NASA TECHNICAL MEMORANDUM

NASA TM 73,238

(NASA-TM-X-73238) LASEF VELOCIMPTER N77-25088 HEASUREMENTS OF THU-ELADED HELICOPTER ROTOR FLOW FIELDS (NASA) 158 p HC A05/ME R01 CSCL 01A Toolas 33/02 30335

NASA TM 73,238

LASER VELOCIMETER MEASUREMENTS OF TWO-BLADED

HELICOPTER ROTOR FLOW FIELDS

James C. Biggers, Albert Lee, Kenneth L. Orloff Ames Research Center Moffett Field, Calif. 94035

and

Opal J. Lemmer Ames Directorate, USAAMRDL Ames Research Center Moffett Field, Calif. 94035

May 1977

Instant Properties Concernment Accession No 3 Recpent's Citaing No * Trite and Submit 2 Government Accession No 3 Recpent's Citaing No * Trite and Submit 5 Report Date 5 Report Date * Trite and Submit 5 Report Date 6 Performing Organization Report No * Attentit James C. Biggets, * Albert Lec,** 8 Performing Organization Report No * Attentit James C. Biggets,* Albert Lec,** 8 Performing Organization Report No * Attentit James Directorate, USAMRD. 10 Work Unit No * Ames Directorate, USAMRD. 11 Contract or Grant No 13 Type of Report and Period Concert * Supporting Agent Amer and Addres 7 Social-21 14 Support Accession * Supporting Agent Amer and Addres 13 Type of Report and Period Concert * Supporting Agent Amer and Addres 13 Type of Report and Period Concert * Supporting Agent Addres 13 Type of Report and Period Concert * Supporting Agent Addres 14 Supporting Agents and Period Concert * Supporting Agent Addres 15 Supporting Agent and Period Concert * Supporting Agent and Period Concert Technical Memoral Addres 14 Suporting Agency Code * Addres							
	1 Report No NASA TM 73,238	2 Government Access	sion No	3 Recipient's Catalog No			
LASER VELOCIDETER MEASUREMENTS OF TWO-BLADED 6 HELICOPTER ROTOR FLOW FIELDS 6 7 Authoriti 3ames C. Biggers,* Albert Lee,** 8 Kenneth L. Orloff,* and Opal J. Lemmer* 10 9 Performing Organization Report No. *Ames Research Center, NASA and 505-10-21 *Ames Research Center, MSA and 11 *Ames Research Center, Moffett Field, CA 94035 13 12 Spectromy Agency Nume and Address National Aeronautics and Space Administration Technical Memorandum *Assent Superentary Notes **Beam Engineering Co., Inc. Superentary Notes **Beam Engineering Co., Inc. Superentary Agency Cose *Based This report presents data from a wind tunnel investigation of the flow fields around helicopter rotors. A 2-component laser velocimeter was used to measure the velocity fields of two 2.1 m diameter rotors. A minicomputer-based online data system is described which monitored, reduced, and plotted the results. Tip vortices constitute the primary disturbances in the flow field, but present theories do nci predict vortex positions and velocity distributions with sufficient accuracy. Therefore, the neasurements in this experiment were concentrated near the vortices, and data were obtained from which vortices and their interactions with a following blace may be atudied. The results presented herein provide a	4 Title and Subtitle			5 Report Date			
HELICOPTER ROTOR FLOW FIELDS 6 Performing Organization Gode 7 Authorid James C. Biggers,* Albert Lee,** Kenneth L. Orloff,* and Opal J. Lemmer [†] 8 Performing Organization Report No. A-7017 * Kenneth L. Orloff,* and Opal J. Lemmer [†] 10 Work Nor No. * Ames Research Center, NASA and Ames Research Center, Moffett Field, CA 94035 11 Contract or Grant No. 12 Sourceman Agency Name and Address 505-10-21 National Aeronautics and Space Administration Washington, D.C. 20546 13 Type of Report and Period Covered Technical Memorandum 15 Supprementary Notes **Beam Engineering Co., Inc. Sumnyvale, Calif, 94086 16 Abrest This report presents data from a wind tunnel investigation of the flow fields around he!icopter rotors. A 2-component laser velocimeter was used to measure the velocity fields of two C1. In diameter rotors, A minicomputer- based online data system is described which monitored, reduced, and plotted the results. Tip vortices constitute the primary disturbances in the flow field, but present theories do nci predict vortex positions and velocity distributions with sufficient accuracy. Therefore, the measurements in this experiment were concentrated near the vortices, and data were obtained from which vortices and their interactions with a following blade may be studied. The results presented herein provide a base for developing improved rotor wake theories. 17 Ker Words (Suggerint's Actordynamics Laser Velocimet. 20 Seconty Caudi (of this page) 21 Nord Page. 22 Perimits// 157 Sb.25	LASER VELOCIMETER MEASURI	EMENTS OF TWO	-BLADED				
* Autorio B Performing Dignization Report No James C. Biggers,* Albert Lee,** A-7017 Kenneth L. Orloff,* and Opal J. Lemmer [†] 10 Work town No 9 Performing Organization Name and Addres 505-10-21 *Ames Research Center, NASA and 11 Contract of Grant No Ames Directorate, USANRDL 11 Contract of Grant No Marker Name and Addres 505-10-21 12 Supporting Agency Name and Addres 13 Type of Report and Period Covered 12 Supporting Agency Name and Address Technical Memorandum National Aeronautics and Space Administration 14 Supporting Agency Code 15 Supplementary Notes ***Beam Engineering Co., Inc. **Munyvale, Calif, 94086 14 Supporting Agency Code 16 Abstract 14 Supporting Agency Code 17 This report presents data from a wind tunnel investigation of the flow fields around he! Gopter rotors, A 2-component laser velocimeter was used 16 Abstract 10 period address of the concentrate of an evolicity disturbances in the flow field, but present theories do nci predict vortex positions and velocity distributions with sufficient accuracy. Therefore, the measurements in this which vortices and their interactions with a following blade may be studied. </td <td>HELICOPTER ROTOR FLOW FIE</td> <td>ELDS</td> <td></td> <td>6 Performing Organiz</td> <th>ration Code</th>	HELICOPTER ROTOR FLOW FIE	ELDS		6 Performing Organiz	ration Code		
James C. Biggers,* Albert Lee,** A-7017 Kenneth L. Orloff,* and Opal J. Lemmer [†] 10 Work Um No 9 Meterming Organization Name and Addets 505-10-21 *Ames Research Center, NASA and 11 Contract or Grant No *Ames Research Center, Moffett Field, CA 94035 13 Type of Report and Period Covered *12 Supporting Agency Name and Addies Technical Memorrandum National Aeronautics and Space Administration Technical Memorrandum *Absent Engineering Co., Inc. Supportentury Note **Beam Infigure Presents data from a wind tunnel investigation of the flow fields around helicopter rotors. A 2-component laser velocimeter was used to measure the velocity fields of two 2.1 m diameter rotors. A minicomputer-based online data system is described which monitored, reduced, and plotted the results. Tip vortices constitute the primary disturbances in this experiment were concentrated near the vortices, and data were obtained from which vortices and their interactions with a following blade may be studied. The results presented herein provide a base for developing improved rotor wake theories. 12 Key Work (Suggested by Authoris) 14 Deucoutor Sutement 12 Key Work (Sugg	7 Author(s)			8 Performing Organiz	ation Report No		
Kenneth L. Orloff,* and Opal J. LemmerT 10 Work Unit No 9 Prioring Digmitation Name and Addres 505-10-21 *Ames Research Center, NASA and 11 Contract of Grain No 17 Semeon Agency Name and Address 13 Type of Report and Period Concert 18 Semeon Address 13 Type of Report and Period Concert 19 Semeon Agency Name and Address 14 Suprementation 19 Semeon Agency Name and Address 14 Suprementation 19 Semeon Agency Name and Address 14 Suprementation 10 Washington, D.C. 20546 14 Suprementation 15 Suprementary Notes **Beam Engineering Co., Inc. 16 Address 15 Suprementary Notes **Beam Engineering Co., Inc. 10 Mameter rotors. A 2-component laser velocitmeter was used 16 Address 15 Suprementary Notes **Beam Engineering the velocity fields of two 2.1 m diameter rotors. A minicomputer- 16 Address 15 up orticles constitute the primary disturbances in the flow 17 New Words (Sugneted by Auddreff) 18 Operbalton Statement 18 Operbalton Statement Unlamited 19 Kew Words (Sugneted by Auddreff) 18 Operbalton Statement 19 Kew Words (Sugneted by Auddreff) 18 Operbalton Statement 19 Helicopter Rotor Flow Field </td <td>James C. Biggers,* Alber</td> <td>t Lee,**</td> <td></td> <td>A-7017</td> <th></th>	James C. Biggers,* Alber	t Lee,**		A-7017			
9 Petromag Organization Name and Address 505-10-21 *Ames Research Center, NASA and tAmes Directorate, USAMRDL Ames Research Center, Moffett Field, CA 94035 13 Type of Report and Period Covered Technical Memorandum 12 Someoring Agency Name and Address 13 Type of Report and Period Covered Technical Memorandum 13 Supportention of the flow of the spectrum of	Kenneth L. Orloff,* and	Opal J. Lemme	r [†]	10 Work Unit No			
*Ames Research Center, NASA and	9 Performing Organization Name and Address		1	505-10-21			
14 Ames Directorate, USAANRDL Ames Research Center, Moffett Field, CA 94035 13 Type of Report and Pende Coursed To Support Aure and Address 12 Support Report and Pende Coursed Washington, p.C. 20546 13 Type of Report and Pende Coursed Technical Memorandum 14 Support Report and Pende Coursed Washington, p.C. 20546 14 Support Report and Pende Coursed Technical Memorandum 15 Supporterentary Note ***Beam Engineering Co., Inc. Sumnyvale, Calif. 94086 14 Support Address 16 Abmaxt This report presents data from a wind tunnel investigation of the flow fields around helicopter rotors. A 2-component laser velocimeter was used to measure the velocity fields of two 2.1 m diameter rotors. A minicomputer- based online data system is described which monitored, reduced, and plotted the results. Tip vortices constitute the primary disturbances in the flow field, but present theories do nci predict vortex positions and velocity distributions with sufficient accuracy. Therefore, the measurements in this experiment were concentrated near the vortices, and data were obtained from which vortices and their interactions with a following blade may be studied. The results presented herein provide a base for developing improved rotor wake theories. 17 Key Wordt (Support by Author(M) Helicopter Rotor Flow Field Helicopter Inflow Helicopter Inflow Helicopter Cor Aerodynamics Laser Velocimet. 18 Develution Statement Unclassified 19 Secury Casel forther port 20 Secury Casel for the page 21 No of Pages 22 Perc [*]	*Ames Research Center, NAS	SA and	F	11 Contract or Grant	No		
