AUTOMATIC VEHICLE)NITORING SYSTEMS STUDY Report of Phase 0

Vol. 2. Problem Definition and Derivation of AVM System Selection Techniques

Prepared by

Jet Propulsion Laboratory California Institute of Technology

Pasadena, California 91103

PREFACE

This document on Automatic Vehicle Monitoring Systems presents the results of work supported by the National Science Foundation. It was sponsored under an interagency agreement with the National Aeronautics and Space Administration through Contract NAS 7-100. Points of view and opinions stated in this document are those of the authors and do not necessarily represent the official position of the sponsoring agency.

FOREWORD

This report was prepared for distribution to public safety planners for the purpose of providing them with a compact source of information regarding improvements in efficiency and cost benefits obtainable with varıous classes of operational and proposed automatic vehicle monitoring (AVM) systems. An AVM system can contribute to emergency patrol effectiveness by reducing response times and by enhancing officer safety as well as by providing essential adminıstrative control and public relations information. This complete report and the Executive Summary (Vol. 1) were prepared by the Jet Propulsion Laboratory of the Calıfornia Institute of Technology using the results of studies sponsored by the National Science Foundation.

Special computer programs are described which can simulate and synthesize AVM systems tailored to the needs of small, medium and large urban areas. These analyses can be applied by state and local law enforcement agencies and by emergency vehicle operators to help decide on what degree and type of automation wall best suit their individual performance requirements and also the possible reduction in the number of vehicles needed which could substantially reduce operating expenses.

G. R: Hansen

ACKNOW LEDGEMENTS

Appreciation is extended to the Users Group Advisory Committee (UGAC) members for their friendly cooperation and help in the conduct of this study and their professionalism in representing their respective cities and police departments.

Lieut Robert Zippel	Anaheim
Capt. Daniel Sullivan,	Los Angeles
Sgt. Howard Ebersole,	
Ofc Louis Lozano	
Lieut James Lance	Long Beach
Chief Raymond McLean	Montclair
Lieut Allen Stoen	Monterey Park
Ofc. Luke Villareal	Pasadena
Lieut. Robert_L. Walker,	San Diego
Sgt. Robert E. Ristau	

We should also like to thank the Chiefs of Police of the UGAC cities for their interest in the study effort:

Chief David Michel	Anaheim
Chief Edward M. Davis	Los Angeles
Chief William Mooney	Long Beach
Chief Raymond McLean	Montclaır
Chief Raymond Warner (dec)	Monterey Park
Chief Robert McGowan	Pasadena
Chief Raymond Hoobler (ret)	San Diego

G. R. Hansen

CONTENTS

Page
EXECUTIVE SUMMARY 1
I. Introduction I
II. Summary of AVM Systems Study Results 2
III. Classes of AVM Systems 5
IV. Vehicle Locatıon Technologies and Costs 14
V. Vehicle Polling and Location Performance 25
PART ONE. AVM COST BENEFIT INFORMATION BASE 1-1
I. Performance and Costs of Proved AVM Techniques 1-1
II. Vehicle Polling Techniques and Location Performance 1-12
III. Urban Characteristics That Affect AVM Costs 1-15
IV. AVM System Accuracies and Cost Benefits 1-20
V. Computer Programs for Analyses of AVM Needs 1-23
References and Bibliography 1-26
PART TWO. AVM DATA FOR USER GROUP ADVISORY COMMITTEE CITIES 2-1
I. Cost Benefits of AVM Systems for Seven Cities 2-I
II. Anaheim, CA, City AVM Cost Benefit Analysis Tables $2-4$
III. Long Beach, CA, City AVM Cost Benefıt Tables 2-5
IV. Montclair, CA, City AVM Cost Benefit Analysis Tables 2-7
V. Monterey Park, CA, City AVM Cost Benefit Tables 2-8
VI. Pasadena, CA, City AVM Cost Benefit Analysis Tables 2-10
VII. San Diego, CA, City AVM Cost Benefit Analysis Tables 2-11
VIII. Los Angeles, CA, City AVM Cost Benefit Tables. 2-14
PART THREE. ANALYTICAL TECHNIQUES FOR ESTIMATING AVM SYSTEM ACCURACY 3-1
I. Vehicle Location Accuracy for Class I and III Systems 3-1
II. Markov Chain Model of Vehicle Location by Means of Proximity Sensors for Class II and IV Systems 3-17
PART FOUR. AM BROADCAST AND BURIED. LOOP FEASIBILITY ANALYSES FOR AVM USE 4-1
I. Vehicle Location by Means of AM Broadcasting Station Carrier Signals 4-1
II. Vehicle Location by Means of Buried Loops 4-25

Abstract

A set of planning guidelines is presented to help law enforcement agencies and vehicle fleet operators decide which automatic vehicle monitoring (AVM) system could best meet their performance requirements. Improvements in emergency response times and resultant cost benefits obtanable with various operational and planned AVM systems may be synthesized and simulated by means of special computer programs for model city parameters applicable to small, medium and large urban areas. Design characteristics of various AVM systems and the implementation requirements are illustrated and costed for the vehicles, the fixed sites and the base equipments. Vehicle location accuracies for different RF links and polling intervals are analyzed. Actual appli- catıons and coverage data are tabulated for seven cities whose police departments actively cooperated in the JPL study. Volume lof this Report is the Executive Summary. Volume 2 contains the results of systems analyses.

G. R. Hansen

AUTOMATIC VEHICLE MONITORING SYSTEMS STUDY

EXECUTIVE SUMMARY

Prepared by

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91103

Prepared for
National Science Foundation Washington, D.C.

CONTENTS

EXECUTIVE SUMMARY Page
I. INTRODUCTION 1
II. SUMMARY OF AVM SYSTEMS STUDY RESULTS 2
A. Work Accomplished in Phase 0 2
B. Preliminary Conclusions 3
C. Program Recommendations 4
III. CLASSES OF AVM SYSTEMS 5
A. Classification Rationale 5
B. AVM Class Descriptions 8
IV. VEHICLE LOCATION TECHNOLOGIES AND COSTS 14
A. Proved AVM Techniques 14
B. AVM Cost Considerations 18
V. VEHICLE POLLING AND LOCATION PERFORMANCE 25
FIGURES
Figure Number Page

1. Class O Manual Monitoring, No AVM 9
2. Class I AVM; No Modifications to Urban Physical Environment. 10
3. Class II AVM; Autonomous Signposts Throughout Urban Area. 11
4. Class III AVM; Sparsely Distributed Special RF Sites 12
5. Class IV AVM; Monitored Signposts Throughout Urban Area 13
6. AVM Systems Showing Common and Unique Equipments for Vehicles, Signposts, and Base Station 16
TABLES
Table Number Page
7. AVM Classes, Systems and Costs of Functional Elements Installed 15
8. Vehicle Equipment Costs for All AVM Classes and Systems 19
9. Fixed Site Costs for Class II, III, and IV AVM Systems 20
10. Base Station Costs for All AVM Classes and Systems 22

AUTOMATIC VEHICLE MONITORING SYSTEMS

George R. Hansen

I. INTRODUCTION

In this report, the results of the first phase of a three-phase program to aggregate existing information on Automatic Vehicle Monitoring (AVM) Systems are presented in terms of performance, urban characteristics, operating modes, and cost in a way that will assist prospective AVM User Agencies to make valid comparisons and selections from among the many competing AVM techniques and AVM Systems. This phase (Phase 0) of the study was performed by the Jet Propulstion Laboratory (JPL) for the National Science Foundation (NSF). As orıginally concelved by NSF and JPL, the AVM Systems study program would include the following three phases.

Phase 0 \quad| Problem Definition and Derivation of AVM System Selection |
| :--- |
| Techniques (in this Report) |

Phase I \quad| Critıcal Research and Verıfication of the Efficacy of AVM |
| :--- |
| System Selection Techniques Through Computerized System |

Phase II | Simulation. |
| :--- |
| Proof of Concept Experiment Demonstrating the Efficacy of |
| Selected AVM Systems in Urban Environments. |

In brief, the Phase 0 research was concentrated in three areas: (1) Compilation of a broad information base on AVM technology and urban characterıstics, (2) adaptation of computerızed analytical techniques needed in the AVM System selection process and in cost benefit trade-offs, and (3) application of AVM System selection process by manual iteration to small, medium and large model cities.

Frequent reference is made in this Report to "AVM techniques" and "AVM Systems". The term "AVM technique" is used to denote the technology required to acquire a fix on a vehicle, while "AVM System" is used to denote the integration of all functional elements required to locate and keep track of vehicles in some automated fashion.

II. SUMMARY OF AVM SYSTEMS STUDY RESULTS

A. WORK ACCOMPLISHED IN PHASE 0

A broad range of information concerning automatic vehicle monatoring (AVM) was compiled from the existing literature, including: (1) Varıous vehicle location sensing techniques, (2) all functional elements of the total AVM system, and (3) various sized cities with representative geography, topology, demography and urbanology. The information obtaned from the literature was supplemented by data obtained directly from police department representatives of seven Southern California cities that partıcipated in the User Group Advisory Committee (UGAC).

Several computerized analytical techniques were developed. City models representative of those characteristics that affect AVM selection were developed for use in the general cost benefit solutions. An analytical technique for predicting vehicle polling rates achievable for the various location sensing techniques in a full AVM system configuration was also developed. Algorithms were developed to estimate the accuracies achievable by a large variety of AVM systems using the probabalistic distributions for three independent variables: (1) vehicle speed, (2) inherent accuracies of location sensing techniques, and (3) vehicle polling intervals.

Preliminary analyses were performed to determine first-order cost estimates for AVM Systems as a function of the various vehicle location sensing techniques when used in small, medium and large cities. Prelıminary analyses of the accuracies achievable with various AVM systems were also performed. Various AVM system configuration options were developed, and promising options were examıned for possible cost benefits to seven UGAC cities.

B. PRELIMINARY CONCLUSIONS

1. AVM Class should indicate effects on urban environment. From the viewpoint of the prospective AVM system user, the traditional classifications of vehicle locating systems (1.e., piloting, deadreckonıng, triangulation, trılateration, and proximity) do not necessarlly reflect the impact of an AVM installation on the local urban scene. It is believed that the prospective user's needs would be better met if vehicle montoring classifications were based on system element types and functions as follows:

Class 0	Manual Monitoring. No AVM
Class I	AVM. No modifıcation to the urban environment. (exısting RF links)
Class II	AVM. Autonomous signposts throughout urban area
Class III	AVM. Sparsely distributed special RF sites
Class IV	AVM. Monitored signposts throughout urban area

2. AVM cost benefits obtainable by medium and large cities. The preliminary cost analysis indicates that the cost benefit break-even point occurs for a medium sized city with an area of about $100 \mathrm{~km}^{2}\left(40 \mathrm{ml}^{2}\right)$ and with roughly 50 vehicles. In other words, cities larger in size could expect a positive and increasing benefit with size, up to a certain point. Conversely, cities below this medium size probably would not realize any cost benefit. This conclusion was based on 5-year estimates of AVM system costs and savings.
3. No cost benefits derived from monitored signpost systems. None of the Class IV systems produced a cost benefit for the cities studied, generally because the rental rates on telephone lines raise the equipment costs excessively.
4. AVM System accuracies greater than technique accuracies. In general, the 95% total system accuracy can be expected to be significantly greater than the inherent accuracy of the location sensing technique. Usually the system accuracy is no less than three times the inherent technique accuracy.
5. Vehicle polling intervals determine AVM system accuracies. It appears that the polling interval will dominate system accuracy and that the polling interval can only be shortened at the expense of RF resources dedicated... to AVM purposes. Because of the present and predicted future demand on RF resources, this is one area that demands optimization.
6. Critical research required for verification of selection technıque. The results of the first phase of the AVM study effort should be used with caution and should not be construed as specific recommendations at this point. The second phase of the analytical work should be completed to verıfy the results of the first phase.

C. PROGRAM RECOMMENDATIONS

1. It is recommended that the second phase (Phase I) of the AVM Systems study proceed.
2. It is further recommended that mission agencies such as the Law Enforcement Assistance Administration (LEAA) and/or the Department of Transportation (DOT) sponsor the Proof of Concept Experiment, or third phase. The tests presently planned jointly by the city of Los Angeles and DOT could effectively serve this purpose. This could be accomplished by closely coordinating the analytical techniques developed in this study with the Los Angeles Police Department, the Southern Calıfornia Rapid Transit District, LEAA and DOT and making the analytical tools available to the city for use in the design of the experiment.

III. CLASSES OF AVM SYSTEMS

A. CLASSIFICATION RATIONALE

Traditionally, AVM systems have been classifaed in the 1iterature according to the method used to locate the vehicle within an urban area. Recognizing that all AVM systems have certain elements in common and that some systems have unique elements, an alternate classification scheme was developed for the purpose of this study. This classification not only implies the type of AVM system but also suggests the physical impact that the system elements and functions will have on the local urban environment. The following groupings of system elements suggested the classification scheme:

Functional Elements Common to All AVM Systems

(1) Existing communications system.
(2) Vehicle polling subsystem.
(3) Landline data links.
(4) Telemetry data/polling handler.
(5) Telemetry link (common to most).
(6) In-vehıcle equiprnent, such as data processor, telemetry data encoder, polling processor, and signpost sensor
(7) Vehicle location computer.
(8.) Information display subsystem.

Functional Elements Unique to Specific AVM Systems
(9) Autonomous signposts; signpost sensor in vehicle (Class II).
(10) Fixed synchronızed RF transmitter sites (Class III).
(II) Monitored signposts, vehicle sensor on signpost (Class IV).

A discussion of each of these AVM functional elements follows:

1. Existing communications system. As a practical consıderation, AVM s.ystems will probably be integrated with the existing voice communication and vehicle polling RF links, especially for the telemetered location data between " the vehicle and the dispatch center.
2. Vehicle polling subsystem. This interrogation device or procedure enables the vehicle location computer (VLC), described in Element 7, to know which vehicle corresponds to which set of location data. Polling may be either an operating procedure or an active element that allows the dispatcher to obtain locations of specific vehicles.
3. Landline data link. This data link is a landline supplyang data to the VLC (Element 7). It may either be relatively short, leading from the telemetry data/polling handler (Element 4) to the VLC, or it may be quite extensive, collecting data from monitored signposts throughout the covered urban area, or it may be somewhere in between these in its extent, bringing data from a relatively small number of fixed $R F$ sites.
4. Telemetry data/polling handler. This device is included because AVM systems deal with data that are different (e.g., digital) in character from that used by the dispatcher in voice communncation with the vehicles. Furthermore, if the vehicle polling subsystem (Element 2) provides for selective polling, then there are likely to be corresponding additional requirements on the communncation system.
5. Telemetry link. Since it is tacitly assumed that the AVM system will not restrict the mobility of the fleet vehicles, some kind of communication-at-a-distance is essential. In some systems, the telemetry link is assumed to share or be in addition to the RF link now used for volce communications. In other systems the telemetry path might be between the vehicles and sparsely distributed synchronized RF sites. In still other AVM systems, the telemetry path may be relatively short, being only from the vehicles to signposts distributed throughout the urban area. In that case, the transmission medium could conceivably be sonic, optical, or even magnetic, instead of radio.
6. In-vehicle equipment. Depending on the AVM system, some or all of the four following devices may be carried in the vehicle.
a. Vehicle data processor. This device recelves raw vehicle location data either from the officer or from signpost sensors. It does whatever data processing is done on-board, then adds the vehicle identification data, and passes this information along to the telemetry data encoder, described next.
b. Vehicle telemetry data encoder. This device puts the vehicle location data supplied by the vehicle data processor into the telemetry link (Element 5).
c. Vehicle polling processor. This device enables the vehicle to respond properly when polled, and may range in complexity from a clock to an RF signal decoder.
d. Signpost sensor. Where the densely distributed autonomous signpost concept is used (Class II), the signpost sensor must be carried in the vehicle. This sensor is required to read the signpost ID/location. Location data may be acquired by coded optical, infrared, sonic, or magnetic means besides radio.
7. Vehicle location computer (VLC). This device transforms the vehicle location data into location points or coordinates for use by the information display subsystem (Element 8). It also informs the display subsystem as to the identity of the vehicle to which the location data belongs. The VLC may also interface with the Computer-Aided Dispatch System.
8. Information display subsystem. This device indicates to the dispatcher where the vehicles are currently located (or were when last polled). It may also identify the vehrcle's status. As in the case of manual aids used for vehicle location in Class 0 , the possible range of complexity and sophistication may range from a simple printer to an elaborate electro-optical device supported by a computer. It should be noted that the display subsystem is virtually independent of the location technique used.
9. Autonomous signposts used in Class II AVM. Each autonomous wayside or buried signpost has a location ID and must be recognizable and readable by the signpost sensor in the vehicle. The signpost telemetry link to the vehıcle may be by radio, pulsed light, infrared, sonıc, or magnetic means.
10. Fixed synchronized RF transmitter sites used in Class III AVM. These RF sites are a relatively small number of special-purpose transmitters which broadcast synchronized signals that can be used to determme the locations of receivers on vehicles by means of navigation techniques. The characteristics of these signals could be FM phase, pulse, or noise correlation. Some of these sites may also recelve retransmitted signals from the monitored vehicles.
11. Monitored signposts used in Class IV AVM. Each monitored wayside or buried signpost requires a vehicle sensor that will transmit the vehicle's ID data received and also identify 1 ts own location to the central collection station. These signposts may sense vehicle motion, or they may detect pulsed Light, infrared, or ultrasonic signals or receive RF signals through buried antennas.

B. AVM CLASS DESCRIPTIONS

The vehacle location system classes, based on their physical impact on the urban environment, are shown in the following list and are described in greater detail in subsequent paragraphs and accompanying figures. For reference, the traditional vehicle location classifications are noted as indentures.
(1) Class 0 Manual Monitoring. No AVM
(a) Piloting
(2) Class I AVM. No Modification to Urban Environment (Existing RF Links)
(a) Officer Update
(b) Dead Reckoning
(c) Navigation (Using Existing RF Beacons)
(3) Class II AVM. Autonomous Signposts Throughout Urban Area
(4) Class III AVM. Sparsely Distributed Special RF Sites
(a) Triangulation
(b) Trilateration
(5) Class IV AVM. Monitored Signposts Throughout Urban Area
(a) Vehicle Proximity

1. Class 0 Manual Monitorıng; No AVM. Thıs baseline (piloting) class is included in the listing of vehicle location techniques purely for comparative purposes. In Class 0, the location monitoring methods (Figure l) range from those relying solely on the dispatcher's memory, through manually updated mechanical and visual aids, to keyboard-updated computer displays which keep current each vehicle's location and status based on verbal or digital communications between dispatcher and vehicle.
2. Class I AVM with no modifications to urban environment. All AVM systems require the installation of certain equipment in the command center to accomplish the automation of vehicle monitoring. All AVM systems also require the installation of some device in or on the monitored vehicles. But systems in Class I require nothing further, though they perforce utilize RF resources.

Figure 1. Class 0 Manual Monıtorıng, No AVM

A typical Class I AVM configuration is shown in Figure 2. Each AVM command center must contain a display subsystem, a vehicle location computer, a vehicle polling subsystem, and a telemetry data/polling handler, which are described in Section IV. Each vehıcle requires location sensors, a data processor, a telemetry data encoder, and a polling processor. Class I AVM systems are based upon a variety of location technıques and algorithms which include the following: (a) Officer update techniques, in which the functions of the vehicle's sensors and its data processor are performed by an occupant of the vehicle. (b) Deadreckoning systems are included if the requisite updating does not require the installation of fixed location reference equipment in the environment. (c) If the AVM systems use existing navigation beacons or AM broadcasting stations, they are also included in Class I because the required stations are assumed to be part of the urban environment.
3. Class II AVM with autonomous signposts throughout urban areas. The defining characteristic of Class II AVM systems is the installation of autonomous signposts in strategic wayside or buried locations at intersections throughout the covered urban area. These location reference sites are autonomous in that they communicate their identity only to the vehicles and not to the command center.

Figure 2. Class I AVM; No Modifications to Urban Physical Environment

The location information provided by the signposts to the vehicle may be either an identification code or the geographic coordinates of the location. Since the vehicle location accuracy provided by systems in Class II is dependent upon signpost spacing, greater accuracy can be achneved in critical areas by locally increasing the signpost density to one per intersection or per lane. A typical Class II system configuration is shown in Figure 3. Signpost systems can be "pure", in that all location information is derived from the fact that a monitored vehicle is (or was) near a signpost; or they can be "hybridized", with the fact of signpost proximity used either to augment, calıbrate, or reinitialize the determination of vehicle locations obtained by other means, such as odometers. If a hybrid system does not require a data link in the environment, it is placed in Class II. If the hybrid system requires a data link from the signposts but no special-purpose fixed RF sites, it belongs in Class IV. If it has both a data link in the field and special-purpose fixed sites, it is in Class III.
4. Class III AVM with sparsely distributed special RF sites. Thıs AVM class includes those systems that require the installation of a relatively small number of special purpose fixed RF sites, where a "fixed site" either broadcasts or recelves over a relatively large urban area with a radius of 5 to 11 km (3 to 7 miles).

Figure 3. Class II AVM, Autonomous Signposts Throughout Urban Area

Data links in the environment are required to maintain synchronization for triangulation or trilateration purposes. Since the number of fixed sites is relatıvely small, these data synchronızation links could be microwave rather than landíine. Figure 4 shows a typıcal Class III configuration. It is optional only in Class III systems whether the telemetry link from the vehicle be along the existing communication system or through the-special-purpose RF sites. In either case, RF resources are utilized for that link.
5. Class IV AVM with monitored signposts throughout urban area. Systems in this class contain monitored signposts installed in strategic waysade or buried locations throughout the covered urban area for the purpose of sensing the proximity and identity of signals transmitted from vehicles. A Class IV data lank does not share the use of RF resources with the existing communication system but uses telephone lines, which may make this class of AVM systems very attractive for some applications. A typical Class IV system configuration is shown in Figure 5.

Figure 4. Class III AVM; Sparsely Distributed Special RF Sites

Figure 5. Class IV AVM, Monitored Signposts Throughout Urban Area

IV. VEHICLE LOCATION TECHNOLOGIES AND COSTS

A. PROVED AVM TECHNIQUES

This section contans a narrative description and a complation of the cost and performance parameters of operational or proved techniques used for automatic vehicle monitoring (AVM). Schemes primarily intended for vehicle identification, such as those used in rail freight or extensions of point-of-sale methods are not included. In this report, the vehicle monitoring techniques are categorized into five broad classes, based on system element types and functions: Class 0, Manual Monitoring, no augmentation of location information; Class I AVM, no additions to the urban environment; Class II AVM, densely distributed autonomous signposts; Class III AVM, sparsely distributed special transmıtting/receiving fixed RF sites; and Class IV AVM, densely distributed monitored signposts. In Table l, the proved vehicle location methods are listed by AVM Class along with estimated costs (as of 1974) for unique system-required equipments installed in each vehicle and at each signpost or special fixed site.

1. Functional diagram correlating various AVM techniques. In order to make equipment and cost comparisons, a functional block diagram combining the elements that make up all of the AVM techniques was generated. This block diagram (Figure 6) demonstrates the equipment and functional commonalaty among the various techniques. In most techniques, the functional elements can also be physically identical, such as the location/vehycle ID/status register. Variations in costing such elements are due to other factors, such as achievable location precision, fleet size, and amount of status telemetry desired which all affect register length but are technique independent.

Figure 6 illustrates the numerous optional methods available for performing the vehicle location function which make AVM system comparisons difficult. For example, the various Class I techniques can either process the location data on the vehicle or transmit the raw data to the base station. In the Class III techniques, the vehicles may be polled either through the normal 2 -way radio or through a special telemetry link used for vehicle location purposes.

Table 1. AVM Classes, Systems and Costs of Functional Elements Installed

AVM Class and System	Element Costs, \$		AVM Class and System	Element Costs, \$	
	Vehicle	Fixed Site		Vehicle	Fixed Site
$\begin{array}{ll}\text { Class 0. Manual Monitoring No Augmentation of } \\ & \text { Vehicle Location Information }\end{array}$			Class II Autonomous Signposts Throughout Urban Area		
Class I. No Modifications to Urban Environment (Existing RF Links)			(1) Active signposts (a) Radıo beacons Low frequency Citizen band, VHF X -band beacon (b) Ultrasomic signposts (c) Optical, infrared (d) Buried antennas (2) Passive signposts (a) Buried Magnets (b) Reflective patterns Coded on signposts Coded on roadway (c) Bursed resonant loops	\square	
(1) Officer update systems (a) Keyboard entry (b) Stylus map (2) Dead reckoning systems (a) Two accelerometers (b) Two velocimeters Laser, orthogonal Laser/compass Ultrasonic	$\begin{array}{r} \square \\ 120 \\ 2535 \\ \hline \\ 500 \\ 715 \\ 805 \\ 485 \end{array}$	\square 0 0		$\begin{aligned} & 145 \\ & 145 \\ & 160 \\ & 170 \\ & 170 \\ & 135 \\ & \hline 95 \\ & \hline 580 \\ & \hline 135 \\ & 135 \end{aligned}$	165 145 275 160 155 120 110 10 85 125 95
(c) Odometer/compass	\longrightarrow	$\underline{\square}$	Class III. Sparsely Distributed Specıal RF Sites		
Magnetzc compass Gyro compass (3) Navıgatıon, exısting beaçons (a) OMEGA systems Differential Relay OMEGA (b) LORAN (A, C, or D)	285 - - - - 4580	0 0	(1) Trilateration systems (a) Phase TOA Narrow-band Wide-band (b) Pulse TOA (c) Interferometer, noise (2) Triangulation systems (a) Rotatıng beams (HONORÉ) (b) Direction finding	$\begin{array}{r} \square \\ 100 \\ 2,965 \\ 1,435 \\ 885 \\ \square \\ \hline \end{array}$	$\begin{array}{r} \bar{L} \\ 5,000 \\ 11,000 \\ 14,500 \\ 9,000 \\ \hline \end{array}$
Differential Relay LORAN	2680 505	0 0	Class IV Monitored Signposts Throughout Urban Area		
(c) DECCA System (d) AM Broadcast stations	1010 365	0 0	(1) Radio recelvers (a) Wayside (b) Buried antennas (2) Ultrasome receptors (3) Optical, infrared detectors	-2 135 145 185 185	$\begin{aligned} & 260 \\ & 265 \\ & 280 \\ & 270 \end{aligned}$

Eigure 6. AVM Systems Showing Common and Unique Equipments for Vehicles, Signposts, and Base Stations

Class I, II, and III technıques may use any of the various vehicle polling technıques. Polling does not apply to the Class IV monitored signposts. The consideration of which polling method is to be used may depend heavily on whether or not equipments requiring digitial communication have already been installed.
2. Technical and cost parameters. Virtually every technical performance and cost estimate parameter of a particular vehicle location technique is system-dependent. The AVM system accuracy, the numbers of fixed sites, the message lengths, the data rates, the base station computing, the information displays, software, and RF channel requirements are all functions of the particular application. Some functional elements and performance factors can be determined to a limited extent, such as the cost and coverage radius of the various signposts, RF beacons and traffic presence sensors in Classes II, III, and IV; and also the cost and minımum message requirements of the vehicle sensors and data processors in Class I.

In order that cost estimates could be made for the various AVM techniques, extremely simplified block diagrams of the unique functional elements associated primarily with the vehicle location process were developed. That 1s, only the vehicle sensor and AVM fixed sites associated with the particular technique were considered. These cost figures accompany each of the descriptions and considerations of the method in the following section.

B. AVM COST CONSIDERATIONS

In addition to the costs associated wath the vehicular and fixed site functional elements required for the basic location process, there are the costs of yearly maintenance and vehicular radio additions or modifications for transmitting and receiving AVM signals. Estimates of the vehicular costs (as of 1974) for each class of AVM are presented in Table 2. In this table, the radio cost and the radio modification columns represent optional choices. That is, the radıo modification cost is not applicable where a separate radio for AVM signals is selected.

The costs for fixed sites equipment, unstallation, operational maintenance, data link, and maleage charges per mıle per month are summarized in Table 3 for Classes II, III, and IV.

Table 2．Vehicle Equipment Costs＊for All AVM Classes and Systems

IEHLOST \quad HUL LOSTS PEF MEHILLE IH A						
CLASS I TEGHHIDIUE	SEHSOF	FFOL	FHIID	FFII．VIOII	Int	［1］
－E＇ISOHPI	\div	4	1506	50.1	3	15
STiLuS the	24E5	35	1269	59	5	－
E－HCEELEFOHETEF：	4619	100015	1209	209	1619	100
LFSEP IELUIITMTF	504	1090	1ごす	360	135	15
ULTFFGOHIE MELO	$2-6$	6819	1290	206	160	150
EOFPHSS OIDTETEF	265	1695	1209	20in	20	＋ 4
COTFHSS LFSEF HEL	－5	1000	1209	E09	15	45
CHFSS U－SOHIIS IEL	38		1295	200	100	96
DHEGA	2596	\square	1296	260	16	\cdots
LIFPH	2569	$\underline{\square}$	1 Cb	290	Es	\bigcirc
TELCA	Sticter	－1	1204	2	5	\checkmark
AITSTATIOH， IIFF．OHEEA	200	0	1209	20.0	T610	6.9
IITFF：LOFHe	E6H	8	12010	－101	30	\rightarrow
DIFF＝FH1－STH．	315	4	1 EG日	150	510	80
FELA＇	3	0	1209	130	0	1019
FELA＇i LOPHI CLFSS II	－50	\square	12000	156	6.	106
EUFIEI FĖ＝LOUF：	96	$\underline{0}$	1 ごず9	50	「「	15
FEFLEETIHG SIGHE	459	$\underline{\square}$	12061	5	130	2
FEFLEETIHG FIGHI	$\checkmark 5$	\square	1296		83	15
：－EAtIIFOST	15	9	1200	519	T	16
HF＊ LF FOET HOST	105	9	1200	5	－	10
LF FOST	109	0	1265	59	\pm	－
EUFIET ATGHETS	54	\square	12g	519	－	S
ULTFHEOHIE FOET	85	5	． 106	56	59	－
TFFFFIE SEISOF	9	E	1 O60	59	4	10
CLASE III	6 E	\square	12090	165	－71	5
HIT－EAHII FIT FHFEE	295	1	15	36	909	20
FULSE T－DTAFFIUFL	25	9	8	$\xrightarrow[9]{9}$	15.5	25
HIISE COFPELATIOH DIFECTIOH FIHIEF	785	9	\square	0	1610	2
IIFEETIOH FIHIEF CLRES III	35	\square	\square	0	15	－
TRAFFIE LODFS	85	$\underline{\square}$	\square	\square	8	16
HF＇＇SIDE FATIS	7	0	9	0	4	16
PHOTO I－F FETELT	115	9	\square	9	－	15
ULTFHEOHIIC IETECT	$1 \Sigma^{5}$	9	$\underline{\square}$	6	ES	15

[^0]Table 3. Fixed Site Costs* for Class II, III, and IV AVM Systems

FI: ENOST

TELHIIGUE EOUIF LLHSEI
t E'BOAFII
5

E-ACEELEFOHETEF:
LASEF IELOLINTF
HLTPFGOHIT HELO
EOHPHSE OTOIETEF
EOHFHS LAEEF MEL
CIFES :1-EOHIL MEL
DEGA
LUFFHI
aECE
HI-GTATIOHE
IIF $\bar{T}=$ OIELA
IITF: LOPFH
ITFF: AITETA.
FELF:
FELAH LOFHH
CLASE II
SUFIEI FES. LOOFS
FEFLECTITIG SIGIS
FEFLECTITG FOHZ
\because :-Fin POST
$\mathrm{HF}=1 \mathrm{HF}$ FOST
LS FGST
ZUPIET HACHETS
ULPHEOHIC FOST
TFAFFIG EEHSOF
CLRSS III

HAFP-EHITI FH1 FHASE	45610	56	5150	2	5
HIJ-EAl产 Fil FHFSE	-9519	1565	5519	20^{56}	$\underline{0}$
PILSE T-i-FFFFIMAL	12069	25090	560	20196	\square
HOISE EOFFELHTIOH	$\bigcirc 506$	15901	500	2610	\square
SIFELTIOH FITIEF	260169	15619	129	25	5
CLFSS IU					
TFFFFIC LOUF'S	165	113	16	13	4
HFiSIDE FHIIS	160	113	25	13	4
FHOTG I F IETECT	179	113	2	13	$\stackrel{\square}{4}$
ILLTFHSOHIC DETECT	16E	113	25	13	4

[^1]Additional costs associated with each AVM technıque when configured as a system are the base station costs and the vehicle polling system costs, given in Table 4. The base station 1 s assumed to include the vehicle location computer, the peripherals, the dispatcher displays, software, and yearly operational maintenance.

1. Vehicle cost parameters. Vehicle costing for an AVM system is a straightforward multiplicative process of determining the total cost to equip all vehicles in the fleet with the appropriate AVM sensor, data processor, vehicle polling equipment, and radıo modification; motorcycles are not considered. If a separate radio link is deemed necessary for AVM purposes, then this additional cost must be added.

If the vehicle fleet has already been equipped with digital message entry devices (DiMED), keyboards, hard-copy printers, gas-plasma or cathode-ray displays, then some of the functional elements required for an AVM system have been established. Prior installation of digital message equipment was not considered in the costing of vehicular equipment.
2. Fixed site costs. Site costs unique to AVM systems are consıdered only in Classes II, III and IV. In determining the system costs, the number of installed units must first be determined. The design algorithms for fixed sites are dependent on the density distributions of intersections, road segments, and lanes, and on the area to be covered.

Most of the Class II AVM techniques that rely on radio ID signals are configured and costed on the basis of one autonomous signpost per intersection. The exception is the HF signpost which is configured on the basis of one unit for each four intersections because of the greater coverage radius. The reflective pattern signs techniques require two installations for each road segment because of the geometry constraints between vehicle and sign, whereas the traffic presence sensors require one installation for each road segment because of the nature of the normal installation. Buried loops and magnets require an installation per lane in each road segment. In addition, each installation is actually a multiple installation; i.e., there must be sufficient loops or magnets to provide adequate coding for each road segment. The cost estimates for fixed sites were based on an average of 2.4 lanes for each road segment, 1.e., about 1 four-lane road for each 6 two-lane roads.

Table 4. Base Station Costs* for All AVM Classes and Systems

[^2]The number of loops at each lane segment was that sufficient to provide a unique base -2 code for each road segment. The number of magnets used is half this value since spaces can be used to provide approximately half the coding bits (magnet for "one", space for "zero").

Since the Class III synchronized RF sites are more sparsely distrıbuted, their numbers are estimated on the basis of urban area for the selected phase and pulse time-of-arrival techniques. The radius of coverage for narrow-band and pulse systems, based on prior tests and experiments, is set at 5 km (3 miles). In addition, the requirement that, wherever possible, four or moré antennas should cover the given area is imposed. This procedure provides data for least-squares computation as opposed to the analytic "flat earth " solution of vehicle location. The wide-band antenna coverage radius is set at 11 km (7 miles), based on prior tests. Design algorithms were established from the rectangular model cities data as follows:

Number of narrow -band and pulse sites $=6+\frac{\text { area } 1 \mathrm{n} \mathrm{km}^{2}}{10}$
Number of wide-band sites $=4+\frac{\text { area in } \mathrm{km}^{2}}{40}$

The number of fixed sites in the southern California UGAC cities was determined from geometrical gridlined overlays superposed on outline maps of the cities. The outline and site locations for-the cities are depicted in figures that accompany Part 2 of this Report. A minimum number of fixed sites for noise correlation and direction finding was establıshed, recognizing that this number is probably insufficient for all but the smallest cities.

Class IV monitored signposts were configured and costed on the same basis as the equivalent Class II devices. Telephone line rental is, however, included in the site costs where applicable as the line should be considered an equipment cost as opposed to an operation cost.
3. Base station costs. Base station equipment costs were estimated on the basis of both urban area coverage and fleet size. The station's computer costs were estimated on the basis of area, and the software costs were based on fleet size. This separation of cost elements is only partially defensible. It is assumed that a minicomputer is usually used to support the AVM function with varying amounts of bulk storage (disc) to accommodate the city map for output display.

Exceptions are in the Class III time-of-arrival (TOA) methods, where larger machines are assumed. The pulse and noise-correlation techniques also require a larger computer with more speed and versatility than can be provided by a minicomputer because of the inherent capability of servicing many more vehicles per unit time and the need to accommodate a large number of inputs in real time. The software estimate based on fleet size is also difficult to justify totally. Much reliance was placed on prior work estimates and on the judgements of systems analysts.

1 Three estmates each of base station computer and software costs were made based on model city parameters for small, medium and large cities. For the UGAC cities, the costs were determined based on the urban areas and the total fleet size, excluding motorcycles, using linear interpolation.

Display equipment costs are included in the base station costs on the basis of the actual number of dispatchers in the case of UGAC cities. For the model cities, the costs are estimated on the basis of 1 display console for each 50 vehicles or less.
4. Installation costs. Equipment installation costs were obtained by multiplying the cost per unit vehicle and the cost per fixed site installation by the appropriate number of units. Toegether with the base station installation cost, they make up the tabulated total cost. A constant cost value is assumed for the base station, which is a rounded average value of prior estimates made in conjunction with AVM deomonstration tests.
5. Operation and maintenance costs. The estimates of $O-M$ costs for equipment installed in vehicles, at fixed sites, and the base station are based on experience values for both mobile and fixed equupments. In the base station, the principal cost element is for operation and maintenance personnel. Three persons (one per shift) were assumed in all AVM techniques to provide software support or equipment service. Although this assumption may not be justifiable, It was believed that AVM is a comparitively new technology which will probably interface with computer-alded dispatching and digital message systems and that additional service personnel would be required for a substantial time period after the initial installation.

V. VEHICLE POLLING AND LOCATION PERFORMANCE

Four classes of vehicle polling are considered for AVM Systems:
(1) Synchronous, (2) Commanded or random access, (3) Synchronous with Command capability, and (4) Volunteer or contention. All four techniques are generally applicable to Class I and II AVM Systems.- Synchronous polling and synchronous with command are used mainly in Class III Systems. For the Class IV monitored signpost systems, which use land lines, polling by radio is not applicable in the context used in this description.

All polling techniques are suitable for half-duplex (base station and vehicle on the same frequency), but when the base station relays all vehicle transmissions or when each veh1cle monitors all other vehicles, then the Volunteer technique can only be used on full-duplex (base and vehıcle on different frequencies).

1. Synchronous polling. In this technıque, each vehicIe transmits location data at a preselected time within the fleet polling sequence. Equipment on the vehicle keeps track of the start of the sequence and internally determines when its time to respond occurs. The cost of the vehicle polling equipment installed (as of 1974) is about $\$ 270$.
2. Synchronous with command capability. This polling technique allows the base station to modify the position of each vehicle in the polling sequence. The cost of the vehicle equipment installed is about $\$ 365$.
3. Commanded or random access polling. In this technique, the base station sends a request to each vehicle whenever location data is required. This technique is the most flexible but requires more use of available RF time.
4. Volunteer polling. This contention method requires that each vehicle determine whether the channel is "clear" before transmitting. The cost of vehicle equipment installed is about $\$ 170$ 。

These vehicle polling techniques were evaluated with both a simple one-time radio message transmission and with redundant transmissions where every message is sent twace. The digital message rate is set at 1500 bps . Where equivalent $R F$ channels are assumed, a channel spacing of 25 kHz is used. Message lengths are about 20 bits, or occupy about 15 millisec transmission time. Delays due to equipment turn-on times reduce the achievable polling rate.

PART ONE: AVM COST BENEFIT INFORMATION BASE

G.R. Hansen

CONTENTS

Page
PART ONE. AVM COST BENEFIT INFORMATION BASE 1-1
I. Performance and Costs of Proved AVM Techniques 1-1
A. Class O Manual Monitoring: No AVM. 1-1
B. Class I AVM: No Modification to Urban Environment 1-1
C. Class II AVM: Autonomous Signposts Throughout Urban Area 1-5
D. Class III AVM: Sparsely Distributed Special RF Sites 1-8
E. Class IV AVM: Montored Signposts Throughout Area.. 1-10
II. Vehicle Polling and Location Performance 1-12
A. Vehrcle Polling Techniques and Costs 1-13
B. Vehicle Polling and RF Link Evaluations 1-13
C. Location Performance Parameters 1-14
III. Urban Characteristics That Affect AVM Costs 1-15
A. City Model Parameters for AVM System Design 1-15
B. Small Model City AVM Cost Summary Tables 1-17
C. Medium Model City AVM Cost Summary Tables 1-18
D. Large Model City AVM Cost Summary Tables 1-19
IV. AVM System Accuracies and Cost Benefits 1-20
A. System Parameters That Affect AVM Costs 1-20
B. Estimated Cost Savings Based on Urban Parameters 1-20
V. Computer Programs for Analyses of AVM Needs 1-23
A. AVM System Synthesis Computer Program 1-23
B. AVM System Simulation Computer Program 1-25
References 1-26
Bibliography 1-26
PART TWO. AVM DATA FOR USER GROUP ADVISORY
COMMITTEE (UGAC) CITIES 2-1
PART THREE. ANALYTICAL TECHNIQUES FOR ESTIMATING AVM SYSTEM ACCURACY. 3-1-
PART FOUR. AM BROADCAST AND BURIED LOOP FEASIBILITY ANALYSES FOR AVM USE 4-1
Fig. No. Page
1-1. Class I AVM Officer Update Option, Using Keyboard Entry 1-1
1-2 Class I AVM Officer Update Option, Using Stylus Map 1-2
1-3 Class I AVM Kinematic Sensor Using Two Accelerometers 1-3
1-4 Class I AVM Orthogonal Laser Velocimeter 1-3
1-5 Class I AVM Magnetic Compass with Laser Velocimeter 1-3
1-6 Class I AVM Magnetic Compass with Ultrasonic Velocimeter 1-3
1-7 Class I AVM Magnetic Compass with Odometer 1-4
1-8 Class I AVM Normal and Differential OMEGA Navigation 1-4
1-9 Class I AVM Relay OMEGA Navigation System 1-4
1-10 Class I AVM Normal and Differential LORAN Navigation. 1-4
1-11 Class I AVM Relay LORAN Navigation System 1-5
1-12 Class I AVM DECCA Navigation System 1-5
1-13 Class I AVM AM Broadcasting Station Navigation Systems 1-5
1-14 Class II AVM Low-Frequency Wayside Radio Signposts 1-6
1-15 Class II AVM Citizen Band or VHF Wayside Radıo Signposts 1-6
1-16 Class II AVM X-Band Wayside Radio Signposts 1-6
1-17 Class II AVM Autonomous Ultrasonic Signposts 1-7
1-18 Class II AVM Flashing Visible or IR Light Signposts 1-7
1-19 Class II AVM Active Buried Antenna Traffic Sensors 1-7
1-20 Class II AVM Buried Magnets as Location Identifiers 1-7
1-21 Class II AVM Sensor of Reflective Patterns on Signposts 1-8
1-22 Class II AVM Sensor of Reflective Patterns on Roadway 1-8
1-23 Class II AVM Sensor of Passive Buried Resonant Loops 1-8
1-24 Class III AVM Narrow-Band FM Phase TOA Trilateration. 1-9
1-25 Class III AVM Wide-Band FM Phase TOA Trilateration 1-9
1-26 Class III AVM Pulse TOA Fixed Site Trilateration 1-9
1-27 Class III AVM Noise Correlation TOA Trilateration 1-9
1-28 Class III AVM Direction Finding from Special RF Sites 1-10
1-29 Class IV AVM Monıtored Waysıde Radıo Receıvers 1-10
1-30 Class IV AVM Monıtored Traffıc Presence Sensors 1-10
1-31 Class IV AVM Monitored Ultrasonic Wave Receptors 1-11
1-32 Class IV AVM Monitored Photo or IR Detectors 1-11
1-33 Vehıcle Synchronized Polling for AVM Classes I, II, III 1-12
1-34 Vehicle Commanded Polling for AVM Classes I, II, III 1-12
1-35 Vehicle Volunteer Polling for AVM Class II Systems. 1-13
Fig. No. Page
1-36 Vehicle Polling Intervals vs 95% AVM System Accuracy 1-21
1-37 Concept for AVM System Synthesis Computer Program 1-24
1-38 Concept for AVM System Simulation Computer Program 1-27
TABLES
Table No. Page
1-1 Vehicles Polled/Second/RF Channel For 0 Sec Turn-On 1-13
1-2 Vehicles Polled/Second/RF Channel For 0.01-Sec Turn-On 1-13
1-3 Vehicles Polled/Second/RF Channe1 For 0.03-Sec Turn-On 1-14
1-4 Vehicles Polled/Second/RF Channel For 0.1-Sec Turn-On 1-14
1-5 Vehicles Polled/Second/RF Channel For 0.3 Sec Turn-On 1-14
1-6 Location Performance Parameters for All AVM Classes and Systems 1-16
1-7 Model City Parameters That Affect AVM Costs 1-16
1-8 Small Model City Parameters Used in AVM Cost Analysis 1-17
1-9 Small Model City AVM Cost Summary 1-18
1-10 Small City Vehicle Polling 1-18
1-11 Medium Model City Parameters Used in AVM Cost Analysis 1-18
1-12 Medium Model City AVM Cost Summary 1-18
1-13 Medium City Vehicle Polling I-19
1-14 Large Model City Parameters Used in AVM Cost Analysis 1-19
1-15 Large Model City AVM Cost Summary 1-19
1-16 Large City Vehicle Polling 1-19
1-17 Small Model City Cost Benefits from AVM System Usage 1-22
1-18 Medium Model City Cost Benefits from AVM System Usage 1-22
I-19 Large Model City Cost Benefits from AVM Systems Using One RF Channel $1-22$
1-20 Large Model City Cost Benefits from AVM Systems Using Two RF Channels 1-22
1-21 Operating Sequence of AVM System Synthesis Computer Program 1-23
1-22 C1ty and Fleet Input Data for AVM System Synthesis Program 1-23

I. PERFORMANCE AND COSTS OF PROVED AVM TECHNIQUES

Costs and performance parameters of 36 operational or proved techniques used for automatic vehicle montoring (AVM) are described and illustrated in this section. Schemes that are primarily antended for vehicle identification, such as those used in rail freight or extensions of point-of-sale methods are not included. In this Report, the vehicle monitoring techniques are categorized into five broad classes, based on system element types and functions: Class 0 Manual Monitoring, with no augmentation of location information; Class I AVM, with no additions to the urban environment, Class II AVM, using densely distributed autonomous signposts, Class III AVM, using sparsely distributed special transmitting/receiving fixed RF sites, and Class IV AVM, using densely distributed monitored signposts. Estimated special equipment and installation costs are as of 1974.

