
STUDY OF LIMITATIONS AHu

ATTRIBUTES OF iil COPROCESSOR

TESTING TECHNIQUES

https://ntrs.nasa.gov/search.jsp?R=19770018857 2020-03-22T09:49:56+00:00Z

Macrodata Corporation

21135 Erwin Street

Woodland Hills, California 91365

STUDY OF LIMITATIONS AND ATTRIBUTES

OF MICROPROCESSOR TESTING TECHNIQUES

March 17, 1977

Final Report - NASA Contract NAS8-31954

Prepared By:

Richard McCaskill

Wayne E. Son!

Prepared For:

George C. Marshall Space Flight Center

Marshall Space Flight Center, Alabama 35812

TABLE OF CONTENTS

PAGE

i
I. GENERAL TEST PHILOSOPHY 1

II. BASIC BLOCK DIAGRAM 19

III. MODULAR APPROACH 26

IV. DESCRIPTIONS OF MODULAR TEST APPROACH 27

V. PROCESSOR TEST DESCRIPTIONS 30

A. 8080 30

B. 8008 80

C. 2901 87

D. 6800 ' 102

E. 1802 121

VI. DC TEST REQUIREMENTS ^ 139

VII. SURVEY SUMMARY 140

A. LIST OF COMPANIES 140

B. SURVEY QUESTIONNAIRE 141

C. QUESTIONNAIRE RESPONSES 145

VIII. DETECTED PROBLEMS 185

IX. TEST EQUIPMENT 189

X. QUALIFICATION TEST VERSUS SCREENING TESTS 197

ATTACHMENT I 199

FIGURES

1. Basic MPU Block Diagram 3
2. 2901 Architecture 6
3. 2901 Test Flow Diagram 8
4. 8080 Architecture 10
5. Comparison Test 13
6. Stored Pattern Test 14
7. 8080 Block Diagram . 20
8. 8008 Block Diagram 21
9. 2901 Block Diagram " 24
10. 6800 Block Diagram 24
11. 1802 Block Diagram 25
12. Program Counter Test 70
13. Register Array Test . 74
14. Stack Pointer Test 76
15. Accumulator Test 78
16. Arithmetic Logic Unit Test 79
17. GALPAT Read Example 94
18. 1802--OR Data Pattern 128
19. 1802—Exclusive OR Data Pattern 129
20. 1803—AND Data Pattern 130
21. Basic Tester Block Diagram 193

TABLES

1. Recommended 8080 Instruction Sequence 33
2. Register Array Test 72
3. 8080 Instruction Mnemonics 73
4. Stack Pointer Test Instruction 77
5. ALU Source 89
6. ALU Function Control 90
7. ALU Destination Control 91
8. ALU Source Operands 99
9. ALU Function Sequence 100
10. Stack Pointer Load Routine 106
11. Index Register Load Routine 109
12. Accumulator Load Routine 114

ii

I. GENERAL TEST PHILOSOPHY

The problems of testing microprocessors has been elevated past the

conventional methods of testing integrated circuits. Just the fact that

the microprocessor is not a simple collection of gates in a random format

or a well ordered structure, like that of a large scale memory, does not

lend itself to conventional means of testing. What is meant by the conven-

tional means of testing is the commonly used DC test checking for inputs
\

and output voltages and currents. This DC testing cannot prove that the

microprocessor is operational, because there are from four to six or more

levels of logic between the input and output pins. Also the conventional

way to test random logic by applying a string of input patterns in a burst

will only check for steady-state faults stuck at logic 1 or stuck at logic

0, and will not check for any instruction or data sensitivity.

There presently are many ways that both manufacturers and users are

performing testing of microprocessors. These include methods such as self-

testing, comparison testing, stored pattern testing, and algorithmic-aided

pattern testing.

First Step in Testing

The first item to be considered when testing a microprocessor is to

understand the operation and architecture structure of the microprocessor.

The operation of the microprocessor is controlled by the execution of an

-1-

instruction set unique to each microprocessor. There is a great variety

of microprocessors on the market today, ranging from 2- and 4-bit slices

to 4-, 8-, and 16-bit complete microprocessor units.. But of all the pro-,

duct types, 4-bit slices, like the 2901 , and 8-bit microprocessors, like

the 8080, have gained the widest acceptance and therefore are good exam-

ples to use in describing testing techniques.

In general, a microprocessor has two internal buses: an 8-bit bidir-

ectional data bus, and a 16-bit unidirectional address bus (Figure 1).

The data bus carries both the instruction code and data. Instructions are

decoded and executed in connection with the appropriate controls in which

data going to both the arithmetic logic unit and accumulator can be manipu-

lated by special arithmetic or logical operations. The address bus links

the main memory where both instruction codes and data are stored. Stack

pointers, program counters, and register files also supply information to

the address. Finally, there is an instruction decoder which interprets

each instruction and controls all operations of the microprocessor.

Since a microprocessor is a complex sequential logic structure and not

simply a few gates or an LSI memory, a true and meaningful test requires

the understanding of the hardware architecture and software functionality

rather than only the simple logic of the elemental structures.

The hardware architecture is the internal organization with consists

of an ordered set of modules, such as the register stack, accumulator,

arithmetic logic unit, etc. Software functionality is a set of ordered

-2-

DATA BUS

ACCUMULATOR

V
ALU

DATA BUS

BUFFER

A

V
D0 - D7

DATA BUS

V
INSTRUCTION

REGISTER

V
INSTRUCTION

DECODING

CONTROL

TIMING
CONTROLS

REGISTER

FILES

STACK

POINTER

PROGRAM

COUNTER

y
ADDRESS

BUS

BUFFER

V
A0 - A15

ADDRESS BUS

FIGURE 1: Basic MPU Block Diagram

-3-

microinstructions which can be used to monitor the operation of these

modules.

Upon developing complete knowledge of the microprocessor unit through

both areas, one can develop an ordered set of test sequences in the micro-

processor's instruction set for testing each module one by one until a

complete test has been developed.

In general, a microprocessor has two buses: an address bus and a data .

bus. The address bus performs two functions, addressing the external mem-

ory and/or addressing the internal scratch pad memory. The data bus also

performs two functions, supplying input data to the processor and output-

ting processed data. The data bus links the internal functions of the

scratch pad memory, registers, arithmetic logic unit, etc., together.

Modular Breakup

The next step in microprocessor testing is to partition the device into

modules, with some modules possibly overlapping. The selection of each module

should be accessible from the input/output bus by the execution of micro-

instructions. In other words, data should be able to be applied to the

device input and propagated to the output directly or indirectly by the use

of the microprocessor instruction set. The test then shall be generated

for each module of the MPU so that a worst case test pattern will be run

on that module. For instance, if the module in question is a RAM, a gal-

loping 1's and O's test pattern is used as this type of pattern is

-4-

considered to be worst case.

From the standpoint of software functionality, a set of MPU instruc-

tions should be executed when testing the first module. Proceeding toward

the second module another set of new microprocessor instructions will be

executed. (Some of these instructions may have been executed previously.)

This process will then continue until all of the instructions within the

instruction set are used while testing each module. Then a final test

should execute all instructions to verify that all modules are working

together.

Two-fold diagnostic information is provided by this technique. First,

from a hardware point of view if a failure occurs, the faulty module is

pinpointed. Inherent in this type of modular procedure is the fact that

convenient breakpoints exist in a module-by-module basis. Second, in con-

junction with each module, a set of microinstructions are executed; if any

fault occurs, the specific instruction(s) can be isolated and identified.

Architecture and Test Flow

The architecture of the 2901 lends itself to the modular approach be-

cause of its own hardware and microinstruction architecture. Figure 2

illustrates the block diagram of the 2901. In examining this diagram, one

will notice that the device can be divided into the following modules: RAM,

Q register, arithmetic logic unit (ALU), ALU source decode multiplexer, RAM

-5-

CLOCK-

A ADDRESS

B ADDRESS

LO/RI

RO/LI

/4

RAM SHIFT

/4

16 X 14 RAM

READ A & B

WRITE B

DIRECT
INPUT

MICRO

INSTRUCTION

DECODE

/9

MICRO
CODE

OUTPUT
CONTROL

Q SHIFT

Q REGISTER

-RO/LI

•LO/RI

FIGURE 2: 2901 Architecture

-6-

and Q register right/left shift logic.

Once the information has been acquired on the module breakdown, a test

flow can be generated. Since the 2901 has an ALU section, the first areas

to be tested should be those areas which supply data to the ALU. The most

logical of these is in the RAM module and then in the Q register module.

Once these modules have been tested, they can be used as reliable data

sources for the ALU module test.

A typical test flow for the 2901 would start with the RAM memory, fol-

lowed by the Q register, ALU source decode multiplexer, ALU, and finally,

the RAM and Q register right/left shift logic (Figure 3). During this

test flow, all microinstructions for the 2901 will be used.

Test Technique

Formulating a test plan will differ between the manufacturer and user.

The reason for this being that the manufacturer has access to the logic

diagrams of the device, which the user in most cases cannot obtain, and

their quantities are in larger amounts than the user's. Therefore, more

elaborate tests can be developed which optimizes test performance and test

time. The user has an advantage over the manufacturer because his test,

in its simplest form, can be tailored to his specific needs, but the manu-

facturers' test has to guarantee all operations of the microprocessor. Not

receiving schematics, logic diagrams, or other circuit information the user

must therefore rely on either vendor supplied test programs or perform

-7-

TEST FLOW

CHART FUNCTIONAL TEST DESCRIPTION
TEST

PATTERN

RAM Test

t

A galloping "1" and "0" pattern is applied to
the RAM in three combinations.
1. The RAM addressed by the "A" address and

tested through the "Y" output port directly.
2. The RAM addressed by the "A" address and

tested through the ALU. ALU is held at a
fixed instruction.

3. The RAM addressed by the "B" address and
tested through the ALU. ALU is held at a
fixed instruction.

Approx.

3000

11Q"

REGISTER

1
A number 15 is loaded into the register and then

read. Next, a number "0" is loaded and read.
/•

This is followed by a 14, 1, 13, 2, etc. until a

"0" then a 15 is loaded.

Approx.

100

ALU Source The ALU Source Decodes are tested to see if all

Decode decodes are possible. The test is performed by

loading values into the RAM and "Q" register and

selecting all decodes while testing for any

interaction between bits or selections.

Approx.

50

ALU A series of numbers are loaded into the RAM and

"A" register. These numbers are then used as

inputs to the ALU. At the same time, all outputs

and flags from the ALU are monitored, while

incrementing operations the ALU can perform.

Approx.

1000

RAM and "Q"

Register

Right/Left
Shift Mux.

All numbers from 0 to 15 are shifted through the

RAM and "Q" register. While the RAM section is
being tested, all locations are tested. After

each shift, all possible number combinations are

outputted to the output latch without clocking

the latch, to see if there is any latch sensitivity.

Approx.

8200

FIGURE 3: 2901 Test Flow Diagram

-8-

extensive characterization to generate worst case test patterns. This

characterization is needed to guarantee full operation of the microproc-

essor for a variety of applications in which the device is used.

i

The Optimum Test

At first glance of the 8080 MPU block diagram (Figure 4), the complex-

ity of the device is not readily indicated. This is because there are

only eight data input lines. However, in addition to accepting data from

the input bus, the MPU can accept data from internal registers and accumu-

lators. If the MPU could only perform one instruction, a test could be

developed without much difficulty, but the MPU is capable of executing many

instructions in sequence. Because of this, the number of combinations of

instructions and data patterns that the MPU can perform would be extremely

long. .

A commonly used formula for calculating the total test time to exhaus-

tively test an'MPU is C = 2 . Where C is the number of combinations of

instructions and data patterns, M is the number of data bits in each word,

and N is the number of instructions the MPU is capable of executing.

For example, an 8-bit MPU that only has ten instructions would require

802 test cycles for an exhaustive test of all possible combinations.

Assuming a test cycle of 1 us, the MPU would take approximately 38 years

to check all combinations of instructions and data patterns.

-9-

DATA BUS

I

ACCUMULATOR

V
ALU

DATA BUS

BUFFER

DATA BUS

V
INSTRUCTION

REGISTER

INSTRUCTION
DECODING

CONTROL

TIMING

CONTROLS

REGISTER
FILES

STACK
POINTER

PROGRAM

COUNTER

ADDRESS

BUS

BUFFER

V
ADDRESS

BUS

FIGURE 4: 8080 Architecture

-10-

The 8080 MPU can perform approximately 76 different instructions.

Using the above formula, there would be a total of 2 possible combin-

ations that could be performed. Obviously, this is an astonishing number

to exhaustively test the 8080.

Test Techniques

Once realizing that the optimum test cannot be created, one looks for

other means to test the MPU. The first approach considered is called self-

test. The self-test is the simplest and cheapest means of determining if

an MPU is working. Self-test, or in-circuit test, is the technique in

which the device is placed in the circuit where it will be used and tested

for correct operation. This is utilized by some users who feel the cost of

incoming inspection cannot be justified. Therefore, they will typically

test the device using several different system operations. The advantage

of this testing is that the actual operation of the device is tested in its

circuit, eliminating the requirement for a separate costly test system.

The disadvantages of this technique is that any of the in-circuit condition

changes, like voltage fluctations, temperature, timing, and instruction

changes, may not be detected until the unit is in the field. The rework

cost of finding and removing a faulty device must be considered before this

method of testing is selected. Typical costs for finding and replacing a

gate is as follows:

$3.00 to $5.00: Board Level

$30.00 to $50.00: System Level

$300.00 or Move: In Field

-11-

Since an MPU is more complex than a gate, the above cost would be

multiplied by the complexity factor of the MPU.

The second method of testing is called comparison testing. Comparison

testing is the method in which a known good device is compared to the

device under test. The hardware required for this type of test is very

simple, requiring only a pseudo number generator connected to all inputs

and all outputs from the known good device and comparing the device under

test (Figure 5). If exact comparison does not occur, the device under

test is considered bad. The advantages of this method is that the test

system is inexpensive to develop and with a little more hardware added,

voltage and timing conditions can be created. Also, if the device is oper-

ated for a few minutes, most paths through the device will be checked.

Like any test method, it has its disadvantages also. The biggest disad-

vantage is that this method requires a known good device, which is a problem

in itself. Some MPU's have illegal instructions, therefore, no guarantees

can be made for the data coming out of the device. Also, critical timing

into the device may not be able to be maintained if pseudo numbers are

applied to the input of the MPU. Last of all, if the device fails, no fail-

ure information can be obtained to determine the cause.

The next method of testing is the stored pattern method which utilizes

a known good pattern stored in some form of data memory. This pattern is

then applied to the device under test in a burst mode and the device outputs

compared to the stored response (Figure 6). There are two means of gener-

ating patterns using this method. The first method is to input a test pat-

tern into a known good device and record all input stimuli and output data.

-12-

KNOWN

MPU

1
MPU

UNDER "TEST

ERROR DETECT LOGIC

FIGURE 5: Comparison Test

-13-

STORED

PATTERN

INTERFACE CIRCUITRY

FIGURE 6: Stored Pattern Test

-14-

The input patterns would be created from some known application.

The second method of generating the stored pattern would be to develop

a software or hardware simulator for the device to be tested. A known

instruction sequence would then be stored and used to compare with the

device under test. The advantage of this technique is that the user's

instruction sequence can be completely tested and that sensitive data paths

can be checked with ease. Since the tester that is required to perform

this type of test usually incorporates variable voltage and timing circuits,

these parameters can also be checked. The main disadvantage of using a

known good device for generating the test pattern is a "known good device."

What test is available to determine what is a known good device? The dis-

advantage of the stimulator approach is that a software or hardware si mil-

ator is required. Since the schematic and logic diagrams for each MPU are

not readily available from the vendor, it is difficult for a user to develop

the simulator. Even if these could be obtained, it would take a knowledge-

able programmer three to six months, at least, to develop the software.

Other disadvantages to this method are:

LARGE, EXPENSIVE MEMORY. High-speed random access memories or

shift registers become quite expensive when any great amount

of memory is needed. In testing the program counter for the

8080, for example, 262,000 distinct patterns are required. A

memory test on the register array of an 8080 takes approximately

50,000 patterns. The cost of memory can quickly become a major

part of the total cost of the test system.

-15-

LONG TRANSFER TIME. The overhead time required to transfer

a long pattern from disc, core, or other mass memory to

high-speed RAM can make a large dent in the throughput rate

of the test system. If transferring a 1,024-bit pattern from

disc to RAM takes 50 milliseconds, a typical figure, trans-

ferring the test pattern from the program counter takes 13.1

seconds of overhead time, in addition, to the test execution

time (262 X 50 X 10"3 Seconds).

INFLEXIBLE PROGRAM. The stored program cannot easily be

modified while tests are in progress. This rigidity makes

it difficult to perform special or unusual tests on a single

unit. A substantial amount of off-line software support is

needed if such tests are to be accomplished.

The algorithmic test method utilizes a high-speed programmable pattern

generator in conjunction with a local buffer memory. The contents of the

buffer memory is a test pattern consisting of microprocessor instruction

sequences and either full or partial data input and output response patterns,

The buffer memory pattern is then applied to the microprocessor under pro-

gram control of the pattern generator. A distinct advantage of this test

method offered by the use of a programmable pattern generator is the ability

to choose how the test pattern is applied to the device under test. This

will in turn determine whether the stored data pattern and output response

of the microprocessor is full or partial.

-16-

The first option is to apply the test pattern in a burst mode as in the

previously defined stored response approach. In this case, the device

data pattern and output response stored in the buffer memory is complete,

with the pattern generator acting as a counter to advance the test pattern

vectors.