Ames Research Center, Moffett Field, CA 94035 13 Type of Report and Period Covered Technical Memorandum 12 Sourcemark Agency Name and Address 13 Type of Report and Period Covered Technical Memorandum National Aeronautics and Space Administration Washingto., D.C. 20546 14 Summoring Agency Kame and Address 15 Supplementary Notes ***Beam Engineering Co., Inc. Sunnyvale, Calif. 94086 16 Abwest This report presents data from a wind tunnel investigation of the flow fields around he?icopter rotors. A 2-component laser velocimeter was used to measure the velocity fields of two 2.1 m diameter rotors. A minicomputer- based online data system is described which monitored, reduced, and plotted the results. Tip vortices constitute the primary disturbances in the flow field, but present theories do nci predict vortex positions and velocity distributions with sufficient accuracy. Therefore, the measurements in this experiment were concentrated near the vortices, and data were obtained from which vortices and their interactions with a following blade may be studied. The results presented herein provide a base for developing improved rotor wake theories. 17 Key Words (Supplet by Author(s)) Helicopter Kotor Flow Field Helicopter Inflow Helicopter Inflow Helicopter Inflow Helicopter Kotor Aerodynamics Laser Velocimet. 18 Desclution Statement Unclassified 19 Security Casel forther port 20 Security Casel for this page 21 No of Pages 22 Port 19 Security Casel forther port 20 Security Casel for this page 21 No of Pages 22 Port 19 Security Casel forther port <td>+Ames Directorate, USAAMRI</td> <td>DL</td> <td></td> <td></td> <th></th>	+Ames Directorate, USAAMRI	DL					
12 Spensoring Agency Name and Address Technical Memorandum National Aeronautics and Space Administration Technical Memorandum 14 Support of the space Administration 14 Support Agency Code 15 Support of the space Administration 14 Support Agency Code 16 Support Agency Notes ***Beam Engineering Co., Inc. Sunnyvale, Calif. 94086 16 Abstract This report presents data from a wind tunnel investigation of the flow fields around helicopter rotors. A 2-component laser velocimeter was used to measure the velocity fields of two 2.1 m diameter rotors. A minicomputer- based online data system is described which monitored, reduced, and plotted the results. Tip vortices constitute the primary disturbances in the flow field, but present theories do nci predict vortex positions and velocity distributions with sufficient accuracy. Therefore, the measurements in this experiment were concentrated near the vortices, and data were obtained from which vortices and their interactions with a following blade may be studied. The results presented herein provide a base for developing improved rotor wake theories. 17 Key Words (Support by Author(4)) Helicopter Rotor Flow Field Helicopter Rotor Aerodynamics Laser Velocimetc. 18 Description Statement Unclassified 19 Security Casel (on the result) 20 Security Casel (of the page) 21 No of Pages 22 Prof. 19 Security Casel (on the result) 20 Security Casel (of the page) 21 No of Pages 22 Prof.	Ames Research Center, Mo	ffett Field,	CA 94035	13 Type of Report an	d Period Covered		
National Aeronautics and Space Administration 14 Summaring Agency Code Washingto., p.C. 20546 14 Summaring Agency Code 15 Suppremnary Notes **Beam Engineering Co., Inc. Sunnyvale, Calif. 94086 16 Abstrat This report presents data from a wind tunnel investigation of the flow fields around he!icopter rotors. A 2-component laser velocimeter was used to measure the velocity fields of two 2.1 m diameter rotors. A minicomputer- based online data system is described which monitored, reduced, and plotted the results. Thy vortices constitute the primary disturbances in the flow field, but present theories do nci predict vortex positions and velocity distributions with sufficient accuracy. Therefore, the measurements in this experiment were concentrated near the vortices, and data were obtained from which vortices and their interactions with a following blade may be studied. The results presented herein provide a base for developing improved rotor wake theories. 17 Key Words (Support by Author(s)) Helicopter Rotor Flow Field Helicopter Rotor Flow Field Helicopter Rotor Aerodynamics Laser Velocimet 18 Distribution Statement Unimited STAR Category 02 19 Security Cash interact 20 Security Cash in the page Unclassified 21 Nn of Pages 157 22 Prime	12 Sponsoring Agency Name and Address			Technical Mo	emerandum		
Washingto., D.C. 20546 15 Supplementary Notes 15 Supplementary Notes **Beam Engineering Co., Inc. Sunnyvale, Calif. 94086 16 Abuve 16 Abuve 16 Abuve 16 Abuve 16 Abuve 17 New Work (Supplet Abuve 18 Abuve 19 Abuve 19 Abuve 19 Abuve 19 Abuve 19 Abuve 19 Abuve 10 Abuve 10 Abuve 11 Abuve 12 Abuve 13 Distributions with sufficient accuracy. 14 Abuve 15 Provide Supplet Abuve 15 Abuve 16 Abuve 17 New Work (Supplet Abuve 18 Distribution Statement 19 Abuve 10 Abuve 11 New Work (Supplet Abuve 12 New Work (Supplet Abuve 13 Distribution Statement 14 Helicopter Rotor Flow Field 15 Helicopter Rotor Flow Field 16 Helicopter Rotor Aerodynamics 17 New Work (Supplet Abuve 18 Distribution Statement Unclassified 157	National Aeronautics and	Space Admini	stration		Code		
15 Supprementary Notes ***Beam Engineering Co., Inc. Sunnyvale, Calif. 94086 16 Abstract This report presents data from a wind tunnel investigation of the flow fields around helicopter rotors. A 2-component laser velocimeter was used to measure the velocity fields of two 2.1 m diameter rotors. A minicomputer- based online data system is described which monitored, reduced, and plotted the results. Tip vortices constitute the primary disturbances in the flow field, but present theories do nci predict vortex positions and velocity distributions with sufficient accuracy. Therefore, the measurements in this experiment were concentrated near the vortices, and data were obtained from which vortices and their interactions with a following blade may be studied. The results presented herein provide a base for developing improved rotor wake theories. 17 Kew Words (Suggested by Author(N)) Helicopter Rotor Flow Field Helicopter Inflow Helicopter Rotor Aerodynamics Laser Velocimett. 18 Dauctation Statement Unlimited STAR Category 02 19 Security Cassified 20 Security Cassified 21 No of Rops 157 22 Pric [*] Sb. 25	Washington, D.C. 20546	-		the oponsoring eigency			
**Beam Engineering Co., Inc. Sunnyvale, Calif. 94086 16 Abstract This report presents data from a wind tunnel investigation of the flow fields around helicopter rotors. A 2-component laser velocimeter was used to measure the velocity fields of two 2.1 m diameter rotors. A minicomputer- based online data system is described which monitored, reduced, and plotted the results. Tip vortices constitute the primary disturbances in the flow field, but present theories do nci predict vortex positions and velocity distributions with sufficient accuracy. Therefore, the measurements in this experiment were concentrated near the vortices, and data were obtained from which vortices and their interactions with a following blade may be studied. The results presented herein provide a base for developing improved rotor wake theories. 1/ Key Words (Suggested by Author(S)) Helicopter Rotor Flow Field Helicopter Inflow Helicopter Inflow Helicopter Inflow Helicopter Cor Aerodynamics Laser Velocimete. 18 Dauthoutes Statement Unlimited STAR Category 02 19 Security Casual in the poet Unclassified 20 Security Classified 21 Nn of Pages 157 22 Prof.	15 Supplementary Notes		<u></u>				
Sunnyvale, Calif. 94086 16 Abstract This report presents data from a wind tunnel investigation of the flow fields around helicopter rotors. A 2-component laser velocimeter was used to measure the velocity fields of two 2.1 m diameter rotors. A minicomputer- based online data system is described which monitored, reduced, and plotted the results. Tip vortices constitute the primary disturbances in the flow field, but present theories do nci predict vortex positions and velocity distributions with sufficient accuracy. Therefore, the measurements in this experiment were concentrated near the vortices, and data were obtained from which vortices and their interactions with a following blade may be studied. The results presented herein provide a base for developing improved rotor wake theories. 12 Key Words (Suggested by Author(s)) Helicopter Rotor Flow Field Helicopter Rotor Flow Field Helicopter Rotor Flow Field Helicopter Rotor flow Laser Velocimet.* 18 Dauchuten Statement Unlimited STAR Category 02 19 Security Classified 20 Security Classified 21 No of Pages 22 Pric*	**Beam Engineering Co., In	nc.					
16 Abstract This report presents data from a wind tunnel investigation of the flow fields around helicopter rotors. A 2-component laser velocimeter was used to measure the velocity fields of two 2.1 m diameter rotors. A minicomputer- based online data system is described which monitored, reduced, and plotted the results. Tip vortices constitute the primary disturbances in the flow field, but present theories do nci predict vortex positions and velocity distributions with sufficient accuracy. Therefore, the measurements in this experiment were concentrated near the vortices, and data were obtained from which vortices and their interactions with a following blade may be studied. The results presented herein provide a base for developing improved rotor wake theories. 17 Kev Words (Suggested by Author(s)) Helicopter Rotor Flow Field Helicopter Inflow Helicopter Inflow Helicopter Rotor Aerodynamics Laser Velocimett. 18 Distribution Statement Unlimited STAR Category 02 19 Security Cased in the root Unclassified 20 Security Classified 21 No of Pages 22 Profestion	Sunnyvale, Calif. 94086						
This report presents data from a wind tunnel investigation of the flow fields around helicopter rotors. A 2-component laser velocimeter was used to measure the velocity fields of two 2.1 m diameter rotors. A minicomputer-based online data system is described which monitored, reduced, and plotted the results. Tip vortices constitute the primary disturbances in the flow field, but present theories do not predict vortex positions and velocity distributions with sufficient accuracy. Therefore, the measurements in this experiment were concentrated near the vortices, and data were obtained from which vortices and their interactions with a following blade may be studied. The results presented herein provide a base for developing improved rotor wake theories. 1/ Key Words (Suggested by Author(s)) 18 Distribution Statement 1/ Key Words (Suggested by Author(s)) 18 Distribution Statement 1/ Key Words (Suggested by Author(s)) 18 Distribution Statement 1/ Key Words (Suggested by Author(s)) 18 Distribution Statement 1/ Helicopter Rotor Flow Field Unlimited 1/ Helicopter Inflow 18 Distribution Statement 1/ Helicopter Rotor Flow Field Unlimited 1/ Helicopter Inflow STAR Category 02 1/ Helicopter Classified 157	16 Abstract						