A. Class 0 Manual Monitoring. No AVM

This is the baseline vehicle location technıque against which other systems should be compared. A manual monitoring system consists of a dispatcher, an existing real-time communication system, and a fleet of vehicles. The dispatcher's knowledge of vehicle locations depends upon voice communications with the officers in the vehicles. Even in the manual vehicle monitoring class, there are several options that affect both performance and costs. The dispatcher can, for example, rely strictly upon his knowledge of each vehicle's designated location or patrol area and its subsequent assignments. Alternatively, he can use some of his RF resources (channels and air time) to interrogate and obtain actual vehicle locations vocally.

A relatively wide range of options is avazlable to the dispatcher for use with Class O nonautomated vehicle monitoring. The simplest visual location aid is just a map on which the assigned beat areas are permanently marked, the dispatcher relying on his memory to locate the vehicles on the map. Numbered magnets or lights may be used which may be updated manually to augment his memory. Elaborate electrooptical display devices are available, which indicate each vehicle's last known location, status, and anticipated destination, all driven by manual input.

The dollar cost of a purely manual vehicle management system is almost bound to be competitive, but the use of RF resources could be prohibitive, and the attainable dispatching performance is also an open question. With an AVM system, the closest avanlable vehicle can quickly be dispatched in response to a service request. Analyses indicate that response times are reduced and fleet efficiency is increased by up to 7%, permitting a reduction in fleet size and in operating costs;

B. Class I AVM. No Modification to Uxban Environment

1. Officer update. Vehicle location data may be encoded automatically by means of manually operated devices installed in the vehicle, such as keyboards or stylus maps.
a. Keyboard entry. This manual data input technique for providing automatic vehicle location data at the base requires the officer to enter some code or identifying numerical sequence on a digital keyboard (Fig. 1-1). The keyboard can be either the device being used for sending digital messages or a separate unt. The location code can relate to a particular street segment and/or intersection and would probably be four or five digits in length. The vehicle location code is transmitted to the base station either by "Touch-Tone" or some other digital modulation techniques. Volunteer or random-access vehicle polling is most suitable for this technique. The AVM system accuracy is dependent on the code used; that is, either (1) the nearest intersection if only streets or intersections have codes, (2) a particular block on a street if each segment is coded, or (3) the location in a block if street segment is followed by address digits of closest property parcel. The automatic computational requirement is a table look-up function to translate the code to a geographical location. While this AVM technique is low in cost, particularly if a digital message entry device (DiMED) is already installed, it is extremely slow and requires much memorization on the part of the patrolling officers. If the car is out of the normal beat, either a map or street guide would have to be used by the officer for reference to determine the code.

Fig. 1-1. Class I AVM Officer Update Option, Using Keyboard Entry
b. Stylus map. This officer update technique is a manual method whereby the patrolling officer indicates his vehicle's location by pressing the appropriate spot on a special map (Fig. 1-2) with a stylus. The map-and-holder combination encodes the spot where the pressure 15 applied, and the digital code is sent to the base station. The location polling process can be either in response to a request or volunteered
as part of a transmission from the vehicle. Location accuracy is dependent on the scale of the map and on the holder encoding technique. For example, a $20 \times 25 \mathrm{~cm}(8 \times 10 \mathrm{~m}$.) portion of a 7. 5-minute U.S. Geological Survey topographic map (scale 124000) would cover an area of 6 x $4.8 \mathrm{~km}(3.6 \times 3 \mathrm{mi})$. If this information were encoded by 5 binary bits (1 in 32) on each axıs for a lo-bit location code, then the location could be achieved within a rectangle of about 190×150 meters ($600 \times 500 \mathrm{ft}$). By increasing the encoding to 12 bits or using a map with half the scale, the size of the vehicle's location rectangle could be decreased by one-half in each dimension. Maps of other beats would probably be requared by each officer together with some means of identifying when these maps were in use. The base station computation requirement is a table look-up function to translate the code to a geographical location.

VEHICLE EQUIPMENT $\$ 2500$ INSTALLATION \$ 35

Fig. 1-2. Class I AVM Officer Update Option, Using Stylus Map
2. Kinematic sensors. Changes in vehicle location may be sensed either by accelerometers, velocameters, or odometers.
a. Two accelerometers. Dead reckoning, which can measure the change in location of a vehicle, can be mechanized with two accelerometers (Fig, 1-3). These devices would measure the rate of change of velocity of the vehicle in the horizontal plane of the vehicle in both the fore-and-aft and sideways directions. The outputs of the two accelerometers can be used to compute velocities attained as well as changes in direction and distance during a selected time interval. The computations can be performed on-board the vehicle and the results transmitted to the base station, or the outputs of the accelerometers can be encoded and transmitted directly to the base station.

A U-turn made at a speed of $10 \mathrm{~m} / \mathrm{sec}(23 \mathrm{mph})$ in a 4 -lane street about 18 m (60 feet) wide 1 s about the limit of vehicle turning performance. This turn would result in about a $0.8-\mathrm{g}$ indication of lateral motion for just over 3 seconds. If the accelerations are sampled and transmitted every 0.03 second, then the 16 data bits each time would lead to a data rate of $4800 \mathrm{bits} / \mathrm{sec}$. Based on personal rapid transit studies, the "comfort"
zone of vehicle operation is in the less than 0.2-g range. If most accelerations experienced by the vehicle are maintaned in this $0.2-\mathrm{g}$ region, then a 1% full-scale error during a low-g maneuver causes these normal measurements to be in error by 4% or more.
b. Orthogonal laser velocimeters. This kinematic sensor technique is based on prior work by G. Stavis (Ref. 1), which used a laser velocimeter (Fig. 1-4) and compass (Fig. 1-5). In this scheme, the laser would be used to measure not only the forward velocity of the vehicle, but also that velocity component which occurs during turns and is at a right angle to the fore-and-aft motion. All portions of the vehicle which are not located on the turning axis experience some side velocity during a turn. The sign and magnitude of this velocity component is a function of the distance from and location with respect to the turning axis. If both forward and side velocithes are measured at the same point remote from the turning radus, then the velocities at this point provide a means to keep track of the vehicle motion. The operation of the laser velocimeter is based on the speckle pattern observed in the reflection of coherent laser light from a surface that moves relative to the source. The speckles tend to move in the opposite direction to the relative motion between the laser source and the reflecting surface. By passing the reflected laser light through a diffraction grating and then to a photodetector, a signal can be deraved with a frequency that is a direct measure of the velocity of the reflecting surface. The velocity measured is that at right angles to the rulings on the grating. Two photo detectors and two gratings with the rulings at right angles provide the means to measure the two components of motion of a single laser spot. Investigators in the cited work (Ref. 1) indıcate that a laser velocimeter's dynamic range is of the order of 2500 to l and that the maximum and minimum measurable velocities are primarily a function of the rulings on the grating. For example, a vehicle velocity range of $50 \mathrm{~m} / \mathrm{sec}$ to $2 \mathrm{~cm} / \mathrm{sec}$ (115 mph to 0.05 mph) could be accommodated, and turning rates of 0.01 $\mathrm{radian} / \mathrm{sec}\left(0.6^{\circ} / \mathrm{s}\right)$ could be detected. Maximum data bit rates of about $5000 / \mathrm{sec}$ for speed and $100 / \mathrm{sec}$ for turning may require in-vehicle computation.
c. Ultrasonic velocimeters. The use of ultrasonic waves for intrusion detectors, motion sensors, and distance measuring is well established. The doppler frequency shift of a reflected sound wave from the road surface can form the basis of a velocimeter (Fig. 1-6). An ultrasonic wave directed at an angle at the road surface will reflect a doppler-shifted frequency proportional to the cosine of the angle of incidence times the surface velocity. For example, if a $33-\mathrm{kHz}$ frequency is chosen which has a wave length of about 1 cm directed at a 45 -degree angle to the road surface and traveling at $50 \mathrm{~m} / \mathrm{sec}$ (115 mph) will yield a doppler shift of about 10%. If a dynamic range of $2000: 1$ can be achieved, a minmum velocity of $2.5 \mathrm{~cm} / \mathrm{sec}(0.05 \mathrm{mph}) \mathrm{can}$ be detected. If the velocimeters are mounted on each side of the vehicle and the differential velocities are measured to the same $2.5 \mathrm{~cm} / \mathrm{sec}$, then minimal directional changes of 12 mrad (about 0.7 deg) can be detected. This precision is on the order of that achieved with the differential odometer, described later.

VEhicle

VEHICLE EQUIPMENT $\$ 400$
INSTALLATION $\$ 100$

Fig. 1-3. Class I AVM Kınematic Sensor Using Two Accelerometers

Fig. 1-5. Class I AVM Magnetic Compass with Laser Velocmeter

d. Odometer-Compass. Dead reckoning with compass and odometer (Fig. 1-7) has been tested, built and furnished to several armed forces (U.S., Canada, Britain) as a means of keeping track of military vehicles in off-road situations. The systems have all achieved some measure of success, and all have included onboard computation to indicate position in northings and eastings (Y - and X-coordinates). Accuracies within 0.6 to 2% of the distance travelled have been demonstrated. Error sources are the inaccuracies in the odometer measurement and compass heading. The odometer is affected by tread wear and wheel slip maneuvering. Compass heading is influenced by local anomalies, and proposed filtering techniques have included measuring the steering gear angle, vertical component of the field, and limiting direction change as a function of vehicle speed. At present, gyro compasses are not suited for vehicular applications.

VEHICLE EQUIPMENT $\$ 265$
INSTALLATION $\$ 20$

Fig. 1-7. Class I AVM Magnetic Compass with Odometer
3. Wide-area navigation. The three principal wide-area navigation schemes use synchronized radiolocation beacons. They are hyperbolic techniques which operate in three different modes: OMEGA, LORAN, and DECCA.
a. OMEGA. This navigation scheme (Fig. $1-8$) uses very low frequency ($10-13 \mathrm{kHz}$) timemultiplexed $R F$ signals. The relative phase of the

VEHICLE EQUIPMENT $\$ 1500$
INSTALLATION \$ 80

Fig. 1-8. Class I AVM Normal and Differential OMEGA Navigation
signals, transmitted on the same frequency in sequence from several sites, defines a set of lines of position (LOP). At the intersection point of the LOPs is the receive location. There are ambiguities in position since the phase patterns repeat every 15 km or so. Differential OMEGA is a technique for reducing the effects of local anomalies. A fixed recelver at a precisely known location is used to remove these anomalies over a 15 to 30 km radius through continuous monitoring of the received signals.
b. Relay OMEGA. In this technique (Fig. 1-9), the vehicle rebroadcasts the raw OMEGA signals on another frequency to the base station. The base station then measures the phase differences and computes the LOPs. This 15 a timeconsuming operation as each vehicle would have to transmit the entire OMEGA sequence lasting several seconds.

VEHICLE EQUIPMENT $\$ 375$
INSTALLATION $\$ 80$

Fig. 1-9. Class I AVM Relay OMEGA Navigation System
c. LORAN. This technique (F2g. 1-10) uses combined pulse and phase time-multiplexed RF signals for determining LOPs. Pulsed signals from three or more stations are transmitted 10 to

VEHICLE EQUIPMENT $\$ 2600$

INSTALLATION \$ 80

Fig. 1-10. Class I AVM Normal and Differential LORAN Navigation

33 times a second in coded groups. The receiver measures the time of arrival difference from given pairs of signals to determine the LOP. No ambiguity exısts, and each LOP is unique geographically. Differential LORAN also uses fixed site receivers to remove local propagation anomalies.
d. Relay LORAN. In this system (Fig. 1-11), the recelved signals axe retransmitted to a base station for time differencing. Some bandwidth compréssion is required and is used in a technique called LOCATES in order to retransmit the 90 to 110 kHz LORAN over voice communication channels. The $20-\mathrm{kHz}$ bandwidth signals are reduced to 3 to 7 kFz for retransmission. The higher repetition rates of LORAN make relaying more feasible than in OMEGA.

VEHICLE EQUIPMENT $\$ 425$ INSTALLATION $\$ 80$

Fig. 1-11. Class I AVM Relay LORAN Navigation System
e. DECCA. The DECCA system (Fig.

1-12) is a continuous-wave phase-difference technique in which each transmitter operates on a different, but harmonically related, signal to other transmitters. The location is determmed by simultaneous reception and comparison of the phase of the signals. Since the LOPs determined by the phase measurements are not unique, speclal signals are transmitted frequently to enable the determination of the correct one.

VEHICLE EQUIPMENT \$950

INSTALLATION \$ 60

Fig. 1-12. Class I AVM DECCA Navigation System
f. AM Broadcasting stations as radiolocation beacons. Carrier signal frequencies, being transmitted from three commercial broadcasting stations located around a city's perimeter, can each be separately received and multiplied by relatively low-cost in-vehicle equipment to synthesize a new common frequency. These three 1dentical frequencies can be made relatively phase coherent. Virtual hyperbolic patterns of navigathonal LOPs are generated by the signals received
from each pair of AM stations. These LOPs can serve as the basis for a reliable AVM system (Fig. 1-13). A vehicle's starting position is first noted and recorded at the central command base. When the vehicle moves, the phase differences produced in the three signal frequencies are measured on-board, and the number of times that the phase pattern is repeated can be counted on-board. This digital information is then sent to the base where a minicomputer converts it to the vehicles new geographical location. In Part Four of this report, this AVM system is described in detall.

	NORMAL	DIFFERENTIAL
VEHICLE EQUIPMENT	$\$ 200$	$\$ 315$
INSTALLATION	$\$ 50$	

Fig. 1-13. Class I AVM AM Broadcasting Station Navigation Systems

C. Class II AVM: Autonomous Signposts Throughout Urban Area

All autonomous signpost location techniques rely on the vehicle coming near or passing over an instrumented geographical location. The instrument, located at an intersection or road segment, is usually a continuously radiating device sending out a uniquely coded message, either radio, light, IR, ultrasound, or magnetic. The vehicle is equipped with a suitable receptor to receive and store the message for subsequent retransmission to the base station and in this way inform the base as to the last instrumented location passed.

1. Radio frequency signposts. Most of the techniques use RF signals as the medium for the short-range link from wayside or roadway signpost to vehicle. These signals, which may range from low frequencies (190 kHz) through VHF to X-band (10 GHz), require the equipment shown in Figs. 1-14, 1-15, 1-16. Elevated locations for the signposts are usually selected to achieve a larger coverage area, freedom from blocking by large vehicles, and to lessen the probability of vandalism. Vehicle location accuracies of the Class II AVM systems are a function of the radius of influence and density of the signposts, and similarly the message repetition rate from the post must increase as the radus of influence decreases to ensure complete message reception by a fast moving vehicle.

∞

$$
\begin{aligned}
\text { VEHICLE EQUIPMENT } & \$ 100 \\
\text { INSTALLATION } & \$ 45 \\
\text { FIXED EQUIPMENT } & \$ 125 \\
\text { INSTALLATION } & \$ 45
\end{aligned}
$$

Fig. 1-14. Class II AVM Low-Frequency
Wayside Radio Signposts

VEHICLE EQUIPMENT $\$ 105$
INSTALLATION $\$ 40$
FIXED EQUIPMENT $\$ 100$ INSTALLATION \$ 45

Fig. 1-15. Class II AVM Citizen Band or VHF Wayside Radio Signposts

Fig. 1-16. Class II AVM X-Band Wayside
Radıo Signposts
Since active electronic signposts require some primary power source, difficulties may be encountered in general applacations if reliance is placed on either street lighting circuits or traffic signals In some applications, alternate power sources will be necessary. Options other than utility power are long-lived batteries, solar, and radiolsotope sources.
2. Ultrasonic and photo or IR signposts. Ultrasonic and light radiation are possible practical approaches to the message link to avoid further RF congestion and interference to other services. The ultrasonic waves (Fig. 1-17) are similar in length to X-Band RF (less than 1 cm), and "horn" antennas can be designed for focusing sound to a desixed coverage area. The flashing light approach (Fig. l-18), either visible or infrared, $1 s$ also a practical short-range information transfer method. Both of these techniques are, however, somewhat hindered by weather conditions, particularly fog, rain, and wind.
3. Buried active antennas. The buried antenna approach using existing traffic-presence sensor loops as electronic signposts (Fig, 1-19) is currently being tested in San Francisco and New York as a toll authority billing technique for equipped buses In these systems, the antenna (buried loop) interrogates continually and receives responses from instrumented buses so that the buses may be billed for toll fees without having to stop. The use of traffic sensor loops as antennas is a practical implementation for electronic signposts and has an added advantage in that weatherproof enclosures and power are available in the traffic signal controller.

VEHICLE EQUIPMENT \$85
INSTALLATION \$85
FIXED EQUIPMENT \$115
INSTALLATION $\$ 45$
Fug. 1-17. Class II AVM Autonomous Ultrasomic Signposts

VEHICLE EQUIPMENT \$95
INSTALLATION \$75
FIXED EQUIPMENT $\$ 100$
INSTALLATION \$55
Fig. 1-18. Class II AVM Flashing Visible or IR Light Signposts

VEHICLE EQUIPMENT \$ 95 INSTALLATION $\$ 40$ FIXED EQUIPMENT $\$ 100$ INSTALLATION \$ 20

Fig. 1-19. Class II AVM Actıve Buried Antenna Traffic Sensors
4. Buried magnet autonomous location 1 dentifiers. Buried permanent magnets are used to provide a means of passive proximity location identification (Fig. 1-20). In this concept, rows of permanent magnets are installed along vehicle lanes to provide a means of inducing a voltage in a sensing coil mounted on the vehicle. The magnets could be either placed in drilled holes in the - pavement or propelled into the surface by using an explosive-actuated concrete fastener tool. Magnets in the rows have exther N or S poles up to provide binary identification of the location. The sense coil in a forward moving vehicle would detect signals of different polarities depending on the vehicle direction across the magnetic field. Reasonably strong magnets must be used, both to be detected in the presence of the earth's field, which is about 0.5 gauss, and to withstand added spacing that could be created by street resurfacing.

Fig. 1-20. Class II AVM Buried Magnets as Location Identifiers
5. Reflective paint patterns on signposts and roadways. Other passive techniques require that the vehicle continually interrogate the area travelled either by low-frequency $R F$ or light radiation. In the case of the reflective wayside sign (Fig. 1-21) or pattern on the road (Fig. 1-22), the vehicle must be in a fairly precise position to
receive a response- less in the case of the road pattern than the wayside sign.

VEHKLE EQUIPMENT \$ 75
INSTALLATION \$ 60
FIXED EQUIPMENT \$ 5
INSTALLATION $\$ 120$
Fig. 1-22. Class II AVM Sensor of Reflective Patterns on Roadway
6. Passive buried loops. The passive buried loop (Fig. l-23) requires that the vehicle, equipped with under-car antennas, pass over and excite the loops to obtain a response. Results of a detailed analysis of the bursed loop coupling are included in Part Four of this report.

D. Class III AVM. Sparsely Distributed Special RF Sites

This class of AVM systems encompasses those vehicle location techniques of the trilateration rho-rho (range-range) and triangulation thetatheta (angle-angle) types with sparsely dustributed RF sites primarily intended for medium or small urban area coverage, 7 km (4 mi) to $11 \mathrm{~km}(7 \mathrm{mz}$) radius.

1. Trilateration Systems. Included in the rho-rho systems are trilateration techniques which measure the time-of-arrival (IOA) of a . signal emanating from a vehicle at several fixed recelving sites. Each pair of time differences

VEHKLE EQUIPMENJ $\$ 90$ INSTALLATION \$45 FIXED EQUIPMENT $\$ 10$ ($\$ 2$ LOOP) INSTALLATION SB/LANE ($\$ 17 / L O O P$)

Fig. 1-23 Class II AVM Sensor of Passive Buried Resonant Loops
forms a hyperbolic line-of-position (LOP). The intersection of these LOPs establishes the position of the vehicle. This information may be sent to the base station from the site by leased telephone lines or by microwave transmissions.

Hyperbolic trilateration methods tested have used either a pulsed (or keyed) carrier from the vehicle or an audio-tone frequency modulating a carrier. The pulse systems measure the TOA of the signal and establish the range differences directly. The tone trilateration systems measure the relative phase of the audio tone at the recelving sites, and the phase dafference measurement .then determines the range difference.

The tested tone phase TOA trilateration methods used 2.7 kHz and approximately 18 kHz frequencies whose phase patterns repeat at 111 km and 16 km , respectavely. These AVM systems have been termed narrow-band (Fig. 1-24) and wide-band (Fig. 1-25) since the first can be accommodated in a narrow-band FM voice channel (25 lfHz) while the second requires eight times the bandwidth or four adjacent channels (100 kHz). In comparison, the pulse TOA method (Fig. 1-26) utilizes up to 10 MHz of bandwadth to preserve the leading edge of the pulse.

Another wide-band trilateration method is based on interferometer techniques. As currently envisaged, each vehicle would transmit a carrier signal modulated with either white or $\mathrm{P}-\mathrm{N}$ sequence noise (Fig. 1-27). These signals would again be received at the several sites, and by correlation computation the time differences of arrival would be established. Since only the signals from one vehicle would show substantial correlation, it would be possible but not necessary to have all vehicles broadcasting the noise modulated signals simultaneously. The effects of multipath on trilateration techniques have been analyzed and modeled by George Turin (Ref. 5).
2. Triangulation Systems. The direction finding methods proposed would measure the azimuth angle of the vehicle signal at several fixed sites (Fig. 1-28). The intersection of the extension of these bearing angles would be the position of the vehicle. Multipath in this method would probably cause uncertainty in the angle of arrival of the vehicle signal leading to
approximately the same accuracy limitations as those for trilateration. Of the Class III AVM systems delineated, the direction finding and narrow-band phase TOA would allow the use of the normal vehicle transceiver. The pulse, wideband phase, and noise modulation TOA methods would require an additional AVM transmitter.

VEHICLE EQUIPMENT \$ 60
INSTALLATION \$ 40
FIXED SITE EQUIPMENT $\$ 4,500$
INSTALLATION \$ 500
Fig. 1-24. Class III AVM Narrow-Band FM
Phase TOA Trilateration

VEHICLE EQUIPMENT $\$ 2875$ (CUBIC)
INSTALLATION \$ 90
FIXED SITE EQUIPMENT $\$ 9500$ INSTALLATION $\$ 1500$

Fig. 1-25. Class III AVM Wide-Band FM Phase TOA Trilateration

VEHICLE EQUIPMENT \$ 1,285
INSTALLATION \$ 150
FIXED SITE EQUIPMENT $\$ 12,000$ INSTALLATION $\$ 2,500$

Fig. 1-26. Class III AVM Pulse TOA Fixed Site Trilateration

VEHICLE EQUIPMENT $\$ 785$
INSTALLATION \$ 100
FIXED SITE EQUIPMENT $\$ 7500$
INSTALLATION \$1500

Fig. I-27. Class III AVM Nouse Correlation TOA Trilateration

Fig. 1-28. Class III AVM Direction Finding from Special RF Sites

E. Class IV AVM, Monitored Signposts Throughout Urban Area

This class of AVM techniques is an inversion of the Class II autonomous wayside or buried signposts and removes the data collection link responsibility from the vehicle. In Class IV AVM, a vehicle-to-signpost link (Fig. I-29) is maintaned, but the information flow is the vehicle's identity to the monitored signpost. The data link to the base station or central collection point is based either on telephone lines rented from the local utility of on call-box lanes for police and fire use. Since individual Ines from each signpost are usually not considered economically practical, it is usually proposed to group the signposts on "party lines". The "party line" approach requires that each signpost not only transmit the vehicle ID data recerved but also identify itself to the central collection point at the base station. The telephone line is an additional complication to the Class IV installation, and a prime power connection is still required.

A technique of using the buried loop-sensors, which actuate traffic signals, as receiving antennas (Fig. l-30) can be used in the monitored Class IV as in the autonomous Class II signpost method. This is an especially attractive approach if the signals are centrally controlled because dedicated communication lines are usually already installed. Ultrasonic as well as photo/IR detectors could also be used on monitored signposts (Figs. 1-31, 1-32).

In Class IV, the vehicle polling function is Beplaced either by line-finding, as is used in normal telephone service, or by a continual scanning of the lines to find an "off hook" indication that a signpost on one of the party lines has information to forward.

Fig. I-31. Class IV AVM Monitored Ultrasonic Wave Receptors

Fig. 1-32. Class IV AVM Monitored Photo or IR Detectors

II. VEHICLE POLLING AND
 LOCATION PERFORMANCE

A. Vehicle Polling Techniques and Costs

Four general classes of vehicle polling are considered for AVM Systems: (1) Synchronous, (2) Commanded or random access, (3) Synchronous with command capability, and (4).Volunteer or contention. All four techniques are generally applicable to Class I and II AVM systems. Synchronous polling and synchronous with command are used mainly in Class III AVM systems with sparsely distributed special signposts. Volunteer polling is usually considered only for lowdensity Class II autonomous signpost systems. For the Class IV monitored signpost systems which use land-lines, vehicle polling by radio is not applicable in the context used here.

All of the polling techniques are suitable for half-duplex (base station and vehicle on the same frequency), but when the base station relays all vehicle transmissions or when each vehicle monitors all other vehicles, then volunteer polling can only be used on full-duplex (base and vehicle on different frequencies).

In Class I and II AVM systems where the currently installed 2 -way radio is to be used for AVM purposes, speed-up modifications are required. These changes to antenna switching, transmitter stabilization time, and squelch delay are necessary to reduce the substantial guard time required between transmissions from vehicles adjacent in the polling sequence or to reduce the transition time interval from receive to transmit in Commanded or random access polling.

A modification of the Volunteer polling method only allows location data to be transmitted as a precursor or brief interruption of voice transmissions, but this technıque has limited application. Interrupted speech as a technique in other polling methods relies on very short transmit on-off-on sequences for a vehicle currently using voice when another vehicle responds with data.

1. Synchronous polling. In this technique, each vehicle transmits location data at a preselected time withan the polling sequence. The equipment on the vehicle keeps track of the start of the polling sequence and internally determines when the appropriate time to respond occurs. The functional elements of Synchronous polling are shown in Fig. 1-33. The fact that the start of the polling sequence must be periodically transmitted to each vehicle for correction purposes leads to the capability of the base station to modify the time when the vehrcles are to respond in the polling epoch.
2. Synchronous whth command capability. This technıque allows the base station to modify the position of each vehicle in the polling sequence. The addrtional functional elements for the command option are shown in Fig. 1-34 connected by dashed lines to the elements required for synchronous polling.

$$
\begin{aligned}
& \text { VEHICLE EQUIPMENT (} \$ 165+\$ 4 n \text {) } \\
& \text { INSTALLATION } \$ 40 \\
& \text { FAST TURN-ON } \\
& \text { SQUELCH MODIF }
\end{aligned} \mathbf{\$ 5 0} 8
$$

Fig 1-33. Vehicle Synchronized Polling for AVM Classes I, II, III

VEHKCLE EQUIPMENT $\$ 315+54 n$ INSTALLATION $\$ 50$

Fig. 1-34. Vehicle Commanded Polling for AVM Classes I, II, III.
3. Commanded or random access polling. Commanded polling requires that the base station send a request to each vehicle whenever location data is required. This random access technique is the most flexible but requires substantially more use of available RF time than the synchronous method or the synchronous with command capability. The elements required for the commanded polling method are shown in Fig. 1-34.
4. Volunteer polling. This contention method of sending location data requires that each vehicle determine if the channel is "clear" before transmitting. A mechanization is shown in Fig, 1-35. Some technique of providing a random delay in each vehicle after determining that the channel is clear and before transmitting is usually necessary
to preclude certain vehzcles from dominating the channel．

VEHICLE EQUIPMENT $\$ 130+\$$ An INSTALLATION $\$ 30$

Fig．1－35．Vehicle Volunteer Polling for AVM Class II Systems

B．Vehicle Polling and RF Link Evaluations

The three vehicle polling techniques：Synchro－ nous（SYN），Volunteer（VOL），and Random （RAND）or commanded were evaluated with both a simple one－time radio message transmussion and with redundant transmission，where every message is sent twice．In all cases，the digital message rate is set at 1500 bps ．Where equiva－ lent RF channels are assumed，a channel spacing of 25 kHz is used．

Any delays in the polling processes will tend to reduce the number of vehicles which can be accommodated by an RE channel．Therefore all of the delays are lumped into one parameter called turn－on time．Thirty two of the Class I，II and III AVM techniques were evaluated in both the simple and redundant modes of the three polling methods．The range of turn－on times examined was from 0 to 0.3 second，in five steps．This range is sufficient to estimate the performance of full－duplex radios with separate antenna cir－ cuits relative to half－duplex with electro－ mechanical antenna transfer relays．Tables 1－1 through 1－5 are compilations of the vehicles polled per second per RF channel．Each table includes a theoretical maxmum entry which is the 1500 bps rate divided by the number of bits in the location message．Included under．Class II techniques are small and large entries as the location message length is a function of the number of instrumented intersections，therefore data are provided for both small and large urban areas．Since the Class III techniques in general are not amenable to volunteer（VOL）polling methods，no VOL calculations were made for this class．Also，with the exception of direction finding and narrow－band phase location，trans－ ponder type radio equipment is required which does not have the same order of delays．

Table 1－1．Vehicles Polled／Second／RF Channel For 0 Sec Turn－On

TEchilloue Caps	PEF SECOHS	RF CHHIINE		L．HITH DIFFEFEHT POLL ING				
ClRSS I	Mfx	Sha	vol	Refd	5 SH	YOL	Ratid	
KEf SORRD	137	137	72	72	69	3	30	
Stylus hap	34	24	3	5	－2	だ	＜	
2－fiLCELEFOHETEPS	108	198	63	63	54	32	32	
LHSEP VELOCIITP	0.4	4.9	58	53	$7 ?$	29	27	
ultarsuhic uela	143	103	0	63	54	32	32	
CUIPRES／ODOHETER	tus	$1 \geqslant 3$	63	－3	5	E2	32	
COILPASシLRSEP VEL	108	108	63	03	54	32	32	
CIPSSSU－SOHIE יEL	193	1 L	63	63	5	32	32	
OrECA	50	5	41	7	23	21	21	
LURR3	47	\rightarrow	36	36	2	18	18	
decca	59	50	$3{ }^{3}$	37	25	19	19	
aty－STATIOHS	125	125	89	69	03	3	35	
DIFF OMEGA	56	56	41	41	23	21	21	
DIFF LORAI	$\rightarrow 7$	47	36	36	24	13	18	
DIFF HII－STA	53	58	42	42	23	31	21	
PELA＇OTEGR	1	1	1	1	1	1	1	1
relfis Lerfit	2	3	3	3	2	2	こ	－
techitioue	THE0	SIMPLE				CEEUSDALT		
CLASS II	$\mathrm{H}_{1 \mathrm{H}}$ JMLG	$\begin{gathered} \text { SYH } \\ \text { GHLL } \end{gathered}$	JoL EIVLG	FPHD © $11 / L G$		5	NOL	PRIID
EUPIED RES LOOPS	159	150	168	148			$5 \cdot$	5
	34	34	57	54		＋	27	2－
REFLECTIM SIGHS	156	154	183	108		75	5	54
	3.	24	5	54		42	${ }^{-}$	27
REFLECTILIS RGAD	150	150	100	103		75	5	5
	8	3.4	54	5.		${ }^{2}$	27	${ }^{2}$
X－Jing post	16%	$10 \stackrel{3}{6}$	116	110		64	S8	5
	39	39	5	56		45	26	\approx
hFF，UTIF POST	215	615	137	137		19	69	09
	168	10 u	60	69		50	30	30
LF POST	107	167	115	116		84	5	5
	39	C9	56	56		45	28	込
LICHT／I－R FOST	$16 ?$	107	116	116		云	58	0
	．99	69	50	56		45	2	－
SUPIED IAGGETS	150	150	193	1 ys		75	5	5
	3.	\bigcirc	54	5		${ }^{+5}$	$\underline{ }$	2
LRTPHSOHIC POST	167	167	116	115		84	58	5
	＊	30	56	56		45	๕	2
TPAFFIC SEHISOR	154	150	16	180		75	54	$5{ }^{\text {r }}$
	3	64	54	54		42	27	27
Clfass III		CARS PER SECOIDSIMPLE				PEDUIDART		
	11H RF							
TECHHIPUE	CHRMHELS		T72	PRID		STuc		Prains
MAR－EFATM FH PHASE	1		7	47		$\stackrel{4}{ }$		${ }^{2}$
HIp－EALD Fil FHase	4	40		110		284		55
PULSE T－O－ARPIUAL	400	1090		000		10 ± 019		10006
HOISE CORRELATION	263	100		000		1 リ011		108
DIRECTIOH FINDER	1		5	5		－		3

Table I－2．Vehicles Polled／Second／RF Channel For 0．01－Sec Turn－On

Table 1-3. Vehxcles Polled/Second/RF Channel For 0.03-Sec Turn-On

ELASS III	CAFS FEP SECOHD				
techinoue	CHATHIELS	-	Retil	S.llc	6. $\mathrm{CH}^{\text {d }}$
NHP-3819 FH1 PHASE	1	2	30	17	17
	4	31	26	29	21
PLLSE T-U-HRRIUAL	400	1000t	10908	10000	18000
WOISE CORRELATIOH	200	1009	1809	10 e	1600
DIRECTION FINDER	,	5	5	3	

Table 1-4. Vehicles Polled/Second/RF Channel For 0.1mSec Turn-On

Table 1-5. Vehicles Polled/Second/RF Channel For 0.3 Sec Turn-On

Message lengths of most vehicle polling techniques are about 20 bits or occupy about $15 \mathrm{mil}-$ liseconds or less of transmission tume at the selected bit rate. Turn-on times of this order will therefore reduce the achievable polling rate to less than half the theoretical value. Turn-on times quickly dominate the polling rates at values above 0.03 second.

Class IV AVM systems, with monitored signposts, do not require radio polling. The vehicle polling function is replaced either by line findung, as is used in "normal" telephone service, or by a continual scanning of "party lines" to find an "off-hook" indication on one of the party lines that one of a group of signposts has some information to forward regarding the ID of a fleet vehicle that is passing its vicinyty.

C. Location Performance Parameters

Several technical performance parameters of individual vehicle location techniques, including accuracy, quantity of location data, and fix time, affect both the design and expected performance of complete AVM systems. Accuracy of the location information is the parameter which usually elicits the most interest. This ultimate achievable accuracy for a given technique is, however, almost always degraded when the technigue is configured into an AVM system. The reduction in location accuracy is caused by the vehicle's motion, the delay in vehicle-to-base transmission, the computer processing time to relate the vehicle data received to a physical location, and
the delay in displaying the location on a map or other computer output device. In dead-reckoning systems, the location error is cumulative, and the accuracy is proportioned to a percentage of the distance travelled (\% dist).

The amount of location data which must be sent to or from the vehicle is another parameter that affects performance. Not only is it a function of the location technique, but also of the number of vehicles in the system, the area of the urban coverage, the density of streets or intersections in the area, and the dimensions of the urban area in each direction. The quantity of location data, together with the polling technique used and the avarlability of RF channels, determines the delays in recesving vehicle data at the base, which in turn affects the AVM system accuracy.

Another parameter is the "fyx" time required for the vehicle to recelve or generate whatever raw data is required for the new location to be determined elsewhere, which is primarily techmque dependent. Similarly the interval between successive messages from the vehicle is also techmque dependent. That is, no new location information will be forthcoming until a definite time period or travelled distance has elapsed or has been accumulated.

A tabular compilation of four location performance characteristics has been developed from several sources such as test data, prototype demonstrations, and performance estimates by both system developers and other evaluators. In Table 1-6, the performance values for the location accuracy or radus, the amount of location data, and the fix time parameters are listed for the four AVM classes and 36 systems. An explanation of each parameter follows:

1. Accuracy. This tabular entry represents elther the estimated or test-result accuracy of vehicle location for Class I and Class III AVM systems. Since the accuracy cannot always be stated as a single value, a range of values is given in some cases. In the case of Class II and IV signpost systems, the term accuracy 15 inappropriate, and the term radius is used.
2. Radius, In Class II, III, and IV AVM systems, this radus figure represents the estimated coverage of the individual signpost or the special purpose fixed site.
3. Fix time. This value is the time in seconds required for the vehicle to receive or generate new location data. In Class I AVM systems, the fix time is determined by the updating rate of the vehicle sensors or the repetition rate of the navigational aid. In Class II or IV systems, the fix time is a comparative number only and represents the time interval required such that a vehicle near the sagnpost will receive at least two location messages while moving at a speed of $50 \mathrm{~m} / \mathrm{sec}$ (113 mph). In Class III systems, the fix time represents only the time of transmission of a location signal from the vehicle to the special RF site.
4. Location data. This tabulated number represents the minimum quantity of raw data required to locate an individual vehicle. In Class I AVM dead-reckoning methods, the location data figure is the combined number of bits required to represent a change in vehicle position to the indicated accuracy. In Class I navigational alds, the figure is exther the number of bits required to indicate the time or phase differences of the received signals or the actual RF bandwidth (BW) required in the relay systems. In Class II or IV AVM systems, the location data value is the number of bits required to uniquely identify each signpost or each vehicle, respectively. The Class III location data is the RF bandwidth required for the tone, pulse, or noise location signal.

III. UREAN CHARACTERISTICS THAT AFFECT AVM COSTS

A. City Model Parameters For AVM System Design

In order to develop a basis for AVM System cost comparisons, it was necessary to establish baseline system design parameters applicable to each technique. To make these designs somewhat realistic, three model cities were developed, based on the populations and physicalparameters of the seven representative UGAC cities in Southern California. Characteristics of the small, medium, and large model city are given in Table 1-7. The justification or rationalization for the model city parameters and the other factors considered in the system design are as follows.

1. Gity Shape. One characteristic of the model cities that 1 s difficult to justify is shape. In this Report, the assumption is made that the cities are rectangular with a 2 -to- 1 aspect ratio. The development of most cities either along a river, ranlway, or coastal harbor usually results in one dimension being significantly greater than the other. The chorce of a rectangle is believed to be more realistic than the square or circular city sometimes chosen.
2. Urban area. The areas chosen for the three city models are 10,100 , and $1000 \mathrm{~km}^{2}$ (4,40 , and $400 \mathrm{mi}^{2}$), which compare with Montclair and Monterey Park as the smallest cities, Anaheim, Pasadena, and Long Beach as the medrum cities, and Los Angeles and San Diego as the large cities. (See Part Two of this Report, p. 2-1.)
3. Population. The populations of the model cities are based on population densities in the actual cities, which average 3000 people per square kilometer ($7800 / \mathrm{mi}^{2}$).
4. Vehicle fleet size. Two classifications of vehicles are assumed for each city. These are the patrolling vehicles and the total number of instrumented vehicles. An assumption is made that one-half the fleet is patrolling while the remainder is involved in investigation.

