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INTRODUCTION

A considerable amount of information has been developed in architec-
tural acoustics on sound transmission through panels, with empahsis on
middle and high frequencies where "mass law'" and coincidence effects are
important. However, there has been only limited attention given to low-
frequency sound transmission, where stiffness, damping, and resonant
behavior are important. Furthermore, the receiving room behind the
panel may have a significant effect on the panel dynamics and, therefore,
the sound transmission. A panel backed by a closed cavity provides a
meaningful model for studying low-frequency sound transmission of the
type encountered in light aircraft, for example.

The sound transmission characteristics of a simple panel backed by
a closed, absorbent cavity are shown in figure 1. The measure of sound
transmission for this case is noise reduction (NR) and is expressed in
de~ibels as a function of frequency. The NR 1is the difference in
noise level (sound pressure level) across the panel. The frequency
range for convenience is broken up into four regions corresponding to
dominating physical mechanisms, as shown in the figure. The stiffness and
resonance regions represent the low-frequency portion of the frequency
range shown. As shown in figure 1, the noise reduction below the first
resonance is independent of frequency. This phenomenon has been studied
theoretically by several investigators (for example, references 1 2, 3).
However, very little data are available demonstrating this noise

reduction and also data are not available showing the transistion of



noise reduction from this stiffness region into the mass law region
(some data are available in references 3, 4, 5). 1In addition, the
theoretical work in references 1, 2, 3, 4 was for panels backed by hard-
walled cavities.

The purpose of this paper is to present experimental data showing
the effects of adding stiffness to a panel backed by a closed, absorbent
cavity, and to present a simple theory for predicting the noise reduction
for the stiffness, resonance, and mass regions of a panel backed by a

closed, absorbent cavity.

TEST APPARATUS

The test apparatus used in this study is shown in figure 2 and
consisted of a cavity having high transmission loss on five sides, with
the sixth side left open for mounting test panels. The cavity was 30 cm
by 38 cm by 45 cm deep and was lined with 2.5 cm fiberglass on the sides
and 7.5 cm fiberglass on the cavity bottom.

The acoustic excitation was normally incident white noise provided
by two loudspeakers. The exterior noise level was determined by averagzing
the outputs of two microphones near the panel surface in one-third octave
bands. Similarly, the inside noise level was determined by averaging
the outputs of two microphones in one-third octave bands. The noise
reduction was obtained by subtracting the average inside level from the
average outside level in each one-third octave band.

Three of the four test panels used in this study are shown in
figure 3. Each panel is 30 cm by 38 cm and each was clamped to the cavity.

The fourth panel (not shown in the figure) was lead-loaded vinyl having



the same surface density as the simple panel shown in figure 3. The
three panels are each 0.79 mm thick aluminum. The only physical
differences in these panels is the stiffeners which were riveted onto
the panels as indicated in the figure. These three panels plus the
fourth (lead vinyl) represent a large variation in panel stiffness with
very little variation in panel mass (0.22 to 0.33 kg/mz) and, thus,

provide a means for studying the effects of stiffness on noise reduction.
RESULTS

Experimental Data

The measured noise reduction for the four panels is shown in
figure 4. A calculated mass law curve for the simple aluminum panel is
included with each set of data for reference. The data show that adding
stiffness increases the noise reduction at frequencies below the
fundamental. The data also show that adding stiffness does not significantly
change the noise reduction above the first resonance. It is evident from
the data that only the fundamental mode has a significant effect on the
noise reduction. Finally, the data indicate that adding stiffeners to
the aluminum panels not only increased the frequency of the first mode,
but also reduced the severity of the resonance dip. The lead vinyl does
not follow this trend probably because of the very high internal damping

in the panel. The effects of damping will be discussed later in the paper.

Analytical Model
Because only one panel resonance appears in these experimental results,
a theoretical model using one panel mode seems in order. The model is

illustrated in figure 5. The model consists of a rigid, infinite panel



supported on springs and backed by a wall having a frequency-dependent
impedance. There are no corrections for finite size effects such as
defraction. This model is analogous to that described in reference 6,
page 82, with the exception that the backing wall has impedance Zj
instead of being a hard wall (Zg + «).

The equation of motion and the corresponding equation for pressure
inside the cavity are shown in figure 5 as equation I. The variables
for a particular panel cavity system are frequency and the backing-wall
impedance. A simple, frequency-dependent expression for Zy 1is needed
to complete the equation.

The impedance of fiberglass with a hard wall behind it is approxi-
mately pc (real) at high frequencies. At low frequencies, the fiserglass
has virtually no effect, so the wall impedance will approach infinity
(assumed real) as frequency goes to zero. Therefore a real, assumed
relationship for Zy that varies from infinity at zero frequency to
pc at high frequencies is appropriate. Such a relationship is given in
equation II.

It may be shown from equations I and II that for low frequencies,
the noise reduction becomes a function simply of panel and cavity stiffness
(independent of frequency as expected) as shown in equation IIl. It may
be observed from this equation that doubling the panel natural frequency
may increase NR by up to 12 dB.

It may also be shown that, provided the first panel mode is lower
than the first depthwise acoustic mode, the system resonance can be

expressed as in equation IV, where it may be observed that the effect of



the cavity is simply to add a stiffness term to the stiffness of the
panel.

At high frequencies, the noise reduction reduces to mass law
(equation V) plus 6 dB for pressure doubling at the surface. This was
also expected because the absorbent cavity acts like an acoustic
termination at high frequencies since sound waves radiated by the panel
are not reflected back to the panel.

If the caQity impedance (Zcavity) equals pc, equation I becomes
applicable to the transmission loss problem of reference 6, page 80,
except panel damping is included. It may be shown for this case that
the transmission loss (TL) at resonance can be expressed as in equation VI.
It may be observed from this equation that the TL at resonance increases
as much as 6 dB for a doubling of either damping ratio (Z), natural
frequency (wn), or panel mass (m), provided the remaining two variables
(i.e., T, m, or wp) are held constant. Thus, by increasing the resonance
frequency, wp, (with constant m, ) the transmission loss at resonance
increases as well as the TL below resonance.

Using equations I and II of figure 5, the noise reduction was calculated
and plotted for each of the four panels used in the study. These calculations
are shown in figure 6 with the corresponding data for each panel. It may
be observed from the figure that the model provides a reasonable method
for calculating the noise reduction at low ana mid-frequencies. It should
be noted that the prediction is poor for the aluminum panels at high fre-

quencies because coincidence effects are not included in the model and



because the added mass of the stiffeners, although included in the
prediction model, is not uniformly distributed over the panel.
Conclusions drawn from the data presented in this report include:
(1) adding stiffness to a panel backed by a closed cavity increases the
noise reduction at frequencies below the first resonance, (2) additional
stiffness does not improve noise reduction at mid and high frequencies,
(3) for a random input and one-third octave band analysis, only the
first panel-cavity mode has a significant effect on the noise reduction,
(4) as the resonance frequency of ihe first panel-cavity mode was increased
with stiffeners for the aluminuin panels, the noise reduction at the
resonance dip was increased, (5) the results of the simple analytical

model presented compared well with the data for the panels tested.
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