fields around helicopter rotors. A 2-component laser velocimeter was used to measure the velocity fields of two 2.1 m diameter rotors. A minicomputer-based online data system is described which monifored, reduced, and plotted the results. Tip vortices constitute the primary disturbances in the flow field, but present theories do not predict vortex positions and velocity distributions with sufficient accuracy. Therefore, the measurements in this experiment were concentrated near the vortices, and data were obtained from which vortices and their interactions with a following blade may be studied. The results presented herein provide a base for developing improved rotor wake theories. 17 Key Words (Suggested by Author(SI) 18 Distribution Statement Helicopter Rotor Flow Field Unlimited Helicopter Inflow STAR Category 02 19 Security Cased for this paget 21 Nn of Pages 22 Prest 19 Security Cased for this paget 157 \$6.25	This report presents data	a from a wind	tunnel investi	gation of the	e flow		
17 Key Words (Suggested by Author(s)) 18 Discribution Statement 19 Security Classif (of this page) 19 Security Classified	fields around helicopter	rotors. A 2	-component lase	r velocimeter	was used		
based online data system is described which monitored, reduced, and plotted the results. Tip vortices constitute the primary disturbances in the flow field, but present theories do not predict vortex positions and velocity distributions with sufficient accuracy. Therefore, the measurements in this experiment were concentrated near the vortices, and data were obtained from which vortices and their interactions with a following blade may be studied. The results presented herein provide a base for developing improved rotor wake theories. 17 Key Words (Suggested by Author(s)) 18 Distribution Statement 18 Heicopter Rotor Flow Field Unlimited Helicopter Inflow 18 Distribution Statement Unlimited STAR Category 02 19 Security Classified 20 Security Classified 21 No of Pages 22 Price*	to measure the velocity i	fields of two	2.1 m diameter	rotors. Ar	ninicomputer-		
17 Key Words (Suggested by Author(s)) 17 Key Words (Suggested by Author(s)) 18 Distribution Statement 19 Security Cassified 10 Linc Lassified 11 Linc Lassified 12 No of Paget 13 Security Cassified 14 Unclassified	based online data system	is described	which monitore	d, reduced, a	and plotted		
field, but present theories do not predict vortex positions and velocity distributions with sufficient accuracy. Therefore, the measurements in this experiment were concentrated near the vortices, and data were obtained from which vortices and their interactions with a following blade may be studied. The results presented herein provide a base for developing improved rotor wake theories. 17 Key Words (Suggested by Author(s)) 18 Distribution Statement 18 Listribution Statement Unlimited Helicopter Rotor Flow Field Unlimited Helicopter Rotor Aerodynamics STAR Category 02 19 Security Cassif for this page! 21 No of Pages 22 Price* Unclassified Unclassified 157 \$6.25	the results. Tip vortice	es constitute	the primary di	sturbances in	n the flow		
distributions with sufficient accuracy. Therefore, the measurements in this experiment were concentrated near the vortices, and data were obtained from which vortices and their interactions with a following blade may be studied. The results presented herein provide a base for developing improved rotor wake theories. 17 Key Words (Suggested by Author(s)) 18 Distribution Statement 18 Distribution Statement Unlimited 19 Security Classified 20 Security Classified 21 No of Pages 22 Price* 19 Security Classified Unclassified 157 \$6.25	field, but present theor:	ies do nei pr	edict vortex po	sitions and v	velocity		
experiment were concentrated near the vortices, and data were obtained from which vortices and their interactions with a following blade may be studied. The results presented herein provide a base for developing improved rotor wake theories. 17 Key Words (Suggested by Author(st) 18 Distribution Statement 17 Key Words (Suggested by Author(st)) 18 Distribution Statement 18 Helicopter Rotor Flow Field Unlimited Helicopter Inflow STAR Category 02 19 Security Classified 20 Security Classified 19 Security Classified 157	distributions with suffic	cient accurac	y. Therefore,	the measureme	ents in this		
which vortices and their interactions with a following blade may be studied. The results presented herein provide a base for developing improved rotor wake theories. 17 Key Words (Suggested by Author(s)) 18 Distribution Statement Helicopter Rotor Flow Field Helicopter Inflow Helicopter Rotor Aerodynamics Laser Velocimete.* 19 Security Classified 19 Security Classified 157 S6.25	experiment were concentra	ited near the	vortices, and	data were obt	ained from		
The results presented herein provide a base for developing improved rotor wake theories. 17 Key Words (Suggested by Author(s)) 18 Distribution Statement Helicopter Rotor Flow Field Helicopter Inflow Helicopter Rotor Aerodynamics Laser Velocimete.* 19 Security Classif (of this page) 11 No. of Pages 12 No. of Pages 13 Security Classif (of this page) 14 No. of Pages 157	which vortices and their	interactions	with a followi	ng blade may	be studied.		
17 Key Words (Suggested by Author(s)) 18 Distribution Statement 17 Key Words (Suggested by Author(s)) 18 Distribution Statement 18 Helicopter Rotor Flow Field Unlimited 19 Security Classified STAR Category 02 19 Security Classified 20 Security Classified 21 No of Pages 22 Price* 19 Inclassified Unclassified 157 \$6.25	The results presented her	rein provide	a base for deve	loping improv	ved rotor		
17 Key Words (Suggested by Author(s)) 18 Distribution Statement Helicopter Rotor Flow Field Unlimited Helicopter Inflow STAR Category 02 Helicopter Rotor Aerodynamics STAR Category 02 Laser Velocimeter 20 Security Classif (of this page) 21 No. of Pages 22 Price* Unclassified Unclassified 157 \$6.25	wake theories.						
17 Key Words (Suggested by Author(s)) 18 Distribution Statement Helicopter Rotor Flow Field Unlimited Helicopter Inflow STAR Category 02 Helicopter Rotor Aerodynamics STAR Category 02 Laser Velocimete 20 Security Classif (of this page) 21 No. of Pages 22 Price* Inclassified Unclassified 157 \$6.25							
17 Key Words (Suggested by Author(s)) 18 Distribution Statement Helicopter Rotor Flow Field Unlimited Helicopter Inflow STAR Category 02 Helicopter Rotor Aerodynamics STAR Category 02 Laser Velocimete 20 Security Classif (of this page) 21 No. of Pages 22 Prife* Unclassified Unclassified 157 \$6.25							
17 Key Words (Suggested by Author(s)) 18 Distribution Statement Helicopter Rotor Flow Field Unlimited Helicopter Inflow STAR Category 02 Laser Velocimete.* 20 Security Classif (of this page) 21 No of Pages 22 Price* Unclassified Unclassified 157 \$6.25							
17 Key Words (Suggested by Author(s)) 18 Distribution Statement Helicopter Rotor Flow Field Unlimited Helicopter Inflow STAR Category 02 Helicopter Rotor Aerodynamics STAR Category 02 Laser Velocimete.* 20 Security Classif (of this page) 21 No of Pages 22 Price* Inclassified Unclassified 157 \$6.25							
17 Key Words (Suggested by Author(s)) 18 Distribution Statement Helicopter Rotor Flow Field Unlimited Helicopter Inflow STAR Category 02 Helicopter Rotor Aerodynamics STAR Category 02 Laser Velocimete.* 20 Security Classif (of this page) 21 No of Pages 22 Price* Inclassified Unclassified 157 \$6.25							
17 Key Words (Suggested by Author(s)) 18 Distribution Statement Helicopter Rotor Flow Field Unlimited Helicopter Inflow STAR Category 02 Helicopter Rotor Aerodynamics STAR Category 02 Laser Velocimete.: 20 Security Classif (of this page) 21 No. of Pages 22 Price* Inclassified Unclassified 157 \$6.25							
17 Key Words (Suggested by Author(s)) 18 Distribution Statement Helicopter Rotor Flow Field Unlimited Helicopter Inflow STAR Category 02 Helicopter Rotor Aerodynamics STAR Category 02 Laser Velocimete. 20 Security Classif (of this page) 21 No. of Pages 22 Price* 19 Security Classif (of this r port) 20 Security Classif (of this page) 21 No. of Pages 22 Price* Unclassified Unclassified 157 \$6.25							
17 Key Words (Suggested by Author(s)) 18 Distribution Statement Helicopter Rotor Flow Field Unlimited Helicopter Inflow STAR Category 02 Helicopter Rotor Aerodynamics STAR Category 02 Laser Velocimete.* 20 Security Classif (of this page) 21 No of Pages 22 Price* Inclassified Unclassified 157 \$6.25							
17 Key Words (Suggested by Author(s)) 18 Distribution Statement Helicopter Rotor Flow Field Unlimited Helicopter Inflow STAR Category 02 Helicopter Rotor Aerodynamics STAR Category 02 Laser Velocimete.* 20 Security Classif (of this page) 21 No of Pages 22 Price* Inclassified Unclassified 157 \$6.25							
Helicopter Rotor Flow Field Unlimited Helicopter Inflow Unlimited Helicopter Rotor Aerodynamics STAR Category 02 Laser Velocimeter 20 Security Classif (of this page) 21 No. of Pages 22 Price* Inclassified Unclassified 157 \$6.25	17 Key Words (Suggested by Author(s))		18 Distribution Statement				
Helicopter Inflow Star Helicopter Inflow STAR Category 02 Helicopter Rotor Aerodynamics STAR Category 02 Laser Velocimete: 20 Security Classif (of this page) 19 Security Classif (of this r port) 20 Security Classif (of this page) 19 Inclassified Unclassified	Heliconter Rotor Flow Fi	ble	Unlimi+ed				
Helicopter Rotor Aerodynamics STAR Category 02 Laser Velocimete 19 Security Classif (of this page) 21 No of Pages 22 Price* Unclassified Unclassified 157 \$6.25	Helicopter Inflow	- 1 / i	Unitiated				
Laser Velocimete. Dirac Gategory 02 19 Security Classif (of this r port) 20 Security Classif (of this page) 21 No of Pages 22 Price* Unclassified Unclassified 157 \$6.25	Helicopter Bakar Aerodyn	amics	STAR Categor	v 02			
19 Security Classif (of this r port) 20 Security Classif (of this page) 21 No of Pages 22 Price* Unclassified Unclassified 157 \$6.25	Laser Velocimete	STAN GALEGOL	y V4				
Unclassified Unclassified 157 \$6.25	19 Security Classif (nt this r port)	20 Security Classif Ic	l of this page)	21 No of Pages	22 Price*		
I	Unclassified	Unclassif	ied	157	\$6.25		