Table 1-6. Location Performance Parameters for All AVM Classes and Systems

Technıque	Accuracy or Radius	$\begin{aligned} & \text { Value used, } \\ & (\mathrm{m}) \end{aligned}$	Location Data, bits or BW	Fix Time, sec
CLASS I AVM Keyboard update Stylus map update 2-Accelerometers Laser velocimtr Ultrasonic velo Compass/odometer Compass/laser vel Cmpss/u-sonic vel OMEGA navigation LORAN navigation DECCA navigation AM-Stations nav Diff OMEGA nav Diff LORAN nav Diff AM-Stations Relay OMEGA nav Relay LORAN nav	Accuracy 10-100 m 30 m 2% dist 0.5% dist 3% dist 1% dist 0.6% dist 0.8% dist 1600 m $0.4 \mathrm{~m} / \mathrm{km}$ $0.5 \mathrm{~m} / \mathrm{km}$ $150-250 \mathrm{~m}$ 160 m $120-400 \mathrm{~m}$ $150-250 \mathrm{~m}$ 200-600 m 800 m	(33) (30) (34) (13) (40) (20) (15) (17) (1600) (160) (200) (200) (160) (400) (250) (500) (800)	$\begin{aligned} & 6-20 \text { bits } \\ & 14-20 \\ & 14 \\ & 16 \\ & 14 \\ & 14 \\ & 14 \\ & 14 \\ & 27 \\ & 32 \\ & 30 \\ & 12 \\ & 27 \\ & 32 \\ & 21-32 \\ & 3 \mathrm{kHz} \mathrm{BW} \\ & 10 \mathrm{kHz} \mathrm{BW} \end{aligned}$	$\begin{aligned} & 2-5 \mathrm{~s} \\ & 3 \\ & 0.3 \\ & 0.3 \\ & 0.3 \\ & 0.3 \\ & 0.3 \\ & 0.3 \\ & 3-10 \\ & 0.06-.2 \\ & 0 \\ & 0-3 \\ & 3-10 \\ & 0.06-.2 \\ & 0-3 \\ & 3-10 \\ & 0.06-.2 \end{aligned}$
CLASS II AVM Buried res loops Reflecting signs Reflecting road X-Band signposts HF, VHF signpost LF Signposts Light/IR post Buried magnets Ultrasonic post Traffic sensor	$\begin{aligned} & \text { Raduus } \mathrm{m} \\ & 10 \\ & 10 \\ & 3 \\ & 12-100 \\ & 15-100 \\ & 100 \\ & 30 \\ & 10 \\ & 20 \\ & 10 \end{aligned}$		$\begin{aligned} & 10-18 \text { bits } \\ & 10-18 \\ & 10-18 \\ & 9-17 \\ & 7-15 \\ & 9-17 \\ & 9-17 \\ & 10-18 \\ & 9-17 \\ & 10-18 \end{aligned}$	$\begin{aligned} & 1-2 \mathrm{~s} \\ & 1-2 \\ & 1-2 \\ & 1-2 \\ & 2-5 \\ & 1-2 \\ & 1-2 \\ & 1-2 \\ & 1-2 \\ & 1-2 \end{aligned}$
CLASS III AVM Nar-band FM phase Wid-band FM phase Pulse T-O-Arrival Norse correlation Direction finder	Accuracy 800-1300 m 1000-1500 100 m 100 m 3% dist	$\begin{aligned} & (1000) \\ & (1200) \\ & (100) \\ & (100) \\ & (700) \end{aligned}$	$\begin{aligned} & 3 \mathrm{kFz} \mathrm{BW} \\ & 15-40 \mathrm{kHz} \\ & 10 \mathrm{MHz} \\ & 5-10 \mathrm{MHz} \\ & 3 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 0.015 \mathrm{~s} \\ & 0.01 \\ & 0.0001 \\ & 0.001 \\ & 0.2 .1 \end{aligned}$
CLASS IV AVM Traffic loops Wayside radio Photo/IR detect Ultrasonic detect	$\begin{aligned} & \text { Radius, m } \\ & 10 \\ & 100 \\ & 30 \\ & 20 \end{aligned}$		$\begin{aligned} & \text { N/A } \\ & \text { N/A } \\ & \text { N/A } \\ & \text { N/A } \end{aligned}$	$\begin{aligned} & 1-2 s \\ & 1-2 \\ & 1-2 \\ & 1-2 \end{aligned}$

Table 1-7. Model City Parameters That Affect AVM Costs

Parameter	Small	Medium	Large
Area, km			
Dimensions, km	10	100	1000
Vehicles, patrol/total	2.2×4.5	7.1×14.2	22.3×44.7
Intersections*	$5 / 10$	$50 / 100$	$500 / 1000$
Road segments \times lanes	350	3500	35000
Road distance, km	1600	16800	168000
Telephone lines, km	125	828	12450
Population	83	300,000	8275
*Based on $25 / 75 \%$ ratio of $50 / 30$ blocks $/ \mathrm{km}^{2}$ in the urban area.	$3,000,000$		

5．Intersections．The number of intersections in each city is based on two business area street densities．They are based on actual measure－ ments of randomly selected areas of the UGGAC cities，and the values assumed are $30 / \mathrm{km}^{2}$ for 75% of the area and $50 / \mathrm{km}^{2}$ for 25% of the area．

6．Road distance．For the purposes of the models，the blocks are assumed to have the same aspect ratio as the city，namely $2: 1$ ，and to be in a regular array．An average of 2.4 lanes for each road segment was assumed，based on UGAC city averages．

7．Telephone line distance，Class IV AVM systems require land line monitoring；and for the purposes of comparison，an equal division of sensors is assumed of up to a maximum of 100 sensors for each phone＂party＂line．These party lines are assumed to parallel the long streets so that the total mileage of lines is about two thirds of the total road distance．

8．Buildang distribution and topography．A uniform low－rise building distribution is assumed for location accuracy comparison purposes．The topography of the model cities is assumed to be essentially flat without＂blind＂radio areas or special areas that might unduly affect any particu－ lar technıque．

9．Radio．The only information sent from the vehicle in this comparison is that required for location，exther as a binary message or equiva－ lent RF bandwidth for the Class I，II，and III systems．Radio modifications are also assumed to enable automatic message transmission． Additıonally，transmitter turn on stabilization time，squelch delay，and antenna transfer are assumed constant at several values．

10．Model city AVM cost and performance summaries．Tables 1－8 through 1－16 summarize the AVM system costs in each of three model cities，small，medrum，and large，for each of thirty six location techniques and for three polling methods．
a．Small city summary．The costs of all AVM techniques in the small city model are dominated by the operation－and－mantenance （ $O-M$ ）cost with the result that there is a great similaraty in total costs regardless of the vehicle location technique．The Class II and IV system costs are higher because the signposts and the associated costs are relatively greater than the vehicle costs（see Tables 1－8，1－9，1－10）．
b．Medium city summary．The costs of AVM Class I in the medium city model show an increase which is almost all due to vehicular equipment．The Class II costs increase by a greater factor due again to signposts．The site costs of the buried resonant loops are substan－ tially higher than those of any other Class II technique because of installation costs．The more sparsely distributed RF posts，exther HF or VHF，do not impact the total cost to the extent of the techniques which use a post at each inter－ section．In the Class III techniques that require pulse or wideband equipment，the vehicular equip－ ment accounts for about one－third the total cost．

In Class IV techniques，the telephone line rental which is included in the site cost is the primary cost factor（see Tables 1－11，1－12，1－13）．
c．Large city summary：The AVM costs in the large model city show the same trend with Class II techniques（save for two exceptions） costing some 2 to 4 times the Class I techniques and about twice the cost of Class III systems． The Class II technıques systems costs are reduc－ able by less dense placement of posts（see Tables 1－14，1－15，1－16）．

The method of vehicle polling has only a slight impact on AVM system costs in any of the tech－ niques in any of the model cities．Applications of the AVM cost analysis to actual cities in Southern California are presented in Part Two of this Report（p．2－1）．

B．Small Model City AVM Cost Summary Tables

Table－1－8．Small Model City Parameters Used in AVM Cost Analysis

RPEA IS 4 STHAFE MILES．
EASt hest jistarice is 1.4 Hiles．
MOPTH EOUTH IISTATICE IS z．ミ HILES．

TOTAL ROAD HILEAGE $1 今$ 「7 HILES．
THE HUNEEF OF IHTERSECTIOHS IS 3FG：
THE ESTIMATEI HUIREP OF ROAD sEGIEHTS 15 Tog．
Thepe ffe 10 ChPs in the fleet
find there afe g motopc icles．

THE HMISER OF vEHICLES ON ERCH SHIFT IS：

TIRST SHIFT MIII． 5
JECOHID EHIFT MAX． 5

SELOHD SHIFT HIM． 5

THIFD EHIFT HRY 5
THIRD SHIFT MIN． 5

THE GIT＇HOULD PEOUIRE 4 IIDE－BAHID OR
PULSE T－G－A FITTENIA SITES ANI 6 HARPON
shat antenta sites with 7 hid 3 hile couerage fadil．

Table 1－9．Small Model City AVM Cost Summary

SMALL IODEL CITY CLITSS 1						Totals		
		THOUS	HDS 95					
TECHHIOUE	CARS	SITES	EASE	IHST	0－71	HOL	Siltc	FRHDCH
KEYEORRD	2	0	44	11	101	158	150	156
STYLUS MAP	26	0	4	11	101	18	18 t	181
2－flCCELEROMETEFS	15	6	08	11	101	198	300	208
LFISEP UELOCIMTR	18	0	09	12	102	202	204	203
UTRASOHIC VELO	13	9	09	11	108	190	1\％3	148
COHPASS－ODOMETER	15	0	69	11	181	190	197	180
CWMPASS／LASEP UEL	19	0	69	12	101	202	204	243
CIPSSU－SCHIC UEL	16	θ	69	11	101	190	281	200
OHECs	27	8	54	11	101	195	197	177
LOPFM	28	0	54	11	141	190	198	138
DECCA	12	0	5.4	11	101	179	1洔	121
fli－stations	4	8	5.	11	101	171	173	172
Diff OHEGA	27	θ	54	11	101	155	197	177
DIFF LUNFA	28	0	54	11	101	146	1508	198
DIFF AH－Sta	5	\bigcirc	54	11	161	172	17.	175
pelay ohicga	0	0	3.4	11	191	170	172	176
PELAi LOFFin	6	0	5	11	191	174	172	176
CLISS 11								
Eapled PES L00ps	Σ	108	4	297	101	612	615	610
REFLECTIMG SICHS	5	77	44	54	100	289	290	285
PEFLECTIHC ROAD	2	9	44	01	$1 \cdot 3$	259	264	057
－EFALD POST	2	81	4	27	146	300	261	258
HF，UHFP POST	こ	9	4	15	102	172	173	171
LF FUST	＊	4	44	37	106	223	224	¢ ${ }^{1}$
LIGHT／1－F POST	2	35	4	30	190	222	222	220
PURIED MARSIETS	1	17	7	45	1 ¢	2u8	204	255
ULTFASOHIC POST	2	\％	4	71	198	265	285	203
TFAFFIC SEHSOR	2	$8{ }^{5}$	44	59	161	253	253	251
CLASS 111								
LIAR－SARIS FII PHASE	3	29	57	12	164	023	205	295
	39	47	69	17	203	3	387	307
PULSE T－0－AEPPIVAL	28	84	139	27	179	． 5.4	45 b	757
HOISE CORFELATIOH	8	29	139	10	177	370	371	371
DIPECTIOH FINIER	1	79	34	15	154	232	281	－21
CLASS IU								
TPRFFIC LOOPS	1	$2{ }^{(10}$	4.4	186	169	462	462	4ne
UHTSIDE PADIU	1	170	44	9	118	422	$4{ }^{6} 2$	425
PHOTO－I－R DETECT	e	99	4	51	199	363	303	343
ULTFFSONIC DETECT	2	103	4	51	109	397	367	397

Table 1－10．Small City V ehıcle Polling

C．Medium Model City AVM Cost Summary Tables
Table 1－11．Medium Model City Parameters Used in AVM Cost Analysis
AREA is 40 sOUHPE HILES．

EAİT hest jistance is 4.41 hiles．

HORTH SOUTH IISTAICE IS G． 62 hiles．
total poris hilefge is 774 hiles．

THE IUUIRER OF INTERSECTIONS IS 3500：
the citimated number of rahd segments is zgog．

THERE RRE 100 CARS III THE FLEET
fing thepe rpe o notorcycles．
the futter of vehicles oh erch shift is：

FIF 3T SHIFT HAK． 50

FIFST GHIFT IIII． 50

ЗECOII \＃HIFT IARX． 59

SECOHII SHIFT IIIM． 59

THIET SHIFT INFX．SH

THIFI SHIFT IIII． 50

THE CIT HOLLD REOUIRE 5 HIDE－BAHID OF

FULSE T－G－A FIITEINA SITES AIID 10 NRFRGI

EAIUI AIITENHA SITES WITH 7 FHID 3 IIILE COUERRGE RRADII．

Table 1－12．Medium Model City AVM Cost Summary

HEDIUR HONEL CIT，						TOTHLS		
		SITES	ORSE	INST				
VEISOMPI	17	－	ORSE	$\xrightarrow[1 \rightarrow]{4}$	10ci	10 L	SHC	Ffidiot
ST，LUE MiAP	25s	\square	o^{-}	1	100	454	436	－3
2－MCLELEFOHETERS	160	9	家	4	115	ふ－6	412	$\rightarrow 13$
LASER UELOCIHTP	173	0	102	27	115	45	455	450
ULTPASOUIIC VELO	127	${ }^{\circ}$	114	2¢	115	30	the	395
COIPPASS／ODOITETER	147	9	162	12	16	331	465	395
COIFHSS／LRSEP UEL	186	ด	102	23	109	438	－ 6 ？	452
CHFSSM－SOHIC JEL	159	0	192	20	199	40	430	$\rightarrow 2$
UKECR	2 za	9	$\square 7$	18	168	499	525	519
LOPFIH	200	9	37	15	148	509	$5 \sim 5$	531
DECCA	115	4	8	15	10%	37	308	$3 ¢ 3$
Alt－statluts	49	${ }^{-}$	87	15	106	284	233	289
DIFF OLEGA	270	0	37	13	198	499	513	519
DIFF LOFAR	2s0	0	87	18	148	509	523	531
jicf mil－3TA	47	0	87	15	108	crid	290	309
PELA ${ }^{\text {OHEGA }}$	53	\checkmark	87	18	110	284	208	343
RELHY LOPFA	53	4	37	18	110	289	273	313
CLASS II 313								
SUFIED PES LOOPS	14	21．4	o？	3728	142	0110	0129	6094
PEFLECTIIG SIGNS	－2	770	67	445	172	1518	1528	1502
KEFLECTING PMAD	13	24	b？	520	522	1221	1231	1205
K－zand POST	17	805	67	172	154	1200	1249	1214
HF，UHF POST	16	83	67	54	115	354	303	338
LF POST	15	438	5 ？	172	154	86.3	371	340
LIGHT／I－R POST	15	359	08	210	194	843	257	832
EURIED MRCNETS	10	219	67	452	189	303	973	647
ULTRHSOHIC FOST	14	595	67	614	173	142	1487	1962
TRAFFIC SEISUR	15	005	67	29.4	191	1158	1107	1142
CLASS III 23 －								
MAP－3FET FM PHRSE	23	－8	127	17	103	322	0.7	349
HID－EEHJD FII PHASE	${ }^{\text {cal }}$	50	127	27	2u5	767	733	735
PLS．こE T －0－ARRIUAL	258	140	327	50	183	957	$98{ }^{\text {c }}$	935
HOISE CORRELATIOH	79	za	327	25	179	654	863	665
DIRECTIOH FIMDER	4	79	67	16	15	331	319	319
Class I＇								
TRAFFIC LOOPS	צ	3193	67	966	105	$4+1{ }^{4}$	4424	＋42．4
WAISIDE RADIO	8	2766	67	805	276	3921	3921	3921
FHOTOMI－R DETECT	12	1740	67	413	189	2－20゙	2420	2429
ULTRASONIC DETECT	13	1775	67	412	139	2455	2455	2455

Table 1－13．Medium City Vehicle Polling

CLmSS I techiloue	TOTHL fleEt	5 sic	$\begin{aligned} & \text { SHFLE } \\ & \text { INO } \end{aligned}$	FFHis	SYte	FESUITMUT vot	PEAT
KEYEORPI	1083	537	500	1983	57	630	116
		537	560	148	573	58	1187
STVLUS likp	1120	500	5 \％	11 br	$\bigcirc 20$	$t 67$	1213
		568	533	11 O7	\bigcirc	067	1213
2－ACCELEPOHETETS	108	547	570	1893	5	$\bigcirc 40$	1137
L．ficer Melocinit	1105	5	579	10.3	593	$0{ }^{-15}$	1187
		5	57	11100	${ }^{5} \mathrm{C}$ Of	6.53 -53	1200 12008
LeTRHSUNIC IELO	1093	547	570	19.93	593	6.8	1187
		$5 \rightarrow \overrightarrow{1}$	570	14.3	593	\bigcirc	$11{ }^{\prime \prime}$
COSPHCS／ODOHETEF	1493	547	570	10.33	593	－48	11 \＄？
		547	570	1693	$5{ }_{5} 9$	6.40	118
COOPPRCOLLHEP UEL	1093	547	579	19 cr	593	0.48	1137
		547	570	1993	59	048	1187
CRPESTU－SOHIC UEL	10.33	547	570	19.93	593	540	1137
		547	574	19.93	5 ग3	9	1137
OHEGA	11 〕	590	－ 13	1137	\square^{23}	$\underset{5}{ } 27$	12 F
LOPRN	1213	\bigcirc	［13	113 11 18	${ }_{7}^{6} 89$	${ }_{5} 27$	$12{ }^{12}$
			$\bigcirc-0$	1153	713	$\bigcirc 6$	1367
SECCA	12 \％	－ 10	6 23	$11{ }^{1}$	700	$\overline{7}$	$1 \leq 93$
		000	\bigcirc	$11-7$	709	747	12.93
fal－staticis	1480	$5-8$	50	1937	580	027	1173
		5	503	1037	580	$0{ }^{2}$	1173
JIFF OlEOM	1130	540	$\begin{array}{ll}4 & 13 \\ 0 & 13\end{array}$	1127	$\bigcirc 30$	727	1273
3IFF LOFAS	1213	O 0	5	1153	6813	787 768	12
		607	0 3x	1153	713	780	1347
3 FFF All－STA	11 「ご	587	－19	1133	${ }^{6} 73$	720	12 br
		58	${ }^{\circ} 16$	1135	$\bigcirc 73$	720	12 b
Pelat Mmega	1010 U6	50505	5058	$\mathrm{Sidg}_{519} 9$		108547	101093
relaf Lorfit	4333	$210 ?$	${ }_{21} 10$	S19 27	16053	1005 38 80	101693 44
CLHSS It		2167	2149	2713	3833	38.0	4.487
34PIES PES LOOPS	10 S7	543	50	10.90	537	0.3	
		543	567	1890	537	63	1180
KEFLECTING SIGHS	$14 \leq 7$	5 ＋3	507	$10 \% 0$	537	－ 33	1180
		543	50.7	tuc	587	－33	1130
feflectitic Pory	$10 \bigcirc 7$	543	567	1680	587	$\bigcirc 3$	1139
		$5 \cdot 3$	567	1898	$5 \% 7$	－35	11 20
n－3rdj Prist	10 ك	549	5 5	10 27	530	027	1173
HF，iffe Post	14 br	5	50	10.37	580	6 27	1173
		53	547	1083	5 or	$\bigcirc 13$	11108
Lf pust	1000	54	50.3	1087	5 cor	\bigcirc	1173
		$5 \rightarrow 0$	563	10 －	5 \％	027	1173
LIGIT I－F POST	1 tb ＞	540	5 S	1627	5 CO	027	1173
		$5-9$	503	1987	520	－$\cdot \vec{r}$	1173
Suritu hforiets	103	5 43	507	10.90	507	${ }_{6}^{6}$	11 Ev
ULtacohic fat	10 cos	5 ，	563	iv $3 \overrightarrow{7}$	5 cis	$\square 5$	
		5	503	149	53	－${ }^{-1}$	1173
tearfic seisup	1080	5	503	1587	530	527	1173
12		54	563	1937	53	$6{ }^{-}$	1173

D．Large Model City AVM CostSummary Tables
Table 1－14．Large Model City Parameters Used in AVM Cost Analysis
fipea IS 40 soubfe illes．
LAST HEST IISTAMCE IS 13.9 mLES．
MORTH 3OUTH DISTFHCE IS 27.2 hilles．

TOTAL ROAD HILEAGE IS 7736 hiles．

THE HUHEEF OF IHTER：SECTIOHIS is 35000：

THE ESTIMATED THIIEER OF RGAD SEEMENTS $1 \approx$ 7
THERE RRE 1000 CARS IH THE FLEET
find There rre a hotofcycles．

THE HUHIRER OF UEHICLES DH EACH SHIFT IS：

TIFET FHIFT HAK． 500

FIRST SHIFT HIN． 500

EECOHD SHIFT MHK．500

SECOHI SHIFT HIN． 500

THIRI SHIFT HAX．50日

THIPJ SHIFT HIN． 505

Table 1－14．Large Model City Parameters Used in AVM Cost Analysis（Cont＇d）

THE CITY WQULD REQUIFE 29 WIDE－BAND OR

FULEE T－D－A HITTENIA SITES AND 106 NARROW

EAND RNTEHHA SITES WITH 7 GND 3 SIILE COUERAGE RRDII．

Table 1－15．Large Model City AVM CostSummary

Lhrge hoinl citr CLAOS I					0－11	totals			
		THOUSPMES OF					Toral		
＇techirgue	CAPS	SITES	BASE	IHST		W0L	SYHC	Ramboh	
KErEJRRD	135	0	121	45	115	576	410	416	
STILUS MAP	2550	0	121	45	125	3001	2841	28.1	
2－HCCELEFOKIETERS	1600	0	161	118	200	2231	2428	2378	
LFSEP VELOCIHTR	1730	0	161	145	250	2496	2693	2643	
LSTRASOHIC VELO	1270	θ	161	110	250	1951	2148	2093	
COHPASS／ODOHETEF	1465	0	161	36	148	1956	2196	5093	
COMPMSS／LASEP UEL	1855	0	161	160	190	2526	2766	2003	
CMPSS－U－SOHIC YEL	1585	0	151	110	194	2196	2435	2333	
DIECB	2700	0	141	90	175	3206	3531	3469	
LGRAM	2800	0	141	y	175	3366	3631	3539	
DECCR	1150	0	1－1	70	175	1096	1961	1411	
AII－STATICATS	408	4	141	60	168	321	1111	1904	
DIFF．OHEGA	2709	0	$1+1$	90	175	3200	3456	346y	
Miff LOREH	こひい	$\mathfrak{6}$	141	98	175	3366	3556	3589	
DIFF $\mathrm{FIM-STA}$	465	O	$1+1$	68	108	485	1176	1270	
RELAY OHEGA	525	6	141	90	200	1116	956	1350	
RELAY LORFA	575	8	141	90	200	1166	1006	1400	
Clifis II									
EURIED RES LOOPS	140	28550	121	48607	115	77703	77798	77543	
REFLECTING SICNS	480	7708	121	4360	820	13641	13736	13461	
REFLECTINS ROAD	125	8 －8	121	5110	4315	10671	10760	18511	
X－BFAD POST	179	8950	121	1625	635	19701	10856	10601	
HF，UHF POST	155	575	121	444	242	1 9yb	2091	1436	
LF POST	159	4375	121	1630	640	2076	7171	6910	
LICHT－I－R POST	1.45	3509	121	2010	1890	6936	7831	6776	
EUPIED MAGHETS	109	2056	121	5767	109	9194	9199	8944	
ULTPASONIC POST	135	5950	121	6045	385	13236	13331	13876	
TRFFFIC SENSOR	145	0650	181	č50	116	10930	18131	Y876	
HID－EAND FM PHESE	2905	336	202	144	240	$3 \% 0$	4086	4161	
PULSE T－0－APRIUAL	2575	1484	332	423	253	5119	5369	5394	
NOISE CORRELATIOH	785	39	382	115	202	to72	1762	1787	
DIPECTION FINDER	35	80	151	30	154	569	4.49	449	
CLRSS 10									
TRAFFIC LOOPS	80	68763	121	9567	950	74481	79.481	79.481	
HATMSIDE RADIG	75	61233	121	790	1850	71249	71249	71249	
PHDTONI－R DETECT	115	$41149{ }^{\circ}$	121	4835	990	46401	46401	46481	
ULTRASOMIC DETECT	125	41490	121	4036	920	46750	46756	46756	

Table 1－16．Large City Vehicle Polling
cicle the m seconios to poll hare ario mily units jeflared

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline CLASS I TECHUIOUE \& TUTHL FCEET \& \& $$
\begin{gathered}
\text { SIHPLE } \\
\text { HOL }
\end{gathered}
$$ \& Fruls \& \＄ill \& CETHISAHT \& T Phitg

\hline \& 168 \& 2 bi \& 5700 \& 1190 \& \cdots \& － \& 12007

\hline STILS THP \& 112 リ® \& 5s ${ }_{5}^{51}$ \& 50 30 \& 11930 \& \bigcirc \& 506 \& lưu

\hline \& \& \& 5933 \& Ific ef \& 02 va \& cs 67 \& 12．3

\hline a－ficceleporieters \& 180 \& 54.87 \& 5000 \& 111 施 \& $5{ }^{4}$ \& 00 mj \&

\hline LHSER HELOCIHTP \& 110 br \& 54 57 \& 5 \& 11130 \& 34.33 \& ob cy \& $1 \stackrel{\text { cos }}{ }$

\hline \& 110 br \& 53 \& 50 \& 112
112
10 \& coll 107 \& 0\％${ }_{0}$ \& 124

\hline ULTPASIOUIC HELO \& 1543s \& 5767 \& 5840 \& 1113 \& $5+33$ \& －8 40 \& 129y 12

\hline \& \& ET of \& 53 u0 \& 11133 \& 5433 \& 6680 \& $12 \widehat{6}$

\hline COMPHSSADOHETEP \& 10935 \& 54.87 \& 5300 \& 11133 \& 593 \& ¢ 00 \& 1 c ¢

\hline COTPROCLHSER IJEL \& \& 5 \& 50 \& 11133 \& 59 \& 065 \& 122 or

\hline \& \& 5， 07 \& 5 \& $\begin{array}{ll}111 \\ 111 & 33 \\ \\ 1\end{array}$ \& 5 \& to 0y \& lie of

\hline CIPSS／U－SOHIC UEL \& 10933 \& 5． 57 \& 50 \& 1113 \& 59 \& 0680 \&

\hline \& \& $5 \cdot 97$ \& 5009 \& 11133 \& 5932 \& O\％¢0 \& 成

\hline Ofrcer \& 1150 \& 59 us \& －2 3 \& 115 nt \& 0300 \& ${ }_{4} \mathrm{DF}$ \& $131 \approx$

\hline LOPrn \& 12133 \& 54 us \& bci ${ }^{3}$ \& 115 bi \& 6309 \& $7{ }^{7}$ \& 131 ぶ

\hline Lornt \& 13 \& 09 51 \& 6460
0409 \& 117
117

178 \& $7!33$
-33 \& －8090 \& 13467

\hline DECCA \& 12000 \& 50 cos \& 0333 \& 1506 \& 70 0y \& $\bigcirc 567$ \& 135

\hline HIT－STATIONS \& 16s 00 \& ${ }^{637} 609$ \& －3 3 \& 110 b7 \& 70.00 \& $\bigcirc 0^{\circ}$ \& 123

\hline \& \& 5.450 \& 53 \& 11 ber \& So nou \& cy 07 \& 12103

\hline DIFF EMECA \& 11500 \& 59 \& 6233 \& 115 mis \& 66 \& \&

\hline \& \& \& Et 0 \& 115 o？ \& 0\％ 0 \& $\bar{T} 47$ \& 131 こ3

\hline miff Lopalt \& 13133 \& 6467 \& \％4 6 \& 1173 \& 71% \& 7840 \& 104

\hline DIFF RH－STA \& 11733 \& 69
53
50 \& 吹 8 明 \& 1173 \& 7133 \& 7840 \& 13.07

\hline \& \& 50 \％ \& －2 90 \& 115 \& ${ }_{67}{ }_{6}{ }^{3}$ \& 7\％ \& $130{ }^{130}$

\hline PELHY OHEGA \& 1410400 \& 5056100 \& 5653 33 \& 510607 \& 1 4650 \& 100565 \& 10113

\hline \& \& 5 S 90 u \& H453 33 \& 51ko o？ \& ivi ${ }^{0}$ \& 1095667 \& 10113

\hline RELA，LOPAM \& 43333 \& 2lo e？ \& 22000 \& 27\％ 33 \& $\cdots 3$ \& 369 40 \& ＋46 of

\hline | CLROS It |
| :--- |
| EUPIED FES LOOPS | \& 1113 \& 21067

5507 \& 22000
5900 \& ごら 33
11233 \& ≈ 3 \& 390 dos \& 4 Ab 67

\hline \& \& 5567 \& $5{ }^{\circ} 98$ \& 11233 \& mi 3 \& OS 4 \& 124 120

\hline REFLECTIHESTEAS \& 11133 \& 5567 \& 5904 \& 11233 \& 0133 \& 0300 \& 12467

\hline FEFLECTIUG FOAD \& 11133 \& bit ${ }^{51}$ \& 5900 \& 1123 \& 01 \& 1300 \& 12， 47

\hline \& \& 55 br \& －5960 \& 1123 \& \& 6e 010 \& 154

\hline －EAMI POST \& 110 67 \& 55.3 \& 58 of \& 1106 \& $00^{0} \mathrm{O}$ \& ${ }_{6} 73$ \& 124

\hline HF，UHF POST \& 33 \& 55.33 \& 53 \& 11280 \& 50 67 \& D7 33 \& 124 u6

\hline \& \& S4 57 \& 50 \& 11133 \& 或30030 \& －0 0 \& 102 bi

\hline LF PUST \& 110 b \& 550 \& $5{ }_{5} \mathrm{O}_{7}$ \& 11240 \& $0{ }^{5}$ \& $67 \approx$ \& $12, ~ \cup 19$

\hline \& \& G53 \& 5305 \& 112 \％o \& 06）of \& 6.73 \& 12.40

\hline LIGHT／i－R PUST \& 110 bT \& 5533 \& 5307 \& 11299 \& of of \& 07 33 \& 12.46

\hline E1dPIEJ difutiets \& 11153 \& 55.35 \& 55 \& 11208 \& my 67 \& 6735 \& 52400

\hline \& \& 35 67 \& 5900 \& 1123 \& 6153
015 \& 60 und \& 124 of

\hline ULTPASOHIC POST \& 110 6 $\overline{7}$ \& 5533 \& 5867 \& 1120 \& 508 \& ${ }_{0} 9$ \& 12－6\％

\hline TPRFFIC SEHSOR \& \& 55.3 \& 56 \& 11200 \& ro e7 \& いT 3 \& 124

\hline TFAFFIC SELISGR \& 110 er \& 55 \& 5867 \& 11200 \& 5067 \& $67 \approx$ \& 12409

\hline 13 \& \& \& \& 1200 \& 69 \& \bigcirc \& に\％ 51

\hline
\end{tabular}

IV. AVM SYSTEM ACCURACIES AND COST BENEFITS

A. System Parameters ThatAffect AVM Costs

The prediction of the expected accuracies of AVM systems is essentially a probabilıstic problem. Actually there are two distinct problems, one a precursor to the other, depending on the class of AVM system. Classes I and III are loosely referred to as "random route" systems because the techniques have the capability of vehicle location anywhere within their surveillance areas. Classes II and IV are called "fixed route" systems because the location capability exists only in the vicinities of signposts that are distributed along the wayside or on the roadway at intersections within the covered area. Besides the inherent range of uncertainty in the location measurements provided by individual AVM techniques, Classes I and III are subject to another location error, which is the shift in the moving vehicle's position during the interval between the instant of polling and the display of location data at the base. On the other hand, Class II and IV techniques provide location information only at the time when the vehicle passes within the sensing radius of a wayside or buried signpost. This information is the best available until the time that the vehicle enters the sensing radius of another signpost. A measure of this uncertainty in location is required to determine the "inherent" accuracy of the signpost AVM techniques. This is particularly true when the signposts are less than maximally dense; that is, when the signposts are placed two or more intersections apart.

It is intuitively reasoned that if the signpost sensors in Classes II and IV are placed at each intersection, then the location of any vehicle can be found to plus-or-mmus one block. It also follows that if the sensors are placed in a diamond pattern at every other block in each direction, then the accuracy is plus-or-minus two blocks. This reasoning is valid only f every passage through instrumented intersections by all vehicles is known. If the polling technique or RF channel loading is such that this data frequency cannot be assured, then the achievable accuracy is not as well known. A tutorial treatment of the less dense signpost placement by Markov, or randomwalk, processes is included in Part Three of this Report. The analysis technique leads to a prediction of the mean and variance of the distance traveled by a vehicle starting at an unsensed intersection before it passes a sensed intersection. The results of this technique for various signpost densities are as follows:

Ratio (Sensed/Unsensed)	Mean	Varıance
$1 / 1$	1	1
$3 / 8$	1.778	1.778
$3 / 9$	2	2

The second approach to the system accuracy prediction considers not only the wherent error in the vehicle location technique but also the additional inaccuracies introduced by the delays in
successive pollings of the vehicles and by the computation of location when the vehicles in the fleet are moving at various speeds. In Part Three of this Report, the analysis, the method of solution, and the tabular results are presented.

The technıque for predicting the location accuracy was used to generate the family of curves in Fig. 1-36. These contours of system accuracy correlate the independent variables of the polling interval and the standard deviation of the inherent error. The accuracy contour yields the 95% confidence interval for vehicle fleets that move with an exponential velocity distribution such that more than half the vehicles are moving at speeds less than $15 \mathrm{mph}(6.67 \mathrm{~m} / \mathrm{s})$. It can be seen from the curves that either the polling interval or the inherent error can quickly dominate the achievable system accuracy if ether is very large. The curves are shown for the system accuracy interval of 100 to 1000 meters (0.1 to 0.6 mlle). The curves for less than 100 and greater than 1000 meters are repetitions of those shown and can be derived with subtraction or addution of a unit constant on both axes (equivalent to division or multiplication of the interval or deviation by a factor of 10).

B. Estimated Cost Savings Based on Urban Parameters

1. System accuracy estimation. The accuracy to be expected from any given AVM system in a locality $1 s$ estmated by a step-by-step process. First, from the data provided for the particular city, the maximum and minimum number of vehicles deployed is obtaned. Next, the number of bits in the location message required from each vehicle for each technique is determmed. The time required to poll the deployed vehzcles with a $0.1-\mathrm{sec}$ radio turn-on time is then computed for the redundant mode of the random polling process. This value yields very conservative (or pessmistic) polling mtervals for the two values of vehicles deployed. These intervals together with the value obtained from the table of technique accuracies provide the entries to the graph of system accuracies. These curves are prestored in the computer program. A rather simple linear interpolation program yields a maxımum and munimum estimation of the 95% confidence level of system accuracy for the maximum and minmum vehicle deployments. The location accuracies used are usually greater than the standard deviation value.
2. Vehicles saved estimation. Based on the prior work of Larson (Ref. 2), Knickel (Ref. 3), and Doering (Ref. 4), a quantitative measure of efficiency increase in responding to calls for service should be determinable from the accuracy of the AVM system. One of the approaches to this problem is to compare a situation where, in response to a call for service, the dispatcher always sends the vehicle responsible for a beat to that where the location of the vehicles is known and the "closest" vehicle is dispatched to the scene.

The efficiency comparison is made either in the excess time required or the excess distance travelled by the beat vehicles relative to the closest located vehicles. The conclusions of this approach are generally that a vehicle location accuracy of about $1 / 5$ the beat-side dimension is

LOG $_{10}$ STANDARD DEVIATION OF INHERENT ERROR

Fig. 1-36. Vehicle Polling Intervals vs 95% AVM System Accuracy
sufficient. Additionally the service improvement is found to be about 7% for the locator system dispatches versus the "center of mass" or beat vehıcle dispatches.

The more recent study of Doering (Ref. 4), however, compares response time performance in a situation with differing absolute accuracy values of the AVM system and a given fleet size with the number of vehzcles required to provide the same response time with no AVM. Doering's study ind ${ }_{1}$. cated that, in the area studued (the city of Orlando, Florida), 34 vehicles in the AVM fleet where the accuracy is 240 meters (800 ft) would provide a response time which would require 35.8 vehicles in a non-AVM fleet. Extrapolation of the curves presented by Doering indicates that 8 to 10% fewer vehicles in an AVM system fleet with perfect (0 feet) accuracy can provide the same response performance as the larger number of vehicles in a non-AVM fleet. Extrapolation in the direction of less accurately known location, indicates that there is little improvement in response tume with location accuracies of 450 meters (1500 ft) or more. It may be coincidental that this value is about 0.3 km (0.2 mile), which is $1 / 5$ the average beat side dimension in the Orlando simulation studies. A plot of the increase required in a nonAVM vehicle fleet to equal AVM vehicles response time performance versus accuracy shows a linearly decreasing value as the AVM accuracy decreases.

For the purposes of this study, a 7% increase in efficiency is assumed for a perfect AVM system, with the percentage decreasing linearly to zero at an AVM accuracy of 0.2 times the average beat side length. The average beat is calculated by dividing the area by the number of vehicles deployed.

For maximum and minımum deployments, the efficiency uncrease assumption yields dufferent values for the same AVM technique accuracy. In cases where the minimum deployment is substantially lower than the maximum, the apparent beat size may be increased to the point where an AVM technique which yrelds no efficiency increase with maximum deployment may display a marked improvement in response. Addationally, the minmum deployment decreases the polling time interval which provides an additional improvement in system accuracy.

The calculation of cars saved is based on a reasonable reciprocity assumption that fewer cars with AVM can yield the same performance as that obtained now with a given fleet size The number of cars saved is determined by multiplying the percentage efficiency value, obtained from the beat dimension and system accuracy, by the number of vehicles deployed. Savings of less than one vehicle are allowed by the calculation. As stated before, the factors tending to increase efficiency are such that, in some cases, the number of cars
saved with minumum deployment exceeds that for maximum deployment with a given technıque.
3. Estimated 5-year cost saving. The 5-year saving calculation, presented in Tables 1-17 through 1-20 is an attempt to place a dollar value on the efficiency increase which might in turn indicate possible choices of candidate AVM systems. The calculation assumes that each car saved is worth $\$ 150,000$ annually, which is primarily salaries and overhead (as of 1974). This is an average value for a 1 -man car based on 5 salaries and 100% overhead. The saving for small, medium, and large cities is a straightforward multiplication of the maximum of the cars saved times the annual value of the car munus the $O-M$ costs of the AVM technique. The value

Table 1-17. Small Model City Cost Benefits from AVM System Usage

Table 1-18. Medium Model City Cost Benefits from AVM System Usage

obtained is then multiplied by 5 years for the total saving.

The 5-year saving is positive only $f f$ the value of the car saving exceeds the annual $O-M$ cost. The calculation is performed for a given technique only f a car saving is indicated, and the result 15 presented regardless of sign. No calculation is performed if no car saving is indicated.

A simple summation of savings rather than a present worth of an anuity calculation is justified on the basis that it is less speculative and might be more nearly correct falaries rise at a percentage rate which exceeds the rate of return that can be realized on 5 -year municipal investments. The 5 -year saving estimation is presented solely for AVM system comparison purposes.

Table 1-19. Large Model City Cost Benefats from AVM Systems Using One RF Channel

Table l-20. Large Model City Cost Benefits from AVM Systems Using Two RF Channels

V. COMPUTER PROGRANS FOR ANALYSES OF AVM NEEDS

The cost estimates for the AVM techniques are in almost all cases precisely that - estimates as of 1974. They have the additional shortcoming that large-scale production is assumed, which accounts for the gene rally low system cost amounts Therefore, additional studies are necessary to refine these estimates in view of the rapidly changing technology and costs.

Although the cost estimation procedure for AVM systems in model cities is a valid technique, it does not take into account the individual differences of real cities. That is, the system engineering aspect where the vagaries of a particular coty and operational methodology are considered has not been included. The AVM system cost estimation and particularly the performance estimation and resultant estimated savings are essentially averaging processes. Since each city differs in details from each other city, and the AVM system cost, performance, and impact depend on these differences, final selection of an AVM system will require an ind ovidual analysis such as those presented in Part Two.

An individualized analysis for a particular city requires the two following steps. (1) Synthesis of AVM systems corresponding to each of the desired concepts as they would be configured for the physical, political, and cost environment of that city, and (2) evaluation of the effects of each of those systems. The process of synthesizing a particular AVM system is a straightforward but tedious task, requiring detailed technical knowledge that may not be readıly avaılable in real cities. It can be made easuly available, however, by the development of an AVM system synthesis computer program, as is described later. The expected effects can then be assessed by using the resultant systems in a system sumulation computer program, which is described in more detail in Section B. Since these two programs were planned to be developed in Phase One of this AVM Systems Study project, they do not yet exist.

A. AVM System Synthesıs Computer Program

The synthesis program will be based on design algorithms, equations, cost estimates, and the AVM data base developed in Phase Zero of this Study. These program components include antenna siting algorithms for time-of-arrival systems, message length equations for different location technique and polling combinations, accuracy estimation equations for various reporting intervals or signpost densities, and lufe-cost equations. A prelimlnary concept of the basic elements of the AVM system synthesis computer programis shown in Figure 1-37. A concept of the operations sequence in using the synthesis program is presented in Table 1-21. Salient features of the synthesis program are listed in the following subsections.

1. City and fleet data for AVM System

 Synthesis Program. The synthesis program will first summarize the data provided from the input file. The purpose of this step is to provide the user wath an opportunity to review the input before actually running the synthesis program. Table 1-22 lists some of the parameters that will be included in the data input summary.Table 1-21. Operating Sequence of
AVM System Synthesis
Computer Program
Step 1. The user whll supply the values of those parameters that descrube his partıcular city. Some of the data may be farrly extensive, for example, geocoding data or DIM E file type information which describes the city street/block system in detall. For information of this type a computer-readable data fule will be used. An auxiliary program, separate from the AVM system synthesis program, will be developed to facilitate the interactive development of the data file.

Step 2. The synthesis program will read the datafile and determıne the AVM system configurations suited to the city. If any data $1 s$ missing or incomplete, the program will undicate which systems cannot be evaluated and provide an opportunity to modify the data file.

Step 3. The program will present basic comparison data for each system confıguration option.

Step 4. After selecting the vable confıguration options, the program will shift to a "trade-off" or compromise mode in which the user can access further detail and investigate the options avaulable withon a particular choice of system concept.

Table 1-22. City and Fleet Input Data for AVM System Synthesis Program

City name AAAAAAAAAAAAAAAAAAAAAAAA Area monitored. XX.X sq miles
Maximum X and Y dimensions: $X X . X X \mathrm{ml}$, by XX. XX miles

Street length XXX.X miles
Number of intersections: NNNN
Number of road segments; NNNN
Number of vehicles instrumented: NNNN
Average number of vehicles each shift: NN, NN, NN
Number of beats per shift: NN, NN, NN
Shuft hours: HH-HH, HH-HH, HH-HH
Number of dispatcher consoles: N
Utilization factor by shift: FF\%, FF\%, FF\% (This $1 s$ the fraction of time available to respond to calls for service).
Average call for service time by shift: HH, HH , HH
RF channel utilization factor: $\mathrm{P} \%, \mathrm{P} \%, \mathrm{P} \%$
RF channel assigned. N Planned: N
LORAN coverage in area?: $\mathrm{Y}-\mathrm{N}$; DECCA? : $\mathrm{Y}-\mathrm{N}$
AM stations in area $\mathrm{K}--, \mathrm{W}-\mathrm{-}, \mathrm{~K}-\mathrm{-}, \mathrm{~W}-$ -
2. AVM Configuration options for AVM Sys tem Synthesis. Each of the AVM options identif 1 ed by the selection process will be described briefly in narrative form. Each will be tagged with an udentity code for later use. Then for each of the applicable options, the following gross data will be presented for comparison:
a. Cost estimates. Total system cost, "present value. "\$XX XXX XXX (These figures

Figure 1.37. Concept for AVM System Synthesis Computer Program
will be for comparison purposes only. A breakdown follows:)

One-time costs	\$XX XXX XXX
(development, conversion, facilities)	
Installation costs	\$XX XXX XXX
Recurring costs	\$XXX XXX per year
(operations, maintenance, training)	
Replacement	\$XXX XXX per year
(equivalent annual payment at 10\% year)	
Upgrading costs	
Display consoles \$XXX XXX plus \$XX XXX per year (each)	
Fixed sites \$XXX XXX plus \$XX XXX per year (each)	
Signposts \$ XXX plus \$ Vehicle equipment	
\$ X XXX plus \$	XXX per year (each)
Telephone mileage\$XXX XXX plus \$XXX XXX per year (each)	

b. Resource utilization estimate.

Radio channels required: XX.X
Microwave or dedicated telephone lines needed: XXX

Computer memory estimate: XXX XXX bytes
c. Performance estimates.

Median location accuracy. XX ft (effective polling rate $=X X$ vehicles/ second)

Fraction of fleet with error
less than \qquad ft: XX\%
less than \qquad $\mathrm{ft}: \mathrm{XX} \%$
less than \qquad ft: XX\%
d. Comments. Design features and other relevant considerations will be noted. Typical comments that mıght apply to specific systems are as follows:
"Vehıcle status is monitored".
"Field unit alarm capability is present".
"Pollmg procedures are inflexible".
"Shared usage by several agencies would be difficult to mplement".
"Effect of weather on performance expected to be smali'".
"Fleet locations easily monitored by public".
"Each 90 vehicles monitored requires an additional radio channel".
"Sensors may require protection from vandalısm".
e. Trade-off potential. This portion of the output will identify significant trade-off possibilities and the potential outcome that could result from those trade-offs. The trade-off relationships will be accessible during Step 4 (Table 1-21) of the program. Typical trade-offs that might be possible for all or some of the systems are these:

Location accuracy vs number of radio channels (via the polling option and rate).

Computing at the command center vs computing on-board the vehicles. (This affects the costs and accuracy vs radio spectrum trade-off.)

Display characteristics vs cost. (These trade-offs may be independent of the other descriptors of the system.)

Location accuracy vs cost (via the spatial density of signposts, the number of fixed sites, etc).
f. Cost benefit estımate, A preliminary estımate of efficiency increase with AVM will also be an output. The cost benefit estimate will be derived from the estimated increase in efficiency and data such as that listed below.

Patrolman average salary:
$\$ X X$, XXX per year
Patrolmen required for each vehicle. N
Support personnel for each vehicle: N.N
Overhead on salaries: PP\%
Repla cement cost of vehicle: \$X, XXX
Mantenance cost of vehicle:
\$X, XXX per year
'Based on the size of the fleet and these parameters, a cost benefit (deficit) first estmate will be provided such as:

> Number of vehıcles saved by shıft. $\mathrm{X}, \mathrm{X}, \mathrm{X}$
> Vehicle cost saving equivalent: \$XXX, XXX AVM capital investment equivalent,
> 10 yr: $\$ \mathrm{XXX}, \mathrm{XXX}$
> 5 yr: $\$ \mathrm{XXX}, \mathrm{XXX}$

The information provided by the AVM system synthesis program will not in itself provide sufficient justification for selection but will be a very important first step that eliminates obvious non-competitive technıques and allows for more detailed consideration of the viable techniques.
B. AVM System Simulation Computer Program

Much work has already been done by others in regard to AVM simulation (see Bibliography). The intent of this study effort $1 s$ to utilize as much of that work as possible.

There is one aspect of the prior work where it is believed-that improvement is needed. This is in the area of AVM system accuracy estimation. Prior AVM simulation work has investigated the overall command and control function to determine the effect of AVM system accuracy on "wrong dispatches" and the average distance travelled as a result of these "wrong dispatches." A "wrong dispatch" results when the closest available vehicle is not the one directed to respond to the call for service. This incorrect action results from not knowing precisely the vehicle locations, and thus the enture system performance is degraded owing to unnecessary distance travelled and time consumed in responding to calls for service.

In these prior simulations of the command and control functions, the investigators assigned values such as a 95 percentule value of a radial error of X feet to the AVM system accuracy. It has been assumed that this error distribution is normal and constant with time. The computer simulation programs determine the exact location of each vehicle from a mobility routine or driver scenario. Then, in order to test the system response to a call for service, each of the exact locations is corrupted in some random fashion with ether X and Y or with an angle and range to the exact location. The apparent location is then used by the dispatching routme in the search for the vehicle closest to the call for service. The foregoing mode of simulation effectively assumes a constant value for the AVM system accuracy which may be misleading for all but those techniques that use very short untervals between vehicle location determinations. Short interval inter rogation of location is not a requisite mode of operation in many AVM techniques and is impractical or mappropriate in others.