In the second mode, special algorithms are written for the pattern

generator which simulate the microprocessor instruction execution. These

special algorithms input microprocessor instruction codes and data pat-

terns at the proper point in the instruction cycle, and compare the device

output accordingly. However, the device data pattern and output response

may be partially stored in the buffer memory and partially generated in

real time by the pattern generator algorithms. The effect is to enhance

the MPU test program by allowing a significant increase in the number of

test patterns used, enable additional tests to be performed that would be

difficult, if possible at all by any of the previous methods, and reduce

the total amount of stored test vectors. A disadvantage here is that in

addition to the buffer test pattern required, a separate program for the

pattern generator may be necessary which increases the complexity of the

total effort.

This technique, which eliminates the delay time in transferring pat-

terns to mass memory, is extremely efficient and flexible in generating

patterns for logic modules such as binary counters, random access and

read only memories, shift registers, as well as microprocessors.

-17-

When used in conjunction with the module approach, algorithm pattern

generation permits faults to be diagnosed so that the particular module

or instruction which caused a failure can be isolated. The disadvantages

of this method is that a sophisticated tester is required. The programmer

needs to be knowledgeable of both operation of the MPU and the test system

itself to develop the program.

The recommended approach to be described is a combination of stored

pattern and algorithmic techniques. This approach was selected because of

its ease of program development (stored pattern) and its thorough testing

ability (algorithmic).

-18-

II. BASIC BLOCK DIAGRAM

As shown in Figure 4, the basic microprocessor uni t includes a data

and address bus, accumulator, arithmetic logic un i t , register f i les , stack

pointer, program counter, and t iming controls. In the fo l lowing f igures,

Figures 7 through 11, the 8080, 8008, 2901, 6800, and 1802, block diagrams

are illustrated.

8080

Using the 8080 (Figure 7) as a reference, all other M P U ' s are structured

very similar . Other than their instruction set, they di f fer as described

below.

8008

The 8008 (Figure 8) is very s imi lar in architecture to the 8080. The

basic difference is that the 8008 has seven 14-bit stack registers for stor-

age of return addresses as a result of subroutine calls. The 8080 has one

16-bit pointer for controll ing an external memory stack a l lowing more than

seven levels of subroutine testing.

2901

The 2901 (Figure 9) differs the most from the 8080. The 2901 is only

the process portion of a basic MPU, a 4-bit processor, which lacks any

-19-

8080A CPU FUNCTIONAL
BLOCK DIAGRAM

BI-DIRECTIONAL
DATA BUS

DATA BUS INTFRRUPT HOLD WAIT
WRITE CON1HOL. CON1HOI CONTROL CONTROL SVNC CLOCKS

1 1 I I It 1 I I | I -
WH DaiN IN7t INT MOLDHOLDWAIT I SVNC i>l ,>J BESET

FIGURE 7: 8080 Block Diagram

-20-

8008 CPU
Block Diagram BIDIRECTIONAL

DATA BUS

(i BIT)
INTERNAL DATA BUS

.18 BIT)

INTERNAL DATA BUS

INSTRUCTION I
REGISTER IR!|

INSTRUCTION
DECODER

AND
MACHINE

CYCLE
ENCODING

SO SI il INT READY SYNC ol 02

STACK
MULTIPLEXER

PROGRAM COUNTER

LEVEL NO. 3

LEVEL NO 5

LEVEL NO. 6 |14|

ADDRESS
STACK

FIGURE 8: 8008 Block Diagram

1
ACCUMULATOR

C
REG. HI

D
REG. Ill

SCRATCH
PAD

-21-

M'h
Of ITi* AIIO*

COHTMCM.

• 1 • I '.
fUMCIKM

• 1 • 1 °
tOUKCI

MiCftOI*$T*UC"O'(Of COOt

tftlAO"lHITII

FIGURE 9: 2901 Block Diagram

-22-

ordered instruction set. Therefore, the 2901 does not have an instruction

decoder. The 2901 does have a register array (16 words X 4-bits), an ac-

cumulator (4-bi.ts), and an arithmetic logic unit (ALU). The 2901 does not

have a program counter to control from which memory location the next

instruction will be fetched. This is controlled by external circuitry.

Last of all, the 2901 cannot execute a jump or subroutine call by itself;

thus, it also lacks a stack pointer.

6800

The 6800 (Figure 10) is structured similar to the 8080 but does not

contain a register array. External RAM is used for all scratch pad oper-

ations. Also, the 6800 includes two accumulators as opposed to one provided

by the 8080.

1802

The 1802 (Figure 11) architecture is similar to the 8080 except that

the program counter and stack pointer are included as part of the register

array. Also, instead of having a 16-bit address bus it has an 8-bit bus,

which multiplexes the address in 8-bit bytes.

-23-

EXPANDED BLOCK DIAGRAM

A15 A14 A13 At2 All A1O A9 AS
25 24 23 22 2O 19 18 17

Output
Buffers

Clock. 01 3-

Cfock.02 37-

Reset 40 -

Non-Maskable Interrupt 6 —

Haft 2 -

Interrupt Request 4 —

Three-State Control 39 —

Data Bus E nable 36 -

Bus Available 7 «

Valid Memory Address S *

Read/Write 34 -

V c c -P inU

Instruction
Decode

and
Control

Data
Buffer

m i rm
20 27 ?ll ?9 30 31 32 33
O7 DC D'J D4 03 02 O1 OO

A7 A6 A5 A4 A3 A2 A1 AO
16 15 14 13 12 11 10 9

t t .t t t t t t M t M M t
Output
Buffers

Program
Counter

Stack
Pointer

Index
Register

Accumulator
A

Accumulator
. B -

Condition
Co do

Register

FIGURE 10: 6800 Block Diagram

-24-

Figure 11: 1802 Block Diagram

-25-

III. MODULAR APPROACH

As previously shown, all microprocessor units have a similar architec-

ture from which a basic test philosophy can be adopted. This philosophy

is to develop an approach to test each module separately accomplishing the

following goals:

A. Verify the functionality of each module within the device using the

input/output pins of the device and its instruction set.

B. Test for destructive interaction between functional modules.

C. Verify all timing, status information, and interrupt operations of the

device.

-26-

IV. DESCRIPTIONS OF THE MODULAR TEST APPROACH

Since each MPU is structured around a similar architecture, a common

test approach can be adopted and applied to each device. Once this

approach has been established, further requirements are to implement the

approach according to the specific architecture and instruction set of

each device. The following is a basic description of a generalized test

approach for each module previously described. -

A. Program Counter

1. Verify reset state.

2. Verify that the counter can be incremented through its maximum

range.

3. Check any possible register transfer to the program counter.

B. Register Arrays

1. Verify that each register can be loaded individually, if possible,

and its contents stored to the data bus.

2. Verify register-to-register and register-to-output transfers with

all possible number combinations.

3. If the registers can be incremented and/or decremented, verify that

they can accomplish this through their complete range.

-27-

C. Stack Pointer

1. Verify that the stack pointer (registers) can be loaded.

2. Check to see if stack pointer transfers are valid.

3. Verify increment and decrement operations.

D. Arithmetic Logic Unit

1. Verify ADD operations, with and without carry.

2. Verify a SUBTRACT operation, with and without a borrow.

3. Verify, all shift left or shift right operations.

4. Verify rotation of a numerical value, if applicable.

5. Check all logical operations, for example, AND, OR, EOR, etc., when

applicable.

E. Accumulator

1. Test to see if it can be loaded and read.

2. Check for any transfer operation that can be performed.

3. Verify that the accumulator can be incremented and decremented.

F. Timing and Control

1. Verify that all control timing occurs at correct reference points,

for example, data bus enable, sync signals, write enables, etc.

-28-

2. Exercise all control operations on the device to verify operation,

for example, WAIT, HOLD, INTERRUPT, etc.

3. Verify any status flags that are produced during an arithmetic

operation, such as carries, negative or positive numbers, over-

flows, etc.

G. Instruction Decodes

1. Verify full operation by execution of the complete instruction set.

2. Verify execution of branch and jump operations.

3. Test for interaction between all modules, and verification of all

data paths between modules.

-29-

V. PROCESSOR TEST DESCRIPTIONS

A. 8080

The 8080 is an 8-bit microprocessor using an N-channel silicon gate

MOS process. The 8080 can be divided into the following modules based

on its functional block diagram (see Figure 7).

Functional Module Breakup

1. Timing and Control

2. Instruction Decoder

3. Program Counter

4. Register Array

5. Stack Pointer

6. Accumulator

7. Arithmetic Logic Unit (ALU)

Due to the complexity of some tests on the modules, a flow chart

of the recommended test will be used to ease the burden of understanding

the test.

Timing and Control Test

The first test on the 8080 is to verify the operation of all timing

and control signals. This test was selected first because the basic

operation of the MPU requires that timing and control be present.

-30-

TEST 1, RESET: Verify that the Hold Acknowledge (HLDA)

appears following the rising edge of clock 01 and that the

Data and Address buses go into a tristate condition fol-

lowing the rising edge of clock 02. Verify that the Inter-

rupt Enable (INTE) is reset. Last, following the removal of

the reset, the Program Counter is equal to 0, which will

appear on the address bus. When performing a reset note

that the reset signal should be present for at least four

clock periods.

TEST 2, TIMING: Execute a NOP instruction following a

reset, verify that the SYNC signal occurs within the first

clock cycle, that the DBIN signal occurs in the second clock

cycle, and finally, that the Program Counter increments

and that it is present on the address bus during the fourth

clock cycle. Follow this NOP instruction with a Store

Accumulator (STA) direct instruction and verify that the

Write (W~R) goes low during the third clock cycle of that

instruction.

TEST 3, HOLD: Present a Hold signal to the 8080 and verify

that during T2 time cycle Hold Acknowledge (HLDA) appears

and the Address and Data buses go to tristate. Upon re-

moving the Hold signal, verify that HLDA is removed, and the

buses are enabled. During the time that the Hold signal is

present, the 8080 should be in a Hold operation for the time

-31-

that the Hold signal is present.

TEST 4, INT: Execute an Enable Interrupts (INTE) instruction,

followed by a few NOP instructions, and present an Interrupt

Request (INT) to the 8080 during an NOP instruction cycle.

Verify that the Interrupt Enable is present during Tl time of

the next instruction. This INTE signal should not go high

until Tl time. Upon presenting a reset signal to the 8080,

verify that the INTE signal is removed.

Instruction Decoder Test

The next test on the 8080 should check the Instruction Decoder.

This test is used to verify that the complete device is operational

and that it will execute all instructions in the instruction set.

This recommended test is designed to test all instructions but not all

data patterns. Table 1 is a listing of the recommended instruction

sequence.

Program Counter Test

This test includes a reset, which clears the Program Counter, and

2 NOP instructions or any other instruction(s) to verify that the

counter will increment through all possible addresses. A flow chart

of this test is illustrated in Figure 12. This test will verify that

the Program Counter resets and increments. The only operation

-32-

MOP • *„.....-.-.............. — . — .*

El * LOCATIONS B-1S ARE FOR THE *

DI * HALT-MOLO-INTF.RUPT POUTTNF *

El *............................*

LXT SP

(VERIFIES HIGH IMPEDANCE DURING HOLD a HALTI

SPHsPH

R S T (A T

P C H f B P !) TO (SP-n

P C L (e 7) TO (SP-2) SP-2 = H10P!

El

H A L T

RST CAT 0PI0CO

PCH('d0) TO (SP-1)

P C L (3 A) TO (SP-2) SP-2=H0FE

LXI B
*

C = i?l?

HstM «... —*

LXI 0 * MAIN INSTRUCTION SEQUENCE *

E=«& * STARTS AT LOCATION 16 *

0=04 *....................... — ..*

LXI H

LXI SP

TABLE 1: Recommended Instruction Sequence

-33-

TABLE 1 Continued

NOP

IDA (8362^0 A

82

B3

(00FF) TO A A

STA A TO (B3B2)

62

H3

4p TO FFFF

P0P P$W

(SP) TO F F

(SP + n TO A A

PUSH PSrt

A TO (SP-1)

F TO (SP-2D

PUSH (3

B TO CSP-1)

C TO fSP-2)

PUSH 0

D TO fSP-1)

E TO (SP-2)

PUSH H

H TO (SP-1)

U. TO fSP-2) S

-34-

TABLE 1 Continued

NOP

PflP B

(SP) TO C C«04

(SP+1) TO B BB02 SP+2=00FA

P0P 0

(SP) TO E EMf?

(SP+i) TO 0 D = 08

PHP H

(SP) TO U U = 4P>

) TO H Ha20

A TO CHL)

B TO (HU

PKV M,C

C TO (HU

M(?V MfO

0 TO (HU

KgV M,E

E TO (HU

K K V M , H

H TO (HL)

L TO (HU

XCHG Os2H

M,0

-35-

TABLE 1 Continued

NOP

D TO (HL)

E T O . (H L)

Mf!V M,H

H TO (HL)

L TO (HL)

XTHL

(SP) TO L L*FE

(SP + n TO H Hs00

OLO H TO (SPtl)

OLD L TO (SP)

H0V M,H

H TO (HL)

M £ V M , L

U TO (HL)

PCHL PC=(HL)

SPHL SPs(HL)

0*0 SP HLsHL+SP

PUSH H

H TO (SP-1)

L TO (SP-2)

M,H

H TO (HL)

0V M,L

-36-

TABLE 1 Continued

NOP

U T0 (HL)

DAD B HLaHL+BC HLsp)

MRV M,H

H T0 (ML)

L T0 (HL)

PAD 0 HL

H T« (HU)

MKV M,L

L TK (HL)

DAD H HL=HL+HL

KPSV M,H

H TW CHL)

MBV M,L

L TO (HL)

S T A X B

A TO (BC)

S T A X 0 .

A TP (DP)

L D A X 8

00 T(? A FROM (BC)

H 0 V M , A

A TP) (HL)

L D A X D

-37-

TABLE 1 Continued

MOP

FF TO A FROM (DE)

MPV M,A

A TO (HL)

JNX B BC+130205

1NX D 06+1=2041

1NV H HL. + 1=4881

1KX SP SP+lsFP

PUSH H

(H) T0 (SP-1)

(L) TO (SP-2) SP-2=FB

M0V M.B

B TPI (HL)

HfcV H,C

C TW

D TH CHL.)

wev M,E

E TW (HI.)

M0V M,H

H TR (HL)

MC!V M,L

U TC (HI.)

OCX B BO1=P!2P!4

OCX 0 DE-1=204H

OCX H HL-ls48fl0

-38-

TABLE 1 Continued

NOP

OCX SP SP-isFA

PUSH H

H in (SP-n

L TO (SP^Sn S

M (? V M , B

B T(* (HL)

M0V M,C

C T0 (HL)

M0V H,0

0 TO fHL)

KfcV M,E

E T0 (HU3

N0V M,H

H T0

L. T0 (HL)

CMA COMPLEMENT A (

SIC SET CARRY =1

PUSH PSw

A T51 (SP-1)

F T0 (SP-2) SP-2=F6

CPC C»MP, CARRY (=

IN

B2 DEVsOF

90 TPI A FROM OFOF

-39-

TABLE 1 Continued

MOP

PUSH PSW

A Tfl fSP-1)

F Tfl (SP-?) SP-2=F4

DAA A TO BCD A = PI3,SET FP!,F4

PUSH PS*

A Tfl (SP-1)

F T0 (SP-2) SP-2=F2

OAA A TP! BCD A = 69 CLEAR F4

PUSH PS«

A TPI (SP-1)

F TM (SP-1) SP-2=F0

SHLD

HP

B3

L T0 (B3B2)

H T0 (B3I32+1)

LHLD

B?

83

00 T0 L FR0M B3B2

FF Td H FRP1M B3B2+1

K(?V H,H

H TH (HL)

M0V M,L

L TOI (HL)

-40-

TABLE 1 Continued

MOP

INR M

FF FRPIM (HL) + lsp)0

00 T0 (HL)

OCR M

00 FR0M (HL) -1=FF

FF TH (ML)

NKP

B? D E V s A A

69 T0 DF.V A A A A FROM A

A , M
*

Kl TO A FR0M (HL)

M0V B,M

Pifl T(?i 8 FR0M (HI.)

M P V C , M

04 T0 C FR0M (HL)

BB T0 0 FR0M (HL)

M0V E ,H

IK T0 E FRf^lM (HL)

M 0 V H , M

20 T0 H F R W M (HL)

K PI V L , M

40 T9I L F R K M (HL)

M(5V M, A

-41-

TABLE 1 Continued

N'QP

A TPi (HL)

H(?V M,B

0 Tfl (HL)

HgV M,C

C T« CHL)

K! (5 V M, 0

D Tfl (HL)

HfeJV M,E

E T0 (HL)

M 0 V M , H

H TH (HL)

M C* V M , L

L T0 (HI.)

MV1 A

B2 «? T0 A

MV.I B

R.2 M4 T0 8

MVT C

82 08 T0 C

MVI I)

R2 1R Tt5 D

MVI E

B2 2PI T0 i

HVI H

62 4PI T0 H

KOP

MVI L

62 80 T0 L

M PI V M , A

A T0 (HL)

MPIV M,B

B T(« (HU)

C T0 (HL)

0 Tf (HL)

K0V M,E

E TR (HL)

H-0V M,H

H TP> (HL)

U TR (HL)

MVI M

P2

FF TC? (HL)

INK A A+ l=«3

M (2 V M , A

A TO (HU)

1NR B B + lsPlS

MHV M,B

B TO (HL)

-42-

TABLE 1 Continued

K D P

1NR C Ol=9

M0V M,C

C T» (HL)

1NR D D+l=ll

M0V M,0

0 T0 (HL)

INK E E+l=2i

M0V M,E

£ TPi (HL)

1NR H H-f l=41

M 0 V M , H

H TP (HL)

1NP L L+l=fil

M P V H , L

L TPi (HI..)