For sale by the National Technical Information Service Springfield Virginia 22161

LASER VELOCIMETER MEASUREMENTS OF TWO-BLADED HELICOPTER

ROTOR FLOW FIELDS

James C. Biggers, Albert Lee,* Kenneth L. Orloff Ames Research Center

> Opal J. Lemmer Ames Directorate, USAAMRDL

SUMMARY

This report presents data from a wind tunnel investigation of the flow fields around helicopter rotors. A 2-component laser velocimeter was used to measure the velocity fields of two 2.1 m diameter rotors. A minicomputer-based online data system is described which monitored, reduced, and plotted the results. Tip vortices constitute the primary disturbances in the flow field, but present theories do not predict vortex positions and velocity distributions with sufficient accuracy. Therefore, the measurements in this experiment were concentrated near the vortices, and data were obtained from which vortices and their interactions with a following blade may be studied. The results presented herein provide a base for developing improved rotor wake theories.

^{*}Beam Engineering Co., Inc., Sunnyvale, Calif. 94086

LIST OF SYMBOLS

a 0	blade precone angle
A ₁ s	lateral cyclic pitch .
^ຍ ່ໄ s	longitudinal flapping angle relative to shaft
^B 1 _s	longitudinal cyclic pitch
Ь	number of blades
^b 1 _s	lateral flapping angle relative to shaft
c	blade chord
C _{L_R} /σ	rotor lift coefficient, LIFT/ $\rho(\Omega R)^2 bcR$
Mt	rotational tip Mach number
N	rotor rotational speed, rpm
q	tunnel dynamic pressure, $1/2\rho v^2$
R	rotor radius
ΩR	tip speed
U	streamwise velocity component normalized with tip speed, positive downstream
v	free-stream velocity
V/ΩR	tip speed ratio
W	vertical velocity component normalized with tip speed, positive upward
X	distance downstream from hub center
Y	distance toward advancing side from hub center

Z	distance above hub center
a s	shaft tilt from vertical, positive for top aft
^a TPP	tip path plane angle-of-attack, positive leading edge up
^θ 0.75	collective pitch angle at 0.75R radial station
θ	blade twist, from hub center to tip
ρ	air density
σ	rotor solidity, bc/IR
ψ	rotor azimuth
Ω	rotor rotational speed, Rad/sec

INTRODUCTION

Previous investigations of helicopter flow fields using a laser velocimeter (LV) have been reported in references 1-4. This new device offers the opportunity to greatly improve knowledge of the complicated flow fields of helicopter rotors. References 1-3 reported methods of application for the LV and data acquisition and analysis techniques being developed. Reference 4 demonstrated that the LV may be used to deduce the lift loading along a rotor blade. It also showed the ability of the LV to measure the detailed velocity structure of model rotor tip vortices.

The blade tip vortices constitute the primary disturbances in the rotor wake, and contribute significantly to the dynamic loads and acoustic characteristics of the helicopter. Various sophisticated theories have been developed to calculate the velocities in the wake, the vortex positions, and the resulting dynamic loads. These have been compared to measured loads, but it is not known whether the discrepancies are due to nonlinear and 3-dimensional effects or to inaccuracies in the predicted vortex characteristics. It is, therefore, desirable to obtain accurate measurements of the rotor wake, the vortex positions, and the vortex characteristics. The present investigation was undertaken to begin to fulfill these requirements. A laser velocimeter was used because of its ability to make accurate, nonintrusive flowfield measurements.