A more realistic approach to AVM accuracy simulation 1 s to model the actual vehicle location process, including the expected or appropriate polling technıque and taking into consideration the time lapse from the last location determınation, the motion of the vehicles, and the resultant effect on closest car determination. In this mode of sumulation, the vehicle mobility or driver location routine can be altered by a time-varying location uncertainty, if that is appropriate for the particular AVM system concept. The exact nature of this uncertainty or modification to the exact location may also be a function of other factors in addition to time. These factors may be vehicle speed, physical location at time of interrogation, distance travelled since last location, or distance travelled since last signpost proximity update. These factors will be explicitly considered by the AVM simulation program.

An accurate measure of the reduction in response time requires that a reasonably accurate geocoded definition of the coverage area be a part of the simulation program. Simulations that sum the absolute values of the drfferences in X - and Y-distances from the vehicle position
to the location of the call for assistance give a correct solution only for rdealized rectangular cities. Geocoded descriptions of the coverage area will allow an accurate measure of distance in each instance, since the optimum trevel routes can be used in the simulation.

The advantage of using the more accurate AVM simulation models is that a more realistic apprasal of the expected increase in efficiency can be determined. In addition, the possible variations in system configuration that affect performance parameters of the enture system can be investigated with the assurance that the influence of the variation has been considered.

Other technıcal performance parameters that will be considered in the simulation program include the data links involved in the vehicle location process and the effects of errors in reception; the effects of entry of new vehicles into the coverage area, and the re-establishment of the position of "lost" vehicles in relative location techniques. In addition, the actual location algorithm for each technique can be exercised with the expected input data. The preliminary concept of the main components of the AVM system simulation program are shown in Fig. 1-38. As already mdicated, the intent 15 to develop this program around prior work insofar as possible.

Heretofore, simulation has been used almost exclusively in regard to reducing response time. The proposed simulation program will allow the investigation of other aspects of vehicle location. The utility of post data analysis can be evaluated, and the effects of an officer-needs-assistance incident can be assessed, both for the impact on subsequent calls for service and on the response time improvement to the officer in trouble.

References

1. Stavis, G., General Precision Aerospace Technical News Bulletin, 8:4, 1965.
2. Larson, R.C., Urban Police Patrol Analysis, MIT Press, 1972.
3. Task Force Report Science and Technology. A Report to the President's Commission on Law Enforcement and Administration of Justice, Sept. 1974.
4. Doering, X.D., Vehicle Locator Feasibility Study, Final Report Submitted to Governor's Conference on Grmmanal Justice, Tallahassee, Florida, Mar. 1974.
5. Turin, G.L., et al., "A Statistıcal Model of Urban Multipath Locatıon, "Vol. VT-2 I, No. 1, IEEE Transactions on Vehicular Technology, Feb. 1972.

Bibliography

1. Moody, A.B., Capt. USNR, "The National Plan for Navigatıon," Navigation. J. Inst. of Nav., Vol 16, No. 1, Spring 1969.
2. Davis, E.M., Dept. Chief LAPD, "Police Communication and Riot Control," speech presented before the IEEE, Panorama City, Calif., Nov. 16, 1966.
3. Terman, F.E., Radıo Engıneering, McGrawH1ll Book Co., Inc , New York, 1947.
4. Henney, K., Editor-in-Chief, The Radio Engineerıng Handbook, Third Ed., McGrawHill Book Co., Inc., New York, 1941.
5. Kramar, E., "Hyperbolic Navigation-Hıstory and Outlook, "Interavia, Vol. XXIV, No. 2, pp. 174-177, Feb. 1969.
6. DeGroot, L. E., and Larsen, J., "Extended Capability from Existing Navaids," Interavia, Voi. XXIV, No. 2, pp 391-405, Feb. 1969.
7. Kuebler, W., "Marine Electronic Navigation Systems - A Review, "Navıgation- J, Inst. of Nav., Vol. 15, No. 3, pp. 268-273, Fall 1968.
8. Stringer, F.S , "Hyperbolic Radio Navıgation Systems," Wureless World, Vol. 75, No. 1406, pp. 353-357, August 1969 .
9. Shapiro, L. D., "Time Synchronization from Loran C," IEEE Spectrum, Vol. 6, No. 8, pp. 46-55, August 1968.
10. Yonezawa, Y., Shinomıya, H., Kobayashi, T., and Nishitanı, Y., "Evaluation of Loran C System by a Manual Recelver - Indicator Accuracy of Time Difference Readings and its Position Lines, " IEEE Spectrum, Vol. 6, No. 8, pp. 61-70, August 1968.
11. "Symposium Paper Assesses Accuracy of Timing from Loran-C Ground-Skyways," Communications Designer's Dig., Vol. 3, No. 7, pp. 21-23, July 1969.
12. Burgess, B., "Propagation Effects and Lane Ambiguity Resolution in OMEGA," Praceedings of the Institution of Electrical Engineers, Vol. 116, No. 8, pp. 1297-1303, August 1969.
13. Dauguet, A., "Certain Universal Systems of Navigation via Satellıte, "NASA-TT-F-12092, N69-15348, Jan. 1969.
14. "NASA Evaluates Omega System for Lo cating Fixed and Moving P latforms, " Communication Designer's Dig., Vol. 12, No. I1, pp. 34-36, Nov. 1968.

Figure 1-38. Concept for AVM System Simulation Computer Program
15. "Closely Watched Buses," Electronics, Vol. 42, No. 22, p. 204, Oct. 27, 1969.
16. Quinn, C.E., Stevens, J.E., and Trabold, W.G., "DAIR - A New Concept in Haghway Communtcations for Added Safety and Drıving Convenience," IEEE Transactions on Vehicular Technology, Vol. VT-16, No. 1 , Oct. 1967.
17. Turın, G.L., Clapp, F.D., Johnston, T.L., Fine, S.B., and Lavry, D., "A Statistical Model of Urban Multipath Location, " Vol. VT-21, No. 1, IEEE Transactions on Vehtcular Technology, Feb. 1972.
18. Turin, G.L., Jewell, W.S., and Johnson, T.L., "Simulation of Urban Vehicle-Monitorıng Systems," Vol. VT-21, No. 1, IEEE Transactions on Vehicular Technology, Feb. 1972.
19. Staras, H., "The Accuracy of Vehicle Location by Trilateration in a Dense Urban Environment," Vol. VT-21, No. 1, IEEE Transactions on Vehicular Technology Nov. 1971.
20. Ziolkowski, F.P., and Tsao, C.K.H., "Antennas Buried in a Roadway for Vehicular Traffic Communications, "Vol. VT-20, No. 4, IEEE Transactions on Vehicular Technology, Nov. 1971.
21. Myer, J.H., "VEPOL-A Vehicular Plantmetric Dead-Reckoning Computer, "Vol. VT-20, No. 4, LEEE Transactions on Vehicular Technology, Nov. 1971.
22. Kaplan, G S , "Analysis of an Electronic Fence Element for a Vehicle Location System, " Vol, VT-20, No 2, IEEE Transactions on Vehicular Technology, May 1971.
23. Braun, W.V., and Walker, D.L., "Vehicle Location and Information Systems," Vol. VT-19, No. 1, XEEE Transactions on Vehicular Technology, Feb. 1970.
24. Knickel, E.R. and Van Horn, A. W., "Improving Police Command and Control with a Patrol Car Emitter-Call Box Sensor Car Location System, "Vol. VT-19, No. 2, IEEE Transactions on Vehicular Technology, May 1970.
25. Shefer, J. and Kaplan, G.S., "An X-Band Vehicle-Location System, "Vol. VT-21, No. 4, IEEE Transactions on Vehicular Technology, Nov. 1972.
26. Warren, W.T., Whitten, J.R., Anderson, R.E., and Merigo, M.A., "Vehicle Location System Experiment, " Vol. VT-21, No. 3, IEEE Transactions on Vehicular. Technology, Aug. 1972.
27. Kaplan, G.S. and Schiff, L., "Data Rate Requirements for Relay Links in Vehicular Location Systems," Vol. VT-18, No. 2, IEEE Transactions on Vehicular Technology, Aug. 1969.
28. Figel, W. G., Shepherd, N.H., and Trammell, W.F., "Vehicle Location by a Signal Attenuation Method," Vol. VT-18, No. 3, IEEE Transactions on Vehicular Technology, Aug. 1969.
29. JPL Literature Search 73-018, Sep. 1973.

PART TWO:
 AVM DATA FOR USER GROUP ADVISORY COMMITTEE CITIES

G.R. Hansen

Page

Page

PART TWO. AVM DATA FOR USER GROUP ADVISORY COMMITTEE CITIES

I. Cost Benefits of AVM Systems for Seven Cities2-1

A. Rationale for Selection of
UGAC Cities 2-1

B. Parameters Used in

AVM Cost Analyses

2-1
C. Descriptions and Summary Analyses of UGAC Cities
II. Anaheim, CA, City AVM Cost

Benefit Analysis Tables 2-4
III. Long Beach, CA, City AVM Cost

Benefit Analysis Tables 2-5
IV. Montclair, CA, City AVM Cost

Benefit Analysis Tables
2-7
V. Monterey Park, CA, City AVM Cost Benefit Analysis Tables 2-8
VI. Pasadena, CA, Caty AVMCost Benefit Analysis Tables 2-10VII. San Diego, CA, City AVMCost Benefit Analysis Tables 2-11
VIII. Los Angeles, CA, City
AVM Cost Benefit Analysis Tables 2. 14
A. Los Angeles Central Bureau Analysis Tables $2-$
B. Los Angeles South Bureau Analysis Tables 2-
C. Los Angeles West Bureau Analysis Tables 2-
D. Los Angeles Valley Bureau Analysis Tables 2-

FIGURES

Fig.		Page	Fig. N		Page
2-1.	Anaherm, CA, AVM Pulse or Narrow-Band Antenna Locations.	2-4	2-8.	Monterey Park, CA, AVM Wide-Band Antenna Locations	2-9
2-2.	Anaherm, CA, AVM Wide-Band Antenna Locations	2-4	2-9.	Pasadena, CA, AVM Pulse or Narrow-Band Antenna Locations . .	2-10
2-3.	Long Beach, CA, AVM Pulse or Narrow-Band Antenna Locations.	2-5	2-10.	Pasadena, CA, AVM Wide-Band Antenna Locations	2-10
2-4.	Long Beach, CA, AVM Wide-Band Antenna Locations	2-6	2-11.	San Diego, CA, AVM Pulse or Narrow-Band Antenna Locations . .	2-12
2-5.	Montclair, CA, AVM Pulse or Narrow-Band Antenna Locations.	2-7	2-12.	San Diego, CA, AVM Wide-Band Antenna Locations	2-12
2-6.	Montclair, CA, AVM Wide-Band Antenna Locations	2-7	2-13.	Los Angeles, CA, AVM Pulse or Narrow-Band Antennas	2-15
2-7.	Monterey Park, CA, AVM Pulse or Narrow-Band Antennas	2-8	2-14.	Los Angeles, CA, AVM Wide-Band Antenna Locations	2-15

TABLES

Tabl		Page	Table N		Page
2-1.	Anaheim, CA, City AVM Physical Parameters.	2-4	2-11.	Montclair, CA, AVM Polling Cycle Min/Max Times	2-8
2-2.	Anaherm, CA, AVM Systems Cost Analyses	2.4	2-12.	Montclar, CA, AVM Accuracies and Cost Benefits	2-8
2-3.	Anahem, CA, AVM Polling Cycle Min/Max Times	2-5	2-13.	Monterey Park, CA, City AVM Physıcal Parameters	2-8
2-4.	Anaherm, CA, AVM Accuracies and Cost Benefits	2-5	2-14.	Monterey Park, CA, AVM Systems Cost Analyses	2-9
2-5.	Long Beach, CA, City AVM Physical Parameters	2-5	2-15.	Monterey Park, CA, AVM Polling Cycle Min/Max Tames	2
2-6.	Long Beach, CA, AVM Systems Cost Analyses	2-6	2-16	Monterey Park, CA, AVM Accuracies and Cost Benefits.	2-9
2-7.	Long Beach, CA, AVM Polling Cycle Min/Max Times	2-6	2-17.	Pasadena, CA, City AVM Physxcal Parameters . . .	2-10
2-8.	Long Beach, CA, AVM Accuracies and Cost Benefits.	2-6	2-18.	Pasadena, CA, AVM Systems Cost Analyses	2-10
2-9.	Montclair, CA, City AVM Physical Parameters . .	2-7	2-19.	Pasadena, CA, AVM Polling Cycle Min/Max Times	2-11
2-10.	Montclair, CA, AVM Systems Cost Analyses	2-7	2-20.	Pasadena, CA, AVM Accuracies and Cost Benefits	2-11

Tabl		Page	Table		Page
2-21.	San Diego, CA, City AVM Physical Parameters . .	2-11	2-36.	Los Angeles, South Bureau AVM Accuracies and Cost	
2-22.	San Diego, CA, AVM Systems Cost Analyses	2-13		Benefits with Two Radio Channels	2-1
2-23.	San Dergo, CA, AVM Polling Cycle Min/Max Times.	2-13	2-37.	Los Angeles, South Bureau AVM Accuracies and Cost	
2-24.	San Diego, CA, AVM Accuracies and Cost Benefits with One Radio Channel	2-13	2-38.	Benefits wath Three Radio Channels Los Angeles, West Bureau AVM	2-1-7
2-25.	San Diego, CA, AVM Accuracies and Cost Benefits with Two Radio Channels	2-13	2-39.	Physical Parameters Los Angeles, West Bureau AVM Systems Cost Analyses	$2-17$ $2-17$
2-26.	Los Angeles, CA, Central Bureau AVM Physical Parameters ...	2-14	2-40.	Los Angeles, West Bureau AVM Polling Cycle Times........	2-1
2-27.	Los Angeles, CA, Central Bureau AVM Systems Cost Analyses ...	2-14	2-41.	Los Angeles, West Bureau AVM Accuracies and Cost Benefits	
2-28.	Los Angeles, CA, Central Bureau AVM Polling Cycle Times	2-14	2-42.	with One Radio Channel Los Angeles, West Bureau AVM	2-18
2-29.	Los Angeles, CA, Central Bureau AVM Accuracies and Cost Benefits with One Radio Channel.	2-14	2-43.	Accuracies and Cost Benefits with Two Radio Channels. . . . Los Angeles, West Bureau AVM	2-18
2-30.	Los Angeles, CA; Central Bureau AVM Accuracies and Cost Benefits with Two Radio Channels	2-15	2-44.	Accuracies and Cost Benefits with Three Radio Channels Los Angeles, Valley Bureau AVM Physical Parameters	$2-18$ $2-19$
2-31.	Los Angeles, CA, Central Bureau AVM Accuracies and Cost Benefits with Three Radio Channels	2-15	2-45.	Los Angeles, Valley Bureau AVM Systems Cost Analyses Los Angeles, Valley Bureau AVM Polling Cycle Times.	$2-19$ $2-19$
2-32.	Los Angeles, South Bureau AVM Physical Parameters	2-16	2-47.	Los Angeles, Valley Bureau AVM Accuracies and Cost Benefits	
2-33.	Los Angeles, South Bureau AVM Systems Cost Analyses	2-16	2-48.	with One Radio Channel Los Angeles, Valley Bureau AVM	2-19
2-34.	Los Angeles, South Bureau AVM Polling Cycle Times	2-16		Accuracies and Cost Benefits with Two Radio Channels. . . .	2-20
2-35.	Los Angeles, South Bureau AVM Accuracies and Cost Benefits with One Radio Channel.	2-16	2-49.	Los Angeles, Valley Bureau AVM Accuracres and Cost Benefits with Three Radio Channels . . .	

I. COST BENEFITS OF AVM SYSTEMS FOR SEVEN CITIES

A. Rationale for Selectıon of UGAC C1ties

In order that a more realistic appraisal of the costs and expected performance of AVM Systems could be estimated, police department representatives from several citues were invited to participate in a User Group Advisory Committee (UGAC) devoted to studying AVM technologies. A set of nine criteria was established for selecting typical Southern Californa cities for the UGAC study. Some criteria are obvious and were established for time and economic considerations, while others were arrived at by heurastic processes. In this listing, the future tense is used because the criteria were established before caty selection began. A brief rationale is presented with each criterion, to wit:
(1) City Size. Cities in three categories, (a) less than 20 sq miles, (b) between 20 and 100 sq miles, and (c) greater than 100 sq miles, will be solicited to determine the impact on urban areas to be covered by AVM Systems.
(2) Geography/Topography. Essentially flat as well as hilly areas in the communities are desurable to ascertain the effects on AVM methods as well as the communication data links.
(3) Population Density/Land Use. These criteria are closely allied, and agricultural areas, industrial centers, and suburban as well as high-rise residential areas should be a part of the caties. This criterion will eliminate those cities formed to be wholly agricultural or industrial areas for tax purposes.
(4) Buılding Sizes. The inclusion of high-rise dense metropolatan, low-rise busmess (less than 6-10 stories), mixed business and residential, and suburban areas is desirable to match and extend prior AVM work and to include the effects of these structure distributions on the communication links.
(5) Population. Cities with populations of (a) more than $1,000,000$, (b) between 200,000 and 1,000,000, and (c) less than 200, 000 will be solicited. These numbers are arbitraxy and are not firm, but the population somewhat determines the size of the municipal government. It is felt that this criterion is desirable as differing governing bodies will require AVM information to different degrees. Additionally, the participants in the user group whll probably have different authority wathin their caty governments as a function of population. It is belreved, that those from smaller cities may be closer to the policy making level than those from major cxties.
(6) Willingness to Cooperate. This is an obvious but important criterion and is
difficult to assess beforehand. Itis essential because the participants will be required to furnish data about their city as well as being regular in meeting attendance.
(7) Pursuing or Contemplating AVM. This criterion is necessary to assure some active interest in the study effort.
(8) Close to JPL. Economic considerations require this criterion since expense monies are not avallable in the grant for the participants. Additionally, regular frequent meetings are required and extensive travel time would be an additional expense to the participating city.
(9) Must Have Public Safety Department. This is an obvious and perhaps trivial requarement, but is necessary to eliminate those cities that contract for police services with another government agency. These cities would probably faxl Criterion (7) as well. This criterion is a natural outgrowth of the principal thrust of the proposed work whach will focus on public safety vehicle location.

None of the foregoing criteria were intended to preclude partxcipation by governmental bodies other than cities, such as countres. By criterion (8), only Los Angeles and possıbly, San Bernardino, Ventura and Riverside counties could have been considered.

Seven cities were selected which met the majority of the criteria. Small cities were Montclair and Monterey Park. Medxum cities selected were Pasadena, Long Beach, and Anaherm. The large cities were San Diego and Los Angeles.

Senior police officers from each of these cities participated in the UGAC and provided information concerning police operations and plans as well as statistical data for the individual cities.

B. Parameters Used in AVM Cost Analyses

Each UGAC city had different modes of operation and requirements regarding the implementation of AVM systems. For example, some police departments operate on a three-shift basis, while others use the ten-four plan where the offacers work four 10 -hour days in sequence. In responding to calls for service, some police departments use only patrolling vehicles while others dispatch the plain colored (1. e., pastels) in response to citizen calls. The inclusion of motorcycles, exther two- or three-wheelers, in the AVM system was planned by some cities, but not by others. In the main, however, there is sufficient commonality of parameters to allow for automation of the AVM cost and performance estimation procedures.

1. Number of vehrcles in the fleet. The total number of vehicles to be instrumented is the basis for the car cost estumates. Motorcycles were not included because a satisfactory digital message capability for motorcycles does not yet
exist. Vehicles, which in general do not respond to calls for service were also not included. The maximum and minimum number of vehicles by shift was determined and normalized to a three. shaft operation. This parameter is necessary to determine vehıcle polling intervals.
2. City area, street mileage, number of intersections and road segments. This information was provided by the representatives for the UGAC cities. The beat area is an important parameter which is used in the AVM system accuracy estimation, but no standard or common method of determining this parameter could be found. In some cities, the beats are correlated with the crime reporting technique. In others, the beats are periodically readjusted as determined by the average number of vehicles deployed on particular shifts. The beat size parameter is an independent variable in predicting the responsetime improvement that should accrue with a given location accuracy value. For the purposes of this study, the beat size was placed at the values resulting from dividing the city area by the number of vehicles deployed. This average value assumption cannot be wholly justified when, for example, beats vary from 6 blocks to 49 square miles in size as they do in San Diego.
3. Number of signposts or fixed sites required. The fixed site enumeration parameter in Class II and IV AVM systems was determined from the data supplied concerning the number of intersections or road segments. Where the tech. nique was dependent on the number of lanes in the segment, the average value of 2.4 lanes per street segment was assumed as in the model cities. For the Class III AVM techniques, the placement and/ or the number of widely distributed fixed sites required was determined by an algorithm which was only a function of the area in the model city estimations. The boundaries and shape of the UGAC cities seemed to dictate a more realistic approach. Boundary outline maps of each city were prepared, and the most optimum placement of a grid representing the spacings for narrowband and wide-band antennas was determined. The minimum number of sites that would be necessary was thereby determined. The assumptions made were that there were no "difficult" RF areas that would require additional coverage, and that a fixed site could be placed where needed regardless of zoning, existing structure, or geographical restrictions.
4. Costing procedure for AVM Systems in UGAC cities. The costing of the various AVM system configurations for the UGAC cxites was accomplished through the use of the APL computer programming language (see Part Three). The costs of vehicle equipment, fixed sites, base equipments, and polling elements were stored in the table form by technique and cost category (e.g., equipment, installation, operation and maintenance). This assemblage forms the cost data base. The various parameters for each UGAC city are also stored in a prescribed manner as follows:
(1) Urban area in square miles.
(2) East to West extent in miles.
(3) North to South extent in miles.
(4) Road mileage.
(5) Number of intersections.
(6) Number of road segments.
(7) Number of vehicles in AVM fleet.
(8) Number of motorcycles.
(9) Maximum number vehicles deployed in first shift.
(10) Minimum number of vehicles deployed in first shift.
(11) Maximum number of vehicles deployed in second shift.
(12) Minimum number of vehicles deployed in second shift.
(13) Maximum number of vehicles deployed in third shift.
(14) Minımum number of vehicles deployed in third shift.
(15) Number of dispatcher consoles.
(16) Number of small coverage (or narrow band) Class III AVM sites.
(17) Number of wide coverage (wide-band) Class III AVM sites.

The cost estimates (as of 1974) are compuled into the cost categories after multiplying by the appropriate parameter. The program is very simple, being really a programmed desk calculator with automatic input. The rationale for programming was to avoid a repititious procedure of calculating fine cost categories and obtaining three totals for each of 36 AVM techniques in the seven UGAC and three model cities and to simplify future cost estımations.

C. Descriptions and Summary Analyses of UGAC Cities

In Sections II through VIII, outline maps of each UGAC city are presented along with detanled listing of each city's physical parameters, AVM cost summaries, vehicle polling cycle times, and estimates of the AVM system accuracies and 5-year cost savings. The seven selected caties were Anaheim, Long Beach, Montclair, Monterey Park, Pasadena, San Diego, and Los Angeles. Thirty-six techniques in the four AVM classes were investigated for each city. Each of the seven cities was treated as an entity, with the exception of Los Angeles which was evaluated for each of its four geographical bureaus. Additionally, because of the large number of vehicles deployed in the cities of San Diego and the four Los Angeles bureaus, the system accuracues were determined for shorter cycle times or polling antervals. That is, more than one RF channel (half-duplex) was allowed for these areas.

In this Section, the summary analyses for each UGAC caty are based solely on a comparison of the estimated 5-year saving and the estimated costs (as of 1974) of particular AVM systems.

The 5 -year saving is predicted on only one factor of AVM performance, namely response time improvement. There are many other aspects of AVM systems which should enter into the decision process. Many of the thirty-six listed techniques which appear viable have never been developed or tested in typical urban environments. Therefore, only the developed and/or tested concepts will be discussed in the following summary descriptions. Complete tabulations are given in Sects. II to VIII.

1. Anaheim, CA. This city might be characterized as a break-even city with response time improvement such that cost savings just equal AVM costs, but only for the dead-reckoning techniques in Class I. Anaheim is slightly smaller than the medium model city (see Part One, Sect. III) in both area and fleet size, and the cost summary indicates Class I system costs for the dead-reckoning techniques of about $\$ 280,000$. The 5-year saving is about $\$ 300,000$ for a magneticcompass/odometer system with a system accuracy of 50 to 75 meters.

The Class II AVM systems which indicate some car saving are the wide-spaced signposts and buried magnets. The accuracies achievable are roughly 250 meters and 50 to 75 meters, respectively. The cost of the Class II wide-spaced signposts is about twice the saving, while the buried magnets may cost four times the 5 -year saving.

The most accurate Class III and all Class IV systems resulted in car saving, but the cost saving was negative. (See Sect. II.)
2. Long Beach, CA. The same AVM techniques as in Anaherm are viable in this city, but because the city is slightly larger in area with a substantially bigger vehicle fleet, the costs are about $\$ 50,000$ more for the Class I deadreckoning techniques. The 5 -year savings are lower, about $\$ 160,000$, because the maximum deployment considered is less than in Anaheim.

There is a large difference between Anaheim and Long Beach in the Class II AVM systems as Long Beach has almost four times the road mileage and almost twice the number of intersections. Long Beach is unique in having a large number of named dedicated alleys in the central area which results in an intersection density of $144 / \mathrm{km}^{2}$ (400 per square mile). This factor causes the Class II and Class IV techniques to have a greater number of installations than are really required. Widespaced signposts and buried magnets indicate car savings, but the 5-year figure is well below the systems cost. If the high central density were reduced to a more reasonable value, the disparity between cost and saving would lessen to the point where the saving would be half the cost.

The pulse TOA Class III technique and all the Class IV systems indicated car savings, but cost savings were negative. (See Sect. III.)
3. Montclair, CA. In this city, the deadreckoning techniques of Class I AVM and most of the techniques in the other classes indicate car savings primarily because system accuracies are very high. This is a direct result of a very short polling cycle time. The 5 -year savings for all systems that indicate a saving are negative and exceed a "loss" of $\$ 200,000$. The car savings are
in the order of 5% of the deployed vehicles (4 to 7), that is, 0.2 to 0.4 cars.

Despite the fact that Montclair has a widespaced sagnpost AVM system installed and operational for over a year, this analysis indicates that the cost is substantially greater than the saving. The reason this analysis is faulty in this case is that Montclair does not have either a computer in the system nor the operation and maintenance ($\mathrm{O}-\mathrm{M}$) personnel indicated as required for all systems.

The system accuracy indicated for the widespaced Class II signposts is about 250 meters, which is quite close to that achieved in Montclair. The installed system has an accuracy of 0.2 km ($1 / 8 \mathrm{mile}$) with slightly fewer signposts. The system costs are quite similar for the technique if the $0-\mathrm{M}$ category is omitted ($\$ 60 \mathrm{~K}$ versus $\$ 71 \mathrm{~K}$). (See Sect. IV.)
4. Monterey Park, CA. Car savings are indicated for all classes of AVM in this city. Again as in the other small city, or small model, the cost saving is near zero or negative. This caty, because of the great difference between maximum and minimum deployment and short polling cycle shows a greater car saving when fewer vehicles are deployed. If the $O-M$ costs were greatly reduced, the 5-year saving would exceed the costs. (See Sect. V.)
5. Pasadena, CA. This city 15 roughly half-way between the small and medium models. Again a car saving $1 s$ shown in all AVM classes with negative 5 -year cost savings. Again, the short polling cycle causes little degradation of achievable accuracy. The O-M costs are the principal element mitigating aganst a positive saving, and the value for cars saved is less than a whole car. (See Sect. VI.)
6. San Diego, CA. In this city, vartually every AVM technique indicates a positive 5-year saving.-The Class I dead-reckoning techniques system costs are exceeded by the estimated savings, and the Class III costs are close to the savings. This result occurs despate the poor system accuracies caused by relatively long polling cycles. There is a substantial car savings because the averaging of beat areas leads to results in which apparent response time improvements with very inaccurate techniques occur. More than half the area of San Diego is covered by five northern beats which causes the average beat to be 40% larger in side dimension than the average beat that would result if these five beats and the area involved were not considered. The reduction in beat dimension would cause a decrease in apparent response time improvement.

In an attempt to reduce cycle time effects, the system accuracy and cost savings calculation were also performed for three RF channels for AVM. The cost savings under these conditions for Class I systems were doubled. The savings for Class II wexe unformly increased by about $\$ 1.8$ milin to the point where the cost of the buried magnet system was equalled, as were the costs of the Class III pulse TOA system, by the cost saving. (See Sect. VII.)
7. Los Angeles, CA. Los Angeles was analyzed separately for each of the four bureaus
（Central，South，West，Valley），which range in area from 130 to $500 \mathrm{~km}^{2}$（ 50 to 200 square miles）． Again as in the medium model caty，all of the bureaus show a 5 －year saving for most of the AVM technıques．All bureaus operate about the same number of cars，so the effect of beat size on the response time efficiency increase is greater for the larger bureaus．In overall cost savings，the Valley bureau shows the greatest saving，followed in order by the West，Central，and South Bureaus．

The AVM system accuracy and 5－year saving calculations were performed for 2 and 3 RF channels for the AVM systems for each of the bureaus．－As expected，the accuracy improved to about one－half and one－third that of the one RF channel case．The 5－year saving with 3 channels showed an increase when changing from 2 to 3 RF channels that was almost twhce that obtained in changing from 1 to 2 RF channels．The increase in accuracy leads to increased car savings， thereby reducing the effect of the constant $\mathrm{O}-\mathrm{M}$ expenses（See Sect．VIII．）

$$
\frac{\text { II. Anaheim, CA, City AVM Cost }}{\text { Benefit Analysis Tables }}
$$

Table 2－1．Anaherm，CA，City AVM Physical Parameters

pothl Foid hilefge is a5s hiles．

THEFL arc 36 gifis ill the fleet．
Hila thefe mpe a motopcicles．
TIE HUIEEF OF UEHICLEE OH EACH SHIFT IS：
「IFミT ミHIFT 119.14

「1®：T GHIFT MIH． 14
－EEOHI ：HIFT MAN＇ 12
－ccolo shift nill 1 e

THIFI E．HITT HAM． 19

THIFJ SHIFT HIH． $1=$

Thi hlilieef of migeatchefs is 1

THC LITi HUULD REOUTFE E WIDE＋EAH OF

Figure 2－1．Anahem，CA，AVM Pulse or Narrow－Band Antenna Locations

Figure 2－2．Anaheım，CA，AVM Wide－Band Antenna Locations

Table 2－2．Anaheım，CA，AVM Systems Cost Analyses

A）AfREIII CLASS I						TUTHLS		
		THul	mids uF					
TECHIIIUE	LTPS	CITEG	SASE	Indst	0－11	UnL	$\checkmark 1$ des	Paitioni
YEYEOAPD	5	0	59	12	101	1 こ	$1-6$	176
STiLUS HEP	92	0	5a	12	101	269	2¢3	203
O－HCCELEFUHETEPS	5	u	86	1	104	201	EvS	Leb
LEEEP HELOCIHTP	65	0	8	15	100	231	26°	Eこ6
ULTFASOHIC MELO	${ }^{+}$	0	90	14	100	C6！	2ts	200
COIPAS～UTUIIETER	53	3	90	11	102	261	270	200
COIPASS LHEEF UEL	6	6	96	15	10.	そそう	299	2s？
CIIPSS／U－SOHIC VEL	58	0	90	14	104	275	279	275
DHECA	76	9	5	13	193	$2{ }^{2} 4$	204	391
LUPMI	WH1	4	75	15	143	298	307	306
jecces	－2	4	75	13	140	205	547	$2+5$
H11－STATIOSS	15	\bigcirc	75	12	105	210	215	215
DIFF OHEGP	43	11	75	15	118	234	301	361
SIFF LOPPA	111	5	75	13	153	29\％	3 m	200
JIFF Fli－STA	17	4	75	12	1 13）	215	319	22ะ
PELFM OHEGA	14	0	75	13	10.4	210	E11	c25
pelfit Loprit	c1	A	75	13	$19+$	218：	213	cı？
CLASS II								
CJPIED PES LuMFs	－	32as	59	5496	101	8392	8895	－6¢6
PEFLECTIHG SIGIIS	18	1655	59	592	197	1927	1930	1921
FEFLECTIHE KUAD	5	116	59	594	677	1555	1568	1559
－－HiJ PuSt	$\overline{1}$	1194	59	228	173	1575	1579	1569
HF 1afF Pats	6	124	59	66	117	375	478	369
Lf post	6	c！ey	54	228	173	1071	11174	1065
LILHT／I－P FOST	－	480	59	277	221	14.78	1451	1642
SJPIES HAGMIETS	4	323	59	－5＂	100	11.8	115	11.92
ULTRAEULIIC POST	5	316	59	8830	197	1912	$1{ }^{19} 15$	1966
TFAFFIC SEHSOR	\bigcirc	912	59	390	161	1，78	1482	1473
CLASS 111								
IHP－EATI FII PHHSE	9	76	163	18	149	313	322	323
HID－2Fiti Fil frisse	105	7 a	110	23	204	511	520	521
FULSE $T=0-H P P$ IUML	93	2c4	257	56	134	313	622	323
HOISE CORPELATIOH	29	29	257	14	178	516	519	529
girection findep－	2	71	${ }^{5}$	16	154	219	300	305
CLPASFIC IV LODPS	3	2343	57	1215	210	4535	，535	． 535
LFAYSIDE RADIO	5	2476	59	1097	341	24.4	2974	397.
FHOTO～I－P DETECT	5	1455	59	555	2 21	2293	てご3	2¢93
ULTRASOHIL DETECT	5	1503	59	555	221	204\％	23.2	こそって

Table 2－3．Anaheim，CA，AVM Pollıng Cycle Min／Max Times．
cracle time in seconids to moll max rid mim units deplonej

CLfSS I tecramipue KEYBOARD	$\begin{aligned} & \text { TOTAL } \\ & \text { FLEET } \\ & 3 \text { SL } \end{aligned}$		SIMPLE		REDUNDEMT		
		Sutc	vo4	Ramd	SYIN	（10）	PRHD
		204	$\begin{array}{ll}212 \\ 1 & 3.4 \\ \end{array}$	4 48	${ }_{1}^{2} 18$	23	\cdots
STILUS Hipe	403	213	283	418	230	1 2 51	45
		134	139	264	1 ＊	153	2%
Z－RCCEL EROXETEFS	394	283	215	413	225		4 ＋
		131	130	261	142	152	28
LhSEP Velocimit	398	210	218	${ }_{4} 16$	231	2 is	451
		1.33	138	282	140	155	285
Lltrfsonic velo	394	263	215	413	225	$2+1$	448
COHPASS－ODOHETEP	394		1 2 2	261	142	15 sc	282
chers	3	131	136	${ }^{+} 81$	1 1 4	14	48
COMPASSSLASER VEL	394	208	215	413	225	241	
		131	136	201		152	282
CIPSSU－SOMIC UEL	394	208	215	$+13$	225	24	445
		131	130	261	142	15	2 8
Ofitch	4 cs	234	232	429	253	274	＋ 70
LORPA	437	$1 \begin{aligned} & 1 \\ & 31\end{aligned}$	$1 \begin{aligned} & 146 \\ & 243\end{aligned}$	¢ ${ }_{4}{ }^{36}$	163 2	173 280	302
		14	150	275	171	280 181	395
JECEA	＋32	223	230	433	260	${ }^{2} 81$	486
		144	149	274	16	178	305
mil－stat ions	38	205	213	410	2 20	23	41
		130	13.4	259	139	149	378
DIFF OIEGCA	425	2 20	239	489	258	274	479
DIFF L0FPal	$\rightarrow 37$	1 2 31	1 3 3 3	271 436	1 2 71	173	
DrF Lorn		1 in	150	275	171	181	310
MIFF RHI－STA	－ 22	223	231	428	350	271	470
		181	1914	270	162	171	301
RELAY CHIELA	30060	1919	19193	13395	38199	38205	38.419
		12120	12125	125	24129	24138	
RELPY．LORFII	156	¢ 23	¢31	1029 650	1457 920	14 9	1678 1059
CLASS II							
EUPIED RES LOOPS	394	${ }^{2} 08$	215	413	2 25	241	440
FEFLECTIIG SIGRS	394	1．31	1 2 15 15	2 4 4 4	1 2 2	152 241	282
		131	136	201	142		\bigcirc
REFLECTING ROAD	394	208	215	413	2 cs	241	4
		${ }_{2}^{1} 81$	136	251	14	15	3
S－EARTS POST	391	206	214	412	23	238	443
hF，UHF POUST	386	${ }^{1} 30$	${ }^{1} 3$	208	1.41 2 18		280
		$1 \geqslant$	134	25	138	1 183 47	¢ 27
LF MOST	391	205	214	412	223	238	$4+3$
		139	135	\％ 0	141		230
LIGET／I－R POST	391	200	21 17	412	23	23%	473
SURIED MALGETS	394	139	135 215			$\frac{1}{2} 50$	2 80
		131	130	¢ 61	142	1 s2	3
ULTRHSOHIC POST	391	200	214	412	2 c	235	$4+3$
TPAFFIC SEASOR	391	1.30 2.00	135	260	1 2 21 1	${ }_{2}^{150}$	こ 9
		130	135	$\stackrel{4}{2} 6$		${ }_{1} 30$	$\overbrace{2}^{+3}$

Tablé 2－4．Anaheım，CA，AVM Accuracies and Cost Benefits

AMUREEI：							
	，	THEO			UEHi		ESTIHATES
Clwis i mbT	IPTE	UEHICLES		C．			5－EAS
TECIIISUE MCCL	RRC：	SAVED	1 Hn	$11 / 4$	1180	18f	－3＞1515
	3	1	${ }_{4}$	$\rightarrow 1$	4 r	1 ก	L－5
SThlus map	6	1	83	305	07	1 \％	－＋3）
2－ATCELEFUIETEPS	64	1	43	95	9	14	231
LHSEF DELOCIHTP	13	1	74	49	07	11	L45
UTFHEOHIC 18LO	－11	1	198	105	06	10	＜＜t
	Ev	1	7 －	5	65	11	215
CCIIPFISE／ASEP LEL	15	1	74	49	07	1	5
CIfSSSU－SOHIC MEL	13	1	74	\rightarrow－	0%	$1:$	205
OrIEG	1600	4	St14	こロット	00	511	v
LUPMTI	160	1	392	381	92	01	－305
JECLH	2un	1	${ }^{-72}$	－63	11	y 4	－5－10
Atiostatioils	239	1	$\rightarrow 79$	－0，	01	0 O	－4
SIFF DiELS	164	1	391	384	42	41	5
JIFF LJPRt	－U10	9	1u91	1uS＊	94	44	3
JIFF Hi1－STA	c5u	1	553	55	00	010	1
PELAY OfIECH	514	0	0307	－115	94	00	1
FELHP Lorent	Cum	u	2215	2los．	00	00	4
ULHES II							
3MFIES RES LOOFS	16	1	73	$4{ }^{3}$	27	11	520
FEFLECTILG SIGHJ	15	1	73	＋	97	11	100
FEFLECTIUG POAD	2	1	71	${ }^{-}$	0 \％	11	こ510
$\bigcirc \mathrm{PERHD}$ POST	12	1	73	－	0	11	-0
hr，blife pust	15	1	73	43	0 ？	11	200
LF POST	104		258	252	4	45	－40
LILHET－P POST	38	1	ε_{2}	30	0	1 J	355
ZUPIED HIEGUETS	＋	1	71	T	07	11	－uts
ULTPASOHIC PUST	20	1	7.	51	07	11	100
TFAFFIC CEHBUF CLAOS III	10	1	73	＋	0%	11	~ 20
H14P－JEHS FH PHHSE	1000	0	$2 \cdot 38$	E433	04	11.1	0
WIJ－zath Fit Phtse	1200	0	2954	289	96	0 11	0
PULEE T－OHPPPIJAE	100		$1{ }^{17}$	173	05	${ }^{1} 3$	－320
HOISE CUPPELETIOU	100	1	186	174	05	${ }^{1}$	－305
SIPECTIOH FIMDEP CLHSS IU	790	6	1830	1730	0 n	04	0
TFHFFIC LOOPS	19	1	25	23	บ	12	－1．3）
WR1 SIDE PADIO	100		219	23	95	13	－1255
PHOTOSI－R JこTECT	30	1	85	6	$4:$	11	230
ultarsumic jetect	20	1	45	－ 6	$0-$	11	030

III．Long Beach，CA，City AVM Cost Benefit Analysis Tables

Table 2－5．Long Beach，CA，Cıty AVM Physical Parameters
rflen is 50．z zOUAPE MILEG．
Cast hest misthice is 10 hiles．
IDORTH GOUTH IISTGHEE IS E．E HILES．
TOTAL FOAJ HILEFIGE I E EGGG HLES．
THE HBILEE OF IHTEFSECTIOHE IS E日UG．
THE ESTIMATED HUHEEF OF FORD SEGHEHTS IS 1g000：
THEFE FRE E1 CARS IH THE FLEET．
AIIJ THEFE ARE 51 mOTORCYCLES．
the huiger of vehicles oh EfCH 三hift is：
FIFこT EHIFT tiñ 1E

TIFST BHIFT MIH． 16
sLudit ehift mat le

GELOHE EHIFT HIH．10
 GEFGTNAL PAGB IS PEOT：

THIFI EHIFT HA゚．1E

THIRE EHIFT HIH．IE

THE IUMIEEF OF BISFATCHER 3 IS a

THE CIT，HOULI REMUIRE 7 MIDE＋EAHID OR

Figure 2－3．Long Beach，CA，AVM Pulse or Narrow－Band Antenna Locations

Figure 2-4. Long Beach, CA, AVM Wide-Band Antenna Locations

Table 2-6. Long Beach, CA, AVM Systems Cost Analyses

Table 2-7. Long Beach, CA, AVM Polling Cycle Min/Max Times

CTCLE TIHE IM SECOHDS TO POLL hax fand min birts deployed

CLRSS 1 TECHHICUE	torat FLEET	STHC	$\begin{aligned} & \operatorname{SInPLE} \\ & \operatorname{VOL} \end{aligned}$	FARD	SYic	RETVEHDFHT VOL	(1atis
KEYEOARD	± 20	17 c	179	347	183		373
		$1{ }^{1}$	179	347	183	198	373
STYLUS Mep	1254	199	137	354	198	213	3%
		179	187	354		$2{ }^{2} 13$	388
2-fCCELEROTETERS	1285	127	182	350	198	265	38
		175	182	350	190	2185	3 38
LPSER MELOCINTR	12.40	177	185	352 352	194 194	269 269	384 384
Llfasonic velo	12.25	177	185 182	352 350	196	263 205 15	3\%
UTRAsonic velo		175	182	350	1-90	285	$3 \cong$
COTEPSS/ODOHETER	12-25	175	182	350	198	205	30
		175	182	350	199	265	380
COTPRSS/LASER VEL	12.25	1.75	132	358	1.98	205	\%
		175	182	350	198	205	388
CPPSSN-SONIC VEL	12.25	175	132	350	190	265	- 20
		175	182	358	198	20	8
OTECA	1322	199	190	3104	218	2.33	$\begin{array}{r}467 \\ 4 \\ \hline\end{array}$
LORSA	1359	1.39 1.94	1 1 296 182	3.64 3.69	2.18 2.28	2.33	767 4.18
LCand		$1 \mathrm{a4}$	202	389	23	- 43	413
DECCA	1344	1.92	1.99	367	224	2-39	$\div 14$
		1.92	199	3 nt	2.24	2.39	414
fil-Stations	1210	173	180	348	1.86	? ${ }^{\text {al }}$	375
		1.73	188	3.48	1.80	2-61	375
DIFF OTEGA	1322	1.89	190	3.64	2.18	2.33	4 97
DIFF. LORFA	1359	1.89 1.94	1.96 2.92	3.64 309	- 18	${ }_{2} 33$	
Difr.		1.94	2.02	3.9	2-23	2-43	13
DIFF RUT-STA	1314	183	195	363	216	230	05
DIF M1-ST	13.	1.83	195	363	216	$2-30$	405
Rg_at OfEGA	1131-28	161.68	161.68	16335	32160	32175	32350
		16160	16168	16335	3 Fl 60	321.75	
Relay lorfit	+853	$\begin{aligned} & 693 \\ & 693 \end{aligned}$	$\begin{aligned} & 701 \\ & 701 \end{aligned}$	868 868	1227	12 124	$\begin{aligned} & 1417 \\ & 1417 \end{aligned}$
CLASS II ELRIED RES LOOPS	1225	1.75	1.82	350	190	2.85	320
		1.75	182	350	180	208	
REFLECTING SIGNS	1225	175	132	350	190	${ }^{2} 05$	380
Reflecting rond	1285	1.75 1.75	1.82	350 350	190 190	${ }^{2} 85$	380
		175	1.82	350	199	205	380
X-BRHLD POST	1217	1.74	1.81	3.49	188	203	378
		174	1.81	349	183	208	375
HF, MF POST	12 82	172	1.79	347	183	198	373
		1.72 1.74	1.79 1.81	347 349	183 188	-	373 378
LF POST	1217	1.74 174	1.81 1.81	349 549	${ }_{1}^{1} 83$	$$	
LIEKT/I-R POST	1217	174	1.81	349	1 \%	203	378
		174	1.81	349 350	188 189	${ }_{2}^{203}$	378
BMRIED MFGGTETS	1235	175	1.82	359	198 198	${ }^{2} 08$	3%
Letrasonic post	1217	174	1.81	349	188	¢ 83	378
		174	181	349	18	203	373
TRAFFIC SEISSOR	1217	174	1.81	349	189	283	378
		1.74	181	349	1 8,	203	378

