration, or they may be
 

built-up reflections.
 

Deconvolution with Different
 

Transducers Experiment
 

The objective of this experiment was to answer the
 

question: "Will deconvolutions through transducers with
 

different designs have a signature shape which indicates a
 

common AE source?" Four transducers were selected and
 

cemented to a compact tensile specimen used for fracture
 

mechanics crack-growth studies. This specimen type was
 

selected because it could be used for the experiment that
 

followed this one as a generator of AE signals as a crack
 

that is growing. A fatigue crack had already been grown in
 

the specimen used, and the spark discharge probe was
 

mounted at a location just above the crack tip. The trans

ducers were mounted in a radius approximately 25 mm from
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the crack tip as shown in the photograph in Figure 50. They
 

are identified more specifically in Table 3.
 

Samples of the leading edge of pulses from a spark dis

charge AE source for three different transducer measuring 

systems are shown in Figure 51. The pulse recording from the 

PCB 392A transducer is not shown, because the transistor cir

cuit mounted in the transducer's case behaved as if it were 

overloaded by the electromagnetic waves that were broadcast 

from the spark discharge probe. Thus it was disqualified 

from this experiment. The pulse outputs from the -B & K Type 

4339 accelerometer, the D/E D9202 acoustic emission pickup 

and the B & K Type 4344 accelerometer are shown in Figure 51, 

plots (a), (b) and (c) respectively. The natural frequencies 

of the transducers are the major waves that are seen in these 

recordings. The Fourier frequency spectrum of the three 

pulses are shown in Figure 52, and the major high points of

the spectrum are noticed at the natural frequencies. Decon

volution of each of the pulses from the three transducers 

through the model for the specimen is shown in Figure 53. 

Figures 53(b) and (c) of the transducer deconvolution sig

natures could be attributed to a similar AE source. Figure 

53(a) looks different and this is attributed to the low 

natural frequency of the transducer. This conclusion could 

not have been made on the basis of Figure 51 aone. The 

frequency spectrum of the deconvolution signatures in Figure
 

53 is shown in Figure 54. Judging from the deconvolution
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Fig. 50. Relative locations of the transducers on a
 
single edge cracked compact tensile fracture specimen and
 
the spark probe.
 

o-O -PAG is 
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plots presented in Figure 53(b) and (c), the method of analy

sis can give approximately equivalent shapes in the time do

main, and the AE transducer appears to give good results.
 

Thus, for the remaining experiments discussed in this chapter,
 

the pulses
the AE (D/E) transducer was selected for recording 


and for computation of a deconvolution signature.
 

Discrimination between AE Sources
 

Experiment
 

The objective of this experiment was to determine how
 

sensitive an AE transducer and the deconvolution signature
 

method are in detecting differences between pulses from
 

different AE generators. The three sources of acoustic
 

emissions were: 1) the electrical discharge probe; 2) a
 

steel ball impacting the specimen surface; 3) a crack grow

ing within the specimen. The steel ball impacting on the
 

specimen was accomplished by rolling a 1.01 gm ball down a
 

slight incline; at the end of the channel the ball fell
 

10 mm, struck the specimen near the tip of the fatigue crack
 

and then bounced off the edge of the specimen. A smaller
 

ball (see Figure 50(a)) was also dropped on the specimen,
 

but the signals from the transducers were small, so that
 

this data was not prepared for examination. Acoustic emis

sions from a growing crack were obtained by pulling the spec

imen apart in an Instron screw-driven tensile testing mach

ine. The rate of deformation in the testing machine was
 

0.013 mm/minute.
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Sample plots of the as-received data from (a) a spark
 

discharge, (b) a ball impacting the plate and (c) a growing
 

crack are shown in Figure 55; the frequency spectrum of the
 

respective pulse is shown in Figure 56. The deconvolution
 

of the AE data and their frequency spectrum are shown in
 

Figures 57 and 58 respectively.
 

Figure 57 clearly demonstrates that there are three
 

different pulse trains for three different AE sources.
 

Figure 57(c) is similar to 57(a) which is not unexpected,
 

since a crack growing is a pulse of short duration similar
 

to the sound wave from the electric spark discharge. Yet
 

there are enough differences that one can say that the AE
 

generator for (a) is not the same as for (c). The frequency
 

spectra shown in Figure 58 are helpful in that they point
 

out the difference between the three different AE sources.
 