A new data system was developed, based on the requirements for higher speed data acquisition with online processing and plotting, as outlined in reference 4. It was also felt that a system based on a minicomputer could operate interactively with the experimenter to provide monitoring and control of the investigation. The software and new hardware to perform these functions is described herein.

The earlier experiments (refs. 3 and 4) and part of the present one used zero-twist blades. However, blade twist has a significant effect on blade loading, and hence on the tip vortices. Therefore, the present investigation also utilized blades having about 11 deg of negative linear twist. These blades are more representative of current helicopters, and these results should then be more useful to the industry.

LASER VELOCIMETER (LV) AND SIGNAL PROCESSING

The LV used in this investigation is the same instrument as is described in references 3 and 4, but with certain improvements. An acousto-optic modulator (Bragg cell) has been incorporated into the channel of the velocimeter which senses vertical velocity in the wind tunnel. The Bragg cell was inserted into the optical path of one of the pair of beams. The cell causes the frequency of the output beam to be shifted by the magnitude of the acoustic frequency used to excite the cell, in this case, 40 MHz. Then, where the pair of beams cross, in the tunnel at the focal volume, the backscattered light is shifted by the same frequency. This means that with zero vertical velocity in the wind tunnel, the output from the "vertical" photomultiplier is 40 MHz. This provides for directional sensitivity and a very accurate measurement of even a zero value for this velocity component. The measured velocity components (streamwise and vertical) remain uncoupled and rotation of the LV about its optical axis to avoid directional ambiguity is not required as in the previous investigations.

Improved counter-type processing electronics have now been used to handle the LV signals. These new units incorporate a multi-level detection concept which checks the quality and shape of each burst signal (in addition to a periodicity check) before validation and transfer of the data. This feature has greatly improved the data processing rate and nearly eliminated the possibility of processing spurious noise signals.

Another significant improvement in this investigation has been the incorporation of a high-speed minicomputer with the peripherals required for compatibility with the LV signal processors and other electronics. The digital outputs of the counter type processors are now accepted on a non-multiplexed basis which noticably reduces the time required to collect any given number of velocity samples. In addition, the computer system is capable of accepting a number of analog inputs which are digitized in a software-specified sequence. In this experiment, the X, Y, and Z locations of the LV focal volume were analog inputs as well as the tunnel dynamic pressure and rotor RPM. The computer was instructed to test the q and RPM while acquiring LV data to insure the correct flapping position of the rotor blade during the "data window." If these values were found to be outside of prescribed limits, then the LV data acquisition was inhibited and a CRT terminal message was displayed to the operator until the values returned within these limits. This feature greatly reduced scatter in the data due to inconsistent blade flapping position. In all, the data acquisition time in this latest series of experiments has been reduced by nearly one order of magnitude as compared to the time required for the investigation reported in reference 4.

DATA ACQUISITION, REDUCTION, AND PRESENTATION

A PDP 11/05 minicomputer with four floppy disk drives and a Tektronix 4014-1 CRT terminal with a hard copy unit were used in this investigation. A block diagram of the data system is shown on Figure 1. It was possible to store all of the data from this test on one floppy disk.

The software program used to acquire and process the incoming information provided the experimenter with computer control over data gathering and display. The Tektronix Graphics Terminal software has several features that have made this possible. The "Write-Thru" mode enabled informative messages to appear on the CRT screen but not on the hard copy. This allowed the engineer to monitor tunnel conditions and LV focal point location from the CRT terminal.

Extensive use was also made of a software feature which allows the program to treat any keyboard character as a special interrupt input that does not appear on the CkT screen. The character is stored and, at the appropriate time, the program interrogates the system to see if any keyboard entries have been made, then takes the indicated action. These actions are shown schematically in Figure 2.

Data were displayed as plotted points on suitably labeled axes along with computed and costant test information (run number, computed advance ratio, tip speed, etc.). As each point was taken, the velocity components were plotted on the screen and the experimenter was asked, via a "write-thru" message on the CRT, if this was a point that was

reasonable or if for some reason the data should be acquired again to insure repeatability. If the response (a keyboard character) was positive ("Y"), it was written on the disk; if not ("N"), it was discarded. If the screen became cluttered with discarded points, the letter "R" entered at the keyboard caused the old plot to be erased and a new plot of only saved points'to be produced. Data gathering could then be continued. Also, if the axes scaling could not accommodate the data being acquired, the letter "A" entered at the keyboard caused all scaling information to be printed out with instructions on how to change it. Plots were then redrawn with the new scaling and all data acquired thus far were replotted. It was not necessary for the experimenter to halt the program in the middle of a run because the range which the data might span had been misjudged. Additionally, these data plots could be redrawn at a later time with the same program using any scaling desired.

Use of the minicomputer and the software described above allowed the experimenters to concentrate the measurements more in the area where the vortices were located. Large step sizes were used during the first part of a traverse. The approximate position of the vortex was then obvious from the online plot. Small step sizes were then used in the vicinity of the vortex to define its position and velocity structure. It is estimated that ten times as many measurements would have been required to obtain the same information on the vortices without the online features of this data system.

ROTORS AND OPERATING CONDITIONS

For this investigation, a two-bladed teetering rotor system was operated in the 7- by 10-Foot Wind Tunnel of the U. S. Army Air Mobility Research and Development Laboratory, Ames Directorate. Figure 3 is a photograph of the test setup, showing the laser beams being projected into the test section from the observation window on the left. The test setup is shown schematically in Figure 4, which also illustrates the coordinate system used.

Two sets of blades were used, one with zero twist blades and the other with -11 deg twist blades. Both sets are made of balsa wood covered with fiberglass and have aluminum spars. The same hub was used for both sets of blades. The blade properties and test conditions are tabulated below. No force measurements were made in the tests of zero twist blades. However, the same operating conditions were repeated for reference 5; and the rotor lift coefficient was, therefore, quoted in the table below.

Blade Properties	Zero-Twist Blades	-11 deg Twist Blades
Number of blades, b	2	2
Hub precone angle, a	1.5 deg	1.5 deg
Rotor radius, R	1.066 m	1.045 m
Blade chord, c	0.1080 m	0.0762 m
Rotor solidity, σ	0.0644	0.0464
Blade twist, θ_1	g b 0.0	-10.89 deg (nominal -11 deg)

Blade Properties	Zero-Twist Blades	<u>-11 deg Twist Blades</u>
Blade taper ratio	1.0	1.0
Airfoil	NACA 0012	NACA 0012
Flapping hinge undersling	0.0086R	0.0086R

Operating Conditions, Zero-Twist Blades

Advance ratio, $V/\Omega R$	0.18
Rotor rotational speed, N	600 rpm
Rotor tip speed, SR	67 m/sec
Rotational tip mach number, M _t	0.20
Shaft angle-of-attack, $\alpha_{_{S}}$	-10.0 deg
Collective pitch, $\theta_{.75}$	8.5 deg
Cyclic pitch relative to shart, A_{1s} , B_{1s}	0.0
Longitudinal flapping,	3.40 deg (ref. 4)
Lateral flapping, b ₁ s	1.55 deg (ref. 3)
Rotor lift coefficient, C _L /σ	0.074 (ref. 5)

Operating Conditions, -11 deg Twist Blades

Tip speed ratio, V/ΩR	0.137, 0.18
Rotor rotational speed, N	6 00, 1000 rpm
Rotor tip speed, SR	65.5 m/sec
	109 m/sec
Rotational tip ach number, M _t	0.19%, 0.326

Operating Conditions, -11 deg Twist Blades (cont)

shaft angle-of-attack, a _s	-0.5, -10.0 deg			
Collective pitch, θ .75	2.94 to 10.1 deg			
Cyclic pitch relative to shaft, a_1 , b_1 s s_1 s	0.0			
Longitudinal flapping, a _{ls}	4.5 deg \rightarrow +or $\alpha =$ -10 deg and *			
Lateral flapping b ₁ s	3.5 deg $\int_{$			
Lotor lift coefficient, C / σ L R	.0923			

* Flapping and force measurements are not available for the other conditions

RESULTS

Velocity distributions of the rotor flowfield at various operating conditions were measured by traversing the LV focal volume along the X, Y, or Z coordinates, and recording the vertical and streamwise velocity components. Each measurement was obtained by taking the mean of 20 samples, strobed when the rotor was at the specified azimuth. The measurements then represent a mean instantaneous velocity in this periodic flow environment. The velocities have been normalized by the rotor tip speed, and the positions have been normalized by blade chord. It should be noted that the two sets of blades have different aspect ratios, so the blade tips are at 9.88 chords for the zero-twist blades and at 13.71 chords for the twisted blades.