Table 2-8. Long Beach, CA, AVM Accuracies and Cost Benefits

$\frac{\text { IV．Montclair，CA，City AVM Cost }}{\text { Benefit Analysis Tables }}$

Figure 2－5．Montclatr，CA，AVM Pulse or Narrow－Band Antenna Locations

Figure 2－6．Montclair，CA，AVM Wide－Band Antenna Locations

Table 2－9．Montclair，CA，City AVM Physical Parameters

HFEA IS 5．E GOUARE MILES．
LAST HEST DISTAHCE IS 2.3 HILES． HOFTH EOUTH IISTANCE I亏 z．5 HILES． total rofy hileage is 6r miles． THE HUIEER OF INTERSECTIONS IS 338.
fhe estimated nuiger of pohd segients is 50e：
THEPE RFE 10 GARS LIf THE FLEET．
Ald THEPE FRE G HOTOPCYCLES．
THE HUITEER OF UEHICLES OH EACH SHIFT IS：
FIF＇S SHIFT tAR． 5

IIFST EHIFT MIH． 4

EECDHD SHIFT MAK． 5

SCCOHD SHIFT MIN． 4

THIPD SHIFT HAS＇． 7

THIFD SHIFT MIN．？

THE HUIEER OF HIFFRTCHEFS IS 1

THE CIT＇HOULI FEOUIPE＝MIDE＋EANI OP FILLSE RHTEHHM SITES RHID 5 MAFPOUN BAHII

Table 2－10．Montclair，CA，AVM Systems Cost Analyses

$\begin{aligned} & \text { HuITCLAII } \\ & \text { CCASS I } \end{aligned}$						Tutals		
		THnus	Fins of	\pm				
techargue	CARS	SITES	EASE	If＇st	0－11	150 L	S．14C	Ferijoll
YEIEORPD	2	0	45	11	101	159	157	15
Sticus liap	20	0	$\rightarrow 5$	11	101	133	132	132
2－ACCELEPOIETERS	15	0	63	11	101	196	209	203
LRSEP IELOCIMEP	15	${ }^{6}$	70	12	162	203	505	Eu4
ULTPRSUHIC LIELU	15	9	$7{ }^{6}$	11	112	197	109	1.9
CUIPHOSCODOTETEP	15	4	70	11	101	197	Lu3	199
CUITHSNOLASER NEL	19	${ }_{1}$	？ 0	12	191	203	45	30
CIFPS／U－SONIC VEL	10	${ }^{11}$	79	11	191	200	－U2	301
Blach	${ }^{-}$	4	55	11	101	196	148	198
L0Rar	c	9	55	11	141	14	139	178
DECCA	12	0	55	11	151	130	183	132
gui－starious	－	9	55	11	1111	172	17.	17゙ー
DIFF．OHEEA	27	6	55	11	101	198	198	$1 い$
DIFF LDREAI	23	U	55	11	101	197	179	14
DIFF\％AII－STA	5	1	55	11	191	173	175	17t
PELA，UliEGA	n	4	55	11	101	174	173	175
PELA，LOPA	0	v	SS	11	161	175	17.	$1{ }^{\text {\％}}$
CLFSS II								
SUPIED RES LOOPS	z	110	45	147	101	454	－55	$\rightarrow 53$
PEFLECTING SIGIS	5	56	45	42	106	255	256	253
FEFLECTING ROAD	2	7	$\rightarrow 5$	48	131	232	233	－35
－－EAHD POST	2	78	\square	20	106	257	255	≤ 56
HF，UHF POST		9	45	15	1152	170	174	111
LF POST	2	－3	75	20	116	222	223	220
LIGHT／IMP POST	11 c	34	$\rightarrow 5$	30	103	20	231	21^{9}
BUPIED MPGHETS	1	11	45	33	109	$1{ }^{19}$	132	14y
ULTPHSOHIC POST	2	4.4	45	54	186	251	252	34
TPHFFIC SENSOR CLASS III	2	$\rightarrow 9$	45	31	101	227	23s	cat
NRR－ERHD FII PHiRSE	3	24	54	11	103	193	201	ごく
HID－prip FM Phise	39	35	72	10	2ue	353	350	35
FUSE T－0－APPEVHL	c6	70	143	24	17	741	\cdots	$4{ }^{4}$
HOISE COPRELAEIOH	3	290	143	16	176	374	375	375
DIFECTIDI FINDEP	1	79	35	15	15.4	23_{4}	ct	282
CLASSE IU								
TRAFFIC LOOPS HRYSIDE PADIO	1	229 155	45 +5	103	109	＋85	465	485
PHOTOI－R DETECT	2	117	45	49	109	320	320	720
ULTEASOMIC JETECT	2	1 L	¢5	49	109	32，	3 34	－24

Table 2－11．Montclair，CA，AVM Polling Cycle Min／Max Times

CYCLE TIME IN SECOMDS TO POLL MAX AND HIN UNITS DEPLOTED

CLess I TECHMIOUE	total fleEt	\＄750	$\begin{gathered} \text { SITPLE } \\ \text { IDOL } \\ \hline \end{gathered}$	Rend	SYic	REDUUNEAT vot	Pravd
LEYBORRD	107	075	c 77	149	080	084	153
		a 43	844	085	046	048	050
stylus mep	112	078	080	152	087	091	164
		045	046	987	－ 59	0 家	
2－FACCELEROHLETERS	189	07	978	158	083	987	161
		04	045	026	048	－ 50	092
LASER VELOGIMTR	111	078	C 79	151	085	089	102
		64	045	88	049	－ 51	
ULTPASOMIC UELO	169	677	078	150	983	687 0	181
		$0{ }_{0}^{0} 4$	045	986		950	
COTPRSS－ODOHITER	1.69	0 77	¢ 88	$\begin{array}{ll}150 \\ 9 & 36\end{array}$	083 043	687 0.59	181 981
COMPASSLASER リEL	109	077	078	150	－ 83	487	151
		0.44	945	08	048	450	042
CTASSTU－SOHILC UEL	189	977	078	159	－ 83	087	101
		0.44	945	080	049	050	
OTEER	118	983	085	156	095	989	173
		$0 \cdot 4$	048	989	054	057	097
LORAS	1.21	085	687	1.59	180	194	？
		049	－ 50	a 41	B 57	－ 59	101
DECCA	120	084	（0） 8	158	0.43	1 㫜	175
		048	0.49	998	050	058	1.00
RM－STATIOHS	1 日3	0 0 0 13	0.78 0.44	149 985	0.31 0.46	985 848	${ }^{1} 591$
DIFF．OHECA	118	0.83	－85	1.50	095	999	173
		047	048	439	$0{ }^{5}$	957	
DIff．LORew	1.21	085	687	159	108	184	178
		949	－ 59	$4{ }^{1} 1$	$05 ?$	959	181
DIFF FHT－STA	117	583	484	156	09.4	99	
		3.47	948	989	954	956	
KELFY OHECA	10100	70.79	7972	71.4	14079	14974	14148
		40.40	4041	4082	69 40	3642	8084
RELIMY LGRFH	433	303	$\begin{aligned} & 305 \\ & 174 \end{aligned}$	377 	$\begin{aligned} & 537 \\ & 307 \end{aligned}$	$\begin{gathered} 5 \\ 3 \end{gathered}$	$\begin{aligned} & 614 \\ & 3 \\ & 51 \end{aligned}$
Class II EURIED RES．LCOPS：	106	174	070		078	082	58
EURIED REG．LCOPS		042	943	0 ¢ 5	0.5	647	
REFLECTING SIGHS	108	074	976	148	978	08	150
		342	$0{ }^{-3}$	085	045	$0 \rightarrow 7$	089
Reflectint rofid	106	074	b 76	148	078	082	
		642	943	885	045	647	
X－EARID POST	1 uo	97	970	$\begin{array}{ll}1 \\ 9 & -8\end{array}$	0.78 0	98	150
MF，UAF POST	185	4 42	$\bigcirc{ }^{9} 43$	$\begin{array}{ll}9 & 4 \\ 147\end{array}$	9 ${ }^{0} 9$	98	${ }_{19}^{98}$
		64	043	$\square 8$	ก44	¢ 9	008
LF POST	100	974	970		975	0 －	
		9 92	${ }_{9}^{9} 76$		4 4 75	9 CH	
LIGHT／I－R PGST	105	9 24	9 9 9	${ }_{6}^{1}{ }^{45}$	－ 0	0.7	$1{ }^{1}$
Bupied magnets	106	0 c 4	976	$1+8$	9－	¢	156
		042	0.3	4	95	${ }_{0}+{ }^{+}$	434
ULTRASOHIC FOST	106	$0{ }^{0} 7$	976	$1+3$	$0{ }^{1}$	00	156
TRAFFIC SENSCR	10	074	076	13	0.78	48	15
		0 － 2	043	685	045	$4{ }^{4}$	0%

Table 2－12．Montclair，CA，AVM Accuracies and Cost Benefits

TUPITELAP	SNTEA MCCUPAEIES OD MEAICLES RHD				ESTIMATED		\＄1000	SRUIFIGS cotitiated
CLASS I ULTI	trte	UEHICLES		RCY				
TECrilitue ACCi		SHIED	1192	HIN	HPC		1 t	FAJIILC
l＇exobrp	3	${ }^{6}$	38	34	－き		こ	むひ
STILUS IERP	30	1	77	\checkmark	93		3	－
LHCCELEPQUETEPS	34	1	81	3	02		3	50
LFSEP JELOCIHTR	13	a	\％	3	62		\cdots	210
ULTRFSOHIC MELO	40	9	103	140	92		3	35
COHPASS／OJOUETEP	29	6	59	4	02		－	C65
COHPTASS／LACEP UEL	15	B	≈ 9	$3{ }^{3}$	0 こ		${ }^{+}$	205
CIPSSU－OUHIC UEL	17	1	$\rightarrow 3$	－	02			20
CIIEGA	1500	¢	\％31	3664	06		13	9
1．UPAI	1 Eb	${ }_{0}$	$3{ }^{3}$	26	130		4	4
3itca	290	4	454	442	$\square{ }^{6}$		5．t	0
Ant－STATIOHS	300	0	450	4.0	96		10	4
JIFF OlIEGA	160	6	375	350	${ }^{9} 0$		¢	0
3ITF LOPMII	400	9	983	945	09		10	\pm
JiFF Rll－3TA	350	1	545	532	69		10	0
REEAP OHECA	560	0	2440	13 抱	90		4	0
PELAC LOFAI	300	9	2110	205	$0 \cdot$		15	\checkmark
Class 11								
SLPIES RES LOOPS	16	1	27	27	92		＂	－0，
PEFLECTIHG SIGHS	14	\square	27	27	9		4	－2－5
TEFLECTIIS POAI	3	9	27	15	52		4	－2， 5
	12	9	32	32	${ }^{13}$		＊	－230
HF LHF PGST	15	U	39	こ\％	¢		4	210
IT POST	140	9	245	239	${ }^{5}$		5	－ 0
LIGRY／I－F POET	30	1	\％	万\％	${ }^{1} 3$		13	－320
उupIES JHGMETS		4	27	15	03		）	－250
UTPALOHIC POST	20	9	so	＋	${ }^{3}$		I	－20
TPFFFIC OEHSOP	10	15	67	ET	42		J	205
IHR－ERIII FII PHASE	1206	0	2389	23969	${ }_{3} 9$		0	b
W13－ERNY FII PHACE	1200 100	0 0	2814	－10．	${ }^{81}$		1	-315
FULSE T－D－AFPIUAL	100 100	0	163	133	51		0． 1	－319
JIFECTILH FILIJER	704	6	$1-43$	1077	04		6	4
CLA3－${ }^{111}$								－2．5
TFRFFIC LDOFS	140 14		836					0
UnH1SIDE RAJIO	1 Ev	9	630	ざった	95			
PHOTU\I－P JETECT	20	9	4	$4{ }^{3}$	${ }_{0}^{2}$		4	$-2-5$

V．Monterey Park，CA，City Cost Benefit Analysis Tables

Table 2－13．Monterey Park，CA，City AVM Physical Parameters

APEE IS 7.3 gounre hiles．
EAST WEST DIETfHCE IS 4.6 MILES．
NORTH SOUTH HİTAITCE IS 3 MILES．
TOTAL ROAI HILEAGE I 2151 HILES．
THE NUIRER OF IMTEREECTIOHS IS 5ge．
THE ESTIMATED HUMBEF OF FOAD GEGMEATE is Eec：
THERE RFE 15 CfPS IN THE FLEET．
FITI THERE RRE 9 tIOTOFCYCLES．
THC HUIBER GF UEHICLES ON ERCH SHIFT IS：
FIRET SHIFT HAR：－ 14

FIFET BHIFT HIN． 4

EECOLID SHIFT MAR： 14

SECOHI SHIFT MIN． 4

THIRE SHIFT HAX． 14

THIRE BHIFT HIH． 4
THE HUIBER OF SISFRTCHEPS IS 1

THE CITY WOULI REOUIRE \＆WIDEPBHID OF
pulse fittentif sites fid 5 haffoll bend
FH AHTENIA SITES FOR 7 RHIS 3 IILE PRIIUS CDUEPRGE．

Figure 2－7．Monterey Park，CA，AVM Pulse or Narrow－Band Antennas

Figure 2－8，Monterey Park，CA，AVM Wide－Band Antenna Locations

Table 2－14．Monterey Park，CA，AVM Systems Cost Analyses

HOMTEFE；FACH Chiss 1							tothls	
recminue				Hist			OHC	pancurl
	${ }^{3}$	，	$\stackrel{\cdot}{8}$	11	${ }_{131}$	104	101	151
${ }_{\text {STHCL }}$		ソ	${ }^{-3}$	${ }_{12}^{12}$	1012	2012		15
LHSEP UELOCIITR	＝	v	7	13	Ius	c19	zar	$2{ }^{2}$
GTTPASOHIC UELO	5		75	12	103	211	214	213
IPPASSJOIOHLIETER	2	0	75	11	191	211	214	12
IPMSS／LASEP			75		\％			
			55	12	152	215	12	17
Ellegh	－1		0	12	1192	c10	229	219
falt	－	0	s	12	142	172	cat	
	：	：	so	H	边	192	\％	＋5
Hilsinflilis	－1		S		1w	1210	c19	
IIfF．Lopart	72		$\stackrel{\square}{*}$	12	102	21^{-}	25	221
3ifF mill	$\stackrel{\rightharpoonup}{*}$	－	su	${ }_{1}$	151	$18{ }^{1}$	10.	150
FELH，Ulleg	z	ง	EU	12	192	133	161	\％
LH，LuFHi	y		${ }^{\text {d }}$	12	192	13.	16	18．
EUPIEP FES LOOPS				3.8			Tu1	son
	3	${ }_{10} 1$	4	$\frac{82}{11}$	${ }_{159}$	${ }_{263}$	${ }^{321}$	380
SEAPHP POST	$\stackrel{3}{3}$	135	\rightarrow	33	119	337	$3{ }^{3}$	35
HFP，	$\stackrel{3}{2}$	15	$\stackrel{\square}{8}$	18	116	10	134	15
Lichitiop fust	S		＋	3	116	2ta	－	
SUf IEP IIMGGILTS	2	9	43	51	160	23	224	226
TRHFFIC	$\stackrel{3}{3}$	1	43	${ }_{4}$	${ }_{109}$	275	－${ }^{315}$	370
511								
		$\stackrel{2}{ }$	${ }^{1}$	12	10	${ }_{5}^{218}$	216	210
		－		25			9	
ISE COPFELATIOA	12		175	16		－11	－12	13
MiPECTIOM FIMDER	1	19	41	15	154	\％ 4	－sy	$4{ }^{\circ}$
TPAFFIC Loops								
WSILE PRDIO	2	234	48	104	121	50	503	5ud
Prowoile ietect	冡	${ }_{1}^{137}$	${ }_{-8}^{8}$	79	118	－30	${ }_{4} 56$	$\xrightarrow[-30]{ }$

1．OTITPE，FHF1

VI. Pasadena, CA, City AVM Cost Benefit Analysis Tables

Table 2-17. Pasadena, CA, City AVM Physical Parameters
ffef lis es scuafe hiles. easi hest instance is 6 hiles.

MORTH SUUTH MISTANCE 13 इ MILES.
rothl poal milefice is 650 miles. .
the nuilee of intefsections is 1ega.
the estilited humief of ford seghents is 2720 : thefe fre 55 Chrs im the fleet.

Fitl Thefe hpe a motopcicleg.
THE HUIEEF OF UEHICLES OH EACH SHIFT IS:
FIFET SHIFT HAX. 10

ГIFET EHIFT HIH- 10

SCOOHIS SHIFT MAY. 19

EECOHT SHIFT HIH. 10

THIRII SHIFT MAス. 19

THIPI SHIFT HIN. 19

THE HUILEF OF DISFRTCHEPS I* 1

THL GITi HUULT FEOUIRE 3 HIDE+BRHI DR FILLSE RITTEIIIG SITES GND 7 NAREOH BRIID FII FMTEIHIA SITES FOF 3 atil 2 mile fadius covepage.

Table 2-18, Pasadena, CA, AVM Systems Cost Analyses

Figure 2-9. Pasadena, CA, AVM Pulse or Narrow-Band Antenna Locations

Figure 2-10. Pasadena, CA, AVM Wide-Band Antenna Locations

Table 2－19．Pasadena，CA，AVM Polling Cycle Min／Max Times

CYCLE TIAE IN SECONDS TO POLL MAX FATD MIN UTIITS DEPLOYED

CLASS I TECHAICUE	TOTAL fleET	SYuc	EITFLE MOL	RRHD	SY4，	FEDCHMPRTI yOL	PRHD
KEYBORRD	370	107	$1 \cdot 11$	315	115	123	231
		187	111	215	115	123	E 31
STYLUS HAP	392	112	1.16	2%	12.4	13	240
		112	1 is	20	124	138	240
2－fCCELEROMETERS	383	189	113	21i	112	127	235
			113	217			235
LASER VELOCIMTR	387	111	115	219	121	129	${ }^{2} 37$
		111	115	${ }^{2} 14$	$1{ }_{1} 1$	129	237
LLTRRSOMIC BCLO	383	189	113	217	119	127	235
		109	113	217	1.19	127	235
COHPASS ODOMETEF	383	1 199	113	217	119	12%	235
COMPRESSLASER UEL	383	1 109 109	1.13 1.13	217	1.19	127	3.5
corprsskislr vel		10	113	¢ 17		127	c
CIPSS－U－SOHIC UEL	333	189	113	217		127	235
		109	113	217		127	235
OHEGA	413	113	122	220		144	\％
		118	1 ¢	$2{ }^{2}$	130	1.	2－53
LORAH	$+25$	121	125	289	143	1.51	253
		121	125	229		151	25
deccea	－ 20	129	124	2 cs	198	$1{ }_{1}^{18}$	256
		123	124	288	1.0	18	25
fti－STATIONS	378	108 1.63	112 12	216	118	128	23
DIFF OHECR	413	113	122	226	136	1.84	2 5
		1.18	122	230	136	14	$2{ }^{5}$
DIFF．LORAN	4＊\％	121	125	23	143	151	259
DIFF PM1－STA	411	121	$12{ }_{1}$	a 29	143	151	259
			121	225		${ }_{1}^{1-3}$	${ }_{5} 51$
RELAY OMEGA	35350	10198	1018	10298	20106	20149	242 16
		101.63	10164	182.68	20180	2916	26216
RELA「 LORAH	1517	$\begin{array}{r} 433 \\ +33 \end{array}$	437 +3	541	76 7	75	03
class II BLRIED RES LOOPS	378	188	112	210			
		143	112	316		12	令
REFLECTING SIGAS	373	188	1.12	210		12.	23
		$1{ }^{1}$	112	216		12	き
REFLECTIKS PDAD	370	108	112	210		12	2 2
X－BARED POST	370	1.88	$\begin{array}{ll}1 & 12 \\ 1 & 11 \\ 1 & 11\end{array}$	2．10		12	\approx
		1 u7	111	315	115	123	2 31
hr，Mry post	371	146	110	214	112	120	2
		160	110	214		130	2
LF post	370	1.67	111	215			431
LIGHT／I－R POST	2 T	1 1	$\begin{array}{lll}1 & 11 \\ 1 & 11\end{array}$	2 215 215		123	231
		197	111	215		12	$\stackrel{31}{2}$
SURIED MAGMETS	378	168	112	2 Io	110	12	2 ๕
		108	112	216		124	C 3c
U．trasonic post	370	107	111	215	1.15	123	≤ 31
		1 日r	1.11	215	1.15	123	231
TPAFFIC SEISOR	370	1 bl	111	215		120	231
		$1 \mathrm{\theta}$	$1 \cdot 11$	＊ 15	115	－ 23	－ 31

Table 2－20．Pasadena，CA，AVM Accuracies
and Cost Benefits

Siotersmer	IEN RO	$\begin{gathered} \text { CCUFACIES } \\ \text { THEO } \end{gathered}$	（1），VE	$E S \text { END }$	$\begin{aligned} & \text { ESTIM } \\ & \text { VEHI } \end{aligned}$	3 \＄1tu9	SRUIMES ESTIIATE
Class i ulti	HTE	1ehictes		C．			5－1ERP
TECAIIVUE RCCL	PRC	－HIE3	119	1114	119	Hir	3H1ftG
FEYEOMP5	33	1	90	व）	05	45	120
STYLus lihp	60	1	-1	－a	45	4	13
2－HCCELEPOHETEFS	\bigcirc	1	4	4	45	\％	$\underline{1} 5$
LHEEP VELOCILITP	13	$!$	11	-1	$0 \cdot$	\％	0
ULTTHSUHIC JELO	40	1	10.	16.	勺 5	55	$\underline{155}$
CUFASSS，ODOTETEP	Et	1	511	Gu	${ }^{3} 5$	0 ¢	－ 6
COIPHSSLRASEP VEL	15	1	40	49	00	＊	
CILPSS／U－SOPIE JEL	17	1	4	－	96	90	9
OHEGA	16\％）	0	2310	ง216	0.0	$0 \cdot$	0
LOPM ${ }^{\text {a }}$	160	C	－31	331	41	41	0
2ECCE	2945	v	4	－ 6 ¢	05	4	v
Pal－Stutions	2ea	0	＋50	¢	40	0	0
DIFF OIIEGH	15 t	0	331	$\cdots 1$	91	41	5
JiFF Lerput	704	0	1050	1050	00	014	${ }^{1}$
JIFF FIS－STA	250	4	55\％		$0{ }^{0}$	01	${ }^{3}$
RELM\％WJELH	5 50	5	3460	O406	f1	11 u	1
PELPT／LORfid	0 Eus	4	E147	2147	4	เ 0	\checkmark
CLASS 11							
ExPLEg PES LCOPS	10	1	4	4	ก10	00	55
PEFLECTING SIGHS	10	1	4 s	－	40	40	－\％
REFLECTIHG PGAT	3	1	39	32	4 c	00	！1－1
S－3plis post	12	1	$4{ }^{4}$	\cdots	6 C	0	$\underline{185}$
HF，DHF PRIST	15	1	40	-4	$f_{1} 0$	0	30
LF Fós	170	1	CW9	25	113	¢ 3	H2u
LICHT／I－R POST	30	1	$\rightarrow 7$	79	U 5	45	200
SUPIEJ MACIETETS	$\stackrel{ }{ }$	1	？	3	00	0 O	511
ULTPACONIC POST	C0	1	54	50	0	UE	± 5
TRRFFIC SEHEOF．	10	1	40	40	00	0 －	55
CLASS III							
IHF－PAIIS FII PHASE	1000	0	2－11	2411	40	90	，
WID－3ANT FII PHASE	1209	0	230\％	386	0	00	9
PULSE T－OTARRIUAL	100	1	172	$1{ }^{\text {² }}$	リ－	$1{ }^{1}$	－604
HOISE COPPELATIOH	100	1	192	192	$\stackrel{\square}{0}$	6	59
DIRECTIDI FIHDEP	701	0	1774	174	0 u	00	5
CLRSS IU							
TPAFFIL LOOPS WPVSIDE FRDIO	16 100	1	225	250			－-75
UFVSIJE FRDIO PHOTO\I－R DETECT	109 30	1	－20	2C0	93 40	0_{0}^{0}	－290
PHOTONI－R DETECT ULTRHSOHIC DETECT	30 20	1	08	63	45	00	－ 381

VII．San Diego，CA，City AVM Cost Benefit Analysis Tables

Table 2－21．San Diego，CA，Gity AVM Physical Parameters

PFEM IS 531 SOUPFE IIILES．

LHET HEST DISTANCE IE 2S．s IIILES．

HOT TH GOUTH DISTINCE IS 41.2 IIILES．

TOTAL EOFII IIILEAGE I三 1945 IIILES．

THC IUUEER BF IHTEREECTIOH1S IS 13PGQ：

THE ESTITATEE IUNIEER GF ROAH SEGIENTS IS 2740G

THERE AFE SUG CRRS It THE FLEET

MI THEPE AFE ST MOTERCYCLES．

THE HU1BER OF UEHICLES ロH EACH SHIFT IS．

FIRST SHIFT IAPK．EE

FIFST SHIFT MIN EG

EECUND SHIFT IFAX． 95

ミ［GUMII SHIFT HITA． 95

THIRT SHIFT IAFX． 6

THIFII SHEFT I1IN．ES

THE CITY HWULJ PEQUIRE 23 WIDE－EAITD OR

FILSE T－D－H FITEItH SITES FHII 85 IARRPOI

SHIIS AIITEIMNF SITES HITH 7 AII 3 IILE COUERFGE RAIII．

NALBOW-gAND OR PULSE ANTENNA LCCATION -
Figure 2-11. San Diego, CA, AVM Pulse or Narrow-Band Antenna Locations

mde-zand antenna locatione
Figure 2-12. San Diego, CA, AVM Wide-Band Antenna Locations

Table 2－22．San Diego，CA，AVM Systems Cost Analyses

$\begin{aligned} & \text { SFAN JIEGO } \\ & \text { CLASS } 1 \end{aligned}$					totals			
		thouspios of s						
－memimous	CHPS	SITES	JfSE	INSI	0－11	VuL	Sutic	Rabisor
1 ETEOAPP	＋1	\bigcirc	\bigcirc	31	105	SU3	255	255
STMLUS HAP	705	0	39	21	108	1 1 ${ }^{\text {¢ }}$	982	23
2－ncceleponeters	480	9	120	49	130	826	336	31
LfESEP DELOCIMTR	534	0	128	51	145	400	TES	Y5u
UETPASOHIC UELO	31	${ }^{4}$	129	4	145	マヶ2	30	7^{78}
COTIPASSHOJOLIETER	440	0	128	15	112	T4，	316	735
COHPrSSS／LPSER UEL	557	－	123	55	127	915	437	＋56
CHPSSA－SOHIC UEL	476	9	119	40	127	319	382	351
Dilicga	310	4	103	34	123	110	1203	1185
LOPPII	348	0	109	3.	123	115	1233	1221
decch	3－5	0	149	28	123	653	720	$7{ }^{-1}$
ati－stations	120	0	109	25	110	720	tif	$\rightarrow 3$
JIFF UTECG	810	0	169	3.4	120	$11{ }^{\text {c }}$	1101	1135
DIFF LORFA	840	0	169	3.4	153	115－1	1211	1231
JIFF Ati－STA	149	0	109	25	118	44	＋97	527
RELHY OPEGA	158	－	109	34	130	$\xrightarrow{+}$	－31	551
FELM	173	0	109	5.	120	－4．	450	560
CLIASIES KES LOOPS	4e			16793	105	26340		2832
PEFLECTIMG SIGHS	$1-4$	3014	89	1693	339	5374	5400	$53 ¢ 6$
REFLECTILIE POAD	33	929	59	2 but	1749	$\rightarrow 253$	4782	4205
S－EALD POST	51	3151	89	639	309	4205	$\rightarrow 315$	－03
HF UHF POST	47	34	89	17	155	657	$3 \mathrm{C5}$	G12
LF FOST	5	1713	\％	640	310	$28 \cdot 5$	283	2\％${ }^{\text {a }}$
LIGHTSI－P POST	4	1370	39	780	$\rightarrow 50$	2738	2315	2709
BURIED MAGHETS	20	387	89	1997	109	3 ccs	3279	32v2
ULTEHSORIL POST	-1	2389	99	2355	29	5E55	5281	Sius
TPAFFIC SEHCOF	4	2003	09	1110	163	duu5	$43^{3} 3$	335
CLRSS ITI 1 IRP－EATI FII PHASE	${ }^{5}$	490	1－5	¢	150	－	1231	\cdots
WID－zHID FII PHASE	0	$30 \cdot 7$	176	re	219	1205	1023	160
PULSE T－U－FPPRIUAL	773	1199	35°	268	225	2812	2 C 3	2365
NOISE COPRELATION	236	29	357	4	13.	398	925	332
Dipectigh finder	11	so	12	19	154	$\rightarrow 1$	375	375
TRaffic leops	5	15559	39	3745	432	13850	$1+040$	128－0
Hat＇side radio	4	13593	89	3119	7｀3	17011	$1-6.1$	17011
PHOTOMI－R DETECT	令	－ 6 ？	29	1536	$\rightarrow 4$	10917	1 V 717	10917
ULTPRSOHIC detect	33	－94．4	89	1573	447	11655	11055	11 w 5

Table 2－23．San Diego，CA，AVM Polling Cycle Min／Max Times

CLhss I TECHMITAE	TOTFL FLEET	STic	$\begin{aligned} & \text { SIIPPLE } \\ & \text { WOL } \end{aligned}$	FPAM	5 HC	SEEMTHARTT 0.01	FAtD
IETEOPPD	2773	14 du	1078	2984	1989	1203	2267
STYLUS I：HP		${ }_{16}^{6}$	$1{ }^{\circ} \mathrm{O}$	1316	688	5 12 98	14.32
ORLUS fin		572	－${ }^{1}$	13	7%	\bigcirc	14 \％
2－mCCELEf OIIETEPS	\％ 49	1530	1090	2103	1127	1241	23.65
		550	042	12.28	\cdots	7 cm	1．So
Lficer jelocinit	＊ 35	1551	11 U3	21.15	1150	1267	23 31
LLTFHSOHIC MELO	≈ 49	16.89	${ }_{10}^{764}$	13.10		\square 1200 41	1475
		$\bigcirc 56$	－浣	13	$5+12$	73.	$1+50$
COM1PHSSOSOIOHETEF	34^{4}	$1{ }^{10} 3$	1096	21 9\％	1127	1241	2305
COHPMSS／LASEP UEL	3849	${ }_{10}^{65}$	$10^{\circ}{ }^{4}$		${ }_{1 i} 12$	784 18 4	1．56
		550	$\bigcirc{ }^{0}$	13	7.12	78	$1+50$
CIPSSATSOHIC UEL	3 49	1039	1046	21.03	1127	1241	2305
		650	$\bigcirc{ }^{-2}$	13 ck	712	78	1．50
Ofegh	7154	1121	1188	${ }_{1} 185$	129	14.06	2476
			${ }^{7}$	1389	${ }^{3} 16$	\％ 89	15 25 33
LOFfti	4271	1153	$1{ }^{1} 10$	$\begin{array}{ll}22 & 17 \\ 14 & 69\end{array}$	1355 856	14.89	25 168
DECCH	－2 2	11.40	119	2204	1330	$1 .+$	2598
		？ 29	755	1392	840	912	1584
MIT－STHTIOHES	330	1428	1083	2998	1108	1215	2230
		¢ 3	68	13.80	59	\bigcirc	14，
DIFF Wlech	$+154$	1131	11.9	2185	1292	14 Ab	$2{ }^{2} 7$
diff Loppai	＋271	1153	1215	2217	－ 10	14838	155
		7 \％	$7{ }^{7}$	1－60	85	928	16 ¢
Jiff R6I－STA	－130	1115	1172	2179	127	1393	2457
		76	740	1370	803	380	1552
PELAY OTEGA	355560	95959	96897	97914	199950	191064	192128
		60690 +117	${ }^{606} 56$	01272	129600	12967	1213 4it
FELH LOFPM	15253	$\begin{array}{ll}41 & 17 \\ 20 & 00\end{array}$	$\begin{array}{ll}41 & 74 \\ 20 & 36\end{array}$	5181	7283	73 467 46	8461 534
Class II EURIED FES LOOPS	3872	10.45	2636 1102	3272 2109	4609 11.0	4675	5344 2318
		6 ¢	59	133	720	73	14.64
REFLECTING SIGHS	3872	1945	1102	2109	1140	125.	2318
						7.92 1254	14.64
FEFLECTIAG ROAB	38	1085 680	11 1180 0		1159	1254 7.48	23 10.6
＜－Ertid Post	$\checkmark 4$	1439	10 90	2183	1127	124	23.45
		Cos	${ }^{\circ} 9$	1328	？ 12	7－8＊	1450
		10.26	1933		1182	12 t	22808
LF POST	484	1039	149	2103	118	124	14.40
		0^{5}	59	1323	712	78	1450
LIGHT／I－P FOST	3849	1039	1690	2103	1127	1241	es es
			692	$13-8$	714	78	1450
Fiples mfichets	3872	1045	11 v2	2169	1149	1254	213
		E 80	$1{ }^{5}$	1332	7.29	732	1484
HITHASOHIC POST	3849	1439	100°	2105	1127	124	2305
		650	$0{ }^{\circ} 9$	1328	$\overline{7} 12$	734	1.50
truffic sertiop	3849	1039	10.0	21.83	1127	12 ${ }^{1}$	2305

Table 2－24．San Diego，CA，AVM Accuracies and Cost Benefits with One Radio Channel

STSEIT HCCUPACIES（H），UEHICLES AMD				ES AHD	$\begin{gathered} \text { ESTII } \\ \text { UEHI } \\ \text { OS } \end{gathered}$	5 51000	SmuItics ESTILHATES ᄃ－ 5 EHF
TECHMIOUE HCCL	PAC	SRUE3	Itas	IIN	$1 \mathrm{H}_{6}$	IIN	SMIJHC
－EVEORRD	3	0	З3ご	245	23	24	1,55
Stilus tife	－	6	－-5	$2 \mathrm{S3}$	27	2こ	1．35
3－hCOELEFOSIETEFS	3	0	383	349	28	を3	1－ら゙1
LISEFP UELOCIIITP	1	7	331	－	± 6	3	15゙5
U TPASDHIL VELO	－	\checkmark	300	259	28	20	$1 \sim 5$
COHPASS－ODO12	Cl	E	32		23	$\stackrel{\square}{4}$	！
COHPAJごLASER VEL	15	L	30	С－3	¢ 8	こ	1－t5
Etipssulu－S03IC UEL	$1-$	6	300	244	23	24	195050
0iliga	1erus	U	＋18	$\rightarrow 112$	40	0.4	1
Lupati	10	5	$4+3$	412	1.9	17	こ1u
JECCA	200	－	50 r	－9E	14	10	ヶ30
AT1～シTATIOHS	20¢	4	59	29.4	17	10	тur
JIFF UIECA	104	5	-17	411	1 a	2	35
JIFF LUFH1	405	\checkmark	1107	1142	40	49	13
JIFF HII－STG	253	4	015	59＊	4	4 b	13
RELAS UIIEGA	509	1	3369	26369	45	00	$\underline{1}$
PELFIT LOPM	605	3	－1，3	$23+3$	vo	06	v
CLHES ii							
YURIE PES LOQP3	10	－	375	241	23	24	155
REFLECTING SIGNS	10	2	367	$2 \rightarrow 1$	¢ 8	27	Ctus
PCFLECTINC POHJ	3	－	30．\％	233	29	26	－5－0
－3prey poit	12	\checkmark	37	241	L 3	24	555
HF，DHF POST	15	6	$3 ゙ 5$	240	≤ 8	2	リ．c゙3
LF Posi	15	6	489	273	$\therefore 0$	く2	140
LIGHT／I－F POST	\because	D	30^{2}	23	23	25	－159
UUFIES LIMENETS	4	，	$3{ }^{-}$	235	2	~ 5	1060
ULTPASOHLC POST	20	5	382	$2 \cdot 5$	28	¢ 4	14
TFHFF IC SENSOP	10	7	375	$2 \rightarrow 9$	28	25	1 ず
CLfOS III							
H1F－EMIT FIL PHBSE	Iftus	4	30.0	2639	96	15	${ }^{4}$
UiJ－2ath fit Phase	1200	4	315	3196	00	4 L	4
PULEE T－0－nEPILAL	1 vo	c	191	137	31	－ 5	2254
HOIGE CDFPELATIOH	100	\bigcirc	214	2u9	3	4	－230
SIFECTIDA Fitjep	－00	U	1970	1435	90	00	U
CLhjs if							
TFHFFIC LOOPS	10	7	20	23	40	\cdots	20x
Hascije padio	100	0	203	207	3	4.	5
PHDTOSI－R JETECT	20	6	59	00	38	57	－1919
UTTREOHLC JETECT	CO	\bigcirc	72	$\rightarrow 3$	3 3	11	cごo

Table 2－25．San Diego，CA，AVM Accuracies and Cost Benefits with Two Radio Channels

3H1 JIEGO	Sistenf	CCUPACIES	In ，UEHICLES AtID SMSTEII		ESTIHRTED EIUU UEHICLES		SAUINGS ESTIIfATED
CLHSS I ULT	tate	UEHICLES		AC			
TECHEITUUE ACCL	SC＇\％	SAlUED	MÅ	MIH	MAY	IIII	SRIMİG
FE，EOARD	33	－	123	95	3 E	52	5375
STYLUS MAP	30	E	153	ช2	37	51	32\％
2－RCCELEPOIETEPS	34	－	130	∞	36	52	3550
LfsER UELOCIHTR	13	7	130	50	2	5.2	
ULTEHSOHIC IELO	~ 9	6	131	103	35	51	S1us
CAIPASSRODOMETEP	29	6	120	80	57	52	
COAPASSMASER JEL	15	0	120	\rightarrow	37	52	2005
CIPSSA－SCHIC JEL	17	6	12 \％	$7{ }^{7}$	37	52	3205
0 OEGA	16и4	0	－勹¢	3 ycz	$0 \cdot 9$	0 b	4
LOPAt	100	5	401	393	26	22	14＊5
DECCA	2050	\rightarrow	483	$\rightarrow 7$	15	13	510
Ati－STATIDIS	2บ	4	481	472	15	13	535
SIFF gliche	160	5	－90	393	2．u	ご	1055
DIFF LURPI	400	2	1109	11405	00	0 ¢	0
DIFF RII－STA	253	\rightarrow	581	570	1.0	03	160
RELFI OHEGA	500	11	16934	6592	00	00	0
PELA，LOPAH	309	0	2276	2®21	06	9	4
Class il							
JURIES PES LOOPS	11	7	120	$7^{\text {a }}$	$\bigcirc 7$	52	2373
PEFLECTLIG SICNS	19	$\overline{7}$	120	$7{ }^{9}$	\％	52	2000
PEFLECTIHC ROAJ	3	7	122	7	3	53	－779
$x-38 N 2$ POST	12	7	126	72	37	52	2355
HF：VHF POST	15	2	120	78	37	52	－125
LF POST	109	6	265	259	27	57	12 5
LICHT－I－P POST	$\geqslant 0$	0	130	31	3	52	115
BUPIES Hagineis	＋	7	123	77	37	52	$\checkmark 400$
ULTPASOHIC POST	20	6	123	80	37	52	$1 \geqslant+15$
TIHFFIC SEHSOR	10	7	126	${ }^{7} 8$	36	52	305
CLASS III							
HMF－EATHI FH PHASE	1000	0	2550	2494	60	90	u
WIう－JPHD FH PHASE	1200	0	$3 \cup 24$	2Yod	U．13	09	0
PULSE T－D－APRIUGL	190	\bigcirc	191	$1 \mathrm{C7}$	31	\cdots	くでu
IGISE COPRELATIOH	109	0	214	209	3.5	4	E2れ
gircctioh fillity	－ 0	0	1870	1005	40	50	v
CLASS Il							
TPaffic luops	10	\checkmark	こう	23	$\rightarrow 0$	63	\％
WASSIDE PADIO	150	\bigcirc	203	207	20	\because	L－63
PHOTO I－F DETECT	6	6	59	Bd	3	59	－194
ULTRASOHIC DETECT	E0	\cdots	42	$\rightarrow 3$	こ	E 1	2

VIII．Los Angeles，CA，City AVM Cost Benefit Analysis Tables

Table 2－26．Los Angeles，CA，Central Bureau AVM Physzcal Parameters

HFEH I＇ 5 － 5 OOUPPE HILE
EHST HEST IIETAHCE IS 9 HILES．
HORTH SOUTH DISTFHEE IS 1F MILES．
TOTfL FGFI MILEEGE I 115 É HILE
THE HUNLEFF OF IUTEF EENTIOLAG IS 9570．

THIFE HPE 157 GAFS IN THE FLEET．
FII THEFE AFE G HOTORCGLES．
THE HUIBEF OF リEHICLEE OH EFCH EHIFT IS：
FIFET BHIFT HH：．EG

「IFET EHIFT MIH．59

AECOIJ SHIFT HF゙ッ G

SECOHI SHIFT MIH．EG

THIFT EHITT MA，106

THIEI SHIFT HILA．

THE IHJIEEF OF HIEFATEHEF

THE EIT，HOULII kEOUIFE E HINE＋EFIIII OF

Table 2－27．Los Angles，CA，Central Bureau AVM Systems Cost Analyses

Lfi－CESTRRAL BJREAU CLASS 1						TOTALS		
techilious	CRRS	THut	THuIISAIIDS OF	INST	0－11	Unt		FPMDO： 1
KEY BAFR】	22	${ }^{4}$	$7{ }^{7}$	16	103	237	210	212
STYLUS MAP	401	9	72	16	164	617	593	592
2－ACCELEPOHETEPS	252	0	105	26	116	513	549	541
LHSER UELOCIMTR	280	9	109	32	124	568	599	591
ULTRRSONIC VELO	200	4	195	26	124	483	513	505
COLPASS／ODOLIETEP	231	0	105	14	197	483	521	565
COMPRSS／LASER JEL	292	$\underline{\square}$	119	34	115	573	blv	594
CHPSSA－SOHIC UEL	249	6	100	26	115	520	553	542
Oricgs	424	4	92	23	112	D70	717	708
LORAM	440	6	9	23	112	092	733	727
jeccis	151	4	93	\％a	112	429	471	403
BM－STAT IONE	03	6	93	18	116	303	338	330
DIFF OHEGA	424	0	98	ze	112	676	706	708
DIFF．LOPPI	$\rightarrow 48$	9	92	20	112	698	721	727
DIFF．HM－STA．	4	0	交	13	119	－18	$3+8$	363
RELAY OHEGG	63	0	93	23	116	33	313	376
RELAY LUFFIH	91	0	72	23	116	246	321	38.4
CLRSS 11								
EURIED RES，LOOPS	22	6891	泡	11731	103	188.43	18858	18812
REFLECTING SIGNS	76	2186	72	1182	295	3755	3770	3730
REFLECTING PCAD	29	230	72	1398	1251	2995	3010	2970
S－BAND PAST	27	2202	72	447	2.45	3017	2032	2992
HE，UHF POST	25	249	72	124	138	623	638	597
LF POST	24	1197	72	$4+8$	246	2911	2026	1956
LIGHT／I－R POST	23	957	72	$5 \cdot 9$	34.4	1969	1984	$19+4$
PURIED MRCNETS	16	690	72	1396	190	2298	2312	2272
ULTRASONIC POST	22	1627	72	1651	296	3691	3700	366E
TRAFFIC SEliSOR	23	1819	72	782	102	2822	2337	279
CLASS III								
NSR－BAHD FM PHASE	36	66	142	22	111	376	415	419
WID－BAND Fli Phase	457	24	135	23	205	87	883	390
PU．SE T－O－RRRIUAL	405	190	332	69	186	1187	1226	1230
NOISE CORRELATION	12.4	29	332	31	181	720	734	738
DIRECTIGN FINDER	6	79	78	17	154	352	333	333
CLHSS IU								
TRAFFIC LOOPS	13	9890	72	2615	332	12922	12922	12922
WRYSIDE RADIO，	12	8608	72	2139	531	11451	11451	11451
PHOTOM I－R VETECT	19	5497	72	1103	$3-42$	7031	2031	7031
URTRASONIC DETECT	20	5592	72	1102	342	7127	2127	7127