OCR A A - l s C * 2

M V. V M , A

A TPI (HL)

OCR B B'-ls«4

M (? V M , B

B IP! (HL)

OCR C C-lsP!8

M C ^ V M , C

C TM (HL)

OCR 0 P - ta l«

N/OP

MBV M,D

D T0 (HL)

OCR F. E- l=20
i

M0V M,E

E TP (HL)

OCR H H-l=/1fc)

H.KV M,H

H TO (HL)

OCR L L- l=8 fc)

L TP> (HL)

gV A,8 ' A a pi 4

8,c BSWB

C,D CslPI

D,E D = 2R

H,L H

L,A L

M , A

A T0 (HL)

M«V M,B

B T0 (HL)

M0V H ,C

C TP> (HL)

M e V M , D

-43-

TABLE 1 Continued

MOP

D TO (HL)

MOV M,E

E TO (HL)

MOV M,H

H TO (HL)

MOV M,L

L TO (HL)

M O V A , C A s l 0

MOV B,0 Bs?(?

M O V C , E C = 4 0

MOV 0,H 0 = 80

MOV E,L E = 04

MQV H, A

A TO (HL)

MOV M f 8

B TO (HL)

MOV M,C

C TO (HL)

MOV M,0

D TO (HL) '

MOV M,E

E TO (HL)

MOV H,A Haiti

MOV L rB L=20

MOV M,'H

NOP

H TO (HL)

MQV M,L

L TO (HL)

M O V A , D Asf l0

MOV B,E B = PI4

MOV C,H C=1H

MOV D,L 0 = 2C?

M O V M , A

A TO (HL)

MOV M,B

B TO (HL)

MOV M,C

C TO (HL)

M 0 V M , 0

0 TO (HL)

MOV E,A E=8K

MOV H,B H = P«4

MOV |.»C L = lf?

MOV M,E

E TO (HL)

MQV M,H

H TO (HL)

MOV M,l

L TO (HL)

MOV E,M

-44-

ne

MOM E'8

10

10

c 10

o in

10

10

cu

10

B

0 10

10

10

10

-'

TABLE 1 Continued

MOP

MOV E,0 E = 08

MOV 0,C D=1H

MOV C,B Cs20

M Q V B , A B s 0 4.

MOV M,A

A TO (HL)

MOV M,B

B TO (HU

MOV M,C

C TO (HL)

MOV M,D

0 TO (HL)

MOV M,E .

E TO (HL)

MOV M,H

H TO (HL)

MOV M,L

I. TO (HL)

POP PSH SPS00F0 (SEE LINE 186)

(SP) TO F Fsp!2

(SP-H) TO A

PUSH PSW

A TO (SP-1)

F TO (SP-2)

ADO R A

-46-

TABLE 1 Continued

MOP

PUSH

A TO (SP-1)

F TO (SP-2) SP-2

ADO f. AsA + C A c A 4

PUSH PSH

A TO (SP-1) '

F TO (SP-2) SP-2

ADD 0 AsA + 0 A=B4

PUSH PSW

A TO (SP-1)

f TO (SP-?) SP-2

ADO F A = A+E

PUSH PSUI

A TO (SP-1)

F TO (SP-2)

ADD H ASA+H

PUSH PSW

A TO (SP-1)

F TO (SP-2)

ADD L ASA+L A=FE

PUSH PSW

A TO (SP-1)

F TO (SP-?) SP-2:

ADD M A+(HL)

(HL) IN=01 AsFF

F = 8 2

F s R 2

F = 8 6

-47-

TABLE 1 Continued

K O P

PUSH PSW

A TO (SP-1)

F TO (SP-2)

ADD A AsA + A

PUSH PSW

A TO (SP-1)

F TO (SP-2)

ADC B A = A+BM

PUSH PSW

A TO (SP-1)

F TO (SP-2)

ADC C A s A + C + 1

PUSH PSW

A TO (SP-1)

.F TO (SP-2)

AUC D A = A * 0

PUSH PSW

A TO (SP-1)

F TO (SP-2)

ADC E

PUSH

A TO (SP-1)

F TO (SP-2)

ADC H A '

PUSH PSW

SP-2s00E2

A s F E F=93

FSP12

SP-2sP!00A

A » 3 C Fr

-48-

TABLE 1 Continued

K'OP

A TO (SP-1)

F TO (SP-2) SP-2=HK06

ADC M A = A+(Hl) AsPlfl Fs57

(HL) INSC2

PUSH PSW

A TO (SP-1)

F TO (SP-2) SP-2e00n4

ADC L AsA+L + i As41 Fs06

PUSH PSW

A TO (SP-1)

F TO (SP-2) SP-2=0002

ADC A AsA-t-A As82 F = 86

PUSH PSW

A TO (SP-l)

F Tf1 (SP-2) SP-2:

SUB B A = A - B - A s 7 E

PUSH PSW

A TO (SP-1)

F TO (SP-2) SP

SUB C AsA-C As5E F=12

PUSH PSW

A TO (SP-l)

F TO (SP-2) SP

SUB 0 AcA-D Aa

PUSH PSW

-49-

TABLE 1 Continued

NOP

A TO (SP-l)

F TO (SP-2)

SUB E AsA-E

PUSH PSW

A TO (SP-l)

F TO (SP-2)

SUB H A = A-H

PUSH PSW

A TO (SP-l)

F TO (SP-2)

SUB L A=A-U

PUSH PSW

A TO (SP-l)

F TO (SP-2)

SUB A A=A-A

PUSH PSW

A TO (SP-l)

F TO (SP-2)

SUB M A=A-(Hl)

(HU) IN=FF

PUSH PSW

A TO (SP-l)

F TO (SP-2) SP-2

SB8 B AsA-B-1 A=FC

PUSH PSW

A s 4 4 FM6

SP-2=00C6

As? l4 Fs

Fc87

-50-

TABLE 1 Continued

MOP

A TO (SP-1)

F TO (SP-2) SP-2a0IHBE

SBB C A s A - C - 1 A s D B FsQ6

PUSH PSW

A TO (SP-1)

F TO (SP-2) SP-2 = 0I?BC

SBB D A = A - 0 A s C B F = 92

PUSH PSW

A TO (SP-1.)

F TO (SP-2) SP

SBB E A=A-E A=

PUSH PSW

.A TO (SP-1)

F TO (SP-2) SP

SBB H A=A-H AsCl F=92

PUSH PSW

A TO (sp-n
F TO (SP-2) SP-2^

SBB U AsA-L A=81

PUSH PSW

A TO (SP-1)

F TO (SP-2) SP-2'

SBB H A=A-(HL)

(HL) TNs82 A=FF

PUSH PSW

-51-

TABLE 1 Continued

NOP

A TO (SP-1)

F TO (SP-2) SP-2e0a82

SBR A AsA-A-1 A»FF Fr87

PUSH PSW

A TO (SP-1)

F TO (SP-2) SP-2S0080.

ADI A=A+(B2)

B2s0i Aa«0 Fx57

PUSH PSW

A TO (SP-n

F TO CSP-2) SP-2=0BAE

ACI A=A+(B?)+1

B2sFF Aspipi F = 57

PUSH PSW

A TO (SP-1)

F TO (SP-2) SP-2T00AC

SUI A=A-(B2)

' 62=01 AaFF Fs87

PUSH PSW

A TO (SP-1)

F 70 (SP-2) SP-2=n0AA

SHI A=A-(B2)-1

B2 = 4I? A = BE FsQh

PUSH PSW

A TO (SP-i)

-52-

TABLE 1 Continued

NOP

F TO (SP-2) SP-?s00A8

OKA R A IOR B A«BE FsSfi AsBE

PUSH PSW

A TO (SP-1)

F TO (SP-2) SP-2=00A6

XHA B A XOR B AsBA Fs82

PUSH PSW

A TO (SP-1)

F TO (SP-2) SP-2=P0A4

ORA C A IOR C AsBA Fsfl2

PUSH PS*

A TO (SP-l)

F TO (SP-2) SP-2s00A2

XRA C A XOP C AsQA Fs86

PUSH PSW

A TO (SP-1)

F TO (SP-2) 5P-2B&0A0

ORA 0 A IOR D As9A FaR6

PUSH PSW

A TO (SP-1)

F TO (SP-2) SP

XRA D A XOW D AsflA

PUSH PSW

A TO (SP-1)

F TO (SP-2) SP

-53-

TABLE 1 Continued

MOP

ORA E A IOR E As8A Fsft2

PUSH PSW

A TO (SP-1)

F TO (SP-2) SP-?=fltfPA

XRA E A XOR E A = 82 Fs86

PUSH PSW

A TO CSP-U

F TO (SP-2) $P-2

CRA H A IOR H A = 82

PUSH PS'-J

A TO (SP-n

F TO (SP-2) SP-2

yRA H A XDR H As80. Fs«2

PUSH PSW

A TO (SP-1)

F TO (SP-2) SP-23f l f *94 "

ORA L A IOR U A = CPI Fcflf i

P U S H P S *

A TO (SP-1)

F TO (SP-2) SP-2sP>0P2

XRA L A XOR I. A s 8 0 F = B2

PUSH PSW

A TO (SP- !)

F TO (SP-2) SP-2a«W90

ORA A A IOR A AsBOl Fs82

-54-

TABLE 1 Continued

MOP

PUSH PSW

A TO (SP-1)

F TO (SP-2) SP-2 = PI08E

XRA A A XOR A As00 Fs46

PUSH PSW

A TO (SP-1)

F TO (SP-2) SP-2S008C

ORA M A IOR (HL)

(HU)INsBE AsBE F=86

PUSH PS^

A TO (SP-1)

F TO (SP-?) SP-2sP!08A

VRA M A XOR (HL)

(HL)IN = 78 AsC6 F = >?6

PUSH PSW

A TO (SP-1)

F TO (SP-2) SP-2=0P88

ANA M A=A ANO (HL)

(HL)IN=FC A*C4 Fsp?

PUSH PSW

A TO(SP-l)

F TO(SP-2) SP-2 = C*l?«6

ANA A AsA AND A AsC4 F=82

PUSH PS^

A TO (SP-l)

-55-

TABLE 1 Continued

MOP

F TO (SP-2) SP

ANA B AaA AND 6

PUSH PSd

A TO (SP-i)

F TO (SP-2) SP

OKI AsA IOR (82)

PUSH

A TO
F TO

ANA. C AsA AND C

PUSH PSW

A TO CSP-1)

F TO (SP-2) S

ANX A=A AND (82)

pSw

A TO (SP-1)

F TO (SP-2) SP-2

RI A«A XOR (B2)

PUSH

A 10

F TO (SP-2) S

ANA 0 AsA AND 0

-56-

TABLE 1 Continued

MOP

PUSH PSW

A TO (SP- i)

F TO (SP-2) SP-2'

CMP C A-C FsQ7

PUSH PSW

A TO (SP-l) '

F TO (SP-2) SP-2'

RAR As88

PUSH PSW

A TO (SP-J)

F TO (SP-2) SP-2!

ANA E AsA AND E AsK8 Frl2

PUSH PSW

A TO (SP-1)

F TO (SP-2) SP-2 = Pl<*72

RAR A = M F = 12

PUSH PSW

A TO (SP-1)

F TO (SP-2) SP-2

RRC

PUSH PSW

A TO (SP-i)

F TO (SP-2) SP-2

ANA H AsA AND H

PUSH PSW

-57-

TABLE 1 Continued

MOP

A TO (SP-1)

F TO (SP-2)

RLC

PUSH PSW

A TO (SP-1)

F TO (SP-2)

CMP A A-A

PUSH PSW

A TO CSP-1)

F TO (SP-2)

CMP 8 A-8

PUSH PSv«i

A TO C S P - i)

F TQ (SP-25

CMP n A-D

PUSH p.sw

A TO (SP-1)

F TO (SP-2)

CKP E A-E

PUSH PS*

A T O (S P - l)

F T O C S P - 2)

CMP H A-H

PUSH PSW

A - T O (SP-1)

SP-2SPW6A

SP-23PI068

Ftg?

-58-

TABLE 1 Continued

MOP

F TO (SP-2)

M A- (HL)

PUSH PSW

A TO (SP-1)

F TO (SP-2) SP-2=005E

CMP L A-L

PUSH PSW

A TO (SP-1)

F TO (SP-2) SP-2

RAt

PUSH PSW

A TO (SP-1)

F TO (SP-2) SP-2=*05A

ORA L ASA IOR L Aa49 Fe0?

PUSH PSW

A TO (SP-1)

F TO (SP-2) SP-2 = P'9)58

ANA L A = A AND L Aa/ jp . F»12

PUSH PShl

A TO (SP-1)

F TO (SP-2) SP-2a9l«56

CPI A - (B 2)

PUSH

-59-

TABLE 1 Continued

NOP

A TO (SP-1)

F TO (SP-2) SP-2e0C354

RLC AaR

PUSH PSW

A TO (SP-1)

F TO (SP-2) SP-2sflfl52

RLC A = R

PUSH PSW

A TO (SP-1)

F TO (SP-2) SP-RSPI050

R R C A s S

PL'SH PSW

A TO (SP-1)

F TO (SP-2) SP-2sf l04E

R A L A = 0

PUSH PSW

A TO (SP-1)

F TO (SP-2) SP»2sfl0.4C

JMP (63B2) TO PC

'B2

-B3

JC (6362) TO PC (CARRYsl)

B2

B3

JNC NO JUMP,CARRY=1

Fs(?)7

Fs07

-60-

TABLE 1 Continued

NOP

82 Acfll

63 Fep)7

J2 wo juMp.zEROsfl CARRY,PARITY SET

82

B3 • - .

JNZ (B3B2) TO PC

B2

63

JM NO JUMP,SIGN = 0!

B2

83

JP CB3B2) TO PC

82

63

JPE (B382) TO PC

82

83

JPO NO JUMP

B2

B3

CALL CB3H21 TO PC

82

83 PC+1

PCH TO CSP-1)

PCI TO (SP-2) SP-2

-61-

TABLE 1 Continued

NOP

RET

(SP) TO PCL

(SP+il TO PCH S P + 2 = M W 4 C

CC C A L U C A R R Y s t (B 3 B P O T O PC

B2

B3 PC + 1

PCH TO CSP-n

PCU TO tSP-2) S P - 2 = P 0 4 A

P C R E T , C A R R Y s l

(SP) TO PCL

(.5P+1) TO PCH SP + 2s(?i«4C

CNC NO CALL.CARRYsi

(32

83

R N C W O R E T , C A R R Y = i

CZ NO CALUZERO = 01

B2

B3

R2 NO R E T . Z E R O e C j)

CNZ CAI,L,7ERD = 0 (8382) TO PC

B2

B3 PC+1

PCH TO (SP-n

PCI. TO (SP-2) SP-2sP! l34A

RNZ R E T , ZERO=»

-62-

TABLE 1 Continued

MOP

(SP) TO PCI

(SP+1) TO PCH SP + 2aPI(MC

CM NO C A L L , S I G N = 0

82

83

RM NO RET, SIGNs0

CP CALL,SIGN=0 (R3R25TO PC

B2

B3 PC-M

PCH TO (SP-n

PCI TO (SP-2) SP-2 = ̂ P!4A

PP

(?P) TO PCL

(SP+n TO PCH SP + 2 = flCMC

CPF. C A L L , P A R I T Y = l f B 3 B 2) T O PC

B2

R3 PC-H

PCH TO (SP-1)

PCL TO (SP-2) SP-2S004A

RPE RET,PARITY = 1.

(SP) TO PCL

(SP + 1) TO PCH

CPO NO

B2

B3

-63-

TABLE 1 Continued

MOP

RPO NO RET,PARITY=i

POP PSW

(SP) TO F

(SP+HTO A SP«-2s<»PI4E F = C2

PUSH PSW (SIGN,ZERO=1)

A TO CSP-1)

F TO (SPf2) SP-2

JMP (B3B2) TO PC

B2

83 '

JC NO JUMP,CARRYs?l

B3

JNC CB3B2) TO PC

B3

JZ (B3B2) TO PC

82

B3

JNZ NO JUMP,ZERO=1

B2

B3

JM (B3B2) TO PC SIG

B2

' B3

-64-

TABLE 1 Continued

MOP

JP NO JUMP

B2

B3

JPE NO JUMP, PARITY=0

B2

B3

JPO (B3B2) in PC

B?

83

CALU (83B2) TO PC

B2

B3 PC+1

PCH TO (SP-1D

PCL TO (SP-?) SP-2=«P4A

WET

(SP) TO PCL

(SP+n TO PCH

CC NO CALL

B2

B3

RC NO RET

CNC (B3B2) TO PC , CARRY=0

B2

B3 PC+1

PCH TO (SP-U

-65-

TABLE 1 Continued

NOP

PCL fO (SP-2) S P - 2 B 0 P I 4 A

R N C RET, C A R R Y s P I

(SP) TO PCL

(SP+1) TO PCM SP + 230CMC

CZ C A L L . Z E R Q M

B2 (8 3 B 2) T O PC

B3 PC*1

PCH TO (SP-1)

PCL TO CSP-2) SP-2s t iC54A

RZ RET

(SP) TO PCL

(SP + 1) TO PCH SP + 25PI04C

CNZ NO C A L U » Z E R O s)

B2

B3

RNZ i^O RETURN

CM CALL,SIGNsi (B382^ TO PC

B2

B3 PC+1

PCH TO (SP-1)

PCL TO fSP-2)

RM RETURN

(SP) TO PCL

(5P+1) TO PCH

CP NO CALL,SIGN=1

-66-

TABLE' 1 Continued

NOP

02

83

RP NO RET

CPE NO CALL,PARITY=fl

B5>

B3 ' .

RPE MO RET

CPO CALL, PARITY = P1 (B3R2) TO PC

62

B3 PC+1

PCH TO (SP-1)

PCL TO fSP-?)