Data from the zero twist blades are presented in Figures 5-1 through 5-14. These data were all at the same operating conditions and strobing azimuth, as indicated in Table I and on the figures. Table I summarizes the data on the zero twist blades, and may be used as an index to the plots. Although not included here, the 300 rpm operating condition presented in references 3 and 4 was repeated to verify that the revised LV and data system produced the same results as the previous system. Excellent repeatibility was found.

The majority of the present investigation was devoted to the -11⁰ linear twist blades, and these results are presented in Figures 6 through 16. Many traverses were made, at strobing azimuths from 50.6

to 90 deg. At each azimuth, several traverses were made to locate the vortex, followed by one or more traverses through the core of the vortex. The plots are summarized in Table II, which may be used as an index. The traverses through the cores may be recognized by the higher peak velocities and the minimum variations in the streamwise velocity profiles. For example, Figures 7-12 through 7-15 show the results of a series of traverses strobing at an azimuth of 90 deg, giving the velocity distributions in the vicinity of the blade and the proceeding vortex. Figure 7-13 gives the velocity distribution through the vortex core is located at X = 0.76C, Y = 11.3C, and Z = -0.39C. The peak rotational velocity, one-half of the peak-to-peak velocity, is 0.12 times the tip speed.

The extent of these flow surveys was limited to the ranges given in the figures due to the limited size of the wind tunnel observation window. Also, only one side of the rotor disk could be surveyed due to the restricted operating range of the LV. For surveys of the retreating side of the rotor, a set of blades must be used which rotate opposite to the ones used here, because there is space for the LV only on one side of the test section.

In spite of the limitations discussed above, this set of results should be very useful in checking and improving methods for predicting the details of the rotor flow field.

REFERENCES

- Sullivan, John P.: An Experimental Investigation of Vortex Rings and Helicopter Wakes Using a Laser Doppler Velocimeter. M.I.T. Aerophysics Laboratory TR-183, June 1973.
- Landgrebe, A. J. and Johnson, B. V.: Measurement of Model Helicopter Rotor Flow Velocities with a Laser Doppler Velocimeter. Tech. Note, J. Amer. Heli. Soc., Vol. 19, No. 3, July 1974.
- Biggers, James C. and Orloff, Kenneth L.: Laser Velocimeter Measurements of the Helicopter Rotor - Induced Flow Field. J. Amer. Heli. Soc., Vol. 20, No. 1, January 1975.
- Biggers, James C.; Chu, Sing; and Orloff, Kenneth L.: Laser Velocimeter Measurements of Rotor Blade Loads and Tip Vortex Rollup. Preprint No. 900, 31st Annual National Forum of the Amer. Heli. Soc., Washington, D.C., May 1975.
- 5. Dadone, L. U. and Fukushima, T.: Investigation of Rotor Blade Element Airloads for a Teetering Rotor in the Blade Stall Regime NASA CR-137534-A, October 1975.

TABLE 1

TEST PARAMETERS OF THE FLOWFIELD MEASUREMENTS (ZERO-TWIST BLADES)

Zero-t. ist Blade		Traverses							
Plot #	N (1 pm)	V∕ΩR	^θ 0.75 (deg)	^a s (deg)	ψ (deg)	x/c	fraversing y/c	3 z/c	Run No.
52	€ 00	0.18	8.5	-10	90	-2.00	7.0	Var.	5
52	⊷00	0.18	8.5	-10	90	-2.55	7.0	Var.	8
53	∉ 00	0.18	8.5	-10	90	-2.81	7.0	Var.	6
5-4	≎00	0.18	8.5	-10	90	-2,55	Var.	-0.86	9
5-5	ь00	0.18	8.5	-10	90	-1.28	7.78	Var.	11
5-6 5-7	600 600	0.18	8.5	-10	90 90	-1.49 0	7.79 Var	Var.	10
5-8	600	0.18	8.5	-10	90	1.75	4.98	Var.	18
5-9	600	0.18	8.5	-10	90	1.73	Var.	-1.71	19
5-10	600	0.18	8.5	-10	90	1,99	7.56	Var.	12
5-11	600	0.18	8.5	-10	90	1,99	9.01	Var.	13
5-12	600	0.18	8.5	-10	90	1.99	9.10	Var.	15
5-13	600	0.18	8.5	-10	90	1.99	Var.	-0.47	16
5-14	600	0.18	8.5	-10	90	1.99	Var.	-0.49	14

TABLE 2

TEST PARAMETERS OF THE FLOWFIELD MEASUREMENTS (-11 DEG TWIST BLADES)

Plot	N	V∕ΩR	θ _{0.75}	α	ψ		Fraversin	g	
ŧ	(rpm)		(deg)	(deg)	(deg)	x/c	y/c	z/c	Run No.
6-1	600	0.18	8.5	-10	90	-3.54	9.90	Var.	103
6-2	600	0.18	8.5	-10	90	-3.54	10.00	Var.	104
6-3	600	0.18	8.5	-10	90	-3.54	Var.	-0.8 0	101
6-4	600	0.18	8.5	-10	90	-3.54	Var.	-0.85	102
7 1	60 0	0.18	10.1	-10	90	-3.50	10.00	Var.	105
7-2	600	0.18	10.1	-10	90	-3.50	Var.	-0.76	107
7-3	600	0.18	10.1	-10	90	-3.52	Var.	-0.80	106
7-4	600	0.18	10.1	-10	90	-2.00	Var.	-0.64	114
7-5	60 0	0.18	10.1	-10	90	-1.98	10.96	Var.	108
7-6	600	0.18	10.1	-10	90	-1.40	Var.	-0.49	118
7 - 7	600	0.18	10.1	-10	9 0	-1.40	11.26	Var.	115
7–8	600	0.18	10.1	-10	90	-1.00	Var.	-0.51	117
7-9	600	0.18	10.1	-10	90	-1.00	Var.	-0.56	116
7-10	600	0.18	10.1	-10	90	-1.00	Var.	-0.61	110
7-11	600	0.18	10.1	-10	90	-0.99	11.49	Var.	109
7-12	600	0.18	10.1	-10	9 0	-0.76	Var.	-0.39	128
7-13	600	0.18	10.1	-10	9 0	-0.74	Var.	-0.39	131
7-14	600	0.18	10.1	-10	90	-0.75	Var.	-0.45	127
7-15	600	0.18	10.1	-10	90	-0.75	Var.	-0.49	113
7-16	600	0.18	10.1	-10	90	-0.48	Var.	-0.41	112
7-17	600	0.18	10.1	-10	90	-0.50	Var.	-0.46	125
7-18	600	0.18	10.1	-10	9 0	-0.50	Var.	-0.53	123
7-19	600	0.18	10.1	-10	90	-0.50	11.39	Var.	120
7 - 20	600	0.18	10.1	-10	90	-0.49	11.57	Var.	111
7-21	600	0.18	10.1	-10	90	-0.50	11.60	Var.	119
7-22	600	0.18	10.1	-10	90	-0.50	11.68	Var.	122
7 - 23	600	0.18	10.1	-10	90	0.00	Var.	-0.24	129
7-24	600	0.18	10.1	-10	90	1.30	Var.	-0.39	143
7 - 25	600	0.13	10.1	-10	90	1.25	Var.	-0.45	130
7-26	600	0.18	10.1	-10	90	1.20	Var.	-0.50	138
7-27	600	0.18	10.1	-10	90	1.20	Var.	-0.60	137

TABLE 2 (CONT)