Table 2－28．Los Angeles，CA，Central Bureau AVM Polling Cycle Times

CYCLE TIHE IN SECONDS TO POLL MFX GHD MIN UHITS DEPLOYED

CLASS I TECHHIOUE	TOTPL fleet	STHC	SIIPLE	Ramb	SYHC	PESUHDPAT vor 12.5	RFit
KEYPCFRD	1085	1073	1127	2189	11.47		2580
	17.53	$\begin{array}{r}5 \\ 11 \\ \hline 18\end{array}$	$\begin{array}{r}5 \\ 11 \\ \hline 83\end{array}$	18 229 98	1243	$\begin{array}{r}627 \\ 13 \\ \hline 67\end{array}$	11180
Stilus fer	17．38	569	587	1113	6.29	673	1278
2－fCCELEROMETERS	1717	10.93	1147	2200	11.87	1243	2409
		547	573	1100	593	647	128
Lrser velocimir	1733	11.07	11.60	22.13	1213	13	
ULTRASONIC MELO	1717	553 1893	588 11 47	2¢ 11.07	－ $11-97$	1203	12468
Uldisoric yalo		547	573	11．00	593	647	1208
COMPRSS O－ODCTETER	17.17	1693	1147	2209	1187	12 \＄3	2490
		5 19 19	11．73	118	593 1187	647 1293	1200
COMPRSS／LASER UCL	1717	1093 59	11.47	${ }_{11} 2208$	11 597	1293 6 7	
CIPSSA－SOHIC VEL	1717	1093	1147	2280	1187	$1 \times$	2400
		577	573	1140	593	647	12 eq
OTEGA	1853	118	1233	2287	1360	14.67	2573
LORPat	1905	1213	1267	20 20	1487	$15 \stackrel{3}{3}$	2040
		6 Ca	a 33	11.68	713	767	1320
DECCR	1884	1298	1253	2387	1480	1567	2613
		0.96	027	1153	708	753	1307
AMT－STATIORS	1690	108	1133	2187	1160	1267	2373
		548	567	1993	5%	633	11.87
DIFF OTEGA	1853	1180	1233	22 87	1360	1487	2573
		590	617	11.43	680	733	1237
Diff Lorft	1985	1213	12 b	2320	1427	1533	204
		695	－ 37	11 －	713	767	1320
DIFF Pri－STA	1842	11 7	1227	12%	1347	14 7 7	2560 1234
RELAY OMECA	150570	$1010{ }^{5} 07$	1419	11 102108	673 291800	$\begin{array}{rl}7 \\ 2911 & 27 \\ 67\end{array}$	rese 123
		5056	50527	51053	100509	180553	1011 6？
RELAY LORAN	6303	4333	4387	5448	76．07	7773	83 \％
		2167	2193	2720	3833	38 ± 7	4440
EAPIED RES LOOPS	1727	11 505 50	11 5 57	2e 07 11.03	1209 0604	13 507 50	24.13
Reflectinit sighis	17 ar	118	1153	2807	12 OH	1307	2413
		550	57	1183	${ }_{6} 89$	${ }^{6} 53$	1207
feflecting road	1727	1180	1153	2207	12 E	136	2413
		${ }_{16} 59$	5.77 11.47	11.63	${ }_{11}^{6} \mathrm{LB}$	［6938	12 2469
X－EATi POST	1717	1093 547	11.47 5 73	11 11 11 00	1187 593	1293 $0+4$	24 12909
HF，MHF POST	16． 90	1089	11.33	2187	1160	1267	2373
LF POST	1717	5 1093	511 11 48	1993	11\％ 88	1633	118
LF POST	1.17	547	573	1160	593	047	1260
LIEAT／I－R POST	17．17	1093	11.7	2289	1187	1293	2400
		547	573	1180	593	647	1200
StRIED IfPGETS	15－27	110	1153	2207	1290	1307	24.13
		550	57	1103	649	65	1207
LLTRASOHIC POST	17.17	1893	1147	2200	11.87	1293	2400
		5．${ }^{\text {＋}}$	5 11 7	1100	593 11.87	$\begin{aligned} & 087 \\ & 124 \end{aligned}$	$\begin{aligned} & 1200 \\ & 2400 \end{aligned}$
TPAFFIC SEHSOR	178	10，${ }_{5}$	$\begin{array}{r} 11 \\ 573 \end{array}$	1109	＋11＊88	$\begin{array}{r} 1293 \\ 647 \end{array}$	$\begin{aligned} & 2400 \\ & 1209 \end{aligned}$
7							

Table 2-30, Los Angeles, CA, Central Bureau AVM Accuracies and Cost Benefits with Two Radio Channels

Figure 2-13. Los Angeles, CA, AVM Pulse or Narrow-Band Antennas

Table 2-31. Los Angeles, CA, Central Bureau AVM Accuracies and Cost Benefits with Three Radio Channels

Figure 2-14. Los Angeles, CA, AVM
Wide-Band Antenna Locations

Table 2－32．Los Angeles，South Bureau AVM Physical Parameters

FPEA IS 55．E SOUAPE HILES．
EFST WEST IISTANCE IS 9 IIILES．
HORTH SOUTH DISTANLE IS ES MILES．
TOTAL ROAD IIILEAGE IS 973 IIILES．
THE INNIBER OF INTERSEETIOIS IS 6090.
THE ESTIMATED NUHEER OF ROAD SEGHEIITS IS IE1G日：
THERE RFE 165 CAPS IN THE FLEET．
AHD THEFE RRE G HOTOPCYCLES．
THE INUIBER OF UEHICLES OH EFCH SHIFT IS：
FIFST SHIFT HAN．63

FIFET SHIFT 11IH． 53

SECOMI SHIFT HFFR．G4

SECOHLUSHIFT HIH． $\mathbf{5 4}$

THIFI SHIFT IAKA．104

THIRI SHIFT HIIN． 94

THE HUHEEF OF IISFRTCHEFS IS 2

THE EITY HOULI REOUIRE 5 UILE＋BRND OR
FIULSE FHTEINA SITES AIHE 2з HARROW BAIID
FII RITEENHF SITEG FOF 7 RIII 3 IIILE RHIIUS COJEFFGE．

Table 2－33．Los Angeles，South Bureau AVM Systems Cost Analyses

LA－SBUTH EURERU CLASS I						TuTALC		
TECHILOUE	CRPS	THOUSPADS 0 Of		E ItST	0－11	402	SYTM	Fhndicil
KEYEORRD	23	SIES	73	16	103	2－${ }^{\text {a }}$	≥ 14	214
STRLUS MAP	421	${ }^{4}$	73	10	105	041	614	014
2－ACCELEROMETERS	264	6	140	27	117	504	568	558
LASEP UELOCIMTR	294	U	10°	33	125	556	519	D11
ULTRASOMIC JELO	216	0	109	27	125	，\square^{7}	529	521
COMPASS OODOMETER	242	θ	149	14	107	498	53°	S2品
COMPASS／LFISER VEL	367	6	149	35	115	592	6.31	617
CTIPSS／I－SONIC VEL	262	0	107	27	115	537	570	559
OMECA	$\rightarrow 4{ }^{4}$	0	93	24	113	731	745	834
LORRH	\rightarrow－	－	93	24	113	717	701	75.
IECCA	190	0	93	20	113	$\rightarrow+$ 20	480	477
PM－STATIONS	60	0	93	19	110	214	3.5	Эち3
DIFF．DMEGR	446	0	93	24	113	761	73	734
DIFF LORAN	462	0	93	24	113	717	749	754
DIFF．AMI－STR	77	0	93	19	114	205	356	375
RELAY OHEGA	97	0	93	$2 \cdot 4$	117	340	320	336
RELPY LORPN	95	0	93	2	117	354	328	374
CLASS II								
BURIED RES LOGPS	24	4093	73	6975	163	11293	11308	11266
REFLECTING SIGHS	80	1340	73	760	226	2516	2525	2483
REFLECTING RORD	21	147	73	897	834	1977	2012	1970
X－ERHD POST	29	1491	73	291	193	2012	2028	1936
HF，MMS POST	26	153	73	86	125	487	503	461
LF PGST	25	762	73	292	194	1371	1387	1345
LIGHT／I－R POST	24	609	73	358	257	$13+7$	1362	1320
EURIED MAGNETS	17	416	73	536	106	$1+62$	1477	1435
ULTRASONIC POST	23	1936	73	1660	226	2443	2453	2416
＇TRAFFIC SENSOP	24	1158	73	504	102	1836	1992	1860
CLASS 111								
NAR－BANY FII PHHSE	S6	109	143	27	116	431	472	476
WID－BAND FIT PMRSE	486	58	134	33	207	911	954	956
PULSE T－O－ARRIUPL	425	322	331	93	191	1361	1462	1447
NOISE CORRELATICH	136	29	331	31	181	726	742	747
direction finder	6	79	78	17	154	353	334	334
CLASS IU TRAFFIC LOOPS	14	4823	73	1673	248	6829	6829	6829
Wfisile radio	13	4135	73	1393	407	6019	6019	6019
PHOTOSI－R DETEG	19	3548	73	710	255	3605	3695	3605
ULTRASONIC DETECT	21	2689	73	709	255	3667	3667	3667

Table 2－34．Los Angeles，South Bureau AVM Polling Cycle Times

CTCLE TIFE IN SECONDS TO POLL MRX FAD HIM UNITS DEPLOYED

Table 2－35．Los Angeles，South Bureau AVM Accuracies and Cost Benefits with One Radio Channel

Table 2-36. Los Angeles, South Bureau AVM Accuracies and Cost Benefits with Two Radıo Channels

LA-SOUTH ZURERU

Table 2-38. Los Angeles, West Bureau AVM Physical Parameters

HFEA IS 155. G SOUAFE MILES.
EFET HEST TISTATICE IS 19 hiles.
HOPTH SDUTH IISTRILE IS 13 miles.
TUTAL FOFID HILEAGE Is 1677 hiles.
THE HUHEER OF IHTEFSECTIONS IS 3401.
the estimated humber of poid segithts is 1ejog:
THEFE RRE 193 CARS IH THE FLEET.
frim there fre a hotopcycles.
the hulteef of vehicles din each shift is:

TIFET SHIFT MAK.. 59

TIFST SHIFT HIH. 3 ?

SECOHD SHIFT MAM. 105

EECOHZ SHIFT MIH. 94

THIFI SHIFT MFV. 117

THIFO EHIFT HIH. 95

THE HUIEEF OF DISPATCHEPS IS a
THE CIT / HOULD REGUIRE 7 HIDE EFHH OF

Table 2-39. Los Angeles, West Bureau AVM Systems Cost Analyses

LA-HEST RURERU CLASS I								
		TRGU	AnS Of					
TECHILQUE	CARS	SITES	ERSE	IHST	0-1	VOL	SYHC	RENDCM
KEYBOARD	25	0	78	17	103	252	222	222
STYLUS MRP	467	0	78	17	195	695	666	666
2-ACCELEROMETERS	293	0	111	29	119	580	616	607
LRSER UEILOCIMTR	326	0	116	35	128	634	679	661
ULTRASONIC UELO	233	\square	116	29	128	534	578	561
COMPRSS/ODOMETER	269	0	116	14	108	535	579	56
COMPRSS/LASEP VEL	348	9	116	38	117	639	683	664
CIPSS/U-SONIC UEL	291	0	110	29	117	575	619	605
OMEGA	495	0	98	25	11.	70	869	-97
LORRN	513	0	98	25	114	779	827	819
DECCA	211	0	93	21	11.	473	521	512
FAT-STATIONS	74	0	98	20	111	331	366	357
DIFF OHECA	495	a	98	25	114	760	795	797
DIFF. LORAN	513	0	9	25	114	779	813	314
DIFF. AM-STA.	86	0	98	20	111	343	378	390
RELAY OMEGF	97	0	93	25	119	367	338	411
RELPY LORPA	186	0	98	25	119	376	347	429
CLRSS II								
BGRIED RES LOOPS	25	6768	78	11524	103	18588	18545	18499
REFLECTIMS SIENS	88	2068	78	1166	203	3721	3738	3091
REFLECTING RORD	23	226	78	1375	1231	29s3	2979	2932
X-BRND POST	32	2162	78	441	243	2984	3091	2955
HF, UHF POST	29	235	73	124	138	631	649	662
15 POST	28	1175	78	442	244	1995	2013	1966
LIGHT/I-R POST	27	940	78	541	340	1955	1972	1925
ELRIED HAGNETS	19	677	78	1372	100	2275	c2as	2245
LRTRASONIC POST	25	1598	78	1624	293	3547	3664	3617
NAR-BPND FM PHRSE	42	208	152	38	127	565	610	615
WID-ERAND FM PHASE	532	81	154	37	209	1012	1860	1062
PLESE T-0-ARRIUAL	472	616	343	148	262	178	1825	1330
NOISE CORRELATION	144	¢9	343	33	182	759	775	788
DIRECTION FINDER	7	89	91	18	154	378	348	348
CLRSS IU								
TRRFFIC LCOPS	15	15476	78	2572	323	18403	18462	18462
HAYSIDE RADIO	14	13709	78	2142	572	16514	16514	16514
PHOTOLI-R DEJECT	22	9114	78	1886	338	10636	10636	19636
ULTRASOMIC DETECT	23	9208	78	1885	338	10731	19731	10731

Table 2－40．Los Angeles，West Bureau AVM Polling Cycle Times

LICLE THIE IN SECOMDS TO POLL HAR AIS MIH UIITS DEFLOKED

$\begin{aligned} & \text { CLASS I } \\ & \text { TECEHICNE } \\ & \text { TEYORPJ } \end{aligned}$	TOTAL FLEET ta 0	$\begin{gathered} \operatorname{sinc} \\ 12 \\ 45 \\ 49 \end{gathered}$	SIMFLE 1318 18 439	$\begin{array}{r} \text { Fendg } \\ 25 \quad 51 \\ 859 \end{array}$	$\begin{array}{r} \text { SYHE } \\ 124+2 \\ 4+47 \end{array}$		
STMUS IAPP	20 50	1318	1373	20.05	1451	1570	2870
E－ACCELEPTIETERS	201	${ }_{42}^{4} \begin{gathered}37 \\ 79\end{gathered}$	13 ${ }^{58}$	3 25	138	¢ ${ }_{15} 25$	a 57
		420		358	4 ¢3	56	－ 3
LRCER UELCCIHTR	2625	12 c	1357	2590	1420	154	20 24
ULTFRSSMIIC UELO	人0	12 管	13.42	${ }^{8} 86$	13.7	515	378
		So	$4{ }^{4}$	\％ 58	463	${ }^{5} 50$	${ }_{6}$
COHPRSS／ODEMETEP	$20 \% 1$	129	1342	2574	$13-9$	1513	$\checkmark 5$
		736	$4{ }^{7}$	858		5 Br	93
CORIPRES／LASEP VEL	2091	1279	$13+2$	257	1538	1513	こ8 ロ
		\bigcirc	747	358	$\checkmark 6$	51.	3 is
CImSSU－CORIIC IEL		12	1342	257	13%	1513	20
Orecr	2159	1381	14.43	2075	1591	17 10	2011
		$\checkmark 60$	\rightarrow 81	39	53	57	16 ch
Leffit	2 2	1420	14	2714	10.6	15	30.5
		473	${ }_{14}{ }^{4} 94$	\％ 295	15	15 80	19
deccem	3190	1×34 $\rightarrow 08$	14 ${ }_{4}^{46}$	${ }^{5654}$	15	${ }^{15}$	305
RTM－STATIOTS	1976	126	1320	C5 58	13 y	1432	2777
		$7{ }^{21}$	$4+2$	${ }^{3} 53$	45	$7{ }^{7} 9$	
J．f			481	－\％	530	175	1012
DIff Lorfu	22 20	1．000	14.32	2714	105°	1794	3489
		T	$4+4$	345	550	5	10\％
SIFF Al－STH	21.7	1373	14	E0 68	1570	1500	$2^{4} 4$
RELAY OIEGA	189800	11315	11い ${ }^{78}$	$1144^{3} 8$	235179	23s3 ${ }^{5}$	23054
Relar oncca	28＊	～93 \％	30111	303	－23 m	${ }_{73}$	128 6
RELegy Lorfti	300	5970	513	03 bs	37	94195	1430
Lass It		164	1711	2182	∞	3u	ごって
EUPIED PES LOOPS	2913	12 g	13.4	2582	$1.0{ }_{4}$	15.9	28 E
		4 24	－51	${ }^{8} \mathrm{D} 1$	$7{ }^{6-5}$	510	${ }^{8} 1$
PEFLECTING Sictis	$\therefore 13$	1287	13.49	25	$14{ }^{1}$	15	Cl_{2}
REFLECTINE PGAD	2013	1287	$1{ }_{13}^{4}$	－ 381	14154	1529	20^{5}
		＋ 29	75	$8{ }^{81}$	${ }^{7}$ tS	510	
－5aty most	2031	12	13 ＋	¢5	138	15 13	\％以
H゙ IMF FUST	1270	120	$10^{3} 85$	25	$13 \frac{63}{5}$	14 \％\％	2－36
		$\bigcirc 31$	4	053	$\angle 52$	$4{ }^{4}$	$\square{ }^{4}$
LF FOST	2981	$1 c^{\text {ca }}$	13 4a	57	130	1513	ctu
LICHT／I－R POST	2031	1279	$13{ }^{4}+1{ }^{4}$	$25 \cdot 5$	13	5 15 13	年
		420		$\bigcirc 5^{3}$	－63	50	\％ 3
SURIES HGGIETS	cิv 13	12\％	13 7 ${ }^{4}$	25 ${ }^{\text {c }}$	1．04	158	起
ULTPASOUTIC FOST	2u91	${ }_{12}{ }^{23}$	≥ 5	${ }^{\circ} \mathrm{s}$	－©	510	3208
		－20		35	¢ 53	5	28030
TRAFFIC SEITSOR	2001	1279	$13+2$	257	1388	1513	¢ 0 0
		486	$\rightarrow{ }^{+}$	353	\cdots	50.	$y 36$

Table 2－41．Los Angeles，West Bureau AVM Accuracres and Cost Benefits with One Radio Channel

CLRSS I		UEHICLES	S SYSTEM		UEHICLES		ESTIIIRTED 5－YERs				
	ULTIHATE										
	Pacy	SAUED	MPX	MIN	MRX	Hin	sajilic				
YEYELARD	33	7	459	157	20	08	935				
STALUS MAP	30	7	495	163	1.9	40	909				
2－ficceleroriziers	34	7	467	160	1.9	0	830				
LFSER UELOCIMTR	13	3	459	157	2 －	0	86				
ULTRRSOHIC VELO	40	7	469	161	19	09	－85				
COMPRES－ODOMETER	20	8	469	157	$2 \square$	6.6	960				
COTPRSSALASER UEL	15	8	$45 \overline{0}$	156	20	0	315				
CHPSS／U－SONIC UEL	17	8	458	156	20	9	915				
014cis	1598	8	4227	4037	00	00	9				
LORAN	160	4	53.4	40.4	3	40	20				
DECCA	200	3	518	487	95	139	－195				
fithestations	290	3	508	485	0.5	08	－130				
DIFF OMECA	169	4	521	464	$0 \cdot 3$	B 5	34				
DIFF．LGRPM	400	1	1177	1119	00	00	t				
DIFF FMM－STA	250	2	623	536	96	（1） 1	0				
pelay orega	500	0	40187	13565	00	00	0				
RELAM LOPAM	300	\square	2164	$229+$	00	00	G				
CLASS 11											
JUPIES RES－LOOPS	10	8	－54	155	20	64	985				
PEFLECTING SIGNS	19	8	454	155	$2 \cdot 0$	00	46				
REFLECTING RORD	3	8	438	145	20	08	4655				
－EAHD POST	12	3	454	155	20	40	235				
HEF，URIF POST	15	8	452	154	20	95	－10－				
LF POST	103	6	481	267	15	0.0	－95				
LICHT／I－P POST	39	$?$	465	159	29	00	209				
BUPIED MAEMETS	4	8	442	151	20	90	186				
ULTRASONIC POST	39	8	460	157	20	9 ¢	35				
TRAFFIC SEEASOR	18	8	451	154	2.6	08	90				
CLASS III											
NFP－EAND FIT FARTSE	1889	9	2717	2576	00	00	9				
LID－EFAD FH PHRSE	1200	0	3194	3051	00	0.0	0				
PULSE T－0－ARRIUFL	188	6	193	183	18	35	16.15				
NOISE CORPRELATION	100	6	216	205	1.7	3.0	1340				
CLHSS IU											
Herrside radio	180	6	201	212	17	34	－310				
PHOTOI－R DETECT	30	7	59	62	24	6.7	3335				
ULTRASONIC DETECT	20	8	42	$\rightarrow 4$	25	71	3635				

LAMEST EUREFE

CLASS I TECTHICUE	SYSTEM A	ICCURACIES		$\begin{aligned} & \text { UEHICLESS } \\ & \text { SYSTEE } \end{aligned}$	ESTIMATED		\＄1868	SPMIHES ESTIMATED
		THEO			VEHI			
	HATE	VERICLES		cy				5－YEPR
	Rficy	SRYED	MRX	HIN	Mex		MIN	SRUIMG
KEYBCPRD	33	$?$	236	94	$2-2$		2.5	1368
STYLUS MPP	39	7	244	88	$2 \cdot 3$		2.3	1290
2－ficem srouneters	34	7	240	98	$2 \cdot 2$		2.4	1285
LRSER VELCCIMTR	13	8	236	77	2－3		2.5	1235
LLTRASOHIC VELO	46	7	241	108	2．2		2．4	－ 1160
COHPASS／ODOHEIER	20	8	236	77	23		－5	1335
COHPASSALASER MEL	15	8	234	77	2.3		6	1365
Cresshu－SOHIC VEL	17	3	235	77	$2 \cdot 3$		－6	1355
OHECA	1063	0	4106	3922	0.0		0.0	0
LORAN	160	4	411	393	0.9		0.8	105
IECCA	209	3	495	473	05		$0 \cdot 6$	－195
fti－STATIOtS	208	3	493	471	05		0	－180
IIFF．OHECA	160	4	411	392	99		0	105
DIFF．LORAN	400	1	1148	1884	98		a	θ
DIFF．RM－STH	250	2	596	569	01		a	－480
SHETHY OHECA	509	0	20449	6450	00		0	θ
PEIFIT LOREA	860	8	23.48	2218	00		0	θ
CLPES II								
BURIED RES LOOPS	18	8	233	70	2－3		6	1435
REFLECTIHG SIGNS	10	8	233	76	2.3		6	490
REFLECTIHG ROAD	3	8	224	7	2－3		－8	－4055
X－EATD POST	12	8	233	76	$2 \cdot 3$		6	735
1F，UF POST	15	8	231	76	23		6	1260
IF POST	100	6	273	259	1.5		7	55
LIEHT／I－R POST	38	7	239	83	2.3		5	175
BURIED MGGHETS	4	8	226	75	$2 \cdot 3$		． 3	1689
ULTRASONIC POST	28	8	236	77	2.3		． 5	410
TRFFIT SENSCR	10	8	231	76	2.3		． 6	1440
CLASS 111								
WWR－ERHLD PI PHASE	1068	8	2627	2491	6－8		－ 0	0
HID－EPED FM PHASE	1200	a	3103	2958	0.0		－ 0	0
PUESE T－O－ARRIUAL	108	6	193	183	1.8		3.5	1615
HOISE CORRELATION	100	6	216	205	1.7		3.0	$13 \sim 0$
MIRECTION FIMIER	760	0	1933	1832	0.0		． 6	\square^{3}
CLFESSIV IVA	19	3	32	04				
HAYSIDE RADIO	100	6	281	212	2.6 1.7		． 6	4060 310
PHOTOVI－R DETECT	30	7	59	62	24		． 7	－ 3335
ULTRRSONIC DEIECT	20	8	42	44	2．5		－1	3635

Table 2－43．Los Angeles，West Bureau AVM Accuracies and Cost Benefits wath Three Radio Channels

CLASS I	STSTEM P	CCURACYES 00.0 VEHICLES PATD			ESTIMATED S1900		SAUINGS ESTIMATED
	ULTIHATE PCCIPSCY	THICU SS RYSTEM					
		SAUED	MPX	MIM	MAX	Min	Sfuimg
KEYBOPRD	33	7	157	92	2	44	2785
STYLUS HAP	39	7	163	81	2.3	43	2708
2－ficcemeroreters	34	7	168	96	2.2	43	2630
LRSER UELOCIHTR	13	8	157	54	2.4	4.4	26ヵ0
ULTRRASONIC UELO	49	7	161	185	22	4.3	2585
COTMPRSS－ODOTETER	28	8	157	51	24	4.4	2760
COMPRSS／LASER UEL	15	8	156	54	24	4.4	2715
CHPSSAT－SDNIC UEL	17	8	156	54	24	44	2715
OrEGA	1609	9	4037	3856	0	0	0
LCRXA	160	4	404	336	09	00	105
DECCA	209	3	487	465	06	60	－120
RIV－STATIDMS	280	3	485	463	06	54	－105
DIFF．OTREA	150	4	484	386	09	0	105
DIFF．LOAFA	400	1	1119	1063	0	96	0
DIFF．AK－STA	258	2	586	560	0.1	0	480
RELPY OTEGA	509	0	13565	4437	0.0	0 －	9
RELAIM LORFM	863	0	2294	2175	00	99	0
CLISS II							
ZURIED FES LOOPS	10	8	155	53	24	45	2980
REFLECTING SIGHS	16	8	155	53	24	4.5	1915
REFLECTIFG RORD	3	3	149	52	2.4	46	－2795
人－Benm POST	12	8	155	53	24	45	2160
HF，UFF POST	15	8	154	53	24	45	2685
LF POST	109	6	267	254	15	18	120
LIGHT／I－R POST	38	7	159	88	23	44	1060
BURRIED MPGHETS	＋	8	151	52	2.4	46	2950
LLTRRSONIC POST	20	8	157	51	2.4	44	1035
TAPFFIC SEMSOR	16	3	154	53	24	45	2065
CLASS 111							
NHR－ZAAD FM PHASE	1860	0	2576	2442	90	00	0
HID－DFAHD Fil PYR2SE	1200	6	3851	2900	09	0	0
PULSE T－O－PRRRIUFL	100	6	193	183	18	35	1615
NOISE CORRRELATIOM	108	6	216	205	1.7	3.0	1ごひ
DIRECTION FIMDER	780	0	1895	1797	0.8	－ 0	－
CLASS IU							
TRAFFIC LOOPS	18	8	22	24	2．6	7.6	cube
WPYSIDE RADID	180	6	281	212	17	34	O10
PHOTOL－R DETECT	30	7	59	62	24	67	3335
ULTRASONIC DETECT	28	3	42	44	25	71	3635

Table 2－44．Los Angeles，Valley Bureau AVM Physical Parameters

［AST HEST DISTAMCE IE ES HILES．
HORTH EOUTH IIETRHEE IS 13.5 HILES．

TrIE HUTIEEF OF INTEFSECTIOHS IS 15000

fhefe fre log chfs ill the fleet．
Fiti Thefe are a motafcicles．
THE HMEEF 日F vehicles on Efich shift $1 \approx$ ．
first inirt he．Te

FIFST EHIFT HIH．$\in 1$
SECTIS EHIFT MA… $19 E$
seconio shift mili．ac

THIFD EHIFT HRK．IEA

THIRI EHIFT HIN，EE

THE IIJISEF OF IISFATCHEFミ İ こ

Table 2－45．Los Angeles，Valley Bureau AVM Systems Cost Analyses

LH－MH2LES JUCERI） Cl｜lll						TUTHLS		
		Tituld	13S UF					
ricintigus	Lhirs	Gites	3FEE	In＇st	O－11	102	5 ITC	FRiturn
	L－	4	لJ	17	143	25	45	2.5
STiLus liap	$\rightarrow \hat{c}^{\text {c }}$	U	J	17	16	－1．4	68.	60
¢－HCCELEPOIL TCFS	313	0	115	29	11.	597	63.	625
Lh Ef HELOLidita	357	0	114	36	129	r5f	$r 37$	053
ULTRIMSURIC IEELU	$2+1$	${ }_{1}$	119	29	129	547	534	575
Culifics\％obilictep	CTt	\square	119	1－	1 y	3.8	543	$5-4$
	351	0	119	3	110	05	791	032
CHPうこM－SOMIL MEL	209	u	111	69	112	$5{ }^{5}$	－33	0.13
い⿺𠃊⿻丷木斤丶	511	4	100	26	115	F30	330	819
LDERA	530	1	163	26	115	73	8，9	$\checkmark \square 1$
Sedh	ぎい	\square	103	22	115	4 －	53.	524
	To	0	100	20	110	337	373	¢r
JIFF UtEGA	511	1	1 10	20	115	\cdots	－16	810
3IFF LUPMil	530	v	109	26	115	74	－35	241
gita minsta	c8	0	193	29	112	2－9	335	74
PCLHY uneta	140	1	109	36	115	37	3－4	
PELAY LUPRH	16^{9}	0	100	Z	119	333	353	439
CLh5E II								
SIPIET KEA LuOPS	27	1ヵアコ」	80	18379	145	24．17	2ロ436	2＋308
Ftrlecting siblls	1	3340	80	1339	40.4	57.44	5762	513
FEFLECTIHG PDAS	E．	266	80	21E2	1903	－579	$\rightarrow 590$	45.48
S－EMHI FOST	0	$3+59$	80	093	327	4012	7630	45 yc
HF＇，UHF POST	उ	375	80	167	154	057	S＂7	¢9\％
LF PUST	－7	1875	80	094	328	3435	3053	3095
LIGHT－I－F POST	33	1500	60	359	480	2907	29\％5	2937
BUF IED LIASUETS	19	1080	8	2179	100	3488	35 fto	$3 \rightarrow 58$
ULTPRSOHLC POST	26	2550	811	2577	495	5067	$5 \mathrm{bo5}$	$5 ¢ 37$
TRAFFIC SELLSGR	28	2850	60	1218	182	－308	¢020	＋2ア7
CLASS II I								
NAP－BATIC FIT PHASE	$\rightarrow 3$	212	157	39	123	577	24	029
HIS－Eriju Fil phfise	550	115	104	43	210	1031	1150	1133
PULSE T－U－FRRIVHL	$4{ }^{+}$	630	3×9	151	203	1819	1 160	1871
HOISE CORRELATION	149	29	349	3	192	771	738	793
IIPECTIOH FINDER	7	50	98	18	15.	378	355	355
CLRSS IV ${ }_{\text {TRAFFIC }}$	10	20633	E0	4091	462	25281	25231	25281
WATSİE RADIO	15	13176	U	3－48	352	22529	225ea	2cse9
FHOTO\I－R DETECT	22	11928	¢0	$1{ }^{10} 19$	$\rightarrow 78$	$1 \mathrm{mez5}$	14225	1＋225
ULTFASOHIC DETECT	24	12078	\cdots	1718	478	$1+36$	1－1376	14370

Table 2－46．Los Angeles，Valley Bureau AVM Polling Cycle Times

CLASS I TECHHIMUE	TOTAL FLEET	STHC	3 ITPLE	EAng	SYHC	REDUHJPITT Jot	Rent
YEYEORRS	28 29	1299	1303	2638	1383	1517	2855
		$\bigcirc 55$	$\bigcirc 87$	1330	7.08	705	$1-4$
STYLUS ItPP	2117	1355	14.20	369	1596	1089	2909
		13	$7{ }^{16}$	1358	175	\％マ	
CELEPOMETEPS		1323	13.38	20－82	14.36	$15{ }_{8}^{65}$	2900
Lasep nelocintr	2992	13	14.84	2678	1463	1597	2930
		675	768	1350	$7{ }^{7}$	205	1480
ULTPHSOHIC JELEO	2000	1523	1358	206	1.30	15.5	2964
		68	7 ve	13.42	7 －	789	146\％
COMPRSS／OJOHETER	200	1323	1388 760	2603	1430	1565	
COMPASS／LASER VEL	20 －5	1523	13 w	26 c	1430	1565	2a ut
		¢ 3	740	$13+2$	72	8	1． 69
ErPSSU－SCHEC IEL	20 0\％	1383	13%	$\underline{6602}$	14.30	15.5	$\mathrm{c}^{-9} 0$
Oifeg	2230	087 $1+88$	790 1498	13.42	784 10 40	${ }_{17} 7^{89}$	14 31 15 15
			752	1295	3 30	8	1570
LOFrat	2E 93	146	1533	2367	1720	1055	31.04
		－40	773	1715	370	935	It 10
jecca	2e $\% 3$	1459	1517	2741	$10{ }_{4}$	1823	31 b2
HH1－STATISH	2041	1387	${ }_{13}{ }^{7} 85$	${ }_{3}^{16} 97$	${ }_{54}{ }^{3} \mathrm{SH}$	4 15 30	158
		－ 59	6 y1	153.	－98	773	14.7
JIFF OIIECH	2e 20	1426	14.92	47 br	15.6	1785	3117
		720	75	13 ys	3 H	${ }_{6} 9$	158
JIFF Lornd	22 93	1 ± 68	1533	2367	17 E	1455	314
SIFF NU1－STA	¢兀 18	1429	1.4	17 15	${ }_{18} 80$	${ }_{17}^{935}$	10 34 36
		710	7 \％	$13{ }^{1}$	\％	${ }^{17} 87$	15
RELf M Miekf	190390	122219	122275	123549	2432－16	243539	2446 73
		b10 19	blb 7	622 85	1220110	1225 75	100356
RELFY LURAIt	8190	5243	5308	6532	92 TP	9 OH	10745
Clims II		2043	2670	3318	$\cdots \mathrm{T}$ ？	－＂ 42	5417
JupIED PES LOOPS	207°	1331	13.96	26 \％${ }^{6}$	1452	1581	20.4
		\％ 71		13		97	
PEFLECTItic SICHS	2070	1331	13 B	25 T	145	1581	Cacol
			${ }^{7} \mathrm{Ba}$	13.75	7 \％	${ }_{5} 9$	1－
PEFLECTILS ROAD	207	1331	$13{ }^{9}$	\％ 70	1453	1531	¢9 こu
－Eftig Posy	2006	571 1023	${ }_{13}{ }^{7}$ U゙	15006	732 1436	$\begin{array}{r}7 \\ 15 \\ \hline 05\end{array}$	149\％
－3an Past	－0	10 0 6	730	13	$\underset{1}{1+3}$	\bigcirc	1×6
HF，M－F POST	28 41	1367	1371	2645	10.94	1533	2972
LF POST	20 06	$1{ }_{13}{ }^{59}$	m 13 88	15 20 20	1745	7 73	14.8
		6 br	76	$13 \rightarrow 2$	17 \％	156	
LIEHT／I－R POST	20 －0	13	1388	20.0	1730	158	2\％6．
			7 ย0	1242	$7 \mathrm{\square}$	－89	1400
BURIEJ TAGCNETS	2079	1301	13.46	2679	1452	15.81	24 29
ULTEASONIC PAST	20 60	${ }_{13}{ }^{8} 71$	${ }_{13}{ }_{8}{ }_{8}$	13.96	－ 20	797 1585	1．73
		$\bigcirc 07$	740	1342	［ 4	15	
TRAFFIC SEHSOP	20 －0	1323	1388	20	1－30	15 \％	29 ¢ $^{\text {a }}$
		067	760	1342	こ。	－ 89	דט ד1

Table 2-48. Los Angeles, Valley Bureau AVM Accuracies and Cost Benefits with Two Radio Channels

	تISTEN			Les ${ }_{\text {ata }}$	estimated IEHICLE		skuings estimated
		venicles		RRC\%		Hin	
KEISOPRD							
Stube itep	30	3	553	120	3.4	3	${ }_{20}$
2-HCEELEPGIETERS	S ${ }^{34}$	3	2.38	12.	${ }^{3}$	35	30se
	13		244	123	3	\%	
Gipmoshic uelo	${ }^{9}$	3	$2 \cdot 9$	125	3	3.5	1909
COIPASSRLISER	(15	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	3,	!		3080	
CIIPSS	UEL ${ }_{\text {IT }}$		243	121		\bigcirc	2116
ORIECA	1690	u	-112	3090	${ }_{0} 0^{\circ}$	0_{0}	
LGRem	114	-	412	, 3			T5
CF	Eua	5	-96	482	${ }^{8}$	80	S
Silstaniols	200	5	$\rightarrow 7$	Tes			
	${ }_{708}^{169}$	1		H0u	${ }_{14}^{4}$	${ }^{0}$	5
DiFF. Etit-STA	${ }_{253}$			scu			
RELLY UHEECA	600	1	1141	10510		00	
	389	-	34	2267	$0 \cdot$	-6	-
SUPIES PES LOOPS	Ps 16	3	241	129	3.	37	\%00
PEFLECTIEGG ROAD	-		232	116	3.	\%	505
\hat{A}	12	\%	${ }_{239}$	1189	${ }^{3} 4$	${ }^{3} 7$	${ }^{1119}$
${ }_{\text {LFP Pust }}$	1		239	12			
LIEHTTI-R POST	\bigcirc	3	ล24T	124			
ExPled Ifighets	-	8	弱	117	${ }_{3}$	38	2359
Iltrassumic poit	${ }^{2}$	3	$\underline{-4}$				
arfic serisor	19	\%	239	119	-	37	¢265
MAP-EARTD FIM PHASE	SE 1000	\bigcirc	${ }^{2031}$	$25+5$	09	vo	\bigcirc
HOISE COPPELATIOM	${ }_{\text {OH }}{ }^{\text {OL }}$		${ }_{217}^{174}$	${ }_{268}^{138}$	-7	$4{ }^{\circ}$	${ }_{2}^{2+355}$
PIPECTIOM FINDER	8 793	8	1936	1872	-	06	
TRPFFIC Lo							
MPYSIDE PARID	199	5	268	29	28	$\stackrel{3}{4}$	3805
PULTRASOHIC DETECT	CT	${ }_{8}^{8}$	${ }_{4}^{59}$	${ }_{4}$	${ }^{3} 9$	78	3305
							3310

Table 2-49. Los Angeles, Valley Bureau
AVM Accuracies and Cost Benefits with Three Radio Channels

PART THREE:

ANALYTICAL TECHNIQUES FOR ESTIMATING AVM SYSTEM ACCURACY

J.E. Fielding
M. Perlman

CONTENTS

Page
PART THREE, ANALYTICAL TECHNIQUES FOR ESTIMATING AVM SYSTEM ACCURACY 3-1
I. VEHICLE LOCATION ACCURACY FOR CLASS I AND III SYSTEMS 3-1
A. Parameters for AVM System Accuracy Analysis 3-1
B. Derivation of Accuracy Analysis Algorithm 3-2
C. Results of AVM System Accuracy Analysis 3-3
II. MARKOV CHAIN MODEL OF VEHICLE LOCATION BY MEANS OF PROXIMITY SENSORS FOR CLASS II AND IV SYSTEMS 3-6
A. Classifications of Finıte Markov Chains 3-6
B. Properties of Absorbing Markov Chains 3-8
C. Model of Absorbing Markov Chain for Class II and IV Systems 3-10
FIGURES

Fig. No.		Page
3-1	Main AVM Accuracy Analysis Program.	3-1
3-2	Computation of Cumulative Distribution Function.	3-1
3-3	Error in Knowledge of Vehıcle's Location.	3-2
3-4	Probability Density vs Fractıon of Trials	3-2
3-5	Urban Distribution Pattern for Monitored Proximity Sensors .	3-11
3-6	Submatrix Q of Absorbing Chain Model for Monitored Subarea in Fig. 3-5	3-11
3-7	Submatrix R of Absorbing Chain Model for Monitored Subarea in Fig. 3-5	3-12
3-8	Monitored Subarea with Sensor Denslty of 3/9.	3-12
3-9	Submatrix Q of Absorbing Chain Model for Monitored Subarea in Fıg. 3-8	3-12
3-10	Submatrix R of Absorbing Chain Model for Monitored Subarea in Fig. 3-8	3-13
3-11	Fundamental Matrix N Correspondıng to Fig. 3-8	3-13
Table No.	TABLES	Page
3-1	Vehicle Location Accuracy at 80% Level for SIGMA $=0$ Meters .	3-4
3-2	Vehıcle Locatıon Accuracy at 80% Level for SIGMA = 100 Meters .	3-4
3-3	Vehicle, Location Accuracy at 80% Level for SIGMA $=1000$ Meters .	3-5

Joseph E. Fielding

I. VEHICLE LOCATION ACCURACY FOR CLASS I AND III SYSTEMS

In this Section, an algorithm $1 s$ described which can be used to determine the system accuracy of Class I and III automatic vehicle monitoring (AVM) systems as a function of the appropriate system parameters. Some of the resultant cumulative probabılity density functions (cdfy) are also presented, which can be interpreted as the fraction of the fleet for which the error is less than or equal to y. The flow chart shown in Fig. 3-1 is a brief outline of the vehicle location accuracy program, while Fig. 3-2 expands on the methodology of the computation of the cumulative density function.

A. Parameters for AVM System Accuracy Analysis

The inherent exror, ${ }^{\circ} \mathrm{o}$, is defined to be the distance between the vehicle's actual location and the location determined by the AVM system at the

Fig. 3-1. Main AVM Accuracy Analysis Program

Fig. 3-2. Computation of Cumulative Distribution Function
instant of polling. Inherent error is assumed to be consistent with a Rayleıgh distribution, 1.e.,

$$
\Phi\left(\epsilon_{0}\right)=\frac{\epsilon_{o}}{\sigma^{2}} e^{-1 / 2\left(\frac{\epsilon_{0}}{\sigma}\right)^{2}}
$$

As time passes, the vehicle's location changes by a distance of (s, t) and a direction θ. (See Fig. 3-3.) The random variable θ is assumed to be uniformly distributed. Its probability density function is denoted by $p(\theta)$, and is equal to $1 /(2 \pi)$ between $-\pi$ and π.

The speed of the vehicle is represented by the symbol s and is assumed to be described by the following distribution

$$
f(s)=\left\{\begin{array}{l}
F O \cdot \delta \quad s=0 \\
\lambda e^{-\lambda s} \quad 0<s<M \\
0 \quad \text { otherwise }
\end{array}\right.
$$

Fig. 3-3. Error in Knowledge of Vehicle's Location

There is a discrete probability FO, associated with zero speed. Between speeds zero 0 and maximum M , the speed is distributed exponentially. The parameter λ is set such that the fraction of vehicles stopped, FO, plus the fraction whose speed falls between 0 and maximum speed M sums to 0.99 .

The last of the AVM system parameters 15 time. After the location of the vehicle is determined, there is a delay before the information becomes available. This delay is referred to as computation time, T_{C}. Thus, if the symbol T denotes the polling interval, the probability density function $g(t)$ is a unıform distribution over the time interval $T C$ through $T_{C}+T$.

B. Derıvation of Accuracy Analysis Algorithm

Probability distribution functions have been defined for ϵ_{0}, θ, s, and t, and from Fig 3-3 the actual error in the knowledge of the vehicle's location, ϵ, is:

$$
\epsilon=\sqrt{\epsilon_{o}^{2}+s_{t}^{2}-2 \epsilon_{o}^{2} s t \cos \theta}
$$

The distribution of errors is given by:

$$
\text { cdfy }=\operatorname{Prob}(\epsilon \leq y)=\iiint \int_{R} \Phi\left(\epsilon_{o}\right) g(t)
$$

$f(s) p(\theta) d \theta d s d t d \epsilon_{o}$,
where R is the region such that $\epsilon \leq y$. Due to the complexity of R, it is not practical to evaluate this integral analytically or by numerical quadrature. Therefore a Monte Carlo integration of cdfy is used.

The Monte Carlo integration generates values for the four random variables, $\epsilon_{o}, s, t, \theta$ and uses these variables to calculate ϵ by the above formula. By checking whether $\epsilon \leq y_{\perp}$ for $i=1, \ldots, 20$, when the yi^{\prime} 's are a pre-specified array of points on the abscissa, it is possible, if enough trials are run, to determine an accurate estimate of the cumulative distribution function.