RPO R ^ T I J R W

(SP) TO PCL

(SP-M) TO PCH

RST AT MM#0 PC+1

PCH TO (SP-1)

PCL TO (SP-2) SP-2=^?4A

RET

(SP) TO PCL

(SP+J) TO PCH SP+2S9P4C

RST AT 0M8 PC*t

PCH TO (SP-1)

PCL TO (SP-2)

RET

-67-

TABLE 1 Continued

MOP

(SP) TO PCL

(SP+1) TO PCH SP + 2s004C

RST AT Win PC + 1

PCH TO (SP-l)

PCL TO (SP-2) SP-2B0CMA

RET

(SP) TO PCL

(SP+1) TO PCH

RST AT 0W18

PCH TO CSP-1)

PCL TO (SP-2)

RET

(SP) TO PCL

(SP+1) TO PCH

RST AT 0020 PC+1

PCH TO (SP-l)

PCL TO (SP-2) SP-2sRp i4A

RET

(SP) TO PCL

(SP+1) TO PCH SP +

RST AT 0028 PC+i

PCH TO (SP-l)

PCL TO (SP-2) SP-

RET

(SP) TO PCL

-68-

TABLE 1 Continued

NOP

(SP-M) TO PCH

HST AT 0030 PO1

PCH TO fSP-1)

PCL TO (SP-2)

RET

(SP) TO PCL

(SP + 1) TO PCH

RST AT 0«38 PC+i

PCH TO (SP-1)

PCL TO (SP-2) SP-2=«04A

RET

(SP) TO PCL

(SP+1) TO PCH SP+2=004C

NOP

-69-

RESET MPU

TEST PROGRAM

COUNTER .

= 0

EXECUTE

INSTRUCTION

TEST TO SEE

IF PROGRAM COUNTER

INCREMENTE

PROGRAM COUNTER
= 216

FIGURE 12: Program Counter Test

-70-

not checked is the Register Transfer to the Program Counter. This

operation is verified during the Register Array Test.

Register Array Test

The test on the Register Array is accomplished by two tests. One

verifies that each register is independent of any other register, and

two, that any register can be moved from one* register to another with

any data combination. The test to determine uniqueness of each register

is to first load each register (B, C, D, E, H, and L) with unique data

and read to verify the load operation. The test is performed using

the instruction shown in Table 2. An explanation of the instruction

mnemonics appears in Table 3.

The next test on the Register Array will verify that the registers

can move from one register to another and move any data combination.

This test will also check register- to-Program Counter transfers. This

recommended test loads the H and L registers directly with a pattern

of O ' s , transfers the H register contents to allother registers, and

outputs from the H and L registers through the Program Counter. The

pattern is incremented until all 256 numerical combinations have been

checked. A flow chart of this test is illustrated in Figure 13. The

instructions that should be used for this test are LXIH, PCHL, and

Stack Pointer Test

The Stack Pointer test is just like the Program Counter test, both

-71-

Instruction

- 1. MVI

2. MVI

3. MVI

4. MVI

5. MVI

6. MVI

7. MVI

8. LXI

9. MOV

10. MOV

11. MOV

12. MOV

13. MOV

14. MOV

15. MOV

Register

A

B

C

D

E

H

L

SP

M,A

M,B

M,C

M,D

M,E

M,H

M,L

Val

(ooo)8 \

(001)8 1

(002)8 I

(004)8 >

(oio)8

(020)8

(040)8 /

ue

L
o '
a
d

R
0

u
t
i
n
e

(125)8(252)8X

•%

I
T

e
s

*
R
0
u
t
i
n

/ e

TABLE 2: Register Array Test

-72-

l»l!rs>tl«>i)Co«M'l
Mnemonic Description 0? 0« Oj 04 Dj 0

MOV M, r
MOVr. M
MIT
MVI f
MVI M
INRr
OCR.
INRM
O C R M
AOOr
A O C f
SUBr
SBBr

ANA.
XRAr
OKA.
CMPr
AOOM
ADCM
SU8M
566 M

ANAM
XRAM
O R A M
CMPM
AOI
ACI

SUI
SSI

ANI
XRI

ORI
CPI
RLC
ARC
RAl
RAR

JMP
JC
JNC
a
ml
Jp
JM

JPE
JPO
CALL
CC
CMC
11
CHI
CP
CM
CP(
CPO
RET
DC
RNC

Move register 10 register 0

Move memo.y to register 0
Kail 0
Move immediate register 0
Move immediate memory 0
Increment register 0
Decrement register 0
Increment memory 0
Decrement memory 0
Add register to A 1
Add register to A with carry 1
Subtract register Irom A 1
Subtiacl register from A 1
with borrow
And register with A 1
Exclusive Or register with A 1
Or register with A 1
Compare register wilh A 1
Add memory lo A 1
Add memory to A with carry 1
Subtract memory trom A 1
Subtract memory Irom A 1
with borrow
And memory with A 1
delusive Or memory with A 1
Or memory with A 1
Compare memory with A 1
Add immediate to A 1
Add immediate to A with 1
carrv
Subtract immediate from A 1
Subtract immediate from A ' 1
with borrow
And immediate with A • 1
Eiclusive Or immediate with 1
A
Or immediate with A 1
Compare immediate with A 1
Rotate A left 0
RoteteAright 0
Rotete A lell through carry 0
Rotate A right through 0
orry
Jump unconditional
jump on carry
Jump on no carry
Jump on lero
Jump on no iero
Jump on positive
Jump on minus
Jump on parity even
jump on parity odd
Call unconditional
Cell on carry
Call on no carry
Call on iero
Cell on no Iero
CeB on positive
Cell on minus
Call on parity eve n
Cell on parity odd
Return
Return on carry
Return on no carry

1 0 0 0 $
1 . 1 1 O S
1 0 D 0 1
1 1. 1. 0 1
0 O D D !

0 1 1 0 1
0 0 0 0 1
0 0 0 0 1
0 1 1 0 1
0 1 1 0 1
0 0 0 0 S
0 0 0 1 S
0 0 1 0 S
0 0 1 1 S

0 1 0 0 S
0 1 0 1 S
O I I O S
0 1 1 1 S
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1

0 1 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1

1 0 1 0 1
1 0 1 1 1

1 1 0 0 1
1 1 0 1 1

1 1 1 0 1
1 1 1 1 1
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 I 1

0 0 0 0
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0

1 0 0
1 1 0
0 1 0
0 0 0
0 1 1
1 1
1 0
0 1
0 0
I 0
1 1
0 1
0 0

0 0 1 0
0 1 1 0
0 1 0 0

> o, DO

s s
s s
1 0
1 0
1 0
1 0
0 0
0 1
0 0
0 1
s s
s s
s s
s s

s 's •
s s
s s
s s
1 0
1 0
1 0
1 0

1 0
1 0
1 0
1 0
1 0
1 0

1 0
1 0

1 0
1 0

1 0
1 0
1 1
1 1
1 1
1 I

1 1
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
0 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 1
0 0
0 0

Clock m
Cycm

5
J

7
7
7

10
s
s
10
10
4
4
4
4

4
4
4
4
7
7
7
7

7
7
7
7
7
7

7
7

7
7

7
7
4
4
4
4

10
10
10
10
10
10
10.
10
10
17

11/17
11/17
11/17
11/17
11/17
11/17
11/17
11/1)

10
VII
VII

Jrmruciien Coded
• Mnemonic

Kl
RN2
RP
RM
RPE
RPO
ftST

IN
OUT
1X18

1X10

LXIH

LXISP
PUSHB

PUSHO

PUSHH

PUSH PSW

POP 8

POPO

POPH

POP PSW

STA
IDA
XCHG

XTHL
SPHl
PCHl
OAOB
D A D O
DAOH
OAOSP
STAX8
S T A X O
IOAX B
L O A X D
INXB
INXO
INXH
INXSP
OCX 8
DCXO
O C X H
O C X S P
CMA
STC
CMC
OAA
SHIO
LHLO
El
01
NOP

Description

Return on lero

Return on ponlivr
Return on minus

Return on parity odd
Reiuri
Input
Output
load .mmediete register
Pair 8 & C
Load immediate register
Pair 0 & E
load immediate register
Pair H & I'
Load immediate stack pointer
Puth register Pair B & C on
stack
Puth register Pair 0 & E on
stack
Puth register Pair H & I on
steck
Puth A and Flags
on stack
Pop register pair B & C off
stack
Pop register pair 0 & E olf
stack
Pop register pair H & L ofl
steel
Pop A and Flags
off slack
Store A direct
load A direct
E icXangeO&E.H&l
Registers
Eichinge top ol stack. H SL
H & L to stack pointer
H & L to program counter
Add B & C to H & L
Add 0 & E to H & L
Add Hi 1 10 HI L

Add stack pointer 10 H & I
Store A indirect
Store A indirect
Load A indirect
load A indirect
Increment B & C registers
Increment 0 & E registers
Incremcnl H & L registers
Increment stack pointer
Decrement B & C
Decrement D & E
Decrement H & L
Decrement stack pointer
Complement A
Set carry
Complemenl carry
Decimal ediuil A
Store MIL direct
load H & L direct
Enable Interrupts
Disable interrupt
No operation

07 0,

1
1

°>

0

1

0. D, 0,
Clock 17

0| DO Cycles

0 1 0 0 0 V I I

1 0 0 0 0 VII
1 1 1 0 0 0 VII
t ft i ft n ft 1/1 1

i
0 0

0 0

0 .0

0 0
1 I

1 1

1 1

1 1

1 1

1 1

1 1

1 1

0 0
0 0
1 1

1 1
1 1
1 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 1
1 1
0 0

1
A
0
0
0

0

1

1
0

0

1

0 '0 0 0 0 VII
A A 1
1 1 0
1 0 0

1 1 11
1 1 10
1 1 10

0 0 0 0 1 1 0

1 0 0 0 1 10

0 0 0 0 1 1 0

1 0 0 0 1 10
0 0 1 0 1 II

1 0 1 0 1 11

0 0 1 0 1 1 1

1 1 0 1 0 1 I I

0

0

1

1

1
1
1

1
1
1
0
0
1
I
0

'o
0
0
0
0

0

0 0 0 0 1 1 0

1 0 0 0 1 1 0

0 0 0 f 1 10

1 0 0 0 1 1 0

1 0 0
1 1 0
0 1 0

0 0 0

1 0 1}
0 13

1 1 4

1 18
1 1 0 0 1 S
0 1 0 0 1 s
0 1 0 0 1 1 0
1 1 0 0 1 1 0
0 1 0) 1 10
1 1 0 0 1 1 0
0 0 0
1 0 0
0 1 0
1 1 0
0 0 0
1 0 0
0 0 0
1 0 0
0 1 0
1 1 0
0 1 0
1 1 0
0 1 1
1 0 1
1 1 1
0 0 1
0 0 0
0 1 0
1 1 0
1 0 0

0
0
0
0

1
1
1
1
1
1
1
1
1

1
I

0
0
1
1

0 0 0 0 0

1
I

1

s
s

NOTES: 1. ODD or SSS - 000 B - 001 C - 010 0 - 011 E - 100 H - 101 L - 110 Memory - 111 A.
2. Two potiible cycle tim«i, (5/11) indicate instruction eyelet dependent on condition flags.

TABLE 3: 8080 Instruction Mnemonics

-73-

4J
</>
<U

O)
4-J
t/)
•r-

o:

co
r—

LU
C£

cc.
I—
CO

•z.
_l LU

ot=S
2: <c
ff a. a:

f-
f— 3

13£
CO <C

Q LU H=-
ff >-i CO
O D^

0

o: LU
o: LU t—
LU 1— 00u. co H-,
CO t— i CD
^*" <J3 f 1 1
«£T I i I Ql
r? rv
H- 00

n:
rD D.
Q_ ^>^ PU

B

R
EG

IS
TE

R
TO

M
PU

H

R
EG

IS
TE

R

o
0

LU
I— o:
CO LU
•-1 1—
LU Z3.
aso

o

— *v u

co

\3\ a. <_)

]
3

c.j

c.
a

3

J
u

J

- .
2: o.

-74-

are 16-bit registers with the additional feature of incrementing and

decrementing. Therefore, the test on the Stack Pointer should check

for incrementing and decrementing, and the ability to load and trans-

fer to another register. Figure 14 is a flow chart of a recommended

test and Table 4 lists the instructions used during the test.

Accumulator Test

The accumulator in the 8080 is 8-bits wide. A recommended test on

the accumulator is to verify, load, readback, rotate, and transfer

operation through its entire range. The recommended instructions (see

Table 1) to be used during this test are MOVA M, MOVj. ., CMA, RCL, RRC,

RAL, and RAR. A flow chart of the recommended test is shown in Figure

15.

Arithmetic Logic Unit Test

The Arithmetic Logic Unit (ALL!) is 8-bits wide and used to perform

all arithmetic and logical data operations in the 8080. The ALU has

been left, until last because error analysis is simplified once all other

modules have been verified. A recommended test for the ALU is to test

all ALU data paths and related instructions through its range. All

instructions are used during this test which operation on the ALU, such

as ADD, ADC, SUB, SBB, etc. A flow chart of this recommended test is

shown in Figure 16.

-75-

START)
RESET MPU

1
LXIH: LOAD MPU (L) AND

(H) REGISTERS WITH

STARTING ADDR VALUE

SPHL: TRANSFER (H) AND
(L) TO STACK POINTER (SP)

INXSP: INCREMENT (SP.) BY 1

J
DADSP: LOAD (H) AND

(L) WITH (H) (L) PLUS (SP)

SPHL: (H) (L) -(SP)

N-2 TIMES

TEST

MAX ADDR

VALUE

i
DCXSP: (SP) - 1 -(SP)

1
PUSHPSW: (SP) - 1 *(PC)

PASS

PUSHPSW (CONTINUED):

(SP) - 2 —(SP), (PC)

Notes: SP MAX = 2 - 1, N > 2
SP MIN = 2N - 1 - 3M, M > 1

FIGURE 14: Stack Pointer Test

-76-

CODE (DATA WORD)
MNEMONICS CYCLES CLOCKS 7 6 5 4 3 2 1 0 OPERATION

LXIH 3 10 0 0 1 0 0 0 0 1

<B2> <B2> -(L)

<B3> <BS>—~(H)

SPHL 1 5 1 1 1 1 1 0 0 1 (H) (L) -(SP)

INXSP 1 5 0 0 1 1 0 0 1 1 (SP) + 1 (SP)

DADSP 3 10 0 0 1 1.1 0 0 1 (H) (L) + (SP)-—-(H) (L)

PCHL 1 5 1 1 1 0 1 0 0 1 (H) (L) - (PC)

DCXSP 1 5 0 0 1 1 1 0 1 1 (SP) - 1 - (SP)

PUSHPSW 3 11 1 1 1 1 0 1 0 1 (A) '[SP-1],(F) -[SP-2]

TABLE 4: Stack Pointer Test Instructions

-77-

A '• A
M+l' 7

'A>M: (MEM) —(A)

CMA: (A)—(A)

(A)_(MEM)

TEST \ FAIL
DATA LINES

(MEM) —(A)

AM—VrA
7

TEST \YES
MAX ACC

VALUE

: (A)— (MEM)

ACC MIN <7FNotes:

ACC MAX >

FIGURE 15: Accumulator Test

-78-

(^ START J

1
RESET MPU

»
POPSW: [SP] (F) [SP+1] (A)

CLEAR "C" F/F AND LOAD (A)

WITH STARTING VALUE "0016"

!

MOVB,A:

ADDg: (B)

1

ADCg: (B)+(

,

1 (F) = H2

(A)— (B)

ur
+ (A)— (A)

1
Al+'T" . ^A)/ \ ;T ^ -— . \i\)

\
PUSHPSW: (A) -[SP+1]

(F) — - [SP+2]

.XTE
^Mth

i

? T^\ PASS
LlNE^X

î FAIL
^rr

FAIL

Note: ACC MAX

-

I
SUBB: (A)-(B)— (A)

1
SBBB: (A)-(B)-"C" — - (A)

!

*PUSHPSW: (A) — -[SP+1]

(F)— [SP+2]

IAJ - ffl016

FAIL X^^^^^X

PASS

= FE16

FIGURE 16: Arithmetic L

\^ATA LINE^

- [P A S S

INRB: (B)+l— (B)

Y£S /^^\

^M="-^S

TNO

N0 ^X^ST^L

* X^)=8016X^

YYES

POPPSW: [SP] — - (F)

[SP+1]— (A)

SET "C" F/F

1 (c\ - ni(r) 4316

agic Unit Test

-79-

B. 8008

The test program for the 8008 is divided into the major sections

listed below. ,

1. Accumulator

2. Register Array

3. Arithmetic Logic Uni t (ALU)

4. Address Stack

5. Input/Output Instruction

6. Halt and Interrupt

Accumulator

The accumulator of the 8008 is part of the scratch pad register

array wi th an address of 000?. This register is a working register for

the ari thmetic and logical instruct ions. In t i a l ly , a verif ication test

would be implemented in a series of MOV instructions to load and store

data to verify the basic funct ional i ty . Data patterns should consist

of all 1's, all O ' s , CHECKERBOARD, inverted CHECKERBOARD, ly , 2? , 4 / 5

10?, 20g, 40g, and 100g.

Register Array

The scratch pad register array test is designed to verify that each

register can increment and decrement throughout its entire range, that each

-80-

register can be transferred to all other registers of the array, and

that the H and Z registers can properly provide a correct address for

the MOV and MOVM D instructions.
K> rl rl 9 K

i

In i t i a l ly the device is reset and all registers of the array

loaded to a different value with the MOVR M ins t ruc t ion , except regis-

ter R which is set to 0. Register Rl is now incremented from 0 to

255 to 0, to verify the wrap-around characteristic. After each incre-

ment, the contents of the register is examined us ing the MOV,. R

instruction.

At the completion of this process, the contents of all remaining

registers are stored and ver i f ied. Register Rl is now decremented

from 0 to 255 to 0, verifying the underflow characteristic. After each

decrement, the register contents are stored and ver i f ied us ing the

MOV^ R instruction. At the completion-of this process, the contents

Of all other registers are read and verif ied.