Plot	N	V/ ନR	⁶ 0 75	a.	ψ	1	raversin	g	
£	(rpm)		(deg)	(deg)	(deg)	x/c	y/c	z/c	Run No.
				-	-	• • •		0 00	
7-28	600	0.18	10.1	-10	90	1.59	Var.	-0.32	14/
7-29	600	0.18	10.1	-10	90	1.60	Var.	-0.41	145
7-30	600	0.18	10.1	-10	90	1.59	Var.	-0.45	144
7-31	600	0.18	10.1	-10	90	1.59	Var.	-0.49	139
7-32	600	0.18	10.1	-10	90	1.69	Var.	-0.48	155
7-33	600	0.18	10.1	-10	90	1.84	Var.	-0.47	153
7-34	600	0.18	10.1	-10	90	2.19	Var.	-0.27	148
735	600	0.18	10.1	-10	90	2.21	Var.	-0.57	142
7-36	600	0.18	10.1	-10	9 0	2.19	Var.	-0.60	141
7-37	600	0.18	10.1	-10	90	2.50	Var.	-9.50	133
7-38	600	0.18	10.1	-10	90	2.50	Var.	-0.92	135
7-39	600	0.18	10.1	-10	90	3.51	Var.	-0.07	149
7-40	600	0.18	10.1	-10	90	4.84	Var.	-0.00	191
7-41	600	0.18	10.1	-10	90	4.84	Var.	-0.13	191w
7-42	600	0.18	10.1	-10	90	4.83	Var.	-0.25	189
7 - 43	600	0.18	10.1	-10	90	4.82	Var.	-0.35	190
8-1	600	0.18	10.1	-10	77.3	1.01	Var.	-0.34	159
8-2	600	0.18	10.1	-10	77.3	1.01	Var.	-0.37	160
8-3	600	0.18	10.1	-1.0	77.3	1.01	Var.	-0.39	1.3
8-4	600	0.18	10.1	-10	77.3	1.01	Var.	-0.42	157
8-5	600	0.18	10.1	-10	77.3	1.01	12.34	Var.	156
8-6	600	0.18	10.1	-10	77.3	1.50	Var.	-0.26	1n 5
8-7	600	0.18	10.1	-10	77.3	1.50	Var	- 0, 30	1 4
8-8	600	0.18	10.1	-10	77.3	1.50	Var.	~0.35	163
8-9	600	0.18	10.1	-10	77.3	1.50	Var.	- 0, 38	* 4, 0
8-10	600	0.18	10.1	-1.0	77.3	1.50	12.37	Var.	1-,1
8-11	600	0.18	10.1	-10	77.3	1.64	Vır.	-0.26	174
8-12	600	0.18	10.1	-10	77.3	1.64	Var.	-7.29	·•• <i>?</i>
8-13	600	0.18	10.1	-10	77.3	1.64	Var.	- 0.36	1.4.5
8-14	600	0.18	10.1	-10	77.3	1.64	12.30	·· 3? •	. • 3

TABLE 2 (CONT)

Plot	N	V/ΩR	θ0 75	α_	ψ		Traversin	g	
/t 1.	(rpm)		(neb)	S (deg)	(deg)	x/c	y/c	z/c	Run No.
			(neg)	(neR)	(neg)				
8-15	600	0.18	10.1	-10	77.3	1.99	Var.	-0.25	168
8-16	600	0.18	10.1	-10	77.3	2.00	Var.	-0.28	169
8-17	600	0.18	10.1	-10	77.3	1.99	Var.	-0.31	170
8-18	600	0.18	10.1	-10	77.3	1.99	12.44	Var.	167
8-19	600	0.18	10.1	-10	77.3	2.48	Var.	-0.26	172
8-20	600	0.18	10.1	-10	77.3	2.49	Var.	-0.32	171
8-21	600	0.18	10.1	-10	77.3	2.51	12.47	Var.	166
8-22	600	0.18	10.1	-10	77.3	4.28	Var.	-0.12	182
8-23	600	0.18	10.1	-10	77.3	4.28	Var.	-0.21	180
8-24	60 0	0.18	10.1	-10	77.3	4.27	Var.	-0.29	181
8-25	600	0.18	10.1	-10	77.3	4.28	Var.	-0.30	173
8-26	600	0.18	10.1	-10	77.3	4.28	13.25	Var.	179
9-1	600	0.18	10.1	-10	70.3	1.34	Var.	-0.24	184
9-2	600	0.18	10.1	-10	/0.3	1.34	Var.	-0.31	183
9-3	600	0.18	10.1	-10	/0.3	1.35	Var.	-0.5	186
9-4	600	0.18	10.1	-10	/0.3	1.35	12.78	Var.	185
9-5	600	0.18	10.1	-10	70.3	3.67	Var.	-0.24	174
		0010		10	1013	3.07		0.24	1,4
9-6	600	0.18	10.1	-10	70.3	4.01	Var.	-0.20	175
9-7	600	0.18	10.1	-10	70.3	3.99	Var.	-0.25	176
10.1	600	0.13	10.1	-10	60.5	3.56	Var.	-0.17	177
10.2	600	0.18	10.1	-10	60.5	3.57	Var.	-0.20	178
11-1	1000	0.137	4.67	-0.5	74.5	1.43	Var.	0.59	208
11-2	1000	0.137	4.67	-0.5	74.5	1.43	Var.	0.49	207
11 - 3	1000	0.137	4.67	-0.5	74.5	1.43	Var.	0.31	206
11-4	1000	0.137	4.67	-0.5	74.5	1.43	Var.	0.21	205
11-5	1000	0.137	4.67	-0.5	74.5	1.41	Var.	0.01	204
11-6	1000	0.137	4.67	-0.5	74.5	1.41	Var.	-0.20	201
11-7	1000	0.137	4.67	-0.5	74.5	1.42	Var.	-0.45	202
11-8	1000	0.137	4.67	-0.5	74.5	1.41	Var.	-0.59	203
	1000	0 117		0 5	<i>(</i>)		0 50	0.00	
12-1	1000	0.13/	4.t/ / / 7	-0.5	64./	Var.	8.50	0.29	211
12-2	1000	0.137	4.0/	-0.5	04./ 6/ 7	var. Ver	8.30	0.01	210
12-5	1000	0.137	4.0/	-U.J	04.1	var.	8.49	-0.10	212
12-4	1000	0.131	4.0/	-0.5	04./	4.00	var.	0.48	209

TABLE 2 (CONT)

Plot	N	V∕ΩR	⁶ 0 75	a c	Ψ	Traversing			
#	(rpm)		(deg)	(deg)	(deg)	x/c	y/c	z/c	Run No.
13-1	1000	0.137	2.94	-0.5	90	2.83	Var.	0.39	236
13-2	1000	0.137	2.94	-0.5	90	2.83	Var.	0.30	235
13-3	1000	0.137	2.94	-0.5	90	2.82	Var.	-0.36	237
14-1	1000	0.137	2.94	-0.5	64.7	2.00	Var.	0.41	234
14-2	1000	0.137	2.94	-0.5	64.7	1.99	Var.	0.34	232
14-3	1000	0.137	2.94	-0.5	64.7	1.99	Var.	0.31	233
14-4	1000	0.137	2.94	-0.5	64.7	4.00	Var.	0.51	226
14-5	1000	0.137	2.94	-0.5	64.7	4.00	Var.	0.35	228
14-6	1000	0.137	2.94	0.5	64.7	4.01	Var.	0.30	229
14-7	1000	0.137	2.94	-0.5	64.7	4.00	Var.	0.26	230
148	1000	0.137	2.94	-0.5	64.7	4.00	Var.	0.20	2 31
149	1000	0.137	2.94	-0.5	64.7	4.01	Var.	-0.01	227
15-1	1000	0.137	2.94	-0.5	60.5	Var.	7.49	0.49	217
15-2	1000	0.137	2.94	-0.5	60.5	Var.	7.48	0.29	216
15-3	1000	0.137	2.94	-0.5	60.5	Var.	7.50	0.00	215
15-4	1000	0.137	2.94	-0.5	60.5	Var.	7.49	-0.31	214
15-5	1000	0.137	2.94	-0.5	60.5	Var.	7.49	-0.59	218
15-6	1000	0.137	2.94	-0.5	60.5	Var.	7.49	-0.79	219
15-7	1000	0.137	2.94	-0.5	60.5	Var.	5.98	-0.41	213
16-1	1000	0.137	2.94	-0.5	50.6	Var.	7.48	0.30	221
16-2	1000	0.137	2.94	-0.5	50.6	Var.	7.49	-0.01	222
16-3	1000	0.137	2.94	-0.5	50.6	Var.	7.49	-0.29	220
16-4	1000	0.137	2.94	-0.5	50.6	Var.	7.48	-0.50	2 2 3
16-5	1000	0.137	2.94	-0.5	50.6	4.00	8.23	Var	224

Figure 1. Block diagram of data processing system.

Figure 2. Minicomputer software flow chart.

Figure 1. Rotor and laser velocimeter in operation.

Figure 4. Coordinate system.

5-1. Vertical traverse, x/c = -2.00, y/c = 7.00

Figure 5. Flowfield velocities from the zero-twist blades.

Figure 5. (Continued)

Figure 5. (Continued)

5-4. Lateral traverse, x/c = -2.55, z/c = -0.86

Figure 5. (Continued)

Figure 5. (Continued)

5-6. Vertical traverse, x/c = -1.49, y/c = 7.79

Figure 5. (Continued)

5-7. Lateral traverse, x/c = 0.00, z/c = -0.61

Figure 5. (Continued)

Figure 5. (Continued)

. .

5-9. Lateral traverse, x/c = 1.73, z/c = -1.71

Figure 5. (Continued)

.

Figure 5. (Continued)

.