The methodology used to generate the random variables ϵ_{0}, s, t and θ involves generating four uniform variates on $[0,1] \quad r_{1}, r_{2}, r_{3}, r_{4}$. Inverting the cumulative density functions leads to the expressions needed to calculate the desired variables:

$$
\begin{aligned}
& \epsilon_{0}=\sigma \sqrt{-2 \ln r_{1}} \\
& t=T_{C}+r_{2} T \\
& s= \begin{cases}0 & 0 \leq r_{3} \leq F O \\
\frac{\ln \left(1-r_{3}\right)}{-\lambda} & F O<r_{3} \leq 1\end{cases} \\
& \theta=\pi\left(2 r_{4}-1\right)
\end{aligned}
$$

Of prime concern in the Monte Carlo integration $1 s$ the number of trials needed to ensure an acceptable estimate of the probabilities that $\epsilon \leq y_{1}$. If p_{1} denotes the real value of cdfy for a particulary y_{1}, then the process becomes a long sequence of Bernoulli trials with p_{1} equal to the probability of success (i.e., that $\epsilon \leq y_{1}$). Since the number of trials will be "large", the Bernoullı distribution can be well approximated by the Gaussian distribution with mean, $\mu=p$
Standard deviation,

$$
\sigma=\sqrt{n p(l-p)} / n
$$

where $n=$ number of trials, and p_{i} has been re. placed by p for simplicity.

Since the distribution of the number of trials for which ϵ exceeds any particular value of y is approximately gaussian, we can require the probabulity (of the event that the absolute error in the distribution function, cdfy, is less than some specified maxımum value, E) to be at least C, the so-called "confidence level". That is, a fraction C of the distribution must be contaned withon the interval $p-k \sigma$ thru $p+k \sigma$ (Fig. 3-4). Thus, a value of C determines a value for k. In addition,

Fig. 3-4. Probability Density vs Fraction of Trials
to ensure an acceptable absolute error, E, it is required that the interval $k \sigma$ be less than or equal to E :

$k \sigma \leq E$.

Substituting the expression for the standard deviation σ into this last equation gives

$$
k \sqrt{n p(1-p)} / n \leq E
$$

which may be rewritten

$$
n \geq k^{2} p(1-p) / E^{2}
$$

This value for n represents the minimum number of trials needed to ensure an absolute error of less than E with confidence C. A larger value of k implies that a larger fraction of the gaussian distribution will be contaned within the interval $\mathrm{p} \pm \mathrm{k} \sigma$, thus leading to a higher confidence C. However, a larger k requires an increased number of trials in order to satisfy the error criteria.

The accuracy algorithm specifies the maximum allowable error E, and the required confidence interval C. The program proceeds to run 1000 trials, and p_{1} is then estimated as
(nurnber of times $\epsilon \leq y_{1}$)/1000 for $1=1, \ldots, 20$.
These approximate values of p_{1} are used to calculate the required number of trials, n, needed to ensure (with confidence C) that none of the error terms will be greater than the maximum allowable error E. If n is found to be less than 1000 , no more runs are required and the calculation of (y_{1}, cdfy) is complete. However, if n is greater than 1000, additional trials are needed.

In order to prevent an excessive number of runs, in terms of computer time, a constant NMAX is introduced which serves as the maximum allowable number of trials. Thus, if it is determined that more than 1000 runs are needed, the algorithm will process additional trials untul the error terms are sufficiently small or until the maxımum allowable number of trials is reached, whichever comes first. In the case where the number of trials reaches NMAX, the resulting errors using the improved estimates of the p_{1} 's are calculated. In the actual execution of the program, the number of trials is almost always extended to NMAX with resulting errors on the order of 0.005 .

The accuracy program is interactive, the user being free to set the system parameters of variance in inherent error, polling interval, computation time, fraction of vehicles stopped, and the "maximum ${ }^{\prime \prime}$ vehicle speed. The program then computes the mean of the exponential speed distribution such that 99% of the probability is included between speeds 0 and maximum speed M. The program also specifies the 20 values to be used along the abscissa of the cumulative distribution function of AVM system errors. These values are determined as a
function of the variance of the inherent error as one can assume that the variance of system errors is somewhat correlated with this parameter. The intent is to cover the full range from 0.0 to 1.0 of the cumulative distribution function. As a safeguard aganst fallure of full coverages, the programallows the user to calculate the cumulative distribution function for 20 additional values of y where the user specifies the initial point and the interval between points. This option for additional points can be repeated as many times as the user desires. After the cumulative distribution function is computed, the user may reset the system parameters, and the process of determining a new cumulative distribution function is repeated.

C. Results of AVM System Accuracy Analysis

The algorithm described in the previous section was exercised by running 42 cases, each one with a unique set of the input parameters, where

SIGMA $=$	Standard deviation of inherent error
	in x and y directions
T	$=$ Pollıng interval
TC	$=$ Computation time
M	$=$ Maximum speed
FO	$=$ Fraction stopped

Orıgınally, all combinations of the following parameter values were to be run,

$\begin{aligned} & \text { SIGMA } \\ & \text { (meters) } \end{aligned}$	$\underset{\text { (seconds) }}{T}$	$\begin{gathered} \mathrm{TC} \\ \text { (seconds) } \end{gathered}$	$\begin{gathered} \mathrm{M} \\ \text { (meters } / \mathrm{sec} \text {) } \end{gathered}$	FO
0	2	0.01	40	0
100	10	0.1	60	
1000	60			
	120			
	300			

which would have required 60 cases. However, after the first 14 runs, it became evident that the AVM system error was stable for computation times in the range 0.01 to 0.1 second.

A value for the standard deviation of the inherent error of zero serves as a boundary condition for inherent accuracy of AVM hardware systems. Estimates of system error using SIGMA equal to zero represents the accuracy to be expected if one invests in extremely accurate hardware systems in terms of pinpointing location, assuming there is no motion. At first glance, a maximum speed of 60 meters /second (134 miles / hr) mıght seem a little high, however, the speed of the vehicles of the fleet is assumed to be distributed exponentially. Thus, a very small fraction of the fleet is traveling near maximum speeds; one-half of the fleet is traveling at a speed of less than (maxımum speed/6) or 22.3 mules $/ \mathrm{hr}$. The fraction of cars stopped is set at 0 because the algorithm is designed to specifically test system accuracy assuming moving vehicles. Later, if individual users need results that reflect their mode of operation, they can supply a non-zero value for this parameter. The effects
of changes in the above variables on AVM system accuracy follows.

No modeling effort is necessary to determine whether system accuracy will improve or deteriorate given the direction of change of any input variable. As the variance in the inherent error, the polling interval, the computation time, and the maximum speed increase, system accuracy deteriorates. However, the designer requires a more detailed knowledge of the interaction between these system parameters and AVM system accuracy. He is faced with an accuracy constraint such as 80% of the vehicles must be located to within 150 meters. In order to satisfy this constraint, he must be aware of the combinations of system parameters that can meet his requirements. The above analysis provides this information. What it does not provide is information for the designers' next step, which is to determine the proper balancewith respect to inherent accuracy, polling interval, and computation time so as to minımize cost as well as satisfy accuracy constraints.

The best accuracy results are obtaned when SIGMA is set equal to zero. Whth SIGMA zero and polling interval equal to 2 seconds, 80% of the fleet is located to within 20 meters and this is not strongly dependent on maxımum speed or computathon time. As the polling interval is increased to to 10 seconds, 80% of the fleet is located to withun 65 meters at maximum speed of 40 meters $/ \mathrm{sec}$ ond and to within 105 meters at 60 meters/second. Thus, as polling interval increases, accuracy becomes more dependent on maxımum speed. Again, the accuracy is not dependent on computation time. Table 3-1 presents similar results for the remainder of the cases with SIGMA equal to zero. The above trends continue, that is, as the polling interval increases, the 80% distance grows,

Table 3-1. Vehicle Location Accuracy at 80% Level for SIGMA $=0$ Meters

$T(\sec)$	$T C(\sec)$	M (meters $/ \mathrm{sec})$	Accuracy (meters)
2	.01	40	15
2	.01	60	20
2	.1	40	15
2	.1	60	22
10	.01	40	65
10	.01	60	105
10	.1	40	70
10	.1	60	105
60	.01	40	420
60	.01	60	620
60	.1	40	420
60	1	60	620
120	.01	40	820
120	.01	60	1350
300	.01	40	2100
300	.01	60	3080

Table 3-2. Vehicle Location Accuracy at 80% Level for SIGMA $=100$ Meters

$T(\mathrm{sec})$	$T C(\sec)$	$M($ meters $/ \mathrm{sec})$	Accuracy (meters)
2	.01	40	180
2	.01	60	183
2	.1	40	180
2	.1	60	183
10	.01	40	195
10	.01	60	212
60	.01	40	448
60	.01	60	650
120	.01	40	850
120	.01	60	1250
300	.01	40	2100
300	.01	60	3160

the dependence on maximum speed increases, and accuracy is not dependent on computation time.

Table 3-2 presents similar data for the case SIGMA equals 100 meters. With a polling interval of 2 seconds, 80% of the vehicles in the fleet are located to within 180 meters. The trends evident in the SIGMA equal zero cases can also be seen in Table 3-2. One major difference is that, in this case, the change in accuracy as polling interval increases from 2 to 10 seconds is rather insignificant. Thus, if the system hardware has a standard deviation for inherent accuracy in the x and y direction of 100 meters, then little would be gained by specifying a polling interval shorter than 10 seconds . In comparing the results of Table 3-1 and Table 3-2, it is apparent that the accuracy of a SIGMA = zero system is not signuficantly better than a SIGMA $=100$ meters system when the polling interval is greater than 60 seconds. Thus, if a sophisticated hardware system in terms of inherent error is installed, it requires a short polling interval to realize significant benefits.

The most strıking dıfference between the cases with inherent error equal to 0 and 100 meters and the case with inherent error equal to 1000 meters (Table 3-3) is that the interval between the minimum and maximum accuracıes is much more compact in the 100 meter case. In general, one can conclude that as the resolution in inherent error deteriorates, the system is less dependent on the remaining parameters. The accuracy figure in Table 3-3 for polling intervals of 2, 10, 60 and 120 seconds are significantly higher than the corresponding values in Tables 3-1 and 3-2, while the accuracy at a polling interval of 300 seconds is of the same order over all three Tables.

These results presenting accuracy estimates for AVM system errors can serve as a tool to be used in AVM system design.

Table 3-3. Vehicle Locatıon Accuracy at 80% Level for SIGMA $=1000$ Meters

$T(\mathrm{sec})$	$\mathrm{TC}(\mathrm{sec})$	$M(\mathrm{~meters} / \mathrm{sec})$	Accuracy (meters)
2	.01	40	1790
2	.01	60	1790
2	.1	40	1790
2	.1	60	1790
10	.01	40	1795
10	.01	60	1810
60	.01	40	1880
60	.01	60	1950
120	.01	40	2210
120	.01	60	2500
300	.01	40	2985
300	.01	60	3500
300	.1	60	2780
300			3650

One approach to automatically locating specified vehicles in an urban area involves the employment of proximity sensors. The proximity sensors (which may be active or passive) are distributed throughout a given area. Once installed, the position of a sensor 15 fixed. A vehicle, properly equipped, will interact with a sensor when the distance between the vehicle and the sensor is within prescribed limits. Interaction results in communzcating the identity of the vehicle and the location of the sensor to a central system. Not considered in this analysis are the proximity sensor's characteristics, the required equipment for the vehicle, or the means of communicating to the central system, This analysis presents a Markov chain model of the interaction of fixed proximity sensors with moving vehicles whose locations are to be monitored.

A. Classıfications of Finite Markov Chains

1. Concepts and definitions. A stochastic process is any sequence of experiments amenable to probalistic analysis. A stochastic process is said to be finite if the set of possible outcomes is finite. An independent process is a finite stochastic process where knowledge of the outcome of any preceding experiment in no way affects the preduction of the outcome of the present experiment.

A finite Markov chain process is a finite stochastic process where knowledge of the outcome of the immediate past experıment does affect the prediction of the outcome of the present experiment. Furthermore, the dependence of the outcome of each experiment on the outcome of the immediately preceding experiment only is the same at each stage of successive experiments. A finite Markov chain 15 characterized by a finite set of states $\left\{s_{1}, s_{2}, \ldots ., s_{n}\right\}$. The state of a Markov chain is the outcome of the last experiment. Thus a Markov chain is in one and only one state at a given time and advances from one state to another (or remains in the same state) in accordance with a priori transition probabilities. The transition probabilıty $p_{1 j}$ is the probability that the (Markov chain) process will move from state s_{1} to s_{1}, and $p_{i j}$ depends only on s_{i}. Assocrated with every ordered parr of states is a known transition probability. An $n \times n$ transition probablity matrix P contains as entries the transition probabilities corresponding to each of the respective n^{2} ordered pairs of states as follows:

$$
\begin{gathered}
\left.s_{1}=\begin{array}{cccc}
s_{1} & s_{2} & \cdots & s_{n} \\
s_{2} \\
\cdot \\
s_{n} & p_{11} & p_{12} & \cdots \\
p_{21} & p_{22} & \cdots & p_{2 n} \\
\cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdots & \cdot \\
p_{n 1} & p_{n 2} & \cdots & p_{n n}
\end{array}\right]
\end{gathered}
$$

Each row in P comprises a probability event space such that

$$
P_{i j} \geq 0 \quad \text { for all } 1, j
$$

and

$$
\sum_{j=1}^{n} p_{\imath j}=1 \quad \text { for every } 1
$$

The transition probability matrix P and an initial (startıng state completely describe a finite Markov chain process.
2. Regular Markov chains. A Markov chan is defined to be regular if and oniy if after n steps (i. e., experiments) for some n, it is possible for the process to be in any state regardless of the starting state. The entry $p_{11}^{(n)}$ in p^{n} (the $n^{\text {th }}$ power of the transition matrix) $1 s^{13}$ the probability that the process is in state s_{j} after n steps given that it started in state s_{1}. A regular Markov chan has a regular transıtıon matrix P such that P^{n} contaıns only positive entries (i.e., $p_{i 1}^{(n)}>0$ for all $1, j$). P may be tested for regularity by noting whether or not the entries in $P^{2},\left(P^{2}\right)^{2},\left(P^{4}\right)^{2}, \ldots$ are positive assuming P has one or more 0 entry.

Example 1. Given the following (probabllity) matrix

$P=$| s_{1} |
| :---: |
| s_{2} |
| s_{4} |\(\left[\begin{array}{llll}s_{1} \& s_{2} \& s_{3} \& s_{4}

0 \& 1 \& 0 \& 0

0.5 \& 0 \& 1 \& 0

0 \& 0 \& 0.25 \& 0

0.25\end{array}\right]\)

Successive squaring of P, P^{2}, P^{4}, \ldots quickly results in large powers of P. When testing for regularıty, the actual values of the entries need not be determined. Denoting each positive entry by x and each zero entry 0 gives

P^{2}, P^{4} and P^{8} are, respectively

$$
\left[\begin{array}{llll}
0 & 0 & x & 0 \\
x & x & 0 & x \\
0 & x & x & x \\
x & x & x & x
\end{array}\right],\left[\begin{array}{cccc}
0 & x & x & x \\
x & x & x & x \\
x & x & x & x \\
x & x & x & x
\end{array}\right] \text { and }\left[\begin{array}{cccc}
x & x & x & x \\
x & x & x & x \\
x & x & x & x \\
x & x & x & x
\end{array}\right]
$$

Thus P is a regular transition matrix.
3. Ergodic Markov chains. A Markov chain is defined to be ergodic if and only if it is possible for the process to go from every state to every other state. Clearly a regular Markov chain is always ergodic. However, an ergodic Markov chan is not necessarily regular. That is, for every n, P^{n} contains some 0 entries. However, P^{n} for different values of n, will contan zeros in different locations. As n increases, the positions of the zeros change cyclically. In this case, the chain is termed a cyclic Markov chain. Thus an ergodic Markov chain is eıther cyclic or regular but not both.

Example 2. Gıven the following transition matrix
or
, $P=\left[\begin{array}{llll}0 & x & 0 & 0 \\ x & 0 & x & 0 \\ 0 & x & 0 & x \\ 0 & 0 & x & 0\end{array}\right]$
where x denotes a positive entry. For even $\mathrm{n}>0$,

$$
P^{n}=\left[\begin{array}{llll}
x & 0 & x & 0 \\
0 & x & 0 & x \\
x & 0 & x & 0 \\
0 & x & 0 & x
\end{array}\right]
$$

For odd $\mathrm{n}>1$,

$$
\mathbf{P}^{\mathbf{n}}=\left[\begin{array}{llll}
0 & \mathrm{x} & 0 & \mathrm{x} \\
\mathrm{x} & 0 & \mathrm{x} & 0 \\
0 & \mathrm{x} & 0 & \mathrm{x} \\
\mathrm{x} & 0 & \mathrm{x} & 0
\end{array}\right]
$$

Starting in an odd-numbered state (s_{1} or s_{3}), the process is in an even-numbered state (s_{2} or s_{4}) after an odd number of steps, and in an oddnumbered state after an even number of steps.
P in Example 2 is an ergodic transition matrix which is nonregular. The process characterized by P is a cyclic (ergodic) chain.
4. Absorbing Markov chains. An absorbing state in a Markov chain is one which cannot be left once entered. An absorbing Markov chain is a Markov chain that has at least one absorbing state, and from every nonabsorbing state it is possible to move to an absorbing state (in one or more steps). The nonabsorbing states (of an absorbing chain) are known as transient states. The transition matrix P of an absorbing chain has entries $P_{11}=1$ for each s_{i} that is absorbing.

Example 3. The following transition matrix characterizes an absorbing chain

$$
P=\begin{aligned}
& s_{1} \\
& s_{2} \\
& s_{3} \\
& s_{4} \\
& s_{5}
\end{aligned}\left[\begin{array}{lllll}
s_{1} & s_{2} & s_{3} & s_{4} & s_{5} \\
1 & 0 & 0 & 0 & 0 \\
0.5 & 0 & 0.5 & 0 & 0 \\
0 & 0.5 & 0 & 0.5 & 0 \\
0 & 0 & 0.5 & 0 & 0.5 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

States s_{1} and s_{5} are absorbing; whereas, states s_{2}, s_{3} and s_{4} are transient states.
5. Classification of states. The states of any given Markov chain can be partitioned into equivalence classes. An equivalence class comprises either an ergodic set of states.or a transient set of states. Once the process enters an ergodic set, it remains in the set. Once the process leaves a transient set, it never reenters the set.

If a chain has two or more ergodic sets of states but no transient sets, the chain in effect is a composite of two or more unrelated chans. Each of the unrelated chains consists of a single ergodic set and may be treated separately. Without any
loss in generality, every ergodic chann (regular and cyclic) consists of a single ergodic set.

An absorbing state is an ergodic set consisting of one and only one state. Such an ergodic set is referred to as a unit set. Thus an absorbing chain has one or more unit sets and one or more transient sets.

Every state of a given set whether it is ergodic or transient can "communicate" with every other state in the set. The process, however, moves toward the ergodic sets when the chain contains transient as well as ergodic sets.

B. Propertıes of Absorbing Markov Chains

1. Canonical Form of P and P^{n}. The transition matrix P of an absorbing chain can always be arranged to have the following canonical form (by relabelıng states)

$$
P=\left[\begin{array}{l|l}
I & 0 \\
\hline R & Q
\end{array}\right]
$$

The submatrix I is an $\ell \times \ell$ identity matrix whose entries are the transition probabilities for every ordered pair of absorbing states (s_{1}, s_{j}) where

$$
p_{i j}=\left\{\begin{array}{l}
0 \text { ififj } \\
1 \text { ifi=j }
\end{array}\right.
$$

The submatrix Q is an $m \times m$ matrix whose entries are the transition probabilities for every ordered pair of transient states. The submatrix R is an $\mathrm{m} \times \ell$ matrix whose entries are the transition probabilities for every ordered parr of states (s_{1}, s_{j}) where s_{1} is a transient state and s_{j} is an absorbing state. The submatrix 0 is an $\ell \mathrm{x} m$ matrix whose entries are zeros corresponding to the zero transition probabilities of moving from any absorbing state to any transient state. Powers of P have the canonical form

$$
P^{n}=\left[\begin{array}{c|c}
I & 0 \\
\hline M & Q^{n}
\end{array}\right]
$$

where

$$
M=\left[I+Q \div Q^{2}+\cdots+Q^{n-1}\right] R
$$

Note that the expression for Mis a matrix equation.

Theorem 1. In any finite Markov chain, regardiess of the initual (starting) state, the probability that the process is in ergodic state after n steps approaches 1 as n approaches ınfinity. (A proof of Theorem 1 appears in Ref. 1.)

A Corrolary to Theorem 1 is that are real numbers b and c where $b>0$ and $0<c<1$ such that $p_{i j}^{(n)} \leq b c^{n}$
for any ordered pair of transient states (s_{1}, s_{j}). This gives the rate at which $p_{i j}^{(n)}$ approaches 0 .

Every entry in Q^{n} in the canonical form of P^{n} of an absorbing chain approaches 0 as n increases without limit.
2. Fundamental matrix. The fundamental matrix of an absorbing chain $1 s$ defined as

$$
\begin{equation*}
N=[I-Q]^{-1} \tag{l}
\end{equation*}
$$

Note that

$$
\frac{I}{I-Q}-\frac{Q^{n}}{I-Q}=I+Q+Q^{2}+\cdots+Q^{n-1}
$$

and since $Q \neq I$ and $\lim _{n \rightarrow \infty} Q^{n}=0$

$$
[I-Q]^{-1}=\lim _{n \rightarrow \infty}\left[I+Q+Q^{2}+\cdots+Q^{n-1}\right]
$$

the inverse of $I-Q(1 . e, N)$ always exists.
The submatrix M in P^{n} as n approaches infinity may be expressed as

$$
\begin{equation*}
M=[I-Q]^{-1} R=N R \tag{2}
\end{equation*}
$$

The fundamental matrix N has the following probabilistic interpretation.

Let $u_{i}(\mathrm{k})=1$ if the process starts in transient state s_{1} ahd 15 in transient state s_{j} after k moves. Otherwise $u(k)=0$. Let $t_{i]}^{(n)}$ denote the number of times the process is in transient state s, starting and during n moves given that it started in transient state s_{1}. Thus

$$
t_{i j}^{(n)}=u_{i j}^{(0)}+u_{i j}^{(1)}+\cdots+u_{i j}^{(n)}
$$

The probability that the process is in transient state s_{j} after the $k^{\text {th }}$ move is

$$
p\left(u_{2 J}^{(k)}=1\right)=q_{i J}^{(k)}
$$

given that s_{1} is transient and the starting state. The mean of $u_{1 j}^{(k)}$ is

$$
m\left(u_{i j}^{(k)}=1 \cdot q_{i j}^{(k)}+0 \cdot\left(1-q_{i j}^{(k)}=q_{i j}^{(k)}\right.\right.
$$

The mean of $t_{1 j}^{(n)}$ is

$$
m\left(t_{i j}^{(n)}\right)=q_{i j}^{(0)}+q_{i j}^{(1)}+\cdots q_{i j}^{(n)}
$$

the $1,3^{\text {th }}$ entry of

$$
Q^{(0)}+Q^{(1)}+\cdots Q^{(n)}
$$

where $Q^{(0)}=I$.

Then

$$
n_{i j}=\lim _{n \rightarrow \infty} m\left(t_{l j}^{(n)}\right)
$$

1s the $1, j^{\text {th }}$ entry of the fundamental matrix expressed in (1). The value of $n_{1 j}$ is the mean number of times the chain is in transient state s given that it started in transient state s_{1} and continues until the process is absorbed (1. e., reaches an absorbing state).
3. Statistics on the number of times the process isin a transient state. Let v_{1} denote the number of steps (including the original position) before absorption, given the starting state is s_{1}. If 5_{1} is in an absorbing state, then $v_{1}=0$. Given that the absorbing chain contans a transient set denoted by T, and s_{1} is a transient state if and only if $s_{1} E T$ (1.e., s_{1} "is a member of" T). Then

$$
\begin{equation*}
m\left(v_{i}\right)=\sum_{s_{j} \varepsilon T} n_{i, j} \tag{3}
\end{equation*}
$$

which is the $1^{\text {th }}$ row sum of the fundamental matrix N. Each row sum of N appears in the $m \times 1$ column vector

$$
\begin{equation*}
\alpha=\mathrm{NC} \tag{4}
\end{equation*}
$$

where Cis a mxl column vector whose entries are all l's.

The variance of the function v_{1} is

$$
\operatorname{var}\left(v_{1}\right)=m\left(v_{1}^{2}\right)-\left(m\left(v_{1}\right)\right)^{2}
$$

where

$$
m\left(\dot{v}_{i}^{2}\right)=\sum_{s_{j} \neq T} p_{i j} \cdot 1+\sum_{s_{j} \varepsilon T} p_{i j} m\left[\left(v_{1}+1\right)^{2}\right]
$$

(Notethat the original position is necessarily included in the expression for $m\left(v_{1}^{2}\right)$.)

Contınuing,

$$
=\sum_{s_{j} \varepsilon T} p_{1 j}\left[m\left(v_{z}^{2}\right)+2 m\left(v_{i}\right)\right]+1
$$

$$
\left\{m\left(v_{I}{ }^{2}\right)\right\}=\left\{\sum_{s_{j} \varepsilon T} p_{i j}\left[m\left(v_{1}{ }^{2}\right)+2 m\left(v_{i}\right)\right]+1\right\}
$$

The braces denote a column vector where each entry corresponds to a different value of 1 .

Therefore,

$$
\begin{aligned}
& \left\{m\left(v_{1}^{2}\right)\right\}=Q\left\{\mathrm{~m}\left(\mathrm{v}_{\mathrm{i}}^{2}\right)\right\}+2 Q \alpha+\mathrm{C} \\
& {[I-Q]\left\{\mathrm{m}\left(\mathrm{v}_{2}^{2}\right)\right\}} \\
& \begin{aligned}
\left\{\mathrm{m}\left(\mathrm{v}_{\mathrm{i}}^{2}\right)\right\} & =[I-Q]^{-1}[2 Q \alpha+\mathrm{C}] \\
& =2 \mathrm{NQ} \alpha+\mathrm{NC} \\
& =2 \mathrm{NQ} \alpha+\alpha
\end{aligned}
\end{aligned}
$$

Since

$$
\begin{aligned}
& N=\frac{I}{I-Q} \\
& N-N Q=I \quad \text { and } \quad N Q=N-I
\end{aligned}
$$

and

$$
\begin{aligned}
\left\{\operatorname{m}\left(v_{i}^{2}\right)\right\} & =2[N-I] \alpha+\alpha \\
& =[2 N-I] \alpha
\end{aligned}
$$

Finally, the variance of v_{1} for each 1 expressed as entries in $m \times 1$ column vector is

$$
\begin{aligned}
\left\{\operatorname{var}\left(v_{i}\right)\right\} & =\left\{m\left(v_{i}^{2}\right)-\left(m\left(v_{i}\right)\right)^{2}\right\} \\
& =[2 \mathbb{N}-I] \alpha-\alpha_{s q}
\end{aligned}
$$

where $\alpha_{s q}$ results from squaring each entry $m\left(v_{1}\right)$ in α shown in (4).

Example 4. A partıcle moves a unit distance along a straight line. Given that it is in s_{i}, it moves to s_{1+1}, one unit to the right, with probability 0.5 , or to state s_{1-1}, one unit to the left, with probability 0.5. Two states are introduced, one at each end of the line, to serve as barriers, These are absorbing states such that the process is absorbed if it reaches either absorbing state. Assume there are five states where s_{1} and \mathbf{s}_{5} are absorbing, and s_{2}, s_{3}, and s_{4} are transient. The probability matrix appears in Example 3. Reordering the rows and columns gives the following canonical form:

$P=$| s_{1} |
| :---: |
| s_{5} |
| s_{2} |
| s_{3} |
| s_{4} |\(\left[\begin{array}{lllll}s_{1} \& s_{5} \& s_{2} \& s_{3} \& s_{4}

0 \& 0 \& 0 \& 0 \& 0

0 \& 1 \& 0 \& 0 \& 0

0.5 \& 0 \& 0 \& 0.5 \& 0

0 \& 0 \& 0.5 \& 0 \& 0.5

0.5 \& 0 \& 0.5 \& 0\end{array}\right]\)

$$
\mathrm{N}=[I-Q]^{-1}=s_{2} s_{3}\left[\begin{array}{lll}
s_{2} & s_{3} & s_{4} \\
s_{4}
\end{array}\left[\begin{array}{lll}
1.5 & 1 & 0.5 \\
1 & 2 & 1 \\
0.5 & 1 & 1.5
\end{array}\right]\right.
$$

Thus, for example, of the process starts in state s_{2}, the mean number of time it is in state s_{2}, s_{3} and s_{4} is $1.5,1$ and 0.5 , respectively.

Furthermore,

since

$$
\lim _{n \rightarrow \infty} Q^{n}=0
$$

and

$$
\lim _{n \rightarrow \infty} M=N R
$$

as shown in (1) and (2).
In example 4

and

$$
\begin{gathered}
s_{2} \\
s_{3} \\
s_{4}
\end{gathered}\left[\begin{array}{cc}
s_{1} & s_{5} \\
0.75 & 0.25 \\
0.5 & 0.5 \\
0.25 & 0.75
\end{array}\right]
$$

Hence, for example, if the process starts in state s_{2}, it will be absorbed in state s_{1} with probability 0.75 or in state s_{5} with probability 0.25 . The row sums of NR are necessarily 1 in accordance with Theorem 1. The mean number of steps before absorption including the original position for each transient starting state appears in α as shown in (4).

The mean number of steps before absorption is 3 if the process starts in s_{2} or s_{4}; whereas, it is 4 if the process starts in s_{4}.

The variance of the number of steps (including the original position) before absorption for each starting state appears in the column vector

$$
[2 N-I] \alpha-\alpha_{s q}
$$

from expression (5). In example (4)
$2 \mathrm{~N}-\mathrm{I}=\left[\begin{array}{lll}2 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 2\end{array}\right], \alpha=\left[\begin{array}{l}3 \\ 4 \\ 3\end{array}\right]$ and $\alpha_{\mathrm{sq}}=\left[\begin{array}{r}9 \\ 16 \\ 9\end{array}\right]$
Thus

$$
[2 N-I] \alpha-\alpha_{s q}=s_{3}\left[\begin{array}{l}
s_{2} \\
s_{4}
\end{array}\right]
$$

The mean number of steps before absorption is greatest for starting at $\$_{3}$. However, the varıance is the same for each starting transient state. (Note that when the variances are quite large compared to the corresponding entries in $\alpha_{s q}$, it indicates that the means are unreliable estimates for that particular chain.)

C. Model of Absorbing Markov Chan for Class II and IV Systems

Consider a portion of an area to be monitored as shown in Fig. 3-5. Subareas are 5×5 square blocks, and each subarea has an identical sensor layout. A (monitored) vehicle entering a sensed intersection corresponds to an absorbing state. This is to be interpreted as updated information as to the vehucle's location. When the process is in an absorbing state, the location of the monitored vehicle is known (to within the detection radius of the sensor). A vehicle entering an unsensed intersection corresponds to a transient state. The absorbing Markov chain models a sequence of experiments for locating a vehicle to within prescribed limits of accuracy.

Given that a vehicle starts at any given intersection (sensed or unsensed), what is the mean and variance of the number of blocks the vehicle moves until being sensed? Once the vehucle is sensed, a new experiment begins. Thus, between sensings, an uncertanty exists as to the vehicle's location. This is reflected in the magnitude of the mean and variance of the number of blocks the vehicle moves between sensings.

Fig. 3-5. Urban Distribution Pattern for Monitored Proximity Sensors

The number of sensors, their layout, and transition probabilities between orthogonally adjacent intersections is required a priori information. Unıformity of deployment of sensors assumes unbiased routes. Random movement of the vehicle corresponds to unbiased routing through the sensed area. Thus the direction of travel of a vehicle from an intersection will be in any one of four possible directions with equal probabılity.

If one were to incorporate a different transition probabllity for each of the four possible directions, the number of states in the Markov chain model would increase fourfold. Each state would be assocrated with a pair of labels. The intersection entered would be designated by one label and the direction from which it was entered by the other. Such a transition matrix would be meaningful if the transition probabılities were accurately known. That 15 , the probability that a vehicle upon leaving a particular intersection will go straight, make a left turn, a right turn or a U-turn is a priori information. Without this information, equiprobable direction of travel (to any of the four adjacent intersections) is ássumed. The resulting statistical accuracy establishes achievable bounds on the system's accuracy.

Returning to Fig. 3-5, only the subarea with labeled intersections need be considered. Boundary intersections (of the subarea) act as reflecting boundaries in the Markov chain model. A vehicle in intersection 1 corresponds to the process being in transient state 1. The transıtion probability from state 1 to the intersection due North is 0.25 . Since that intersection has the same relative location in its subarea as does intersection F in the subarea under discussion, an upward move (due North) is equivalent to a reflection to intersection F. Identical sensor layouts for all subareas is clearly required. This permits the use of a small transition matrix ($25 \times 25 \mathrm{in}$ Fig. 3-5) for a Markov chain model of an enture area where fringe effects are neglected. Intersections labeled with characters are sensed and are associated with absorbing states. Unsensed intersections are labeled with numbers and are associated with transient states. The reflection properties of transient boundary intersections are apparent in the
submatrices Q and R in Figs. 3-6 and 3-7, respectively. (Note that states s_{1} and s_{4} are reflecting boundaries in Example 2.)

The matrix N and column vectors $\alpha=\mathrm{NC}$ and [2N - I] $\alpha-\alpha_{\text {sq }}$ were computed on an IBM $360 / 65$. The components of α and $\alpha_{\text {sq }}$ rounded to 3 decimal places are:

1	1.667		2.778
2	2.667		7.111
3	1.667		2.778
4	1.667		2.778
5	1.667		2.778
6	1.667		2.778
7	2.667		7.111
$\alpha=\mathrm{NC}=8$	1.667	$\alpha_{s q}=$	2.778
9	1.667		2.778
10	2.667		7.111
17	1.667		2.778
12	1.667		2.778
13	1.667		2.778
14	1.667		2.778
15	2.667		7.111
16	1.667		2.778

	2	2	3	4	5	6	7	8	9	10	11.	12	13	14	15	16
1	0	25	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	. 25	0	25	0	25	0	0	0	0	0	0	. 25	0	0	0	0
3	0	25	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	. 25	0	0	0	0	0	0	0	0	0
5	0	25	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	25	0	0	0	0	0	0
7	0	0	0	25	0	0	0	25	25	0	25	0	0	0	0	0
8	0	0	0	0	0	0	25	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	25	0	0	0	0	0	0
10	0	0	0	0	0	25	0	25	25	0	0	0	25	0	0	0
11	0	0	0	0	0	0	25	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	25	0
13	0	0	0	0	0	0	0	0	0	25	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	.25	0
15	0	0	0	0	25	0	0	0	0	0	0	. 25	0	25	0	25
26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	25	0

Fig. 3-6. Submatrix Q of Absorbing Chain Model for Monitored Subarea in Fig. 3-5

	A	B	C	D	E	F	G	H	J
1	. 25	0	. 25	0	0	. 25	0	0	0
2	0	0	0	0	0	0	0	0	0
3	0	. 25	0	. 25	0	0	. 25	0	0
4	. 25	0	. 25	. 25	0	0	0	0	0
5	0	0	. 25	. 25	. 25	0	0	0	0
6	0	. 25	. 25	. 25	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0
8	0	0	. 25	0	. 25	. 25	0	0	0
9	0	0	0	. 25	. 25	0	. 25	0	0
10	0	0	0	0	0	0	0	0	0
11.	0	0	0	0	0	. 25	. 25	. 25	0
12	0	0	0	0	. 25	. 25	. 25	0	0
13	0	0	0	0	0	. 25	. 25	0	. 25
14	0	0	. 25	0	0	. 25	0	. 25	0
15	0	0	0	0	0	0	0	0	0
16	0	0	0	. 25	0	0	. 25	0	. 25

Fig. 3-7. Submatrix R of Absorbing Chaın Model for Monitored Subarea in Fig. 3-5

Thus, starting in a transient state or an unsensed intersection, the mean number of blocks a vehicle moves before being sensed is 1.667 or 2.667. The variance of the number of moves for each starting state (1 through 16) is 1.778 which are the entries of

$$
[2 N-I] \alpha-\alpha_{s q}
$$

Since 1.778 is a fraction of 2.778 and 7.111 (the distinct entries of $\alpha_{\text {Sq }}$), the means given in α are reliable estimates for the layout in Fig. 3-5.

Note that the probability of being sensed cannot be computed. The probability of beang sensed by a sensor in the same relative location as say B (Northeast corner of a subarea) can be determined from NR. See Example 4.

The ratio of sensed intersections to the total number of intersections in a monitored area is of interest. In Fig. 3-5, 4 sensors are each sharing 4 subareas. These are sensors at intersections A, B, H and J. Thus the total number of sensors per subarea for 5 (Interior) +4 (each shared by 4 subareas)/4 or 6. The total number of intersections per subarea is 9 (interior) $\div 4$ (each shared by 4 subareas) $/ 4+12$ (each shared by 2 subareas) $/ 2$ or 16. Thus the ratio of sensed intersections to total inter sections is $3 / 8$.

Fig. 3-8. Monitored Subarea with Sensor Density of 3/9

Consider a monitored area with identical subareas as shown in Fig. 3-8 where the ratio of sensed intersections to total intersections is $3 / 9$. Its associated submatrices Q and R appear in Figs. 3-9 and 3-10, respectively. For completeness the fundamental matrix $N=[I-Q]^{-1}$ corresponding to Fig. 3-8 appears in Fig. 3-11. The entries are rounded off to 3 decımal places.

The mean and variance of the number of blocks a vehicle moves before detection starting from each of the unsensed intersections is 2 and 2 , respectively.
1
1
2
3
4
5
6
7
7
8
9 $\left[\begin{array}{cccccccccc}10 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 0 & .25 & 0 & 0 & 0 & 0 & .25 & 0 & 0 & 0 \\ 0 & 0 & 0 & .25 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & .25 & 0 & .25 & 0 & 0 & 0 & 0 \\ 0 & 0 & .25 & 0 & 0 & 0 & .25 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & .25 & 0 & .25 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & .25 & 0 & 0 & .25 \\ 0 & 0 & 0 & 0 & 0 & .25 & 0\end{array}\right]$

Fig. 3-9. Submatrix Q of Absorbing Chain Model for Monitored Subarea in

Fig. 3-8
c
1
2
3
4
5
6
7
8
9 $\left[\begin{array}{cccccc}A & B & C & D & E & F \\ .25 & 0 & .25 & 0 & 0 & 0 \\ 0 & .25 & 0 & .25 & 0 & 0 \\ .25 & 0 & .25 & 0 & 0 & 0 \\ 0 & 0 & .25 & .25 & 0 & 0 \\ 0 & .25 & .25 & 0 & 0 & 0 \\ 0 & 0 & 0 & .25 & .25 & 0 \\ 0 & 0 & .25 & .25 & 0 & 0 \\ 0 & 0 & 0 & .25 & 0 & .25 \\ 0 & 0 & .25 & 0 & .25 & 0 \\ 0 & 0 & .25 & 0 & .25\end{array}\right]$

Fig. 3-10. Submatrix R of Absorbing Chan Model for Monitored Subarea in Fig. 3-8

FIG 7 The Fundarented Matrix in Corresponding to Fig 4

Fig. 3-11. Fundamental Matrix N Corresponding to Fig. 3-8

REFERENCE

1. Kemeny, J. G., and Snell, J. L., Finite Markov Chains, D. Van Nostrand Co., Inc., Prınceton, N. J., 1960

PART FOUR:
 AM BROADCAST AND BURIED
 LOOP FEASIBILITY ANALYSES
 FOR AVM USE

G.R. Hansen
L.J. Zottarelli
PART FOUR. AM BROADCAST AND BURIED LOOP FEASIBILITY ANALYSES FOR AVM USE 4-1
I. Vehicle Lrocation by Means of AM Broadcasting Station Carrier Signals 4-1
A. Introduction 4-1
B. Hyperbolic Location Principles 4-1
C. Vehicle Equipment Requirements 4-3
D. Vehicle Location Method 4-4
E. Accuracy Analysis 4-5
F. System Data Requirements and Polling Intervals 4-5
G. Computer Simulation Programs 4-6
H. Conclusions 4-7
II. Vehicle Location by Means of Buried Loops 4-8
A. Relationships of Three-Loop Vehicle Location System 4-8
B. Magnetic Field Generated by Rectangular Loop of Wire 4-9
C. Computer Programs for Calculating Mutual Inductance 4-9
D. Optimum Relative Configuration of Three-Loop AVM System 4-11
Fig. No. FIGURES Page
4-1 Zero Degree Phase Difference Hyperbolic Contour s Produced by Pair of Synchronized RF Signals 4.1
4-2 Apparent Motion of Hyperbolas Due to Slight Difference in Two Signal Frequencies 4-2
4-3 Change in Receiver Location from Hyperbolic Area 5-9-5 to 10-2-7 4-3
4-4 Phase-Locked Loop AM Receiver on Vehicle for Hyperbolic AVM Technıque 4-3
4-5 Up-Down Counters Sync Logic for Hyperbolic AVM Technique 4-4
4-6 Configuration of Vehicle's Transmitting and Receiving Loops Relative to Buried Loop 4-8
Table No. TABLES Page
4-1 Vehicle Location Simulator Program, LOCATE 4-6
4-2 Vehicle Hyperbolic Lane Count Generator Program, PIG 4-6
4-3 AM Broadcast Station Locations and Baseline Lengths Program, SET UP 4-6
4-4 LOOPS Program for Mutual Inductance of Buried/Pickup Loops, and Sample Run 4-9
4-5 CARC UP Program for Mutual Inductance of XMTR/RCVR Loops, and Sample Run 4-10

I. VEHICLE LOCATION BY MEANS OF AM BROADCASTING STATION CARRIER SIGNALS:-

Carrier signals of commercial AM broadcasting stations can be used as the source of vehicle location information. : As in well-known navigation systems, the signals radiating from pairs of stations will form an hyperbolic grid or coordinate system, and vehicles which are equipped with phase-lock receivers and phase repetition counters can keep track of the location of the vehicle in this hyperbolic coordinate grid. This information is then periodically transmitted to a central command base where the transformation from hyperbolic to geographic coordmates is performed, and the actual location of the vehicle is determined and displayed.

A. Introduction

Most vehicle location and navigation systems require dedicated transmitter-receiving equipment combinations and frequency allocations for the location function. A particular advantage of the AM broadcast phase-difference monitoring system is that commercial station signals (0.53 to 1.60 MHz) are used to furnish the vehicle location information. Therefore, neither dedicated transmitters nor special frequency allocations are required.

Carrier signals from thr ee AM stations located near the urban perimeter are used to form a coordinate system of hyperbolas of constant phase difference between the signals from pairs of stations (Fig. 4-1). Therefore, this vehicle location technique shares many of the characteristics of other hyperbolic navigation methods such as OMEGA, LORAN, and particularly DECCA. In this location method, however, the transmission frequencies from the AM stations need not be synchronized, in contrast to the established navigation systems. It $1 s$ more akin to the differential versions of the foregoing systems. In the differential verisons, mobile location equipment is utilized at fixed geographical sites for the purpose of improving the location accuracy of vehicles in the neighborhood by determining the signal phase or delay variance at the known site from that predicted, and this variance is used to correct the location data received by the vehicle.

The AM broadcast vehicle location technique relies on a frequency transformation method whereby the several frequencies of three AM broadcasting stations are separately normalized to a common frequency, and the relative phases of these common frequencies are compared to provide hyperbolic lines of position. An exact integral relationship between the carrier frequencies of the AM stations is not required, although harmonically related frequencies would result in a stationary "virtual hyperbolic pattern" and would somewhat simplify the location process.

Vehicular equipment consists of at least three phase-locked loop recesvers to extract the carrier

[^3]

Fig. 4-1. Zero Degree Phase Difference Hyperbolic Contours Produced by Pair of Synchronized RF Signals
frequencies and also a second set of three phaselocked loop frequency multipliers to generate the common frequency. Phase comparators and digital counters are used to keep track of the vehicle location within the "virtual hyperbolic pattern." The hyperbolic coordinates are stored for subsequent transmission to a central command and control base.

Central equipment required consists of a limited arithmetic processor or table look-up computer which is needed to relate the hyperbolic pattern coordinate information to an actual geographical location

B. Hyperbolic Location Principles

If two separated and synchronized sources of radiation transmit signals in an isotropic medium, a receiver positioned midway between them, or on the locus of points which is equidistant from each transmitter, will detect no difference in the time-of-arrival or the phase of the signals from the separate sources. The locus is the perpendicular bisector of the connective between the two sources. (See Fig. 4-1.)

If the receiver is at one side or the other of the bisector, the signal from the nearer transmitter will arrive at some finite amount of time before the signal from the farther source. If the signals are continuously transmitted, the phase of the nearer wall lead the phase of the farther. Another locus of constant time or phase difference can be generated by maintaining the same difference in distance from the recelver to each transmitter. The curves for constant time or phase difference will be confocal hyperbolas that are symmetric around the bisector (see Fig. 4-1).