The increment/decrement test is now performed on all remaining

registers of the array.

Transfer Operations

In order to accomplish transfer operations and preserve the un ique

ident i f ica t ion of all other registers, the previously ver i f ied instruc-

tions of MOVR M , VMIr , MOVM R , I N R r , and DECr w i l l be used. I n i t i a l l y

-81-

all registers are cleared. Register Rl w i l l be tested f i rs t .

Register Rl is incremented and transferred to R2. Rl is again incre-

mented and transferred to R3. This process is repeated un t i l all

registers have received data from Rl. The accumulator is the last

register to receive data. All register contents are now stored and

verif ied starting the the accumulator. After repeating this process

42 times, the sequence is repeated, only this time register R2 is used

as the origin of all data to be transferred. All remaining registers,

except the accumulator, are verified in the same manner.

Since the accumulator cannot increment, the test for verif icat ion

of transfer is accomplished in a s l igh t ly different manner. A g a i n ,

all registers are set to 0. Register B is then incremented and trans-

ferred to the accumulator, which is in turn transferred to register C.

Register B is again incremented and transferred to the accumulator,

which is now transferred to register D. This process is repeated un t i l

all registers have received data from the accumulator. All register

contents are now stored and verified. This process is repeated 51

times. Dur ing this test procedure the transfer of the accumulator con-

tents to register B is not possible, since register B is being used to

generate the test pattern internal to the device. Therefore, it is

necessary to repeat this test us ing register C to generate the internal

test pattern, transferring its contents to the accumulator and then

transferring the accumulator to register B, incrementing register B,

and then storing all registers. The purpose of incrementing register

B is to preserve the unique addressing of that register for transfer

ver i f ica t ion .

-82-

Arithmetic Logic Unit (ALU)

The previously verified instructions are now utilized to test the

add, subtract, logical, and shift instructions. Results of the add

and subtract instructions effect all condition flip-flops, while the

rotate and shift instructions effect only the carry bit. The logical

instructions do not effect the condition flip-flops.

The condition flip-flops cannot be gated to the data or address

bus for purposes of verification. Therefore, it will be necessary to

use the conditional jump instructions, JC, JZ, JM, JPE, JNC, JNZ, JP,

and JPO.

After each arithmetic operation it is necessary to execute all six

conditional jump instructions to test for proper operation of the con-

dition flip-flops.

The data chosen should generate the criteria to set and reset all

condition flip-flops resulting in patterns that will verify that the

ALU can recognize a 0, negative number, even parity, and a carry, or

borrow.

The data patterns required for proper verification of the ALU

should be designed such that execution of the arithmetic or logical

instruction being tested generates the following results:

-83-

Arithmetic Instruction

1. Positive Number

2. Negative Number

3. Even Parity

4. Non-Even Parity

5. Carry (Borrow)

6. No Carry (Borrow)

7. Zero Value

8. Non-zero Value

Logical Instructions

1. Positive Number

2. Negative Number

3. Zero Value

4. Non-zero Value

5. Even Parity

6. Non-Even Parity

Rotate Instructions

1. Carry

2. No Carry

3. Shift a 1 Through Carry

4. Shift a 0 Through Carry

5. Shift a 1 Through a Field of O's

6. Shift a 0 Through a Field of O's

-84-

Address Stack

Testing of the address stack is designed to verify that all levels

of the stack are operative in response to the CALL and RETURN instruc-

tions. The device test program simulates repeated subroutine CALL'S

and RETURN'S nesting up to the seven allowable levels. The program

should be structured so that the carry feature from the lower order 8-

bits of the address to the higher order 6-bits is verified. In addi-

tion, all conditional CALL and conditional RETURN instructions are

verified. The jump instruction should also be included in this test

as an easy means of manipulating the contents of the Program Counter

in generating the return addresses to be stored in the address stack.

Input/Output Instructions

Verification of the input/output instructions consist of executing

a series of eight input instructions each followed by an output instruc-

tion. During this sequence, the code for the selected input and output

port is different so that all combinations are tested. The actual data

used to write into the accumulator is not of critical importance.

Halt and Interrupt

The Halt instruction and Interrupt feature of the 8008 can be tested

together. The Interrupt is verfied first. The critical parameter of

the Interrupt is that the interrupt signal to the 8008 cannot be allowed

-85-

to occur within 200 ns of the falling edge of 01.

The test program should verify that the 8008 will properly respond

to an external interrupt which occurs within the allowable timeframe

as indicated below. In addition, the Interrupt signal to the 8008

should be applied during all time states of instruction execution.

After this test, the Halt instruction is executed and the ability

of the 8008 to respond to an external interrupt is verified over the

same time span by executing a series of Halt instructions followed by

Interrupts.

01
02

\J ..

-INT-
Allowed

*—»

|_INT Not_
Allowed

w w v _
r

-86-

C. 2901

The 2901 4-bit bipolar microprocessor slice is not like other

microprocessors being only the process portion of the typical micro-

processor. Like the typical microprocessor, the 2901 has a data bus,

but is not bidirectional. It also provides a register file (16 Word

X 4-bits), an Accumulator (4-bits), and an Arithmetic Logic Unit (ALU),

The 2901 does not include an instruction decoder, rather all

instructions directly control an operation from an code input. In a

typical MPU the instruction code applied on the data bus

into the decoder for the complete cycle. The 2901 complete cycle

lasts only one clock cycle and if the instruction lines change during

the cycle a new operation will occur. Also, the 2901 is not capable

of addressing external memory directly, because it does not include

an address or program counter. A typical MPU can execute jumps,

subroutines, and return from subroutines due to the existance of a

stack pointer which the 2901 does not contain.

The architecture of the 2901 can easily be broken up into testable

modules that can be controlled and tested by the device pins and its

microinstructions (see Figure 2).

The 2901 can be broken up into the following modules:

1. RAM (16 addressable registers) controlled by the "A" address field.

2. RAM (16 addressable registers) controlled by the "B" address field.

-87-

3. "Q" Register or Accumulator

4. ALU Source Selector

5. Eight Function ALU •

6. Output Data Selector

7. RAM Shift '

8. "Q" Shift .

Examination of the microinstruction control shows that the 2901

has a 9-bit microinstruction. This microinstruction is divided into

three groups: ALU source control, ALU function control, and destin-

ation control. The ALU source control controls from what data path

the data will be applied into the ALU (Table 5). The ALU function

controls what function the ALU will perform. For example, R field +

S field, R field or S field, etc., (Table 6). The destination control

routes the output of the ALU (or RAM) to different destinations within

the 2901. These destinations include the RAM register stack, the "Q"

register accumulator, both the RAM and "Q" register or the RAM directly

out of the device (Table 7). The microinstruction controls thus route

and/or manipulate data through the device.

RAM Addressable Register Test

The RAM Address Register should be divided up into four unique

portions structured to test (1) the RAM using the "A" address stored

through the output by passing the ALU, (2) the RAM using the "A"

address outputted through the ALU, (3) the RAM using the "B" address

-88-

MICRO CODE

J2 *1 0

L

L

L

L

H

H

H

H

L

L

H

H

L

L

H

H

L

H

L

H

L

H

L

H

Octal .
Code

0

1

2

3

4

5

6

7

ALU SOURCE

OPERANDS

R

A

A

0

0

0

D

D

D

S

Q

B

Q

B

A

A

Q

0

TABLE 5: ALU Source

-89-

MICRO CODE

!5 >4 >3

L L L

L L H

L H L

L H H

H L L

H L H

H H L

H H H

Octal
Code

0

1

2

3

4

5

6

6

ALU

Function

R Plus S

S Minus R

R Minus S

R OR S

R AND S

R AND S

R EX-OR S

R EX-NOR S

Symbol

R + S

S - R

R - S

R V S

R A S

R A S

R Y-S

R-A-S

TABLE 6: ALU Function Control

-90-

MICRO CODE

<8
 li <6

I L L

L L H

L H L

L H H

H L L

H L H

H H L

H H H

OCTAL
CODE

0

1

2

3

4

5

6

7

RAM
FUNCTION

SHIFT LOAD

X None

X None

None F — - B

None F — -B

Down F/2^B

Down F/2 — -B

Up 2F — -B

Up 2F — -B

Q-REGISTER
FUNCTION

SHIFT LOAD

None F — -Q

X None

X None

X None

Down Q/2 — -Q

X None

Up 2Q— Q

X None

Y

OUTPUT

F.

F

A

F

. F

F

F

F

RAM
SHIFTER

' RAM RAM

X X

X X

X X

X X

FQ IN3

FQ IN3

IN0 F3

.IN0 F3

Q
SHIFTER

% «3

X X

X X

X X

X X

Q0
 IN3

QO x

IN0 Q3

X Q3

r

X=Don't care. Electrically, the shift pin is a TTL input internally
connected to a three-state output which is in the high-impedance
state.

B=Register Address by B inputs.
Up is toward MSB.
Down is toward LSB.

TABLE 7: ALU Destination Control

-91-

outputted through the ALU, and (4) the right/left shift operation of

the RAM.

To test the RAM using the "A" address outputted bypassing the ALU,

the following is recommended. The object of the test is to run a

GALPAT pattern on the RAM using all combinations from 0 to 15 for the

test pattern and the compliment of this as the background pattern.

Since the RAM can only be written into a location addressed by the "B"

address, care has to be taken to address only the test location when

writing into the RAM. When a location is being tested or read, the

"B" address should be different then the "A" address. The easiest

solution to this would be to compliment the "B" address relative to

the "A" address when reading a test cell. The setup to run this test

would be to set the ALU source operand to octal code 7 (D,0) when

writing into the RAN and octal code 4 (0,A) when reading out a loc-

ation. The ALU function is used during this test to route the data

on the data input pin to the RAM. This should be programmed for a

recommended function, octal code 3 (R OR S), as this will be used in a

later test. The destination control should be programmed for octal

code 2 which selects the RAM "A" data port to the output, bypassing

the ALU. The clock pins should be held in a high state. Throughout

this test the only pins that will be sampled will be the "Y" ouput

pins. Once this test setup has been executed a GALPAT pattern should

be performed using all test patterns of 0 to 15 and background patterns

of 15 to 0. What the GALPAT does is to write a background pattern then

write a test pattern. The test pattern is then read, a background

-92-

pattern location read,, then the test location again, then another back-

ground location, test location, etc., until all background locations

have been read. Then the test pattern is moved and the process repeated

until all locations have been used as a test pattern. The test pat-

tern is then incremented and.the background pattern decremented. This

process is then continued until all pattern combinations have been

tested (see Figure 17 for illustration).

Performing this test will verify that all data combinations can be

written into and read out of with every data combination.

The second test on the RAM is to check the RAM addressed'by the "A"

address field but checking the data output path through the ALL). The

same test should be run as previously described with only one change

in the microinstruction. This change would be to modify the destination

control to an octal code 3. This modifies the output path from the

RAM "A" address output to the ALU output. This would then check if the

RAM "A" address path through the ALU is functional with all data sequences

The next test on the RAM would be similar to the second test, but

the "B" address and output path is checked. The changes to the second

test would be to have addressing to the RAM entirely controlled by the

"B" address field. During this test it is recommended that the "A"

address field be the compliment of the "B" address. This would cause

the worst interaction between the RAM addressing. The remaining dif-

ference would be to modify the ALU source operand to select octal code

-93-

0

1

1

1
1

1

0

1

1

1

1

0

1

1

1

1

0

1

1

1

1

FIGURE 19: GALPAT Read Example

-94-

3 when performing a read of the RAM. This will select a source of

0,B, thus enabling the "B" output of the RAM to pass through the RAM.

The final test to be run on the RAM is verification'of the right/

left shift operation. The recommended test will only describe a shift

operation from the left as to test the right shift all that would be

required is to input data from the right input and test the left out-

put. The object of this test is to verify that all data combinations

from 0 to 15 can be shifted through the RAM. Also, since latches are

noted to be sensitive to noise, and the 4-bit output of the RAM uses

a latch, the test will also recommend how to check for this. The

recommended test sequence is as follows:

The test should start out by loading a 0 into location 0, and a 15

into location 15 of the RAM. The purpose of this is that one location

will be used to shift data input and the other location will be used

as a background test pattern. The microinstruction for the ALU source

operation when writing the initial patterns should be an octal 7 which

selects the data bus. All other times during the test an octal code 4

should be selected which selects "A" output latch for input to the ALU.

(Note: An octal code of 3 should be selected when checking the "B"

output latch.) The ALU function should be selected for an octal code 3

(R OR S) so that the output latch can be tested throughout the test. The

advantage of using the R OR S function is that the ouput of the ALU

will be the same as the output latch. The microinstruction for the

destination control should be selected to octal code 4 which will execute

-95-

a left shift. (Octal codes 5, 6, and 7 should also be tested using

this same test. When selecting codes 6 and 7, the input and output

shift pins should be complimented when codes 4 and 5 are selected.)

The "A" and "B" address fields should be exactly the same throughout

this test. This allows an easy modification to the ALL) source

operand to check the "B" output latch as described earlier. Last of

all, the final setup should be to produce a clock pulse each time

there is a requirement to write to the RAM, but not during a test

cycle when the background location is being addressed.

The test on the right/left shift will verify that (1) the shift

operation will occur, (2) this shift operation can shift all combin-

ations of 1's and O ' s , (3) the output latches will hold data, and (4)

the shift operation can be accomplished using any RAM address. Fol-

lowing the initial loading of the test and background patterns one

bit of the shift pattern (101000111100101) is shifted into the RAM

and the shift and Y outputs checked. Then the background address is

addressed but no clock is produced and the outputs again checked.

This will verify that the output latch will hold data. The next bit

is now shifted in and verified and the background location addressed

and data verified. This process continues until all bits have been

shifted into the RAM. Then the testword and background address are

incremented and decremented, respectively, and the above test repeated.

This will continue until all RAM locations have been used for the test

location and background location. Upon completion of the first pass,

-the background pattern is decremented until the initial pattern has

-96-

gone from 15 to 0. This wi l l check for a sensitivity in the RAM out-

put latches. This test is then repeated for both r ight and left

sh i f t operations on the RAM.

The next test performed is on the "Q" register. There should be

two tests on the "Q" register. First, a test that w i l l load the

register wi th all combinations from 0 to 15 and fol low each load with

the compliment of the previous load. Second, a test to check the

right/ left shif t operation on the register.

The first test should start by loading a "0" into the register and

testing. Next a "15" should be loaded and tested, then 1, 14, 2, 13,

..., unti l a 0 and 15 are agaim reloaded. This test verifies that any

number can be loaded into register and that all data tranactions are

checked.

The second test checks the r ight/ lef t shif t of the "Q" register

(ALU Destination Control, octal codes 4 and 6). To check these oper-

ations an in i t ia l value should be loaded into the register and checked.

Destination control octal code 4 is selected and a pattern

(1010000111100101) is shifted into the register. After each bit sh i f t
/

the register data is checked. Then an octal code is selected on the

destination control and the other sh i f t operation checked as previously

described.

The next test w i l l test the ALU source operands. This test verifies

-97-

that all ALU sources can be selected and that all data combinations

can pass through the selector. The test should start by first loading

RAM locations 0, 5, 10, and 15 with data equal to the address. The

"Q" register is intially loaded with a 0. Using the ALU function "R

OR S" (octal code 3), and a destination control which loads neither

the RAM nor the "Q" register (octal code 1), the sequence of ALU

source operands shown in Table 8 should be tested. During this test

the "A" and "B" address will equal the data being selected by the

source operand.

The ALU functions and flags should be tested next, since all other

sections of the devices have now been verified as operational. First,

all locations in the RAM are loaded with a data pattern equal to its

address. Then data values of 0, 5, 10, and 15 and RAM values of 0,

5, 10, and 15 and CN values of 0 and 1 in all combinations are used to

test each of the eight possible ALU functions. In all cases, R is the

data bus and S is the "A" output from the RAM (ALU source operand, octal

code 5). First, the R & S function (octal code 0) is tested. The basic

sequence is as shown in Table 9.

This sequence is then repeated for each of the other ALU functions.

Function Octal Code

S - R 1

R - S 2

R OR S 3

-98-

A =

A =

A =

A =

A =

A =

A =

A =

A =

A =

A =

A =

0

0

0

0

0

D =

D =

D =

D =

D =

D =

D =

D =

D =

R

1010

0101

1010

0000

0000

0000

1010

0101

1010

0000

0000

0000

1010

0101

0101

0000

0000

0000

mi
0000

0000

Q =
Q =

Q =
(Load Q with 1010)'

Q =
(Load Q with 0101)

Q =
(Load Q with 1010)

Q =

B =

B =

B =

B =

B =

B =

(Load Q with 1111)

Q =

B =

B =

A =

A =

A =

A =

A =

A =

A =

A =

(Load Q with 0000)

Q =

Q =
(Load Q with 1111)

Q =

S

0000

0000

0000

1010

0101

1010

0000

0000

0000

1010

0101

1010

mi
0000

mi
0000

mi
0000

0000

0000

1010

0101

1010

0000

0000

mi

TABLE 8: ALU Source Operands

-99-

CN

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

R = A

0000
0000
nn
mi
0101
0101
1010
1010
0000
0000
nn
nn
0101
0101
1010
1010
0000
0000
nn
nn
0101
0101
1010
1010
0000
0000
nn
nn
0101
0101
1010
1010

s = D

0000
0000
0000
0000
0000
0000
0000
0000
nn
nn
nn
nn
nn
nn
nn
nn
0101
1010
0101
0101
0101
0101
0101
0101
1010
1010
1010
1010
1010
1010
1010
1010

TABLE 9: ALU Function Sequence

-100-

Function . Octal Code

R AND S .4

R AND S 5

R XOR S 6

R SNOR S 7

The last test on the device is to check to see if the output enable/

disable will cause the output to go to tristate. This is accomplished

by inputting a 0, 5, 10, and 15 into the Data bus and outputting it

through the ALU (R OR S function) to the Y output. After each data pat-

tern is on the Data bus the "Y" output is checked wtih the output enable.