5-11. Vertical traverse, x/c = 1.99, y/c = 9.01

Figure 5. (Continued)

Figure 5. (Continued)

Figure 5. (Continued)

5.14. Lateral traverse, x/c = 1.99, z/c = -0.49Figure 5. (Concluded)

Figure 6. (Continued)

6-3. Lateral traverse, x/c = -3.54, z/c = -0.80

Figure 6. (Continued)

6-4. Lateral traverse, x/c = -3.54, z/c = -0.85Figure 6. (Concluded)

7-2. Lateral traverse, x/c = -3.50, z/c = -0.76

Figure 7. (Continued)

7-3. Lateral traverse, x/c = -3.50, z/c = -0.80

Figure 7. (Continued)

Figure 7. (Continued)

7-5. Vertical traverse, x/c = -1.98, y/c = 10.96

Figure 7. (Continued)

7-6. Lateral traverse, x/c = -1.40, z/c = -0.49

Figure 7. (Continued)

7-7. Vertical traverse, x/c = -1.40, y/c = 11.26

Figure 7. (Continued)

Figure 7. (Continued)

7-10. Lateral traverse, x/c = -1.00, z/c = -0.61Figure 7. (Continued)

7-11. Vertical traverse, x/c = -1.00, y/c = 11.49

7-12. Lateral traverse, x/c = -0.75, z/c = -0.34

Figure 7. (Continued)

Figure 7. (Continued)

Figure 7. (Continued)

7-15. Lateral traverse, x/c = -0.75, z/c = -0.49

Figure 7. (Continued)

7-16. Lateral traverse, x/c = -0.48, z/c = -0.41

Figure 7. (Continued)

7-17. Lateral traverse, x/c = -0.50, z/c = -0.45

Figure 7. (Continued)

7-13. Lateral traverse, x/c = -0.50, z/c = -0.53

Figure 7. (Continued)

Figure 7. (Continued)

7-21. Vertical traverse, x/c = -0.50, y/c = 11.60

Figure 7. (Continued)

7-22. Vertical traverse, x/c = -0.50, y/c = 11.68Figure 7. (Continued)

7-23. Lateral traverse, x/c = 0.00, z/c = -0.24

Figure 7. (Continued)

^{7-25.} Lateral traverse, x/c = 1.25, z/c = -0.45

Figure 7. (Continued

Figure 7. (Continued)

7-27. Lateral traverse, x/c = 1.20, z/c = -0.60

Figure 7. (Continued)

Figure 7. (Continued)

Figure 7. (Continued)

7-30. Lateral traverse, x/c = 1.59, z/c = -0.45

Figure 7. (Continued)

7-31. Lateral traverse, x/c = 1.59, z/c = -0.49Figure 7. (Continued)

Figure 7. (Continued)

7-33. Lateral traverse, x = 1.84, z/c = -0.47

Figure 7. (Continued)

7-34. Lateral traverse, x/c = 2.19, z/c = -0.27

Figure 7. (Continued)

7-35. Lateral traverse, x/c = 2.21, z/c = -0.57

Figure 7. (Continued)

7-36. Lateral traverse, x/c = 2.19, z/c = -0.60

Figure 7. (Continued)

.

Figure 7. (Continued)

^{7-37.} Lateral traverse, x/c = 2.50, z/c = -0.50

7-38. Lateral traverse, x/c = 2.50, z/c = -0.92

Figure 7. (Continued)

7-39. Lateral traverse, x/c = 3.51, z/c = -0.07

Figure 7. (Continued)

Figure 7. (Continued

.

7-41. Lateral traverse, x/c = 4.84, z/c = -0.13

Figure 7. (Continued)

Figure 7. (Continued)

.

٠

8-2. Lateral traverse, x/c = 1.01, z/c = -0.37

Figure 8. (Continued)

8-3. Lateral traverse, x/c = 1.01, z/c = -0.39

Figure 8. (Continued)

8-4. Lateral traverse, x/c = 1.01, z/c = -0.42

Figure 8. (Continued)

8-5. Vertical traverse, x/c = 1.01, y/c = 12.34

Figure 8. (Continued)

Figure 8. (Continued)

8-7. Lateral traverse, x/c = 1.50, z/c = -0.30

Figure 8. (Continued)

8-8. Lateral traverse, x/c = 1.50, z/c = -0.35

Figure 8. (Continued)

8-10. Vertical traverse, x/c = 1.50, y/c = 12.37

Figure 8. (Continued)

Figure 8. (Continued)

2

Figure 8. (Continued)

8-13. Lateral traverse, x/c = 1.64, z/c = -0.36

Figure 8. (Continued)

Figure 8. (Continued)

8-15. Lateral traverse, x/c = 1.99, z/c = -0.25

Figure 8. (Continued)

^{8-16.} Lateral traverse, x/c = 1.99, z/c = -0.28

Figure 8. (Continued)

Figure 8. (Continued)

8-18. Vertical traverse, x/c = 1.99, y/c = 12.44

Figure 8. (Continued)

8-19. Lateral traverse, x/c = 2.48, z/c = -0.26

Figure 8. (Continued)

Figure 8. (Continued)

: 2. Later-1 erse, x/c = 4.28, z/c = -0.12

Figure 2. (Continued)

8-23. Lateral traverse, x/c = 4.28, z/c = -0.21

Figure 8. (Continued)

8-24. Lateral traverse, x/c = 4.27, z/c = -0.29

Figure 8. (Continued)

8-25. Lateral traverse, x/c = 4.28, z/c = -0.30

Figure 8. (Continued)

8-26. Vertical traverse, x/c = 4.28, y/c = 13.25

Figure 9. (Continued)

9-3. Lateral traverse, x/c = 1.34, z/c = -0.50

Figure 9. (Continued)

9-4. Vertical traverse, x/c = 1.34, y/c = 12.78

Figure 9. (Continued)

Figure 9. (Continued)

9-6. Lateral traverse, x/c = 4.01, z/c = -0.20

Figure 9. (Continued)

9-7. Lateral traverse, x/c = 3.99, z/c = -0.25

Figure 9. (Concluded)

Figure 10. Flowfield velocities from the -11° twist blades, V/ ΩR = 0.18, $\theta_{0.75R} = 10.1^{\circ}$, $\psi = 60.5^{\circ}$, N = 600.

10-2. Lateral traverse, x/c = 3.57, z/c = -0.20

Figure 10. (Concluded)

Figure 11. Flowfield velocities from the -11° twist blades, $V/\Omega R = 0.137$, $\theta_{0.75R} = 4.67^{\circ}$, $\psi = 74.5^{\circ}$, N = 1000.

11-2. Lateral traverse, x/c = 1.43, z/c = 0.49

Fig: = 11. (Continued)

11-3. Lateral traverse, x/c = 1.43, z/c = 0.31

Figure 11. (Continued)

Figure 11. (Continued)

11-5. Lateral traverse, x/c = 1.41, z/c = 0.01

Figure 11. (Continued)

11-6. Lateral traverse, x/c = 1.41, z/c = -0.20

Figure 11. (Continued)

Figure 11. (Continued)

Figure 11. (Concluded)

12-1. Streamwise traverse, y/c = 8.50, z/c = 0.29

Figure 12. Flowfield velocities from the -11° twist blades, $V/\Omega R = 0.137$, $\theta_{0.75R} = 4.67^{\circ}$, $\psi = 64.7^{\circ}$, N = 1000.

e

12-2. Streamwise traverse, y/c = 8.50, z/c = 0.01

Figure 12. (Continued)

Figure 12. (Continued)

Figure 12. (Concluded)

.

Figure 13. Flowfield velocities from the -11° twist blades, V/ ΩR = 0.137, $\theta_{0.75R} = 2.91^{\circ}$, $\psi = 90^{\circ}$, N = 1000.

Figure 13. (Continued)

^{13-3.} Lateral traverse, x/c = 2.83, z/c = -0.36

Tigure 13. (Concluded)

14-2. Lateral traverse, x/c = 2.00, z/c = 0.34

Figure 14. (Continued)

Figure 14. (Continued)

14-4. Lateral traverse, x/c = 4.00, z/c = 0.51

Figure 14. (Continued)

14-6. Lateral traverse, x/c = 4.00, z/c = 0.30

Figure 14. (Continued)

14-8. Lateral traverse, x/c = 4.00, z/c = 0.20

Figure 14. (Continued)

Figure 15. Flowfield velocities from the -11° twist blades, V/ ΩR = 0.137, $\theta_{0.75R} = 2.94^{\circ}$, $\psi = 60.5^{\circ}$, N = 1000.

15-2. Streamwise traverse, y/c = 7.50, z/c = 0.29

Figure 15. (Continued)

15-3. Streamwise traverse, y/c = 7.50, z/c = 0.00

Figure 15. (Continued)

Figure 15. (Continued)

٠

Figure 15. (Continued)

15-6. Streamwise traverse, y/c = 7.50, z/c = -0.79

Figure 15. (Continued)

.

Figure 15. (Concluded)

٠

Figure 16. (Continued)

16-3. Streamwise traverse, y/c = 7.49, z/c = -0.29

Figure 16. (Continued)

16-4. Streamwise traverse, y/c = 7.49, z/c = -0.50

Figure 16. (Continued)