A line-of-position (LOP) can be determined relative to a pair of RF transmitters by noting the time difference in the arrival of the signals, which corresponds to one of the hyperbolas. There will be ambiguity as to which branch of the hyperbola represents the true LOP. If the signals are continuous wave and only the phase differences are determined, the degree of $L O P$ ambiguity increases many-fold since the phase pattern is repeated whenever the cumulative distance change to the two transmitters equals one wavelength. The resolution of the ambiguity is described later.

If the two stations are transmitting on slightly different frequencies, the relative phase between the carriers will change cyclucally at a rate determined by the difference in frequency. This rate will be the same anywhere that the two signals can be recerved. If the locus of lines of constant phase difference are now considered, they again comprise a family of confocal hyperbolas, but instead of being stationary, they will sweep through the area covered by the two stations (Fig. 4-2). The hyperbolas, as a function of time, will tend to

Fig. 4-2. Apparent Motion of Hyperbolas Due to Slight Difference in Two Signal Frequencies
form acutely around the station radiating the higher frequency and then move toward the lower frequency station; straightening as they reach the midpoint, then curving around the lower frequency station and then vanishing on the extension of the line joining the stations. A recenver capable of counting the passage of hyperbolas representing a particular phase difference will accumulate the same count in the same time interval regardless of the location within the service area of the two stations.

If the constant-phase difference counting receiver is positioned in a stationary hyperbolic field, no counts will be accumulated as long as the receiver's location is fixed. If the receiver is moved in such a manner as to cause the difference in the distances to the two stations to change by one wavelength, then one count will be accumulated. Similarly, in a moving field, a one-unit difference in counts will be accumulated by a stationary receiver as compared to a recelver that is moved by a wavelength distance difference.

The AVM system based on AM broadcast signals is discrete as opposed to continuous location systems in that the intersections of hyperbolas form a grid which can be transformed into specific urban area locations corresponding to these intersections. Interpolation between grid lines is not used. Therefore it is somewhat like a proximity system with the hyperbolic intersections taking the place of physical devices or signposts located at intersections or at fixed points. Continuous systems provide somewhat uniform coverage of the service area and allow any geographical locations within this area to be determined to some limiting precision dictated by the technique. The grid described by the intersection of the hyperbolas allows the actual geographical location of the vehicle to be somewhere within the hyperbolic triangle described by the coordinates of a particular triad vertex. The dimensions of this triangle are a function of the distance to the foci of the two families of hyperbolas and also of the wavelength of the common frequency. In most continuous AVM systems, the precision diminishes with the distance from the fiducial points. In the AM Broadcast hyperbolic AVM system, the location precision can be adjusted in the princapal service area by the choice of the common frequency.

Established navigation systems such as OMEGA, LORAN, and DECCA refer to the areas between adjacent hyperbolas of constant phase as lanes. These navigation lanes vary in width from 1.5 to 15 km , depending on the frequency used in the system, and the principal goal of these methods is to mantain a vehicle's location precisely within a selected lane. In contrast, the AM broadcast vehicle location method utilizes much narrower (e.g., 0.15 km) lanes and keeps track only of the ID number of the hyperbola of constant phase difference that the vehicle has crossed and in which direction the hyperbola was traversed. Therefore, the location precision is a function of the lane width and will vary with the distance from the AM station pair. This system is intended for use in metropolitan areas and adjacent suburbs of rather limited size compared to the much larger service areas of navigation systems. Since AM transmitting sates are usually located near the outskirts of the area they serve, the divergence of the hyperbolas and the consequent loss in location precision can be held to reasonable values.

In many prior studies and developments concerned with emergency vehicle location problems (see Brbliography), a general goal has been to provide a location capability to one city block, or roughly 0.16 km (0.1 mile). Lane widths of this size can be generated with a frequency of 1 MHz .

In order to generate a hyperbolic coordinate system from AM station signals, these signals must be transformed to a common frequency which is phase coherent to the AM carrier. To be useful without restrants requires that this common frequency be a multiple of the highest common divisor of the avallable AM carriers. The common frequency should therefore be a multiple of 10 kHz .

The individual AM carrier signals are recerved by the vehicle recelvers, and the se signals in turn are each used to separately synthesize the common frequency. The common frequencies are therefore phase-coherent with the original AM carriers and effectively change the radiation from each of the AM stations to the common frequency. A virtual hyperbolic pattern is generated from each pair of AM stations recelved; and if the AM signals were phase coherent, the pattern will be stationary in space. It is then only necessary to measure the phase differences and count the number of times the phase pattern has repeated as the vehicle travels in order to determine a new location from a known starting point. Three pairs of signals (three station) are sufficient to remove any ambiguity in the determination of the new location from the old location (Fig. 4-3). Since the

Fig. 4-3. Change in Receiver Location from Hyperbolic Area 5-9-5 to 10-2-7
spacing of the hyperbolic patterns is a function of the distance from the station pair, the relationship between the phase pattern counts and actual distances traveled would have to be computed. In thas AVM system, the computational abılity need not be
placed in each vehicle. The computation of locations is reserved for the central command base where the location information is desired.

It is immaterial whether the hyperbolic grid pattern is fixed or moving as far as the location process is concerned. If fuxed, then only the counts accumulated by moving recelvers are necessary to determine the new positions from the old. If the grid is moving, then the difference in counts between the moving recelvers and a stationary receiver is all that is required. Besides the magnitude of the counts, it is also necessary to know the "direction" of passage of the hyperbola of constant phase difference. The hyperbolas always move from the higher frequency source toward the lower frequency. If the hyperbolas are stationary, the vehicle's movement toward one source will tend to increase the apparent frequency from that source whale decreasing the frequency of the other. Therefore an assignment can be made as to which direction is to be called a positive count and which a negative count.

C. Vehicle Equipment Requirements

A block diagram of one of the recervers to be installed in the vehicles is shown in Fig. 4-4.

Fig. 4-4. Phase-Locked Loop AM Recexver on Vehicle for Hyperbolic AVM Technique

Three of these receivers are required for each vehicle. A conventional RF amplifier is used to provide selectivity and gain of the desired AM signal applied to the phase detector of the phase-lock loop (PLL). The voltage-controlled oscillator frequency in the PLL is adjusted to run at the same frequency as the AM station carrier. The oscillator output is divided by a variable modulus counter (-53 to 160) so as to produce an output frequency of 10 kHz . The 10 kHz signal is applied to a flipflop which provides a square-wave of 5 kHz used as the reference input to the phase detector of the frequency multiplying PLL. A 1 MHz voltagecontrolled crystal oscillator is phase-locked to the 5 kHz reference by dividing the oscillator frequency by 200 to produce a second 5 kHz signal which is compared to the reference. Therefore, the 1 MHz signal 15 phase-locked to the AM carrier frequency so that the phase relationship between the 1 MHz and the carrier is repeated at least every 53 to 160 cycles of the AM carrier.

Three such receivers, each tuned to a different AM station, will produce three separate 1 MFIz
signals, each phase-coherent with the appropriate AM carrier.

The problem then remains to determine the ID number and direction of the hyperbola that 15 either traversing or being traversed by the vehicle. As stated previously, the measurement of the frequency difference and the determination of which is the greater frequency are required. The technique selected to determine the frequency difference and also to yield information as to which is the higher or lower frequency is to use an up-down counter in which one frequency provides incrementing pulses and the other decrementing pulses. The state of the counter should then indicate the integrated frequency difference between the two frequencies which is the algebraic sum of the hyperbola of constant phase difference traversed.

The up-down counter must respond to every ancrementing and decrementing pulse because any pulse missed will displace the measured location by one unit in the hyperbolic grid. In order to prevent the uncertainty in the up-down counter which could be caused by the samultaneous arrival of up and down pulses, resynchronization of the 1 MHz pulses was required. A synchronizing frequency at least four times the frequency to be counted is required to assure that no pulse $1 s$ lost or split. The logic for resynchronizing to 4.192 MHz is shown in Fig. 4-5. The $\log _{10}$ discards both incrementing and decrementing pulses which are inputs to the same up-down counter and arrive in the same synchronizing interval.

Fig. 4-5. Up-Down Counters Sync Logic for Hyperbolic AVM Technique

Each of the three counters in the receiver maintains a count which is the integrated algebraic sum of the apparent frequency difference between a pair of AM stations each nominally radiating at the common frequency. Part of this frequency difference is due to the AM stations not being phase coherent
(1. e., not exactly on the assigned frequency) and part is due to vehicular motion.

D. Vehicle Location Method

If three $A M$ stations, A, B, and C, are monitored (Fig. 4-3) and the transformation of the carriers yields three common frequencies f_{a}, f_{b}, and f_{c}, then the three counters in the vehicles will accumulate counts N in a time t in accordance with:

$$
\begin{array}{r}
N_{a}=\left(f_{a}-f_{b}\right) t+V_{a b}(f) t \times F(x, y)-C \\
N_{b}=\left(f_{b}-f_{c}\right) t+V_{b c}(f) t \times G(x, y)-C \\
N_{c}=\left(f_{c}-f_{a}\right) t+V_{c a}(f) t \times H(x, y)-C \\
C=3 \times 10^{9} \mathrm{~m} / \mathrm{sec}
\end{array}
$$

where f is the common frequency, V is the vehicle velocity component parallel to the baseline of the station pair, and F, G, and H are general equations of the second degree (describing the three families of hyperbolas) in terms of X and Y which are the geographical location of the vehicle in an arbitrary orthogonal coordinate system. This system of equations does not yield an explicit analytic solution for the location in terms of X and Y. It does indicate the separability of the counts due to slight differences on the common frequency and the counts caused by vehicle motion. Counting is negligibly influenced by the difference in frequency of f_{a}, f_{b}, or f_{c}.

At the base, the location process is initialized by first receiving the actual geographical location (in X and Y) of the vehicle and the initial content of the three counters (called $\mathrm{N}_{\mathrm{aI}}, \mathrm{N}_{\mathrm{b} 1}$, and N_{cI}, respectively). The coordinates in X and Y and the counter states are stored. The counter states of the stationary recelver are also stored at the same instant. An explicit calculation 15 then made using the X-Y location and the coordinates of the AM stations which yield the location of the vehicle in terms of the parametric families of the hyperbolas. Each hyperbola in each family is numbered, and the results of this calculation give the location in three integers which represent the nearest hyperbola of each family.

Subsequent locations are determined by receiving the current state of the three counters from the vehicle. First, the initial state of the vehicle counters is subtracted from the current state, and second, the change in the state of the stationary receiver counters (from the initializing time to the current time) is determined and subtracted to yield the change in each of the hyperbolic coordinates caused by vehicle motion. The new X-Y coordinates of the vehicle location are then calculated with an iterative least-squares algorithm. The algorithm uses the old X-Y location and develops the required changes in X and Y so that the calculated new position will have the same hyperbolic coordinates as those determined for the vehicle from the current counter states. This method was chosen over an analytic technique as it yields a "most likely" solution in less time than an analytic method which has the additional disadvantage of having several pairs of coordinates as solutions.

Only two of the three avalable hyperbolic coordinates are necessary in all of the calculations
as the third coordinate is not independent. The third coordinate does provide a check in that the sum of the hyperbolic coordinates should be a constant plus or minus one. Additionally, for locations near the vertex (the one AM station common to each hyperbolic family), the algorithm may become divergent and another set of coordinates should be used.

E. Accuracy Analysis

All AM broadcast stations in the United States operate on assigned carrier frequencies which are multiples of 10 kHz in the frequency region between 530 and 1600 kHz . The FCC requires that the actual carrier frequency be wathin 20 Hz of the assagned frequency. If all the AM stations within a gaven geographical area were exactly on the assigned frequency, the relationship between any two stations could be expressed as:
(1) $f_{1} / f_{2}=(n+p) / n$, where n and p are
both integers.
The carriers could be said to be phase-coherent in that the phase relationships between the two carriers are repeated every $n+p$ cycles for one carrier and every n cycles for the other. If this condition $1 s$ maintained, it is then possible to synthesize another frequency, which is also a multiple of 10 kHz which is phase-coherent to each of the carriexs within the area.

The 10 kHz can be multiplied to another frequency, say 1 MHz , which will be phased coherent with the original carrier. Since the FCC allows a frequency tolerance of 20 Hz , the synthesized 1 MHz signal will have a tolerance of:
(2) $\pm \mathrm{XHz}= \pm 20 \mathrm{~Hz}\left(10^{6} \mathrm{~Hz}\right) / \mathrm{fHz}$, where f is the $A M$ carrier frequency.

Therefore X can vary between 39 and 12 Hz , depending upon the frequency of the AM broadcasting carrier. It is therefore possible that a pair of AM stations could cause a beat frequency between the two "normalized" carriers approaching 80 Hz . The impact of the frequency difference is principally upon the equipment design, the sampling rate for location purposes, and the amount of information that must be transmitted from the vehicle. These effects wall be discussed later.

A secondary effect of the AM carrier being off frequency and ther eby causing the 1 MHz to be slightly off is that the location process will be reduced in precision. A wavelength of the actual frequency will be slightly shorter or longer than expected by up to 39 parts per million. This error would be on the order of 1 meter on the baseline connecting a station pair with a separation of 30 km and up to 2 meters some 60 km away from either station and therefore negligible.

F. System Data Requirements and Polling Intervals

System considerations determine how much information is needed from each vehicle and how often it should be sent. Prior work in automatic vehicle monitoring has usually emphasized the fixed-rate poling method of interrogating vehicles
to determine locations. If the polling method allows any or all vehicles to travel at maximum speed and still be located to the ultimate precision, the information flow is maximized from each vehicle. If an average speed is assumed for the fleet of vehicles, then high-speed vehicles will not be located to the precision available, and parked or slowly moving vehtcles will be transmitting much redundant data. Volunteer methods wherein the vehicle initiates a data transmission whenever a significant change in location has occurred require means to avoid contention and must also send additional data to 1 dentify which vehicle is transmitting. An adaptive polling technique whereby high-speed vehicles are interrogated at much shorter intervals and where average and slowly moving or parked vehicles are infrequently sampled is quite easily mechanized. The simplest polling technique requires that the central control transmit incrementing pulses (tones, or tone bursts) to all vehicles which count and accumulate these incremental signals. When the number of signals receaved matches the number assigned to the vehicle, a data transmission is initiated from the vehicle. The inclusion of a respond or do-notrespond pulse, tone, or burst with the incrementing signal will tell the vehicle whether data is required or not. Conversely, a vehicle which had been immobile could request inclusion in the next polling sequence by responding with an appropriate signal regardless of the command not to send data.

The amount that the AM carriers are off frequency together with the sampling intervals of the vehicles determines the number of bits required to be sent to the central command for location purposes. The length of each of the up-down counters is therefore determined by this number of bits. As stated before, two low-end of the band AM stations could cause an 80 Hz beat frequency in the synthesized 1 MHz signals which would cause a total count of about 288,000 per hour to be accumulated. A vehicle cruising at $30 \mathrm{~km} / \mathrm{hr}$ along the baseline of a station pair would accumulate a count of 200 per hour due in a stationary pattern. A recent Department of Transportation requirement for vehicle monitoring required that 25% of the vehicle fleet be located each 15 sec and the remainder located each minute. The total counts for each station pair under these requirements would be 1200 for 15 sec and about 5000 for the minute interval. To accommodate this requirement, the length of the up-down counters would have to be 13 bits each. Some 40 to 50 bits per interrogation would have to be transmitted from each vehicle if a preamble, parity checks, or error detection mformation was added to the basic 39 bits of location data. Assuming the higher number over a vorce channel from the vehicle which could conservatively accommodate $1200 \mathrm{bit} / \mathrm{sec}$, then 24 vehicles could be interrogated and located each second. Again using the DOT requirement, 820 vehicles could be located each minute, with 205 of the vehicles being located each 15 seconds, or four trmes each minute for a total of 1435 locations each minute (1440 maximum). It should be realized that these are theoretical maximum numbers and neglect the practical realities of turn-on stabilization time of mobile transmitters and also assumes another channel for interrogation purposes.

The amount of data required from each vehicle could be reduced by about two-thirds if the AM
stations being utilized for location maintaned phase coherency．A stationary lacation pattern would be generated，and the up－down counter lengths could be reduced substantially as only counts due to vehicle motion would be accumulated．Only a rela－ tively small amount of equipment would be neces－ sary at each AM station to maintain the carriers coherent to one another．This could be done by exther a common synchronizing signal or with each station referencing the carrier frequency to the other two carriers by counting and phase－locked loop techniques．In either case，the control range of the added equipment must not allow the carrier to be pulled outside of the 20 cycle FCC tolerance limit．

Some operational difficulties that might occur with this type of vehicle location system could be caused by momentary outages of one of the AM car－ riers，or transmitter switchover when power is increased or reduced．In some smaller metro－ politan areas it may be difficult to find three＂24－ hr＂broadcast stations with appropriate geometry， and different configurations may have to be used for day and night operation．

G．Computer Simulation Programs

Two computer programs，a location simulator called LOCATE（Table 4－1），and a vehicle count

Table 4－1．Vehicle Location Simulator Program，LOCATE

```
        0.ocamectlop
\ LOCAEE
[1] XSN+1+XS,XS[1]
    N
    x+71[1]
    y+z1{2]
    RF}\mp@subsup{R}{R,+1}{X+2
    D+(((x-x5)*2)*(y-Y5)*2)*0 5
    D+DD[1]
    RE A[L]+((X-XS[L])=D[L ) -((X-XS[1])*D[1]
    ] REA[L]+((X-XS[L])&D[L))-((X-XS[1])*D[1])
    B[L}+((Y-YF[L])+D[L])-({Z-Y~[1])+U[1])
    CP[[L]+(D[L)]-D[1])-Q[L]+חC[r]
    ->RE\times1 (3\geqI-L+1)
    DFN+((4/A* ) x(+/J*2) )-(+/(A\times9))*2
```



```
    \DeltaY+(((+/A*2)\times(+/P*CV))-((+/1\times\mathcal{D})\times(+/A\timesCY)}))*DE
    z+x-\Deltax
20) }->PP\times1(({(\DeltaX)>10)v((|\Deltay)>10)
21] OTD*X,Y
22, IEL: X AIDD Y ARE , OLD
231 ' }\DeltaxAMD \DeltaY AR⿱一𫝀口' ( (\dot{x}-\chi),(y-y
```

generator called PIG（Table 4－2）were written to test the location method．A SETAUP program （Table 4－3）was also written which stores the loca－ tions of the AM stations in the arbitrary coordinate system and determines the lengths of the baselines connecting the stations．

In order to make the simulation more realistic， three AM stations in the Los Angeles，CA，metro－ politan area were chosen： $\operatorname{KFI}(640 \mathrm{kHz})$ located in the Buena Park－La Mirada area southwest of the Los Angeles Civic Center；KNX（ 1070 kHz ）in Torrance which is south and slightly west of the Cavic Center；and KMPC（ 710 kHz ）with transmitter in North Hollywood which is northwest of the Civic Center．The baseline distances are：KFI－KNX 31 km ，KNX－KMPC 35 km ；and KMPC－KFI 51 km ．

Table 4－2．Vehicle Hyperbolic Lane Count Generator Program，PIG

```
    vPIGTUJ%
    \nablaOID PIG Z2
(1) }XS-Z1+YC+DC-DD+CZR+CRT+N+Q+3P
[3] 
    x*+x1,x2,x]
    \mp@subsup{y}{5}{\prime}+\mp@subsup{y}{1}{\prime},\mp@subsup{y}{2}{\prime},\mp@subsup{Y}{3}{}
    DC-(((X-XF)*2)+((Y-Y&)=2))=0 5
    HO+(DC[2]-DC[1]).(DC[3]-DC[21),(DC[1]-DC[31)
    10-1104300
lal
[10] CTR+L(YO+FAI +0 5), CRR
[12] 
13] }\quady+\overline{Y}+22[2
14] }DD+(([x-XE)*2)+((Y-Y¢)*2))=0 
15] #H/(DD[2]-DD[1]).(DD[3]-DD[2]) (DD[1]-DD[3])
16] 7M+##1%*300
[17] CRN-L(M+LRHf+0 5),
[18] 'INE| COU iTEA IS ' CRT
193 M+CAT-CTR
[21] }\textrm{Q
```

Table 4－3．AM Broadcast Station Locations and Baseline Lengths Program，SETAUP

An arbitrary origin for the coordinate system was located some 8 km （ 5 mlles ）in the Pacific west of the Palos Verdes peninsula such that most of the area of interest for location purposes would be in the first quadrant of the $\mathrm{X}-\mathrm{Y}$ system．The ori－ gin is at $118^{\circ} 30^{\prime} \mathrm{W}$ and $33^{\circ} 45^{\prime} \mathrm{N}$ ．

The location（LOCATE）program and the vehicle count generator（PIG）program were written in APL computer language．The vehicle count gen－ erator requires two mput variables．These are the initial and terminal values in meters of the X－Y coordinates representing each change of posi－ tion of the vehicle．The hyperbolic coordinates of each location are calculated and the integral differ－ ence determined．The difference represents the counts that would be accumulated by a vehicle in traveling from the initial to the terminal location of each leg of travel．The count difference and the mitial location are the inputs to the LOCATE rou－ tine which determines the new location．The new location is determined by a reaterative technique whereby the deltas of X and Y which would satisfy
the change in counts of the hyperbolic coordinates are calculated and added to the initial location.

H. Conclusions

A vehicle location method for use in metropolitan areas is avalable, which uses the carrier signal information from three currently operating AM broadcasting stations located near the urban perimeters. Two advantages of the method are that (i)
dedicated transmitters for location purposes are not required and that (2) the phase-lock-loop counting recervers installed in the vehicles are inexpensive. The mathematical technique for vehicle location is relatively simple and requires only that the initial location be known. While the technique is not explicit, location can be determined with adequate accuracy to the precision implied by the geometric configurations of the AM stations used and the frequency of the synthesized signal used for phase comparison.

Lawrence J. Zottarellı

With the exception of the cut-to-fit development method, the evaluation of the buried loop* AVM system requares as a basis some mathematically analytic relations. Since such relations do not seem readily avalable in the open literature, an analytic approach was developed to determine the effects of loop spacings, dimensions, and height above roadway on RE signal detection and on rdentufication of the vehicle's location.

A. Relationships of Three-Loop Vehicle Location System

The approach 1 s to find the mutual inductance of the vehicle's transmitter and receiver loops through the intermediary of the passive buried loop. A typical three-loop configuration is shown in Fig. 4-6. The assumptions are-

1. The XMTR and RCVR are sufficiently remote from each other so that direct mutual inductance is of secondary importance.
2. The buried loop is tuned with a capacitor to the vehicle transmitter frequency, and the buried loop resistance is durectly proportional to the number of turns.
3. The loops are in an isotropic medium.

$$
\begin{array}{ll}
I(T) & =X M T R \text { CURRENT } \\
K_{1}=X M T R / B L \text { COUPLING } \\
K_{2}=\text { RCVR/BL COUPLING } \\
N_{R}=\text { RCVR TURNS } \\
N_{T}=\text { XMTR TURNS } \\
N_{B L}=\text { BURIED LOOP TURNS } \\
R_{B L}=\text { BL RESISTANCE }
\end{array}
$$

Fig. 4-6. Configuration of Vehicle's Transmitting and Receiving Loops Relative to Buried Loop

1. Analytic Relations of Loop Mutual Inductances
(1) The magnetic flux lines Φ coupling the buried loop (BL) due to the XMTR current $I(T)$ at point P is

$$
\Phi_{\mathrm{BL}}=\mathrm{K}_{1} \cdot \mathrm{~N}_{\mathrm{T}} \cdot \mathrm{I}(\mathrm{~T})
$$

where

$$
I(T)=I_{P} \sin (w t), K_{1}=X M T R / B L
$$

coupling, and $\mathrm{N}_{\mathbf{T}}=$ XMTR turns.
(2) The voltage E coupled to the buried loop with width W is

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{BL}}(\mathrm{~T})=\mathrm{N}_{\mathrm{BL}} \mathrm{~d} \Phi_{\mathrm{BL}} / \mathrm{dt}= \\
& \mathrm{W} \cdot \mathrm{~K}_{\mathrm{I}} \cdot \mathrm{~N}_{\mathrm{T}} \cdot \mathrm{~N}_{\mathrm{BL}} \cdot I_{\mathrm{P}} \cdot \cos (\mathrm{wt})
\end{aligned}
$$

(3) The current in the buried loop (which 15 at resonance), with resistance R, is

$$
\begin{aligned}
& I_{B L}(T)=E_{B L}(T) / R_{B L}= \\
& \quad\left[K_{1} \cdot N_{T} \cdot N_{B L} \cdot W \cdot I_{P} \cdot \cos (w t)\right] / R_{B L}
\end{aligned}
$$

(4) The flux lines coupling K_{2} the RCVR due to the buried loop is

$$
\Phi_{R C V R}(T)=K_{2} \cdot N_{B L} \cdot I_{B L}(T)
$$

substituting

$$
\begin{aligned}
& \Phi_{R C V R}(T)= \\
& {\left[-K_{1} \cdot K_{2} \cdot N_{T} \cdot\left(\mathrm{~N}_{B L}\right)^{2} \cdot \mathrm{~W} \cdot I_{P} \cdot \cos (\overline{\mathrm{w} t)}]\right] /} \\
& \mathrm{R}_{\mathrm{BL}}
\end{aligned}
$$

(5) The voltage at the RCVR due to the buried loop is

$$
\begin{aligned}
& E_{R C V R}=N_{R} d \Phi_{R C V R} / d t= \\
& {\left[-K_{1} \cdot K_{2} \cdot N_{X} \cdot N_{B L} \cdot N_{R} \cdot\left(W I_{P}\right)^{2} \cdot \sin (w t)\right] /} \\
& R_{L O O P}
\end{aligned}
$$

allowing now the resistance per turn (R/turn)

$$
\begin{gathered}
R_{l o o p}=(\mathrm{R} / \text { turn }) \cdot \mathrm{N}_{\mathrm{BL}} \\
\text { QED } \cdot \mathrm{E}_{\mathrm{RCVR}}=\left[-\mathrm{K}_{1} \cdot \mathrm{~K}_{2} \cdot N_{\mathrm{T}} \cdot \dot{N}_{\mathrm{BL}} \cdot \mathrm{~N}_{\mathrm{R}} \cdot\right. \\
\left.\left(\mathrm{W} \mathrm{I}_{\mathrm{P}}\right)^{2} \cdot \sin (\mathrm{wt})\right] /(\mathrm{R} / \text { turn })
\end{gathered}
$$

[^4]2. Comments. The reasoning involved in deriving the relationship permit the geometrical and electrical aspects of the solution to be separable and simply multiplicative. If $\mathrm{E}_{\mathrm{rcvr}}$ is to be of the form MdI/dt then:
$\mathrm{M}_{\text {equivalent }}^{\text {becomes }\left[\mathrm{K}_{1} \cdot \mathrm{~K}_{2} \cdot \mathrm{~N}_{\mathrm{C}} \cdot \mathrm{N}_{\mathrm{R}} \cdot \mathrm{N}_{\mathrm{BL}} \cdot(\mathrm{WIP})\right] /}$ ($\mathrm{R} / \mathrm{turn}$)
and
$$
I(t) \text { becomes } I P \cos (w t)
$$
B. Magnetic Field Generated by Rectangular Loop of Wire

1. Development of Flux Density Equations. It is desired to find the flux intensity B at a point $P(x, y, z)$ generated by the rectangular loop of wire, with the X -axis direction across the lane width and the Y -axis in the direction of roadway travel.

Given:

(1) A rectangular loop of wire of length L and width W, with the lane width equal to the buried loops length.
(2) The loop is in a free-space plane (of x, y, z rectangular coordinates) having equations $z=0$.
(3) The loop has a DC current of I.
(4) The coordinate space has its origin at $(0,0,0)$, which is the center of the loop wire.
(5) The lankage or mutual inductance of two parallel planar loops (not necessarily coplanar) lying in x, y-plane uses only the z-component of flux density.

Method:
(1) Decompose the loop into four linear segments
(2) Apply the Biot Savart law from each segment to the point of interest

$$
\left|B_{p}\right|=\left(\frac{\mu}{4 \pi}\right) \cdot\left(\frac{I}{a}\right) \cdot(\cos \gamma-\cos \alpha)
$$

(3) Decompose the flux density into its vector components, and sum the components.

The complete mathematical analysis is presented in Ref. 1.

C. Computer Programs for Calculating Mutual Inductance

Two programs are used to generate the mutual inductance of rectangular wire loops. The programs LOOPS and CARCUP are written in the Stanford Artıficial Intelligence Language, "SAIL," which is an extended ALGOL 60.

1. "LOOPS" and "CARCUP" Programs. The "LOOPS" program is used to find (1) the XMTR/RCVR direct mutual coupling, (2) the self inductance of a loop, and (3) the direct coupling
between the Buried Loop and the XMTR or between the Buried Loop and the RCVR or between two Buried Loops. The "CARCUP" program is used to find the mutual coupling between the XMTR and the RCVR via the Buried Loop, the inner workings of the two programs are similar, the program "CARCUP" is, in effect, the program "LOOPS" run twice. Both of the programs have Input/Output in common.
a. LOOPS Program. This program (Table 4-4) asks the user. (1) if he wants more detailed information, (2) to specify 'how many steps," or data points, (3) where is the starting point of the pickup loop and what size is the loop (in terms of XMIN, XMAX, YMIN, YMAX) and how, high above the buried loop (in terms of Z), (4) to specify the aspect ratio of the buried loop, K.

The LOOPS program calculates and prints out the mutual inductance for the number of data points specified. Each successive data point represents the mutual inductance of the buried loop and pickup loop moving along the positive Y direction (along the roadway lane) by $1 / 10$ of its length (i. e., (YMAX-YMIN)/10). The mutual inductance is in relative units. To find the answer in henrys, multiply the answer by half the lane width (in meters), by 10^{-7}, by the number of turns of the buried loop, and by the number of turns of the pickup loop.
b. CARCUP Program. This program (Table 4-5) asks the user: (1) if he wants more detailed information, (2) to specify 'how many steps," or data point, (3) where is the starting point of the XMTR loop, and what is its slze and how high above the buried loop (in terms of XTMIN, XTMAX, YTMIN, YTMAX, ZT); also where is the starting point of the RCVR loop and

Table 4-4. LOOPS Program for Mutual Inductance of Buried/Pickup Loops, and Sample Run

00150	IHTERHLFL INTEGEP EXIT ,FDPER.;
00209	INTEGEF I, J, 3 ,EFK,
00300	DEFINE RF=-'15\% $12-$;
09400	
00500	
00556	STRING ST,
00000	
CRR RET)	
00800	IF IHCHILE"YES" TREH CUTSTRく"
00900	
01000	RELATIVE CEUPLINT RETVEEN TWI FLAT EUT WICM CDPLAIHAR FECTAMNULAP
01100	
01200	fXES DE PEFPAHEE) $1 T$ tS 70 ee APPLIED IH flotomative vehicle
01300	
01400	THE LFISE UIDTH I \sim ThE 2 DIMENSION ThE LANF LEEHETH IS
01500	
01600	ב DIMENSIDM TNE CENTEF DF THE EJPIED LCCF IS fit COURDINATES
01700	O,O,0 THE MIDTH GF THE EURIED LOUF IS THE LANE WIDTH
01800	
01900	LERGTM)
02000	
02109	PICRUP LOAP
02200	hll infut diliensions rre to ee hormaigized to hflf the late
02500	WIDTH.
02400	HON MRITY STEPS PEFERS TO MOVINS ThE P IEYlup LGOP ALING
02530	THE LAhE LENGTHCREhERALLY ALAMY FOGM hEOFE THE EURIED LEGP) BY
02600	1/10 OF THE PICPUF LEISP LERIGTH GIHD THEN CALCULETEITE ITS
03700	HEPMALIEED 2 DIFECTIG. CEUFLING FPOH THE BUFIED LOCF
03800	
02900	RHD OF SICCESSIrE STEFFING:
03000	TO FIND THE GCTURL FLIM IN YOLT SECDHDS, MULTIfLY' the deta
03100	BY THE FGLLEWING FPCTCP:
03200	(I)* (LANE WIDTH/2) - (10t (-7))
03305	WHEPE I IS THE BURIED LGEP CUFRENT III PIIPS
03400	WRERE THE LANE HIDTH IS IN :ETERS-8RF);
03500	OUTSTRく"HDN MANY STEPS ")i
03000	
03550	PEEIN
03700	PERL ARRAY YC1803,
03900	
03900	
04000	
04100	
04200	

Table 4－4．（Continued）

04300	Y－YMIN YA + （MAS－YMIH）／103
04400	
04\％ 06	T＋0，$=1, \mathrm{~B}+0$.
04000	
04706	$\mathrm{E}+\mathrm{I}+$ 2， $\mathrm{l}+1 \mathrm{i}+1$
0.4300	
04906	EXIT＋a，FORER＋G
05959	BEGIT
05000	PRDEEPAFE FIZ，
05100	BEGIN
05200	$\mathrm{R}+(X+1), 5+(Y-1)$,
05300	$C+(Y+k), D+(Y-K)$ ．
05400	$\mathrm{AR}+(\alpha+1)+2, \mathrm{CC}+(Y+Y)+E$ ；
05500	
05 c 09	
05700	
05300	
05900	$\mathrm{R}+-(\mathrm{Br}(\mathrm{E}+\mathrm{BB})$ ）$<(-\mathrm{D} / \mathrm{H}+\mathrm{C} / \mathrm{H})$ ；
06000	$\mathrm{L}+(\mathrm{C} /(\mathrm{E}+\mathrm{CC}))+(-\mathrm{E} / 31+8 / \mathrm{G})$
05100	M＋－（D）$(E+\mathrm{DD})$ ）$+(-\mathrm{E} / \mathrm{H}+\mathrm{fi} / \mathrm{F})$ ；
Wsedo	
95300	EMD，
$05+00$	
05500	PRDEEDLFE FLURCUP，
00000	BEGIM
05050	SETFDRMAT（13，3），
06700	
05800	EEGIN
06900	
07000	BEGIM
07100	EIZ；T＋T＋EE，X－Y＋XA
07200	EMP．
07300	V［S $3+\mathrm{T}, \mathrm{X} \leqslant$＜mIN， $\mathrm{Y}-\mathrm{Y}+\mathrm{Y} \mathrm{F}, \mathrm{S}+\mathrm{S}+1, \mathrm{~T}+0$
07400	END，
07500	UHILE $\$ LEO（S－i0）DI \hline ap600 & BEGIN \hline 0770a & WHILE（ $5+10$ ）${ }^{\text {l }}$ D D
07800	BEGIH
07900	0－ $0+4 \mathrm{C} 1 \mathrm{l}, 1+1+1$
03006	END．
03100	UUTSTR（CVEくは），
\％s200	
108300	EmD，
09400	End．
03500	FLUSCUP．
09550	EMD，END 3
05000	EMD＂LOCPS ${ }^{\text {a }}$

PUH LOGPS＿RY
D Y Yov whit notes＜tyfe in eithef yes di ho gallatien i，tar pet y yes
The puppace df this ffirffil is to calcilfite the ffee grace RELATIVE CDUFLING EETLEEN TWQ FLHT SUT HCH COFLGHME PECTRHGULAP LDLPS UF LIREKTKE SIDES DF HHITH ARE FAFNLLEL TD THE CGERDIRATE

 THE DIMENSIDN．THE EEHTEP OF THE BUPIED EDOP IS HT CBERPINGTES K IS THE FSFECT FHTID DF THE EUFIES LODP 《WIDTH DIYIDED EY LENGTH，
 PICr LFP LDEP
fll infut dimensions moe ta pe ncpmalized to half the larie MIDTH．
HOE LAHE SENTEPS PEFEPS TO LIGVINA TRE FICKIJP LCLP RLOMG
 ROFMGLIEEL 2 DIRESTICR COUPLINE SKOM THE EHFIED LOCP THE FFINTOUT IS THE PALCULATED FLUY IN PELATIYE FLUW UNITS AHI OF CUCCESSIVE STEPFINGS
TQ FINE THE HETHML FLII IN VELT SECGMDS，MULTIPLS THE DHTA \＄）THE FELLDIAMF FFCTOD
WHERE 1 I THE EUFIED LOCF FIIFPEMT IN RRPS
LIHERE THE LANE LJIDTH IS IN METEKS
HOW MHTY STEPS 100
YMIII $=-1$
《MA\＝1000
$\operatorname{yMIN}=-0001$ 00
$\operatorname{manx}=1$
$\ddot{0}=0$
$K=1$

－34352	－100さ\％	10839	102．9	－10299
－105\％9	$102{ }^{\text {a }}$	10279	10299	$103{ }^{\circ} 9$
－10259	－530\％1	－ 30121	－19221	－13501
－． $100 \% 1$	－． 770	－－007	－ 489	－． 401
－ 334	－ 381	－こここ	－ 205	－ 178
－ 155	－ 130	－． 120	－． 107	－9502－1
－85ts－1	－ 7659.1	－6919－1	－ 0 26－9－1	－5uap－1
－5193－1	－ 4750 －1	－4352－1	－40\％${ }^{-1}$	－3n＊）－1
－． －$_{\text {－}}$	－315\％－1	－2930－1	－ 7 72か－1	－2532－1
－ 2 人09－1	－2c0\％－1	－2069－1	－1903－1	－18101－1
－．1703－1	－โ6uy－1	－1517－1	－142゙ー－	－1342－1
－12－0－1	－1200－1	－1147－1	－1052－1	－ $1027-1$
－9709－2	－．9－20－を	－5779－2	－835\％－2	－ $7967-2$
－ 7 －${ }^{\text {ata }}$	－． 72.47 －	－5920－3	－－5617－2	－．6327－2
－ $0051-2$		－555\％－2	－532จ－3	－+ 5117－2
－4002－2	－4710－2	－－4532－2	－ 4352 s －	－$-4187-2$
－403，	－З3ss	－ 374802	－ $3002-z$	－ $3479-2$
－．3352－3	－3ミ3゙－2	－${ }^{-3120-2}$	－-3017 －	－${ }^{-3919-2}$
－2382－3	－ごさワ－	－3n39－を		－24\％

Table 4－5．CARCUP Program for Mutual Inductance of XMTR／RCVR Loops， and Sample Run

Table 4－5．（Continued）
．RUN CARCUP．SAY

TO FIND THE AFTUFL GUTPUT VOLTS，MULTIFL＇THE DATA BY THE gOLLDHIHG
 WHERE

NBL $=$ KIMEER OF TURNS ON THE BURIED LIGP
NR \equiv NUMBER IF TURAS DN
LANE WIDTH IS IN METERS
Wane $=24$ PI 4 F
$\mathrm{F}=$ 2\＆PANSMITJER FREOUENCY（HERTZ）
IP＝THE PERK TRANSMITTER CUPFENT
SIM（NT）＝YOU KNGU YHFT
$\mathrm{R}=$ THE PER TURN RESISTANCE aF TRE EUPIED LOCP

HDL Mank steps 30
ATMING 45
XTMAXA 55
YTMIN $=-05$
YTMIN $=-05$
YTMAX $=05$
$Y T M A K=0$
$Z T=.1$
XRMIN $=-.55$
XRMAX $=-.45$
YRMIN $=-05$
YRMAX $=05$
ZR＝． 1
$K=4$

119アー1	119 －1	1203－1	．1209－1	1208－1
121\％－1	12こう－1	123ワ－1	．1259－1	120ッ－1
128す－1	$130 \hat{\text {－}}$	132จ－1	．1348－1	1379－1
．1402－1	143จ－1	1472－1	－1508－1	－1542－1
．1592－1	－1630－1	163）－1	－1728－1	－1770－1
1812－1	1859－1	1239－1	．1912－1	．1912－1
．1892－1	OF SAIL			

what is its size and how high above the buried loop （in terms of XRMIN，XRMAX，YRMIN，YRMAX， ZR），（4）to specify the aspect ratio of the buried loop，K．

The CARCUP program calculates and prants out the mutual inductance for the number of data points specified．Each successive data point represents the mutual inductance of the XMTR／RCVR through the buried loop by moving along the positive Y－ dixection（along the roadway lane）by $1 / 10$ of the XMTR Iength．The results are in units of relative mutual inductance and to get real answers，answer ＂yes＂when the program asks if you want more de－ tailed information．

2．Method of computing．The inputs to the program（XMAX，YMIN，etc．）describe the area swept out by the motion of the pickup loop（s）．The program calculates the mutual inductance between the entire buried loop and portions of the swept－out area using elements of area $1 / 10$ the pickup loop width by $1 / 10$ the pickup loop length．

$$
\begin{aligned}
& \Delta X=(X M A X-X M I N) / 10 \\
& \Delta Y=(Y M A X-X M I N) / 10
\end{aligned}
$$

The swept－out area is divided into portions having dimensions $\triangle Y$ by（XMAX－XMIN）．There are（ $10+$＂how many steps＂）portions．The mutual inductances are calculated and stored for those portions．

Summing the values of 10 successive portions yields the mutual inductance of the buried loop to one particular position of the pickup loop．

The CARCUP program sums the corresponding 10 successive portions of both XMTR and RCVR and multiplies them together to get the overall mutual inductances．There are two main subrou－ tine procedures used to calculate the mutual induc－ tances，BIZ and FLUXCUP．With respect to the

BIZ subroutine，the flux density is calculated for that corner of the area XA by YA which is closest to the point（XMIN，YMIN）．With respect to the FLUXCUP subroutine，FLUXCUP in the LOOPS program differs from FLUXCUP in the CARCUP program，the difference being in form only for the purpose of minimizing data handling．

D．Optimum Relative Configuration of Three－ Loop AVM System

1．Buried loop interaction with adjacent coplanar loops．The results seem to favor loops having aspect ratios of ≥ 1 ．However，the practical aspect of packing the buried loops as densely as possible is a primary consideration．At any rate， If K is greater than 0.025 ，a center－to－center spacing of the buried loops of greater than $4 \times \mathrm{K}$ （i．e．， 2 times the loop width along the lane）results in a coupling of less than 5% of the same loops superimposed．

2．XMTR and RCVR direct coupling．If it is presumed that the XMTR and RCVR loops＂ought to be the same，＂then the results seem to favor loops having aspect ratios ≥ 1 ．That is，the loops should be rectangular and have their＂small ends＂pointed toward one another．The XMTR and RCVR on the vehicle are small compared to the buried loop． The choice of their aspect ratios has a limit to avoid extending beyond the buried loop．

At any height，sensors having more turns on smaller loops are as effective as ones with large loops having fewer turns．At any helght the coupling varies with later position，being highest near 0.8ℓ from center to end of the buried loop．The variation between these limits is about 10% ．

If a sensor loop is placed lowex than the optl－ mum height，it results in overcoupling and rela－ tively high noise signal，thus also reducing buried loop packing density．This is most pronounced for buried loop aspect ratios much greater than pickup loop size．XMTR and RCVR coils of duffering shapes will function and may permit three－loop systems whereby the smallest moving coil may be made the optimal for signal to＂nois e＂ ratio．

3．Expected real－life signal levels．The following configurations and conditions are as－ sumed：（1）Roadway with lane width $2 \ell=3$ meters， （2）buried loops with aspect ratio $\mathrm{K}=0.1$ and separated by $4 \times \mathrm{kx} \mathrm{\ell}$ ，（3）pickup loops（XMTR and RCVR）having sides $P=0.1 \ell$ ，height $Z=0.1 \ell$ ， and separated by ℓ ．（4）All loops have 10 turns each of \＃27 wire and resistivity of $1.36 \mathrm{ohm} /$ meter． （5）The transmitter is producing 100 kHz at 1 amp peak．（6）Self－inductance of buried loop 495 microhenrys．（7）Mutual inductance of two buried loops 20.25 microhenrys．（8）XMTR／RCVR self－ inductance 7.87 microhenrys each．（9）Direct mutual inductance of XMTR and RCVR 0.0045 microhenry．（10）Three－loop system maximum mutual inductance 1.24 microhenrys．（11）Voltage signals produced by XMTR／RCVR direct coupling 2.8 mV cos wt ．（12）Voltage signals produced by three－loop system－0．78 mV sin wt．
4. Comments. The direct coupling of the ransmitter and recelver produces a voltage at the recenver of contant peak amplitude, having the transmitter frequency and shifted in phase by
+90 degrees. The three-loop system response envelope is a function of the vehicle speed. The output frequency is shifted 180 degrees with respect to the input current frequency.

REFERENCE

1. Zottarelli, L. J., "Burried Loops," JPL Interoffice Memo addressed to G. R. Hansen, 1974.

[^0]: ＊Costs as of 1974.

[^1]: * Costs as of 1974.

[^2]: *Costs as of 1974.

[^3]: *U.S. Patent 3,889, 264.

[^4]: *U.S. Patent 3,772, 691, "Automatic Vehicle Location System,"