Discrimination between Sound
 

and Defective Ball Bearings
 

A test rig design was selected for this experiment
 

that would load thrust ball bearings and would have a mini

mum number of moving parts. The configuration of the com

pleted rig is shown in the photographs in Figure 34(a) and
 

(b). An axial force on the bearings is controlled with the
 

hydraulic cylinder seen on the right side of the loading
 

frame in Figure 34(a). Of the two bearings that are operat

ing during a test, the smaller bearing is the one expected
 

to fail,*and it is located on the right side of the rotating
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cylindrical block. The larger bearing on the left side is a
 

backing bearing to balance the thrust forces and allow the
 

middle block to rotate freely. The torque to rotate the mid

dle block comes through a 12.5 mm shaft on the central axis
 

of the system. The motor is on the right side of the assem

bly. Two motors were used to run the ball bearings. A 1/3
 

horsepower 1875 rpm motor was used for fatigue damaging bear

ings. A variable speed motor was used for recording AE data
 

in order to spread out the time between AE bursts by running
 

at low speeds.
 

The test bearings were Nice Type 1009. These bearings
 

have twelve 1/4 in diameter balls and the ball race diameter
 

is 1 inches, ID is 1 inch, and OD is 1.95 inches.
 

For the experiments reported here one test bearing was
 

artificially damaged by cutting a slot at right angles to the
 

direction of ball travel in the race. Another bearing was
 

artificially damaged by cutting a slot in one of the balls.
 

Each slot was made with an electric discharge machine and was
 

0.15 mm wide. The backing or support bearing was a Dixie
 

Bearing, Inc., GT 18. This bearing has eighteen 1/4 inch
 

diameter balls and the ball race diameter is 2.1 inches,
 

ID is 1 and 5/8 inches and OD is 2 and 5/8 inches. The de

sign load for the small diameter thrust bearing is 2475 lbs
 

and the design load for the larger diameter bearing is
 

3243 lbs.
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The model for the ball bearing support structure which
 

transmits the AE signal from the bearing to the Dunegan/
 

Endevco transducer was derived following the procedure de

scribed earlier for'the compact tensile specimen. The
 

model equation and the frequency response are shown in
 

Figure 59.
 

The results of the bearing test experiments are shown
 

in Figures 60 through 72. The figures for individual signal
 

recordings are presented in three formats as follows. Figure
 

(a) is the digitized signal from the tape recording, Z6 (t).
 

Figure (b) is the deconvoluted output for the signal shown in
 

(a), Z 1 (t). Figure (c) is the Fourier spectrum of the decon

volution signal, Y1 (f). The background noise for the elec

tronic equipment recorded with the bearing stationary is
 

shown in Figure 60.
 

The scale on the ordinate axis of (a) is digital steps
 

and the scale on (b) is proportional to the calibration fac

tors of the different components in the measurement system.
 

The units for the Z1 axis may be assumed to be 0.1 M/s2 times
 

the number shown. The frequency spectrum of the background
 

noise appears to be random and high frequency as is expected
 

for electronic noise. There is a large component above
 

400 kHz. This large component seems to be a consistent fea

ture of the deconvolution model in all of the bearing experi

mental results, and it may be attributable to the digitizer
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and its interaction with the high frequency electronic noise
 

plus bearing noises.
 

The first moving bearing tests were for a good bearing
 

running with an axle load of 700 lbf. This load is equiva

lent to a B10 life of 8.8 x 106 cycles. Several AE type
 

bursts could be detected above the steady state level of
 

vibration signals coming from the bearing. Two of these
 

signals have been presented in Figures 61 and 62. The
 

steady state running signal level can be seen as well as the
 

electronic noise in Figure (a). The deconvolution signal in
 

(b) is larger than Z in Figure 60 and the same large 450 kHz
 

component is dominating the picture.
 

The second test was for a bearing with a slot cut in
 

the race and the results for two AE signals taken from that
 

test are shown in Figures 64 and 65. These tests were also
 

conducted with a 700 lbf axle load on the bearing. Notice
 

in Figure (a) that the AE signal is significantly higher but
 

the signature of the pulse in either Figure (b) or (c) is not
 

particularly different from the undamaged bearing.
 

The last test was for a bearing with one ball cut and a
 

load of 700 lbf. Figures 66 and 67 show two AE signals,
 

selected from the tape recording and the results are about
 

as uninformative as the other tests.
 

It was pointed out in Chapter II that when there were
 

small perturbations superimposed on a larger pulse, then the
 

Fourier transform or the shock spectrum ratio might show the
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presence of the perturbation. This technique of pulse signa

ture analysis was tried on the ball bearing experiment and
 

the results are shown in Figures 68 to 70. The first pair of
 

shock spectra shows what might be expected for a good bearing
 

AE signals. The spectrum seems to be uniform and approxi

mately flat from 0 to 200 kHz. The shock spectrum ratio for
 

the bearings with a crack in the race is shown in Figure 69
 

and there is a distinctive hump in the spectrum between
 

120 and 200 kHz. The shock spectrum for the tests of a crack
 

in a ball relative to a good bearing acoustic emission is
 

shown in Figure 70. The hump is in the same frequency band
 

as was seen with the crack in the race but significantly
 

higher.
 