Then the outputs are disabled and the outputs checked for tristate.

-101-

D. 6800

The 6800 microprocessor unit is divided into the basic modules as

listed below: '

1. Program Counter

2. Stack Pointer

3. Index Registers

4. Accumulators A and B

5. Arithmetic Logic Unit

6. Timing and Control Logic

7. Interrupt Capability

For thorough testing of the 6800, the functional test sequence

should thoroughly exercise each module independent of all other modules

with the specific instructions applicable to that module. In addition,

sufficient data patterns are used to verify proper operation of each

module. An interactive type test is also performed to ensure that

execution of an instruction on one module will not cause destruction

of data in a different module or an otherwise malfunction of the device.

In determination of the instruction sequence, the possible discovery

of instruction and/or data pattern sensitivities was not considered.

Program Counter

The Program Counter (PC) test consists of resetting the PC to 0

-102-

and then incrementing the PC through its entire range. Results of

this test may be verified after each increment or after the PC has

reached full value. Benefits of this test are proof that the device
i

is basically operational, there are no stuck-at-one stuck-at-zero

defects in the PC and the address bus drivers are capable of driving

a logic 0 or logic 1 in any combination of bits present on the

address bus.

Operation of the device during this test is as follows:

1. Reset the device.

2. Verify the reset address vectors of FFFE,C and FFFF,,.
ID . ID

3. Input an instruction that will cause the PC .to increment by 1.

4. Continue operation of this instruction until the PC equals FFFF,,.
ID

5. Execute the instruction one more time to verify the overflow char-

acteristic of the program counter."

Stack Pointer

Operational Modes:

1. Load

2. Store

3. Increment

4. Decrement

5. Transfer +1 to Index Register

-103-

6. Receiver -1 from Index Register

7. Output Data on Address Bus for:

a. Push, Pull Data

b. Store Device Status in Stack

c. Pull Device Status from Stack

Stack pointer contents are available on the data bus and also the

address bus during instruction execution. Accordingly the test approach

is defined to verify both conditions of output. The method of defining

the test approach follows that of all modules, i.e., start with instruc-

tion sequences designed to verify basic module operation, increasing

the complexity of instructions for total testing of the particular

module. The transfer of SP contents to the index register and transfer

of index register contents to the stack pointer require verification

of the index register's functionality, and will therefore be defined in

the index register section of this description.

Load/Store, Data Bus

To initiate testing of the stack pointer, a load instruction is

executed followed by a store instruction to output the SP contents on

the data bus.

Stack Pointer Instructions

IDS Immediate, Direct, Index, Extended

-104-

STS Direct, Index, Extended

INS .Implied

DES Implied

TXS Implied

TSX Implied

Several data patterns should be chosen such that all bits of the

stack pointer have been loaded to both a logic 1 and 0. In addition,

all different operational codes of the load stack pointer/store stack

pointer instruction are executed at this time. This instruction se-

quence is defined as illustrated in Table 10.

Benefits of this test are that the stack pointer is identified as

an addressable register, is capable of being loaded to several values,

each bit of the stack pointer is capable of being a logic 1 or logic 0

and that each bit of the data bus is capable of driving a logic 1 or

logic 0.

Increment/Decrement

Execution of this test requires initial loading of the SP to 0000n_,
ID

incrementing the

pointer instruction.

the incrementing the SP from 0000,, to FFFFnc using the increment stackID ID

For detailed error analysis, the contents of the SP should be out-

putted to the data bus after each increment. This method may prove

-105-

INSTRUCTION

Load Stack Pointer

Store Stack Pointer

Load Stack Pointer

Store Stack Pointer

Load Stack Pointer

Store Stack Pointer

Load Stack Pointer

Store Stack Pointer

ADDRESS MODE

Immediate

Direct

Direct

Index

Index

Extended

Extended

Extended

DATA PATTERN

0000 16

-

FFFF16

- '

AAAA1 6

-

5555,,lo

~

TABLE 10: Stack Pointer Load Routine

-106-

not feasible due to test system capability and in that case the

increment stack pointer instruction would be repeated 16,384 times,

and the SP contents then read. The increment stack pointer instruc-

tion is then executed one more time and the SP contents outputted to

verify the overflow characteristic.

The Decrement Test is similar to the previous test with the

exception of initially loading the stack pointer to.FFFF,g, using the

decrement stack pointer instruction and executing the decrement instruc-

tion on additional time after the SP is equal to 0 to verify the under-

flow characteristic.

In either of the above tests, the choice of which stack pointer

store instruction to use is arbitrary and left to the discretion of

the test engineer.

Address Bus Output (Push/Pull)

The Push and Pull instructions of the 6800 will cause the contents

of the stack pointer to appear on the address bus and also increment

or decrement the contents of this register.

Verification of this mode is performed by resetting the 6800 (get-

ting a starting address of 0000,, to the PC) and execution of repeated

PUL instructions. During instruction execution, the address is read

-107-

during all four to verify that the following information is present:

Cycle 1: Program Counter

Cycle 2: Program Counter +1

Cycle 3: Stack Pointer

Cycle 4: Stack Pointer +1

The PUL instruction is repeatedly executed until both PC and SP

are equal to FFFF1C.
I 0

The PSH instruction is now executed in a similar manner, again

verifying the address bus during all four clock cycles as follows:

Cycle 1: Program Counter

Cycle 2: Program Counter +1

Cycle 3: Stack Pointer

Cycle 4: Stack Pointer +1

This sequence is repeated until the SP is equal to 0.

Index Register (X) .

Operational modes:

1.

2.

3.

4.

Local

Store

Increment

Decrement

Load Immediate, Direct, Index, Extended

Store Direct, Index, Extended

Increment

Decrement

-108-

INSTRUCTION

Load Index Register

Store Index Register

Load Index Register

Store Index Register

Load Index Register

Store Index Register

Load Index Register

Store Index Register

ADDRESS MODE

Immediate

Di rect

Di rect

Index

Index

Extended

Extended

Extended

DATA PATTERN'

000016

-

FFFF16

-

A A A A
rWir\- -.

-

5555^

••

' TABLE 11: Index Register Load Routine

-109-

5. Transfer to Stack Pointer TXS

6. Receive from Stack Pointer TSX

The Index Register is identical in size (16-bits X 1) and similar

in operation to the Stack Pointer. Therefore, the test plan defined

.for this module closely parallels that of the Stack Pointer.

Load/Store

The Index Register is loaded with several data patterns, storing

the register contents after each load to verify proper load operation.

All different OP codes of the load and store instruction should be

used to verify proper operation. The instruction sequence is defined

as illustrated in Table 11.

Increment

Execution of this test requires initial loading of the Index

Register to 0000,,., repeating execution of the increment Index Register

(INX) instruction to increment the X register from 0000,g to FFFF,g.

As in the Stack Pointer test, the contents of the X register should

be stored in the data bus after every increment. If not feasible, the

increment instruction should be repeated continuously and the X register

contents outputted when equal to FFFF,g. The increment instruction

should then be executed one more time and the contents of the Index

Register stored to verify the overflow characteristic.

-110-

Decrement

The Decrement test is similar to the previous test with the excep-

tion of initially loading the Index Register to FFFF,-, using the
I 0

decrement Index Register instruction. When the X register is equal to

0000-.., the decrement instruction should be executed one more time andID ' '
the register contents stored to verify the underflow characteristic.

Stack Pointer and Index Register Transfers

Transfers of the Stack Pointer and Index Register are limited to

transferring the Stack Pointer contents +1 to the Index Register or

the Index Register contents -1 to the Stack Pointer. The two instruc-

tions which define those operations are TSX and TXS respectively.

The test sequence to verify this sequence takes advantage of the

functionality of these registers proven by previous tests.

Both registers are initially loaded to 0. An instruction sequence

which increments the SP executes a TSX instruction and stores the

Index Register contents is repeatedly executed until the Index Register

is equal to FFFF,,.ID

This procedure is now repeated in a reverse fashion by executing a

decrement Index Register, TXS,.instruction followed by a read of the

Stack Pointer. This instruction sequence is repeated until the Stack

-111-

Pointer is equal to 0.

Accumulators A and B

i

Accumulators A and B are two general purpose 8-bit registers used

to store operands and results for ALU operations. The instruction set

for each accumulator is similar with one or two exceptions. At this

point, the definition of the different modules of the 6800 are open to

different philosophies as to where one module ends and another module

begins. For example, controversy may arise as to whether a logical OR

instruction is an accumulator instruction or an ALU instruction.
(

This situation illustrates the problem of two .different modules

being involved in the execution of an instruction. The operation of

the logical OR instruction of the contents of the Accumulator A (ACCA)

with a byte of memory involves the input of a byte of memory, input of

ACCA and the byte of memory to the ALU, execution of the logical OR

between the two and transferring this results back to ACCA. Here two

different modules are involved in the instruction execution and the

question is to which module group the instruction belongs. For the

purposes of clarity, this type of instruction will be attributed to

the ALU module. In a more general sense, where more than one module

is involved in the execution of an instruction, the instruction will

be classified as belonging to the module which performs the basic

operation intended by the instruction.

-112-

Accumulator A and B, Load/Store

As in the Stack Pointer and Index Register test, the initial phase

of the accumulator test consists of executing a load and store accumu-

lator routine, using all applicable operation codes in conjunction wi.th

numerous data patterns. The specific instruction sequence is defined

as illustrated in Table 12. Note that the contents of the accumulator

not involved in a series of instructions is stored on data bus to ver-

ify no interaction of the two accumulators.

Increment/Decrement

Accumulator A is loaded to all O's and the increment Accumulator A

instruction is executed followed by a store Accumulator A instruction.

This process is continued until A C C A ' i s equal to FF lfi- The decrement

Accumulator A instruction is now executed followed by a store ACCA

instruction. This instruction sequence is repeated until ACCA is equal

to 0.

The above process is repeated on Accumulator B substituting the

appropriate Accumulator B instructions.

Transfer ACCA to ACCB, ACCB to ACCA

This test is designed to verify the internal transfer of accumulator

to accumulator by using previously verified instructions.

-113-

INSTRUCTION

Load A
Store A
Load B
Store B
Load A
Store A
Load B
Store B
Load A
Store A
Load B
Store B
Load A
Store A
Load B
Store B
Load A
Store A
Load B
Store B
Load A
Store A
Load B
Store B
Load A
Store A
Load B
Store B
Load A
Store A
Load B
Store B
Load A
Store A
Load B
Store B
Load A
Store A
Load B
Store B

DATA PATTERN

FFi*__16

FF16__ ID

55,,
— 1°
55JJT C16

^16
MIA16
00

00
—
0116__ ' "
01

16

02
_ _ ' °
02..,.
— 1°

04161 Vl

04161 \J

08161 w

08,,

— '°
10161 U

I?"
20,,
—
20161 U

INSTRUCTION

Load A
Store A
Load B
Store B
Load A
Store A
Load B
Store B
Load A
Store A
Load B
Store B
Load A
Store A
Load B
Store B
Load A
Store A
Load B
Store B
Load A
Store A
Load B
Store B
Load A
Store A
Load B
Store B
Load A
Store A
Load B
Store B
Load A
Store A
Load B
Store B
Load A
Store A
Load B
Store B

DATA PATTERN

40
1 O

40
1 o

80! C.1 o

8016

*16
FE
_-16
FD161 U

FD161 V

FB1C1 0

Co
rD^ £

\ O

F7lfi16

F7-
__ '°

EF161 \J

EF161 U

DF161 \J

DF161 w

BF161 VI

BF16

7F161 W

1 0

TABLE 12: Accumulator Load Routine .

-114-

Both accumulators are initially loaded to all O's. An increment

ACCA is executed followed by a transfer ACCA to ACCB, clear ACCA and

then store both accumulators. Now, an increment ACCB is executed,

followed by a transfer ACCB to ACCA, clear ACCB and store both accumu-

lators. This sequence is repeated until ACCA is equal to X'FF.

Shift/Rotate Capability

The Accumulator registers of the 6800 are equipped with five modes

of shift and/or rotate instructions. To properly verify the operation

of these instructions, each is executed with several data patterns

designed to represent worst case. Also, included in the execution of

the shift and rotate instructions is verification of the Condition Code

register, in particular the Carry Bit (C).

The test routine for the shift and rotate instructions initializes

the MPU to a 0 state and then executes all five instructions on each

accumulator. The recommended data patterns for each instruction is:

FF16

AA16

5516

0116

0016

Each instruction is executed a total of eight times in order to

-115-

shift or rotate the data pattern through the entire accumulator.

The contents of the accumulator being tested should be stored after

each execution of the shift or rotate instruction. Also the contents

of the Condition Code register should be stored after each eight exe-

cutions of the instruction being used.

Arithmetic Logic Unit (ALU)

The function of the ALU is to perform addition, subtraction, and

logical operations (OR, AND, Exclusive OR, 1's complement and 2's

complement). Arithmetic comparisons can also be performed to set or

reset bits of the Condition Codes register (CCR) which are testable

for use in condition branch instructions.

Proper verification of the ALU includes execution and verification

of all associated instructions in conjunction with worst case data pat-

terns to verify that the ALU can add, subtract, recognize a carry, half

carry, positive number, negative number and 2's complement overflow.

As the CCR is an intergral portion of the ALU, its contents should be

verified after execution of each instruction.

As in previous situations, the actual order of the instruction and

data sequence should be structured such that, when possible, only instruc-

tions that have been previously verified are used for verification of

unused instructions. The actual data patterns must be chosen such that

the desired results will be generated.

-116-

Timing and Control Logic

Timing and control logic verification includes testing proper

generation of the Valid Memory Address (VMA), Bus A available (BA), and

Read/Write control signals (R/W). The control signals BA, VMA, and

R/W are generated according to the decode of each instruction with 30

different possible combinations. Therefore, each instruction must be

verified as producing the proper response of these signals.

Interrupt Capability

The 6800 microprocessor unit has been designed to offer two priority

levels of hardware interrupt capability, the IRQ (maskable) and NMI

(non-maskable) interrupts, NMI having priority of IRQ.

Upon detection of an interrupt, the 6800 will enter the interrupt

state at the end of the instruction being executed or after the com-

pletion of next instruction, depending upon what clock cycle of the

present instruction execution the interrupt has occurred.

The "I" bit of the Condition Codes register has been designated as

the mask bit for the IRQ" interrupt. If an IRQ" occurs and the "I" bit

is set, the interrupt is ignored. If not, the interrupt state is

entered.

The objectives of this test can now be stated as verification of

-117-

the following conditions.

1. Proper 6800 response to an IRQ interrupt by testing the data bus

for storage of internal register contents, address bus for Stack

Pointer address generation during the above storage and the address

bus for generation of the IRQ address interrupt vector.

2. The "I" bit is set as a results of an IRQ interrupt.

3. That the 6800 will not respond to an IRQ interrupt when the "I"

bit of the CCR is set.

4. Proper response to an NMI interrupt when the "I" bit is set and

reset.

5. Priority of the NMI interrupt over IRQ by causing both signals to

indicate interrupts simultaneously.

A third mode of interrupt is under software control by means of the

SWI (Software Interrupt Instruction). Execution of this instruction

is not hardware related and will therefore be executed whenever it

occurs in the user program. This instruction is verified by testing

the data and address bus for proper storage of internal 6800 register

contents and the generation of the SWI address interrupt vector.

Execution of the WAI (Wait for Interrupt Instruction) stores all

internal register in the stack and then places the 6800 in an inactive

wait state. The device will remain in this state until either an IRQ

or NMI interrupt occurs. This instruction is verified by first observ-

ing the data and address bus during internal register content storage

-118-

and second that an IRQ and NMI interrupt will be allowed to respond as

previously described for these signals.

The IRQ and NMI signals are asynchronous and as such should be

tested for interrupt generating capability by causing the interrupts

to occur within several timeframes. First each interrupt should occur

such that the recognition routine starts after completion of the pre-

sent instruction being executed at the time of interrupt and second,

after completion of the next instruction at the time of interrupt.

Instruction Decode Test

The Instruction Decode test verifies proper execution of all jump,

branch, and subroutine instructions.

The major aspect of the jump instruction is to test for proper ad-

dress generation in response to the two addressing modes of this in-

struction.

Testing of the branch instructions requires execution of each

instruction and testing that (1) the branch address is generated, if

the branch condition is true, and (2) that the branch does not occur,

if the associated condition is false.

Subroutine instructions tests are required to verify that (1) the

Stack Pointer address occurs on the address bus simultaneously with the

-119-

return address on the data bus, (2) the correct subroutine address is

generated, and (3) that the return from subroutine generates the Stack

Pointer address on the address bus for the purpose of pulling the

return address from stack.

-120-

E. 1802

The 1802 microprocessor unit is a static 8-bit device employing

CMOS technology. The device provides the following internal archit-

ecture (see Figure 11).

1. 16-bit by 16-bit Register Array

2. 8-bit Arithmetic Logic Unit (ALU)

3. 8-bit Accumulator (D)

4. Two 4-bit Instruction Registers (I and N)

5. A 4-bit Register P used to specify which of the 16-bit Registers

in (1) is the present program counter.

6. A 4-bit Auxiliary Register (X)

7. An 8-bit Temporary Register (T)

8. A 1-bit Register (Q)

Examination of the instruction set of the 1802 reveals that the

major data path to and from the internal register array is through the

D register. Therefore, this module of the 1802 is of extreme impor-

tance and the test program will exercise this module fully as an initial

starting point. Next, the uniqueness and functionality of the 16-bit by

16-bit register array will be proven. Arithmetic and Logical instruc-

tions will be tested next followed by the Branch and Skip instructions.