To complete the argument, a computation of the shock
 

spectrum ratio similar to the Figures 69 and 70 was made for
 

the input signals Z6 and the results are shown in Figures 71
 

and 72. From these results it is clear that deconvolution
 

methods are necessary for cleaning up the signal before the
 

methods of spectrum analysis can be applied to obtain mean

ingful results.
 

The contrast in the shock spectrum ratios for the de

convoluted traces and the as-received traces is significant.
 

The shock spectrum ratios of the as-received pulses, Figures
 

71 and 72, show a high magnitude in the 200 kHz region which
 

is near one of the transducer resonant frequencies, 180 kHz,
 

but, other than this, none of the signatures is similar to
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another. The shock spectrum ratios of the deconvoluted
 

traces, Figures 69 and 70, are similar in shape and show
 

enough individuality to indicate one type of AE source from
 

another.
 

The significance is apparent when the shock spectrum
 

ratio plots are superimposed as shown in Figure 73. The (a)
 

part of Figure 73 is the shock spectrum ratios of the as

recorded acoustic emissions from the ball bearing experi

ments. A clean bearing result, 3.71, is also included in the
 

(a) plot. Part (b) of Figure 73 is the shock spectrum ratios
 

of the deconvoluted traces from the bearing experiments. The
 

symbol identifications are the test numbers shown in the
 

upper left corner of the plots, Figures 68 to 72.
 

There is a noticeable increase in the orderliness of
 

the plots in Figure 73(b) compared to the plots in Figure
 

73(a). The most important feature about (b) is the peaks
 

that occur at approximately 170 kHz. In this frequency zone
 

there is a noticeable commonality of plots from the same
 

experimental condition and there is a change in the peak
 

height for different conditions. The two plots with the
 

highest peaks are from tests with a cut in the ball; the two
 

dotted plots with intermediate peak heights are from tests
 

with a cut in the race; the two plots with low peaks are from
 

the clean bearing. Note that there was some source of acous

tic emissions from the clean bearing tests. It is signifi

cant that the shock spectrum ratio plots presented in
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Figure 10 of Chapter II indicated similar shapes for small
 

perturbations on the side of a triangular pulse. The peak of
 

the shock spectrum ratio changed in proportion to the pertur

bation height. It appears that the signature analysis of
 

experimental pulses from known defects within the ball bear

ing is approaching the level of performance seen in the
 

analytical studies.
 

In summary, the experimental studies have demonstrated
 

that a technique for signature analysis has been developed
 

that is capable of distinguishing between experimental
 

acoustic emission sources.
 



CHAPTER V
 

CONCLUSIONS AND RECOMMENDATIONS
 

Based on the analytical and experimental program, the
 

following conclusions can be drawn.
 

1. The output signal from a transducer-filter

measurement recording system for a family of differently
 

shaped AE pulses cannot distinguish the height and shape of
 

the pulses. The distinguishing characteristics of the Fou

rier spectrum for simple pulse shapes are modified signifi

cantly by passage of the pulse through the measurement sys

tem; thus the transducer-filter system is the major deterrent
 

to the development of a definitive signature from AE signals
 

emanating from defects.
 

2. For simple pulse shapes and measurement systems,
 

the deconvolution process produces recognizable signals that
 

relate to the input signals. Fourier transforms, shock spec

tra, Fourier transfer functions and shock spectrum ratios of
 

deconvoluted pulses were useful methods for analysis of
 

pulses. The shock spectrum ratio of deconvoluted pulses is
 

the most useful for analyzing and comparing experimental
 

pulses of all the signature analysis techniques examined.
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3. Optimal design of transducer natural frequencies
 

and filter corner frequencies did not appear to be essential
 

for the particular deconvolution studies done for this
 

research using the Dunegan/Endevco transducer for pulse
 

analysis. However, the improvements that would occur in the
 

deconvoluted traces when an optimal system is used are pre

dicted to be significant. The optimal design study has shown
 

that, for the best pulse shape deconvolution, the damping of
 

the transducer should be substantially overdamped, the high

pass filter corner should be above the resonant frequency,
 

and the transducer natural frequency should be more than six
 

times the pulse width. At the present time, there is no
 

manufacturer that can make an acoustic emission transducer
 

to meet the optimized specifications.
 

4. With different transducers, deconvolution will dis

play if the AE signals recorded are from a similar source.
 

The lowest natural frequency of the transducer should be
 

above approximately 50 kHz.
 

5. The spark discharge probe produces repeatable
 

deconvoluted AE signals for transducer excitation. Various
 

lengths of signal time from 10 to 200 ps were tried for
 

examination of the deconvoluted signals. After approximately
 

40 us from the initial rise, the signal height suddenly be

came two or more times larger, apparently from reinforcement
 

of vibrations internal to the plate. After these large sig

nals appeared, the similarity of the wave trains under
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examination was lost. Thus it was concluded that the sig

nificant signature information is found in the first 40 us
 

of the spark discharge generated pulse.
 

6. Discrimination between different AE sources is
 

possible when deconvolution of the signal trace is used. A
 

steel ball dropping on a plate can be distinguished from a
 

growing crack. A spark discharge AE signal has features that
 

look like those of a crack growing. This may be due to the
 

short time period which is common to these two AE sources.
 

Without deconvolution, all three AE sources appear to be the
 

same due to the dominant influence of the resonant frequen

cies in the transducer.
 

7. The ball bearing experiments demonstrated the prob

lems with detecting an AE signal hidden in background noise.
 

The deconvolution traces from different AE sources were all
 

very similar. Signature analysis of the deconvoluted traces
 

with the shock spectrum ratio method was shown to be capable
 

of showing up the significant difference between the indi

vidual sources of AE. By superimposing the traces, a signi

ficant peak was found at one frequency which indicated the
 

severity of the defect in the bearing.
 

Recommendations for Future Research
 

Experimental verification of models
 

A carefully controlled frequency response analysis of
 

the different components in the measurement system needs to
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be conducted. With a Bode amplitude and phase angle plot, it
 

would be possible to select the number of poles and zeros re

quired and the location of the corner frequencies. Square
 

wave input signals could also be used and the output signal
 

could be recorded on the digital event recorder. Then the
 

deconvolution model could be fine-tuned to recreate the input
 

wave shape.
 

Experiment with a known input
 

pulse shape
 

A measurement of the displacement wave form at the
 

point where the acoustic emission transducer is located could
 

be set up with a capacitance transducer as in Reference (23).
 

Then the deconvoluted wave shape at the base of the trans

ducer could be verified and the model parameters modified as
 

indicated.
 

Finite element model of the 

structure 

A visco-elastic finite element model of the plate used 

for receiving acoustic emissions from a growing crack should 

be developed. The dynamic response of the plate with known 

boundary interactions could then be solved and a dynamic 

model could be created to approximate the results. This is 

a necessary step in building a model that will describe how 

a crack grows. 
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Optimization to find a model of
 
the structure
 

A set of arbitrarily selected poles, zeros, and complex
 

poles could be hypothesized as a structural model. Then,
 

with a defined input pulse shape and a well-defined output
 

pulse shape, the coefficients of the model could be moved
 

around until an optimum is found. The degree of complexity
 

of the model could be increased and/or decreased until the
 

lowest standard error of estimate was located. This may be
 

the method that will need to be perfected for use in deconvo

lution signature analysis in nondestructive testing applica

tions.
 

Deconvolution by analog computer
 

With an analog computer model of the deconvolution
 

equations, it should be possible to see the deconvolution
 

signature in real time. A digital memory oscilloscope is re

quired to hold acoustic emission pulses for examination of
 

the leading edge of the pulse package. As soon as a pulse is
 

examined, the screen is cleared for the next available pulse.
 

This type of development will be valuable for practical ap

plications in nondestructive testing.
 

Evaluation of digital event
 

recorder
 

More work is needed to determine the amplitude dis

tortions and the additional frequencies that have been added
 

to the data by the presence of a digital event recorder.
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Would there be a significant improvement in the deconvolution
 

result if an analog to digital converter of increased accur

acy is used? Can the influence of the digitizer steps be
 

modeled and deconvoluted adequately out of the data? These
 

are some of the questions about digitization of data that
 

have been partially addresssed in this work, but a more de

tailed study should be conducted.
 

Transducer for pulse recording
 

Design and build a transducer with the optimum damping
 

and natural frequency. Test this transducer alongside of an
 

acoustic emission pulse counting transducer and determine if
 

the results would justify another transducer for pulse signa

ture analysis.
 



APPENDIX 1
 

SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS
 
BY NUMERICAL METHODS
 

The construction of a mathematical model for most
 

dynamic processes begins with the formulation of the dif

ferential equation 'of motion. In cases involving transient
 

motion or a pulse-like signal, ordinary differential equa

tions are sufficient for the model for the description of
 

the system. The solution when transients are the inputs to
 

dynamical systems is known for many second and third order
 

differential equations when the pulse is reduced to simple
 

geometrical segments. But, in general, the solution of a
 

differential equation for the dynamic outputs given a random
 

input pulse shape is difficult to obtain by classical cal

culus techniques. Fortunately there are numerical methods
 

which can be used to solve ordinary differential equations,
 

and there is no restriction on the configuration of the
 

input forcing function.
 