A unique feature of the 1802 is a built-in DMA feature which uses

an internal register as a counter for the number of bytes transferred

to or from memory. This feature is evaluated for both the DMA in and

-121-

DMA out modes of operation. The Interrupt feature is verified for

proper operation and also tested for its mask ing capabi l i ty .

D Register

The importance of the D register is its func t ion -o f being the path

by which to load or store contents of the scratch pad register array

via the data bus and as a working register of the ari thmetic logic u n i t ,

The in i t ia l phase of the test on this register is to ensure the abi l i ty

to load worst case data patterns in the D register and also store the

same.

Execution of this test consists of a series of load instruct ions

to wa lk a 1 through a f ie ld of O's and a 0 through a f ie ld of 1's,

each load instruction being followed by a store to verify the load

operation.

Register Array

The purpose of the register array is to provide a program counter,

16-bit vectored interrupt address storage, DMA address counter, and

general purpose scratch pad registers. The in i t i a l test on this module

consists of a series of instructions to verify that each register can

be loaded to worst case data patterns and that each register can be

accessed for the retrival of this in format ion . All inpu t and storage

of data patterns to the register array w i l l take place through the D

-122-

register. An important point is that at all times one of the 16

registers is being utilized as a program counter, as determined by

the value in the 4-bit P register. Upon initial start-up and reset of

the 1802, the P register is reset to 0, making R(0) the current pro-

gram counter. Therefore registers R(l) through R(-15) are tested first

and then the SET P instruction must be executed to change the register

being used as the program counter. Register R(0) is then tested in

the same manner as the others. Due to the use of R(0) as a program

counter during this exercise, R(0) should be stored through the D

register at the completion of this test to check that it has been in-

crementing during the execution of the test. Then a test sequence

which loads and stores worst case data patterns can be executed.

The actual test sequence of loading and storing data patterns in the

register array should use different data such that the uniqueness of

each register is proven.

The next portion of the Register Array test will verify operation

of the increment and decrement instructions, INC and DEC.

The procedure is to verify that each of the 16 registers of the

register array can increment and decrement throughout the entire range

of 0 to 2'5 -1. Also to be verified is the over and underflow charac-

teristics of each register. Registers R(l) through R(15) are to be

tested first with R(0) acting as the program counter. Then R(0) is

tested with R(l) as the program counter. The test procedure is as

-123-

fol1ows:

1. Reset device.

2. Load registers R(2) through R(15), each with a distinct data pat-

tern.

3. Load register R(l) with 0 and using the increment N instruction,

cause this register to increment from 0 to 2 -1. Then execute

the increment instruction an additional time to cause R(l) to

overflow to 0. Each increment instruction should be followed by

PUT low register N and PUT high register N instructions to verify

the increment.

4. At the completion of step 3, all other registers should be stored

on the data bus to verify that no destructive interaction has

occurred.

5. The decrement register N instruction is now executed to cause

register R(l) to decrement from 0 to 2 -1, and then to 0. Again,

each decrement instruction is followed by a PUT low register N and

PUT high register N instruction to verify each decrement.

6. Registers R(2) through R(15) are now read onto the data bus to

verify no destructive interaction.

7. This process is repeated until registers R(l) through R(15) have

been tested.

8. A SET P instruction is executed to change the current program counter

from R(0) to R(l) .

9. Register R(0) is stored on the data bus and its present contents

verified.

-124-

10. R(0) is loaded to 0 and the same procedure is followed for veri-

fication as described above.

X Register '

The purpose of the X register is to hold a four bit code used to

designate one of the 16 registers of the register array for use in

certain load and store instructions. Upon initial reset of the MPU,

this register is reset to 0 and then may be loaded to another value

by the SET X instruction. Proper verification of the operation of

this register is to reset the MPU, and execute a load via X or store

via X instruction. The value which will appear on the address bus

will be the contents of register R(0) which is also the current con-

tents of the program counter as a reset will clear the P register to

0.

At this point the SET X instruction is executed to designate R(l)

and the load via X or store via X instruction executed. This process

is repeated until all registers have been designated by the X. register.

It is important to note that all registers should be loaded to dif-

ferent values in order to prove that the R(X) register is actually

present on the address bus.

P Register

The P register is used to hold a four bit code used to designate

-125-

which of the 16 registers of the register array is the current program

counter. The verification of the register operation is performed in a

similar manner to that of the X register.

The device is reset, which shouTd clear the P register and register

R(0) to 0. . -

The initial portion of this program after reset should load the

register array such that each register contains a different value. By

doing this, each register can be uniquely identified as it is gated to

the address bus. After verification of R(0) as the program counter

the SET P instruction should be executed to change the current program

counter from R(0) to R(l) and the address bus monitored. All remaining

values of the P register are verified in the same manner.

Q Register

The Q register is a 1-bit register which can be set or reset under

program control. The Q register bit is also cleared after an initial

clear is performed. Also, the status of this bit can be tested by

several of the branch instructions. However, this portion of the Q

register test will not utilize the branch instruction as a part of the

test.

The 1802 is initially cleared and the Q bit tested for the logic 0

state. The SET Q instruction is executed and then reset, the state of

-126-

the Q bit being tested after each operation. This procedure can be

repeated several times to ensure proper operation.

Arithmetic Logic Unit

The test of the arithmetic logic unit is divided into two sections,

the logical operations and the arithmetic operations. Also all ad-

dressing modes included in this portion of the instruction test are

verified together with the operation of the DF flag.

Logical Instruction Test

The purpose of this test is to verify that all logical instructions

are operational and that worst case data patterns have no effect on

functionality of the device.

For the instructions of OR, Exclusive OR, and AND, worst case data

patterns are defined as those patterns that cause each bit in the result

to be either set or reset according to the instruction being tested.

Examples are illustrated in Figures 18, 19, and 20.

Initially the OR instruction, is executed with the data patterns

specified. The D register is loaded, the OR instruction executed and

the D register stored on the data bus to verify the results. This test

is executed twice. The first time the OR instruction is used and the

second time the OR IMMEDIATE instruction is used.

-127-

Pattern 1 Byte 1

Byte 2

Result

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 1 1 1 1 1 1 1

Pattern 2 Byte 1

Byte 2

Result

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1

Pattern 3 Byte 1

Byte 2

Result

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

Pattern 4 Byte 1

Byte 2

Result

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

Pattern 5 Byte 1

Byte 2

Result

0 0 0 0 0 0 0 0 .

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

FIGURE 18: 1802—OR Data Pattern

-128-

Pattern 1

Pattern 2

Pattern 3

Pattern 4

Pattern 5

Pattern 6

Pattern 7

Pattern 8

Pattern 9

Pattern 10

Byte 1
Byte 2
Result

Byte 1
Byte 2
Result

Byte 1
Byte 2
Result

Byte 1
Byte 2
Result

Byte 1
Byte 2
Result

Byte 1
Byte 2
Result

Byte 1
Byte 2
Res ult

Byte 1
Byte 2
Result

Byte 1
Byte 2
Result

Byte 1
Byte 2
Result

1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
• 1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1

FIGURE 19: 1802—Exclusive OR Data Pattern

-129-

Pattern 1 Byte 1

Byte 2

Result

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

Pattern 2 Byte 1

Byte 2

Result

1 1 1 1 1 1 1 1

0-0.0 0 0 0 0 0

1 1 1 1 1 1 1 1

Pattern 3 Byte 1

Byte 2

Result

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 1 1 1 1 1 1 1

Pattern 4 Byte 1

Byte 2

Result

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1

Pattern 5 Byte 1

Byte 2

Result

0 0 0 0 0 0 0 0 .

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

Pattern 6 Byte 1

Byte 2

Result

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

FIGURE: 20: 1802—AND Data Pattern

-130-

The Exclusive OR, EXCLUSIVE or IMMEDIATE, AND and AND IMMEDIATE

instructions are executed in the same manner.

The four shift instructions are verified using the same philosophy

for worst case data patterns as for the OR and AND instructions. One

of the functions of the DF bit will be used and therefore requires

verification.

The procedure for verification consists of loading the D register

with a test pattern, executing the particular shift instruction eight

times, storing the contents of the D register after each instruction

execution.

Verification of the proper operation of the DF bit can only be made

by designing a test program such that the DF bit is left to an expected

known state. This state is then used as a starting point for the next

data pattern. For example, if the completion of a shift instruction

has put the DF bit to a logic 1, the next shift instruction to be exe-

cuted would be one that shifted the DF bit to either the least or most

significant bit of the D register.

For the shift instructions, the following data patterns can be used

as initial values:

Shift Right: 55lg, AA16, FF]6, 80]6, 00]6

Shift Right with Carry: 55]6, AA16, FF16, 80lg, 01]6, 00]6

-131-

Shift Left: 5516'M16' FF16' 8016' 0116

Shift Left with Carry: 5516, AA] 6 , FF16, 8016, 01]6, 00]6

Arithmetic Operations

The object of this portion of the test program on the ALU is to

verify that the ALU can add, subtract, with and without a carry or

borrow, respectively, detect an overflow or underflow condition via

the DF bit, and that the register and immediate addressing modes are

functional.

Suggested data patterns for the arithmetic instructions are as

fol1ows:

Add, Add Immediate: FF1C to FFr,, 55,, to 55 , AA1C to
16 16 16 15 16

M16'0 0 i6 t 0 0 0 l6 'F 0 t°0 F16

Add with Carry, OD16 to CC]6, FF]6 to FF , F0lg to

Add with Carry Immediate 80,..lo

Subtract, FFnc from FF,., 55,c from AA n_, AA,C16 16 16 16 16

Subtract Immediate from 55,..ID

Subtract with Borrow, FF1C from 01.,, 0F., from 0F1C, 80,,16 16- 16 16 16

Subtract with Borrow Immediate from 99,c, 60... from 70,,
16 16 16

-132-

Subtract Memory, FF1C from FF.C, 551C from AA,_, AA.^from16 lo 16 16 16
Subtract Memory Immediate 55,.

ID

Subtract Memory with Borrow, FF]6 from 0116, 0F . from 0F

Subtract Memory with Borrow Immediate 80,c from 99 , 60 from 70
lo 16 16 16

Two methods exist for verifying proper operation of the DF bit

during execution of these instructions. The first is to follow each

add or subtract instruction by an add with carry or subtract with

borrow. This second add or subtract instruction w i l l verify the proper

DF bit operation if the results are what is expected as a result of the

instruction execution. !'

The second is to execute a shift right with carry or shift left

with carry to put the value of DF into the MSB or LSB of the D register

respectively. The contents of the D register are now read and the MSB

or LSB verified to reflect the expected state of the DF bit . This

is the preferred method for several reasons. First, if a fa i lure

occurs us ing the first method, the cause of the fa i lure could be that

the ALU did not detect the original overflow or could not execute the

add or subtract with carry. As the shift instructions have previously

been verif ied, this mode of verification pinpoints the cause of f a i lu re .

Branch and Skip Instructions (Long &. Short)

The branch and s k i p instructions are ver i f ied by causing the con-

dition tested by the part icular instruction to occur and then executing

-133-

the associated branch or skip instruction. The address bus is tested

for generation of the expected branch address. Alternately, the oppo-

site condition is verified by executing the necessary branch or skip

instruction when the branch condition does not exist and verifying

that the branch or skip does not execute. The conditions tested for

in the branch and skip are the following:

Short Branch if: D = 0

D t 0

DF = 1

' DF = 0

Q = 1

Q = 0

EF1. = 1

EF1 = 0

EF2 = 1

EF2 = 0

EF3 = 1

EF3 = 0

EF4 = 1

EF4 = 0

Always, Never

The short branch and long branch are similar with the exception

that the long branch provides an absolute branch address, while the

short branch provides an address which is 0 to +255 locations from the

address containing the short branch instruction. The conditions tested

-134-

for the long branch instruction is limited to the states of the D

register, DF bit, and Q bit. Specifically these are:

Long Branch if: . D = 0 '

D f.$

DF = 1

DF ^ 1

Q = 1

Q f 1

Always, Never

The skip instructions are similar to the branch instructions

except no branch address is required. The conditions tested are as

follows:

Short Skip: Never .

Long Skip: Always

Long Skip if: D = 0

D f 0

DF = 1

DF = 0

Q = 1

Q = 0

IE = 1

-135-

Interrupt

The response of the 1802 to an asychronous Interrupt is tested by

causing the Interrupt input to become active and verifying that the

following states occur:

1. The instruction in process at the time of interrupt is completed.

2. The next machine cycle is a normal fetch except the address gated

to the address bus is from register R(l).

3. The X register has been set to 2,Q.

4. The state codes indicate Interrupt recognition.

5. The IE enable bit has been reset by causing the Interrupt input to

indicate additional Interrupts and verifying that they are ignored.

6. The values of registers X and P have been saved in the T register.

(This can be accomplished by execution of a MARK isntruction).

7. The Interrupt mode of operation is asynchronous by repeating the

test in every clock cycle of instruction execution.

DMA-In-Out

The DMA-In-Out features are tested in a manner similar to that of

the Interrupt with all expected activities verified.

DMA In

1. DMA-IN is caused to become active.

-136-

2. At the completion of the present instruction, verify the state

codes indicate DMA-In, register R(0) is gated to the address bus

and MWR is active.

3. Item 2 is repeated for as long as DMA-Iri remains active, with

register R(0) being incremented after each transfer.

4. Normal program execution is resumed when DMA-ln becomes in-active,

DMA-Out

1. DMA-Out is caused to become active.

2. At the completion of the present instruction execution, the state

codes indicate DMA-Out, MRD is active, and register R(0) is gated

to the address bus.

3. Item 2 is repeated for as long as DMA-Out is active.

4. Normal program execution is resumed when DMA-Out becomes in-active.

At this point, the priority of the previous tests should be verified

such that a DMA and Interrupt request occur simultaneously. The order

of priority is DMA-In first, DMA-Out second, and Interrupt last.

Input/Output Transfers

The test to verify the input and output instruction capability of

the 1802 is performed separately for proper operation. Each instruction

should be executed with all possible combinations of I/O device selec-

tions, testing for proper access of the least three significant bits on

output pins NO, Nl, and N2, and the contents of register R(X) being

-137-

VI. DC TEST REQUIREMENTS

Although the major portion of this report has been devoted to testing

of the functional characteristics of microprocessor units, the importance

of DC testing should not be de-emphasized. As with other semiconductor

devices, microprocessor units malfunction as a.results of DC characteristics

being out of specification. Therefore, it is recommended that any complete

test on a microprocessor unit include verification of the manufacturers

specified DC characteristics.

The commonly specified DC parameters are input and output voltage

levels, input and output currents and leakages, tristate leakage currents,

power supply voltages and power supply currents. Proper verification and/or

measurement of each parameter should be performed, simulating the necessary

condition for accurate test execution. Refer to Attachment I for DC speci-

fications of each device.

-139-

VII. SURVEY SUMMARY .

A. List of Companies Interviewed

Advanced Micro Devices, Sunnyvale, California

American Micro Systems, Incorporated, Cupertino, California

Boeing Aerospace, Seattle, Washington

Burroughs Corporation, Pasadena, California

Chrysler Corporation, Hunstville, Alabama

Fairchild Systems & Technology, San Jose, California

General Electric Company, Pitts field, Massachusetts

Hewlett Packard, Palo Alto, California

Hughes Aircraft Corporation, Culver City, California

Intel Corporation, Santa Clara, California

Motorola, Austin, Texas

Motorola, Phoenix, Arizona

National Semiconductor, Santa Clara, California

RCA, Sommerville, New Jersey

Rockwell International, Anaheim, California

Tektronics, Beaverton, Oregon

Texas Instruments, Houston, Texas

-140-

B. REVIEW OF PRESENT MICROPROCESSOR TEST TECHNIQUES QUESTIONNAIRE

I. TEST EQUIPMENT

A. Tester (Which Device on Which Tester)

B. Clock Speed of Tester

C. Burn-in Equipment

1. Type Used

2. Static

3. Dynamic

4. What Type

II. DC TEST (PRODUCTION)

A. Parameters Tested

1. What DC Parameters Are Tested

2. Are Voltage Measurements Done DC Static or Functional

3. IF DC, How Long Is Sample

4. IF AC, Is VOH and VOL Measured-One Pass or Two Pass

B. Execution Time (Delete Overhead)

C. Overhead Time

D. Percentage of Total Test Program

E. Differences Between Wafer and Final Package DC Tests

F. Type of Failures Observed

III. FUNCTIONAL TESTS (PRODUCTION)

A. Test Pattern

1. Method of Generation

-141-

2. Instruction Sequence (What Do.They Test For)

a. Modular

b. Other

3. Gold Device

a. As A Comparison Test

b. As A Learn Method

c. Self Diagnostic (Board Test)

4. Pattern Length

5. Pattern Sensitivity

6. Frequency of Testing Device Output(s)

a. Each Cycle

b. End of Operation

c. Other

B. Functional Test Conditions

1. Device Timing

2. AC Parameters

a. Rise/Fall Times

b. Minimum Pulses

c. Access Times

3. Execution Time (Delete Overhead)

4. Overhead Time

5. Error Analysis

a. Why Device Failed

b. What Instruction

c. What Data Pattern

d. What Pin(s)

-142-

C. Percentage of Total Test Program

D. Types of Failures Discovered

E. Differences Between Wafer and Final Package Functional Test Programs

IV. CHARACTERIZATION EFFORTS

A. Parameters Characterized

1. Functional and AC

2. DC

B. Temperature Conditions

C. Burn-in Conditions

D. Form of Characterization Data Log

1. Histogram

2. Shmoo Plot

3! Other

E. Number of Devices Characterized

F. Department Responsible for Characterization

V. PRODUCTION TESTING

A. Temperature Conditions

1. Hold, Cold, Ambient

2: If Not Done, Why •

B. Burn-in Conditions

1. What Temperature

2. AC or Static

3. What Loads

4. If Not Done, Why

C. Data Logging

1. Bin Classification

-143-

2. Hardcopy

a. What Is Obtained

D. Location Performed

E. Percentage of Devices Screened

F. Department Responsible for Productipn Testing

G. 38510 Specification—Yes/No (If Yes, Who Wrote It)

H. Types of Failures

VI. WHAT TYPE OF PROBLEMS ARE YOU FINDING

VII. RECOMMENDATIONS FOR USER TESTING OF MICROPROCESSORS

-144-

C. QUESTIONNAIRE RESPONSES

I. TEST EQUIPMENT

A. Tester

RESPONSE

1. Fairchild Sentry II

2. Fairchild Sentry 600

3. Macrodata MD-154

4. Tektronics S-3260

5. Teradyne J277

6. Teradyne J283

7. Teradyne J293

8. In-House System

DEVICE

8080

2

2

3

1

6800

1

2

1

8008

1.