Numerical solutions of differential equations are
 

approximations and the results will be subject to trunca

tion errors, stability of the solution and step size selec

tion. The numerical technique used for this work on pulse
 

analysis is a predictor-corrector version of the Runge-Kutta
 

Preceding ...page..blank 155 5 J '1 
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method. It was developed to provide accuracies equivalent to
 

using the higher order terms of Taylor"s expansion of a dif

ferential equation with less computation.
 

A Runge-Kutta method attributed to Gill (20) was used
 

with a modification by the author. Gill's equations are a
 

single step method with an intermediate calculation at half
 

way across the step. The Runge-Kutta subroutines in many
 

computer-program libraries employ the equations with Gill
 

constants. The equation for calculation of Zi+l(t,X,Z) at
 

one step ahead of Zi(h and dt are the step increment) is as
 

follows:
 

Zi+1 = Z. + h/6 (K1 + 2GIK2 + 2G2K 3 + K ) (24) 

where:
 

h = step size along t axis, dt
 

G1 = first Gill constant
 

- 1 - l/(2)
 

G = second Gill constant 

- 1 + 1/(2)2 

Y1 = f(ti, Xi, Zi), functional expression for thehighest derivative in the dif

ferential equation to be solved 

= f(ti + h/2, Xi+ , Zi + Klh/2) 

K3 = f(ti + h/2, Xi+ , Zi + (G2 - 3/2) Klh + GIK2h) 

K4 = f(ti + h, Xi+1 , Zi - K2h/2 + G2K3h) 

Xi = forcing function at beginning of step 

2 
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Xi+1 = forcing function at end of step 

Xi+3 = (Xi + Xi+l)/2 

In the first trials with numerical solutions of dif

ferential equations with a forcing function, the value of X
 

in the function f(t,X,Z) was fixed at the beginning of the
 

step. That is to say, as the next step i+l was calculated,
 

the driving function term X in the KI, K2, K3 and K4 terms
 

defined above was fixed at the Xi value. Trial runs were
 

made on the following differential equation:
 

z Dn (25)
 

X (D2 + 2wD + w
2 )(D + whp)n
 

where: 

D = the differential operator d/dt 

n = integer powers, i.e., 0, 1, 2, 

,wwhp = constants of the equation. 

Deconvolutions of the differential equation were calculated 

next, and the results were compared with the input driving 

function shape X. The comparison was made by calculating 

the standard error of estimate, TDEV, as mentioned in Chapter 

III. These trial runs were made for square, triangular, and
 

cosine shaped input pulses with the differential equation
 

shown in equation (25). The equations that were selected for
 

numerical differentiation were the central difference form,
 

and they are listed in Table 4. Note that for the eighth
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TABLE 4
 

EQUATIONS FOR DIFFERENTIATION OF INPUT FUNCTIONS
 
FOR RUNGE-XUTTA ALGORITHM
 

Derivative Equation (Derivative centered around point i)
 

dX/dt (Xi+i - Xi_l)/2At
 

d2X/dt2 (Xi+1 - 2Xi + Xi-l)/At2
 

d3x/dt3 (Xi+2 - 2Xi+ 1 + 2Xi- 1 - Xi2)/2At3
 

- 4Xi+ 1 + 6Xi - 4Xii 1 + Xi2)/at4
 
d4X/dt4 (Xi+2 


d 5 x/dt5 (xi+3 - 4Xi+ 2 + 5xi+- 5Xi_1 + 4xi- 2
 

- Xi/3)/2At5
 

d6X/dt6 (Xi+3 - 6Xi+ 2 + 15Xi+ 1 - 20Xi + 15Xi 1 - 6Xi- 2 

+ Xi-3)/At6
 

d7X/dt7 (Xi+4 - 6Xi+ 3 + 14Xi+ 2 - 14Xi+ 1 + 14xi_ 1
 

- Xi4)/2At7
 - 14X.i2 + 6Xi- 3 


d8X/dt8 (Xi+4 - 8Xi+ 3 + 28Xi+ 2 - 56Xi+1 + 70Xi
 

- 56Xi-i + 28Xi 2 - i 3 + Xi4)/At8 
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derivative, the function needs to be defined four steps in
 

front of the point i and four steps behind. The results of
 

the first trial for six cases are shown in Table 5.
 

The modification that was incorporated into Gill's 

equations is the changes in the driving function term X. 

Examination of the terms KI, K2 etc. indicates that the dif

ferential equation and its integrals are solved at four loca

tions as follows: 1) at the present step i, KI; 2) at a step 

half way across the increment length with a correction to ZI, 

K2; 3) at the same half-way location with a second correction 

to Zi, K3 ; and 4) at the next step location i+l with a third 

correction to Zi, K4. After considerable data analysis it 

became clear that the calculation of K2, K3 and K4 would be 

better predictions of the values at the i+ and i+l locations 

if the forcing function part, Xi, of Zi was permitted to 

change. The changes were the average value of Xi and Xi+1 at 

the i+ location and the Xi+ 1 value in the K4 calculation.
 

It was noted that the time term,-t, changes in a similar man

ner in the R2, K3 and K4 calculations. This relatively
 

simple change in point of view as to how the driving function
 

is treated had a dramatic effect on the results.
 

The results of the final runs with the modification of
 

the Gill's equations is shown in Table 6 for selected cases.
 

With the changing of X in the calculation of the K's in equa

tion (24), the TDEV calculation for a cosine pulse input
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TABLE 5
 

STANDARD ERROR OF ESTIMATE FOR DIFFERENTIAL EQUATION SOLVER
 
AND DECONVOLUTION ALGORITHM WITH GILL'S EQUATIONS
 

TDEV
 
n fhp/fn Cosine Square Triangle
 

0 0.01 0.1 0.006238 0.03709 0.005640
 

1 0.01 0.1 0.01250 0.05588 0.01119
 

2 0.01 0.1 0.01243 0.05579 0.01256
 

3 0.01 0.1 0.01247 0.05539 0.01117
 

5 0.01 0.1- 0.01253 0.05537 0.01123
 

6 0.01 0.1 0.01254 '0.05350 0.01120
 

0 1.66 1.45 0.005894 0.02606 0.005273
 

1 1.66 1.45 0.01276 0.06212 0.01144
 

2 1.66 1.45 0.01239 0.05797 0.01109
 

3 1.66 1.45 0.01256 0.05546 0.01123
 

5 1.66 1.45 0.01253 0.05509 0.01121
 

6 1.66 1.45 0.01251 0.05660 0.01122
 

Note 1. Pulse length, fnTp = 8.0; increment size, 
Atfn = 0.1. 

Note 2. All calculations for n greater than 2 must be
 
done in double precision.
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TABLE 6
 

STANDARD ERROR OF ESTIMATE FOR DIFFERENTIAL EQUATION SOLVER
 
AND DECONVOLUTION ALGORITHM FOR EQUATION (25)
 

TDEV
 

n f Cosine Triangle
fhp/fn Square 


0 0.01 0.1 0.0001060 0.02049 0.0006679
 

1 0.01 0.1 0.0002916 0.03138 0.001067
 

2 0.01 0.1 0.0004053 0.03417 0.001100
 

3 0.01 0.1 0.0005310 0.03719 0.001470
 

5 0.01 0.1 0.0007273 0.03927 0.001661
 

6 0.01 0.1 0.0006546 0.03810 0.001593
 

0 1.66 1.45 0.0001216 0.01537 0.0005176
 

1 1.66 1.45 0.0002335 0.02625 0.0008320
 

2 1.66 1.45 0.0003152 0.03020 0.0009995
 

3 1.66 1.45 0.0004904 0.03467 0.001295
 

5 1.66 1.45 0.0005937 0.03596 0.001438
 

6 1.66 1.45 0.0005330 0.03610 0.001380
 

Note 1. Pulse length, fnTp = 8.0; increment size, 
Atfn = 0.1. 

Note 2. All calculations for n greater than 1 must be
 
done in double precision.
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improved by a factor of 50:1, and, for a triangular and a
 

square pulse, the improvement was 12:1 and 2:1 respectively.
 

One significant reason for the improvement in the re

sults is the influence of phase shift on the TDEV results.
 

This modification of Gill's equations has solved most of the
 

phase shift problems- between the input pulse and the deconvo

lution pulse and thus there was a significant lowering of the
 

TDEV results for the cosine and the triangular pulses.
 

The square pulse test did not show as good an improve

ment in TDEV with the modified equations because of the large
 

error of estimate in the ±2 increments on either side of the
 

step changes. Thus, for square pulses, the TDEV is primarily
 

a function of the increment step size of the computation.
 

A sample of the computer subroutines used in Fortran
 

IV language to solve a differential equation is shown in
 

Figures 74 and 75.
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0001 SUBROUIINE RKGILL(X,XNAX,VXI NCR,M,N,CIPAX,IFUNCT,Zt1 
0002 INTEGER LPCR 
0003 DIMENSION C(I,X(I),ZII),YC(I0),F(I0) ,Y(500,61 
0004 COMMON LPCR,DTTPLLSE 
0005 1 = 2 
0006 XC = XI) 
0007 00 5 1 = IN 
0008 5 YCCI) = Y(L,I) 
0009 8 IF (XC - XMAX ) 6,6,7 
0010 6 CALL RUNGE CN,YC,F,XC,XINCR,M,K)
 
0011 GO TO (1O,2O),K
 
0012 10 CONTINUE
 
0013 GO TU (101,102,103,104,1O5),IFUNCT
 
0014 101 CALL FUNC7I(J,M,CYC,FHIGHD,ZIIMAX)
 
0015 GO TO 30
 
0016 102 CALL FUNCTZIJ,MtCYC,FHIGHDZI,IMAX)
 
0017 GO TO 30
 
0018 103 CALL FUNCT3(J,MC,YCFHIGHDZLIMAX)
 
0019 GO TO 30
 
0070 104 OUTPUT *FLCTION 4 MISSING'
 
0021 CALL EXIt
 
0022 10, CALL FUNCT5(J,MC,YC,FHIGHDZIIMAX)
 
0023 30 CONTIN4UE
 
0024 F(I)= FHIGHD
 
0025 DO 15 I = 2,N
 
0026 15 F(I) = YC(O-1)
 
0027 GO TO 6
 
0028 20 DO k5 I = 11N 
0029 25 Y(J1 I) = YC(I) 
0030 X(J) = XC 
0031 J = J + 1
 
0032 GO TU E
 
0033 7 CONTINUE
 
0034 RETURN
 
0035 END
 

0001 SUBRUUTINE RUNGE (N,Y,F,X,H,M,K)
 
0002 C THIS R3UTINE PERFORMS RLNGE-KUTIA CALCULATICNS BY GILLS METhOD
 
0003 DIMENSION Y(1)F(),Q(IO)
 
0004 M = M + 1
 
0005 GO TO C1,4,5,3,71 M
 
0006 1 D0 2 1= IN
 
0007 2 0(1) - G.C 
0008 A = 0.5 
0009 GO TO 9 
0010 C A = 1. + 1./(2)**0.5 --- SECOND GILLS CONSTANT 
0011 3 A = 1.7071C67811865475244 
0012 4 X = X + 0.5*H 
0013 5 DO 6 1 = 1,N 
0014 Yt) = YCI) + A*(F(I)*H - 0(I) 
0015 6 0(1) = 2.*A* F(II + (I. - 3.*A)*0(I) 
0016 C A I. - I./SQRT(2.) ---- FIRST GILLS CONSTANT 
0017 A = 0.292832188134524756 
0018 GO TO 9 
0019 7 00 E I = 1,N 
0020 8 Y(1) = Y(I) + H*F(I)I6. - Q(I)/3. 
0021 M = C 
0022 K = 2 
0023 GO rO 10 
0024 9 K = 1 
0025 10 RETURN 
0026 ENO 

Fig. 74. Subroutines, R.K. Gill and Runge
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SURPOLTINE LPFILT(CN,X,Z2,ZDECCN) 
INTEGER CR,LP 
DIMENSION C(l),X(1),Z2(I),ZDECCNQ() 
COMMUN LP,CR,0T,TPULSE, Y(500,6) 
FLPASS = 30000.0 
WL = FLPASS*6.283185 
WLTH = 8.*hL 
ZLP = C.05 
ZLP = 0.2
 
C(I) = 2.*(1.+ZLP)/(WL*IL*WL) 
C(2) = 2.*(1.+2.*ZLP)/(WL*.,L) 
C(I) = .*CI.+ZLP)/hL 
C(4) = I.C 
C(5) = WL*WL*WL*WL 
C(6) = 1./(WLTH**4.) 
C(7) = 4./(hLTH**3.) 
C(8)_ = 6./CWLTH*WLTH) 
C(9) = 4./WLTH 
IFU4CT = 5 
00 5 I = 1,10 

5 	 ZDECON(1) = C.C
 
'4M5 = ' - 5
 
00 I NM5,N
 

8 	 ZDECON(I) = C.C 
XMAX = X(N) 
M = C 
NVAR = 4 
DO 10 J=1,NVAR 

10 	 Y(1,J) = C.C 
CALL RKGILL(X,XMAX,VDT,P ,NVAR,C,N,I 
D0 ,U I = 1,N 

20 	 ZOECON(I) = Y(I,4) 
NM2C = N- 2C 
00 40 I NM20N 

40 	 ZDECONI) C.C
 
OUTPUT FLPASS LP
 
RE TLMN
 
END
 

Fig. 75. Subroutine low-pass filter
 

FUNCV,Z2)
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00'91 SUWUUTINE FLNCTS(JMCVF,Z ,N) 
0002 DIMENStION C(1),Y(l),Z2(t) 
0003 I'4TEGER LP,CR 
0004 C0MNOGN LPCR.OT 

1 = J - I 
0006 4M~ N-- 5 
0037 IF(I.LE.5) I = 5 
0008 IF(I.GE.NM5) 1 = NIA5 
0009 Z20[C= (22(1+I) - Z2(1-1))/(2.f0T) 

0011 
Z2D0C=CZ2(I+1) - 2.*Z2() +Z2(l-lfl/(OT*ft) 
22031= (Z2(1+2)-2.*12(1+1)+2.*Z2 (1-4)-Z2 (I-2))/(2.*DT**3.l 

0012 Z204C= (ZZ(1t2)-4.* 22(1+1)+6.=Z2 (1)-4.*L2(1-1)+Z2t1-2 )/DT**4. 
0013 
0014 

ZZDLI = (Z2(1+2) - 22(1))/(2.*DT) 
Z202CI = (22(1+2) - 2.*Z2(1.1) +Z2())I/(CTD)
Z203C L =(Z2(1I3)-2.tza(1+2H.2..z2 (11-Z2(I-1) )I(2.*OT**3. ) 

0016 
0017 C 

Z204C1 = tZ2(1+3)-4.*ZZ(1.2)+6.tZ2(1+1)-4.*Z2(1)+2(I-i) )I0T**4. 
THREE DIFFERENTIAL STEPS FOR R-YLTTA 

O0Iq Z2O'lE = Z204C *C(c) + Z203C *L(7)+202C *C(8) Z201C *C49) + Z2(1) 
0011 ZZYFRE =Z204C1*Cfb) + 

z2aVE = Z2(I) 
Z2D0CI*C(?)+Z2D2C1tC(8).Z201C1*C9Q+22( I+1) 

0021 Z2TN{E = 22(I+1) 
0022 Z2TW = (ZZONE + Z2HRE)*C.5 
0023 GO 0 (1,2,2,3),M 
0024 1 F *C(5I*(ZGNE -C(1I*Y(1) - C(2)*Y(23 - C(3)*Y(3) - C1(4*Y(4)) 

Go TO 5 
0026 2 F : C(5)*(12TWO -C(I)*Y(11 - C(2l*Y(2) - C(3)*Y(3) - C(4)*Y(4)) 
0027 GO lu 5 
028 3 F = Ct',)*(ZTHRE -C(1)*Y(l) - C(21*Y(2) - C(31*Y(3)  C(4I|Yf4)) 
0029 5 RETURN 

E64 

Fig. 75. Continued. 
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0001 SUR8OUENE FLNCT5(J,MC,V,F,Z2.,d 
0002 DIMENSION C(l),Y(l),ZZ(1) 
0003 VITEGER LP,CR 
0004 
00r)5 

COMMON LPCRD7
I j 1 

000& NMs = 5 
0037 Iff1I.LE.5) I = 5 
0008 IFII.GE.NMS) I =NO 
0009 Z2O1C= (22( 1)- Z2(I-i)J/(2,*tI) 
0010 Z D2C=(Z2(I.1) - 2.*Z2(1) +Z2(I-l))IOT*DT) 
00110012 

203C= (Z2{I+2)-2.*Z2(I+)+2.*Z2(t-1)-ZZI-2))/(2.*DT**3.Z204C= (ZZ(1+2)-4.*Z2f1-1|+6.*Z2(1)-4.*Z2(1-1| Z2{I-2))/OT**4. 

0013 ZZ0C1 (22(1+2)  Z2CI])/(2.*0T) 
0014 Z202C1 = (Z2(1 2) - 2.*Z2(I+1) +Z2(E))/(CT*DT) 
0015 Z20C1 =(12(1433-2.*ZZ(1 2)*2.*Z2t)-Z2(I-1))/(2.*DT$*3.) 
00tb 
0017 
O0Iq 
001 

C 
Z204C1 = 1Z2(1+3)-4.*Z2(I4Z)+6.*Z2(t+1)-4.*Z2(I)+Z2( -1))/DT*'4. 

THkEE DIFFERENT[AL STEPS FOR k-YLTTA 
Z2IkE = 2204C *C(6) + Z2030 *C(7)+Z202C *C(S)+Z201C *C(9) + Z211) 
Z2rIRE =Z2D4CI*C(6) + Z2D3C1.C(7) ZZ2ZCI*C(8)+Z201CtC(Q)+Z2(t1I 

0020 Z20E = Z2(1) 
002L ZT)-RE = Z2(1+1) 
0022 Z2Tbdj = (ZZONE + Z2THRE)*C.5 
0o3 GO TO (1,2,2,3),M 
0024 1 F - c(5)*(Z2ONE -C(I}*Y(1) - C(21*Y(2) - C(3)*Y(3) - C(4)*Y(4)2 
0025 GO TO 
0026 2 F = C(5)*(Z2TWL -C(I)*Y(I)  C(21*Y(2) - C(3)*Y(3) - C(4)*Y(t4)) 
0027 GO Itb 5 
0028 3 F = C5)*(ZITHRE -C(1)*Y(1) - C(2)*Y(2) - C(3)*Y(3) - C(4)*YI4kI 
0029 5 RETURN 
0030 ENO 

Fig. 75. Continued. 
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