2901

1

1

1

1

1802

1

1

1

-145-

B. Burn-In Equipment

RESPONSE

1. Blue M

2. In-house Design

3. Commercially Available

4. Not Being Performed

DEVICE

8080

1

5

1

6800

1

1

8008

1

2901

1

3

1802

1

-146-

II. DC TESTS (PRODUCTION)

A. Parameters Tested

RESPONSE

1. All. Data Sheet

Parameters

2. All Data Sheet

Parameters Plus

Several Unspecified

Parameters

DEVICE

8080

5

6800

2

1

8008

1

2901

3

1802

1

-147-

B. Voltage Measurements, Static or Dynamic

RESPONSE

1 . Dynami c

2. Static

3. Clocked Very Slow

(Considered Static)

4. Static Where Possible

Dynamic Otherwise

DEVICE

8080

4

1

1

6800

2

1

8008

1

2901

4

1802

1

-148-

C. Length of Sample Time, If Voltage Measurements are Static

RESPONSE

1 . 5 ms

2. 10 ms

3. Dependent On Parameter

4. Don't Know

DEVICE

8080

1

1

2

6800

1

8008

1

2901

3

1

1802

1

!

-149-

D. VOL and VOH Measurements

RESPONSE - .

1. AC Measurement — Made

In One Pass Using

Differential Voltage

Comparators.

2. AC Measurement—Made

In Two Passes.

3. AC Measurement—Made

In Separate Passes.

4. DC Measurement — Made

In Static Mode.

DEVICE

8080

4

2

6800

2

1

8008

2

2901

4

1

1802

1

-150-

E. DC Test Execution Time

RESPONSE

1. 1/4 Seconds Total Test Time,
Breakdown Not Available

2. 2 Seconds Total Test Time,
Breakdown Not Available

3. 3 Seconds Total Test Time,
Breakdown Not Available

4. 3.5 Seconds Total Test Time,
Breakdown Not Available

5. 5 Seconds Total Test Time,
Breakdown Not Available

6. Up to 9 Seconds Total Test
Time, Breakdown Not Available

7. 10 Seconds Total Test Time,
Breakdown Not Available

8. 20 Seconds Total Test Time,
Breakdown Not Available

9. 60 Seconds Total Test Time,
Breakdown Not Available

10. All tests performed are
engineering type tests,
not production or incoming
inspection oriented.

11. Full test program not written
to date, time undeterminable.

DEVICE
8080

1

1

1

2

1

1

6800

1

1

1

8008

1

2901

1

1

1

1

1802

1

-151-

F. Overhead Time, DC Test Program

RESPONSE

1. 10 Seconds For Hardcopy

Printout.

2. 1%

3. Undeterminable

DEVICE

8080

6

6800

1

2

8008

2

2901

1

3

1802

1

-152-

G. Percentage of Total Test Program

RESPONSE

1 . 0 %

2. 4%

3. 10%

4. 20%

5. 20 - 30%

6. 70 - 80%
t

7. Undeterminable

DEVICE

8080

1

2

1

2

6800

1

2

8008

1

1

2901

1

1

2

1802

1

-153-

H. Differences Between Wafer and Final Package DC Tests

RESPONSE

1. Wafer level tests include
a 25 V Stress Test which

is not done at final

package.

2. Wafer level DC tests are

closely monitored for

indications of yield

relating to process

parameters. Final Package

is strictly Go/NoGo.

3. Wafer level tests are

performed with wider

guardbands.

4. None.

5. Undeterminable.

6. Not Applicable.

DEVICE

8080

1

1

1

3

6800

1

2

8008

1

.2901

1

1

2

1802

1

-154-

I. Types of Failures

RESPONSE

1. Normal Process Related

Failures.

2. Leakage Current, Temperature

Failures.

3. Undeterminable

4. No Comment

DEVICE

8080

2

2

1

1

6800

2

1

1

8008

1

2901

3

1

1802

1

-155-

III. FUNCTIONAL TEST PROGRAM, PRODUCTION

A. Test Pattern

1. Method of Generation

RESPONSE

1. Functional Computer

Simulation.

2. Manual, Line by Line.

3. Manual, Line by Line,

Generation in Tester

Assembly Language.

4. Half Simulation (Learn

Mode).

5. Gold Device (DUT operates

in parallel to known good

device.) .

DEVICE

8080

4

1

1

6800

2

1

8008

1

2901

1

2

1

1802

1

-156-

2. Basis For the Order of uP Instruction Test Sequence

RESPONSE

1. Exercise every node. Verify
operation of every instruc-
tion within specified timing
requirement. Exercise adja-
cent nodes in Modular Approach
Satisfy large user require-
ments.

2. Use a Modular Approach to
verify device operation.
Also utilizes test engi-
neer's experience to
generate an interactive type
test.

3. Modular Approach using
worst case instruction and
data pattern sequence.

4. Modular Approach designed
to represent worst case
operation.

5. Test pattern developed by
device designer to represent
worst case operation.

6. Identify all data paths, all
instruction operations.

DEVICE

8080

1

1

3

1

6800

2

1

8008

1

2901

3

1

1802

1

-157-

3. Pattern Length

RESPONSE

1. IK

2. 2K

3. 2K Clock Cycles

4. 5K

5. 8K

6. 12K

7. 16K

8. 7500

9. Program Incomplete To Date

10. No Comment

DEVICE

8080

1

1

1

1

1

1

6800

3

8008 2901

1

1

1

1

1

1802

1

-158-

4. Pattern Sensitivity

RESPONSE

1. RAM section sensitive to
a CHECKERBOARD Pattern.

Results are based upon a

sample space of five

devices.

2. ALU

3. None

DEVICE

8080

6

6800

3

8008

i

2901

1

1

2

1802

1

-159-

5. Frequency of Testing Device Outputs

RESPONSE

1 . Each Cycle, Each Pin

2. When Determinable Data

Is Expected to Be

Present.

3. Not Every Pin, Every Clock

Cycle. The Status of a

Pin is Tested Based Upon

the Test Engineers

Judgement.

4. Several Instructions are

Executed, Pins of Interest

Are Tested.

DEVICE

8080

5

1

1

6800

3

8008

1

2901

. 2

1

1802

1

-160-

B. FUNCTIONAL TEST CONDITIONS

1. Device Timing, Frequency

RESPONSE

1. 1 MHz

2. 2 MHz

3. 3 MHz

4. 4 MHz

5. 100 MHz

6. 500 MHz

7. Minimum and Maxiumum Cycle
Time.

8. Maximum Cycle Time, Minimum
Cycle Time, Each Extreme
Tested With Guardband.

9. Maximum

DEVICE
8080

1

1

1

1

2

6800

1

2

8008

2

2901

1

1

1

1 '

1802

-161-

2. AC Test Parameters

RESPONSE

1. Rise and Fall Times,
Minimum Pulse Width,
Access Times.

2. Minimum Pulse Width's,
Access Times.

DEVICE

8080

2

4

6800

1

2

8008

1

2901

1

3

1802

1

-162-

3. Functional Test Execution Times and Overhead

RESPONSE

1. 2 Seconds Total Test Time

1/2 Second Overhead.

2. 3 Seconds Total Test Time

Overhead Undeterminable.

3. 3 Seconds Total Test Time

1 Second Overhead.

4. 3.5 Seconds Total Test Time

Overhead Undeterminable.

5. 4 Seconds Total Test Time

1 Second Overhead.

6. 5 Seconds Total Test Time

Overhead Undeterminable.

7. 10 Seconds Total Test Time

Overhead Undeterminable.

8. 60 Seconds Total Test Time

Overhead Undeterminable.

9. 63 Seconds Total Test Time

60 Seconds Overhead.

10. Program Not Completed to Date.

11 . No Comment.

DEVICE

8080

1

1

1

1

1

1

6800

1

1

1

8008

1

2901

1

1

1

1802

1

-163-

4. Error Analysis Information Available

RESPONSE

1. Results indicate what test,
what uP instruction, what
data pattern, what pin(s),
although this information
is not used in Go/NoGo
testing.

2. Only Pass/Fail status.

3. Results indicate what test
failed, what uP instruction,
what data pattern, and the
pin(s) involved.

4. Results indicate the uP
instruction involved in
the failure but not expected
data output or what pin(s)
involved. The failing test
is indicated.

5. Results indicate what test
failed and the data pattern
involved. The instructions
involved can be determined
with a manual .

6. Off-line analysis, the fail-
ing pin is not displayed.

7. Only RAM section test results
indicate what data pattern,
input code and failing pin(s)
status.

8. The capability for indicating
failing test, uP instruction,
data pattern, and pin(s) in-
volved exists although it is
not used in the Go/NoGo
situation.

9. Parametric test portion indi-
cates the test failed, func-
tional portion indicates uP
instruction which failed.

DEVICE

8080

5

1

6800

2

1

8008

1

2901

1

1

1

1

1802

1

-164-

5. Types of Failures Discovered

RESPONSE

1. Normal, no pattern sensiti-
vity found.

2. Timing, logic error, temper-
ature related failures.

3. Parts are slow, do not meet
timing specifications.

4. Majority of failures are
totally inoperative.

5. Package devices are mainly
functional failures.

6. Normal type failures of DC
and functional .

7. Normal process related fail-
ures.

8. Mostly functional failures.

9. In DC mode, leakage current
is the predominant failure
mode. Most failures are
parts that fail within first
15 instructions.

10. Have only tested small amount
information inaccurate.

11. Have not completed in-coming
inspection program to date.

12. Information not available.

DEVICE

8080

1

1

1

1

1

1

6800

1

1

1

8008

1

2901

1

1

1

1802

1

-165-

6. Differences Between Wafer and Final Package Functional Tests

1

RESPONSE

1. No Multiple Probes on

Wafer.

2. Less Functional Tests at

Wafer, to Identify Work-

ing Parts, do Speed

Classification at Final

Package.

3, Final Package Tests

Include More Extensive

Timing and Voltage Corners

To Classify Parts.

4. Test Pattern Is the Same.

Timing and Voltage Corners

Are More Extensive to

Classify Parts.

5. Do No Perform Wafer Probe

Except Under Special Cir-

cumstances. Test Would
Be Different But Details

Not Available,

6. None.

7. Not Applicable.

DEVICE

8080

1

2

1

2

6800

2

1

8008

1

2901

1

1

1

1802

1

-166-

IV. Characterization Efforts

A. Parameters Characterized

RESPONSE

1. All AC & DC Parameters.

2. All AC & DC Parameters

Except Rise & Fall Times.

3. All AC & DC Parameters

Plus Additional Parameters

Related to Process Control.

4. All AC & DC Parameters,

Except Rise & Fall Times,

Data Patterns and Instruc-

tion Sequences.

DEVICE

8080

1

4

1

6800

2

1
-

8008

1

2901

3

1

i

1802

1

-167-

B. Temperature & Burn-in Conditions

1
RESPONSE

1. -55°C to 125°C temperature,
6-7°C increments, life test
evaluation performed in. lieu
of burn-in.

2. At present ambient, expect
to go to 80°C case temper-
ature, life testing.

3. Military: -55°C, -40°C, 0°C,
25°C, 100°C, 1259C. Commer-
cial 0-70°C. Burn-in at 150°C
40 hours minimum, 01, 02
clocked, loaded outputs.

4. -55°C, -30°C, Ambient, 85°C,
125°C, life testing at 125°C,
1000-2000 hours.

5. 0°C & 70°C, will go to 85°C,
possibly higher, no burn-in.

6. 70°C, no burn-in.

7. Ambient, no burn-in.

8. 0°C to 70°C, guard banded
life test.

9. -55°C to +125°C, burn in at
125°C, 48 hours, outputs
loaded, 01 ,02, clocked.

10. -55, 30°C, Ambient, 85°C,
+125°C, life test at 125°C,
dynamic, 1000-2000 hours.

11. -55, 0°C, 25°C, 70°C, +125°C
life test at 125°C, dynamic,
5000 hours.

12. 0°C, 70°C, 125°C, burn-in is
static, power supplied, no
pattern applied, outputs loaded.

13. Temperature is -65°C to +200°C.
Perform burn-in only if contract
specifies. Have capability to
perform all burn-in and environ-
mental tests.

DEVICE
3080

1

1

1

1

1

1

6800

1

. 1

1

8008

1

1

2901

!

1

1

1

1

1802

1

-168-

C. Form of Characterization Data Log

RESPONSE

1. Statistical analysis, curves,
extensive use of shmoo plots,
occasionally log to disc or
mag tape for off-line evalu-
ati on .

2. Shmoo plots, cumulative and
individual .

3. Histograms, shmoo plots and
statistical analysis.

4. Number charts, might go to
histograms in future. Are
not performing extensive
characterization to date.

5. Tabular output and statis-
tical analysis.

6. Statistical analysis, curves,
and extensive use of shmoo
plots.

7. Graphical pictures, histo-
grams, statistical analysis,
and some shmoo plots.

8. Statistical analysis, histo-
grams, and shmoo plots.

9. Summary.

10. Shmoo Plots.

DEVICE

8080

1

2

2

1

6800

3

8008

1

2901

1

1

1

1

1802

1

-169-

D. Number of Devices Characterized

RESPONSE

1. 6

2. 10

3. 12 - 24

4. 20

5. 40

6. 50

7. 100

8. 500

9. 1400

10. Information Not Available

DEVICE

8080

1

1

1

1

1

1

6800

1

1

1

8008

1

2901

1

1

1

1

1802

1

-170-

E. Department Responsible for Characterization

RESPONSE

1. Product Engineering

2. Design Engineering

3. Production & Design

Engineering

4. Manufacturing Engineering

5. Electronic Design

6. Components & Evaluation

Department

7. Operations Department

8. Advanced Device Technology

Department

9. Production Test Group

DEVICE

8080

2

1

1

1

1

6800

1

1

8008

1

2901

1

1

1

1

1802

1

-171-

F. Method of Processing Characterization Data

RESPONSE

1. Automatically

2. Manually

DEVICE

8080

5

1

6800

3

8008

1

2901

4

1802

1

-172-

V. PRODUCTION TESTING

A. Temperature Conditions

RESPONSE

1. Ambient

2. -55°C, +125°C Ambient

3. 0-70°C, 125°C, Ambient

4. 70°C

5. Commercial parts 70°C,
Military, Cold, Ambient,
Hot

6. Initial at 70°C, plan
to reduce to Ambient.

7. Wafer at Ambient, final
package per MD STD 883,
5004, 5005, Class C.

DEVICE

8080

1

1

1

1

2

6800

2

1

8008

1

2901

2

1

1

1802

1

-173-

B. Burn-in Conditions

RESPONSE

1. 125°C, dynamic, outputs
loaded, performed as part of
QA sampling, not normal 'por-
tion of production test.

2. 125°C, dynamic, outputs
loaded.

3. At customers request only,
125°C, static, outputs
loaded.

4. At customers request 125°C
to 160°C, dynamic, outputs
loaded.

5. Performed as part of QA
sampling, static mode, no
pattern applied, outputs
loaded, 125°C.

6. Only performed if contract
specifies. Have capability to
do full military temperature
range and dynamic type burn-in.

7. Military only, 150°C, 40 Hours
minimum, 01, 02, clocked, out-
puts loaded.

8. No burn-in.

9. None at present.

DEVICE
8080

1

3

1

1

6800

2

1

8008

1

2901

1

1

1

1

1802

1

-174-

C. Datalog Format and Hardcopy

RESPONSE

1 . 6 Bins, hardcopy of
Bin distribution

obtained.

2. Go/NoGo Testing, hard-

copy of Bin count.

3. Bin classification,

hardcopy of Bin count.

4. Bin classification:

Pass, Fail , DC, Fail

Functional , no hardcopy

obtained.

DEVICE

8080

1

1

4

6800

3

8008

1

2901

3

/

1

1802

1

-175-

D. Percentage of Devices Screened

RESPONSE

100%

DEVICE

8080

6

6800

3

8008

1

2901

4

1802

1

-176-

E. Department Responsible for Production Testing

RESPONSE

1. Production Operations

2. Production Control

3. Production Testing

4. Incoming Inspection

5. Product Engineering

6. Manufacturing Engineering

7. Bipolar Microprocessor

Department

8. Quality Assurance

9. Operations Department

DEVICE

8080

1

1

1

2

1

-

6800

1

1

1

—

8008

1

2901

1

i

1

1

1

1802

1

-177-

F. Use of 38510 Specification

RESPONSE

1. Are testing to what the

8080, 38510 is antici-

pated to contain.

2. Are testing to in-house

version of 38510, spec-
ification for 8080,

written by Quality
Assurance Department.

3. None— an in-house spec-

ification is used which

parallels a class C
military specification.

4. Are using 38510 slash

sheet.

5. Use in-house version of

38510.

6. Will generate in-house

ve rs i on .

7. None

DEVICE

8080

1

1

1

3

6800

-

1

2

8008 2901

1

1

1802

1

-178-

G. Types of Functional Failures

RESPONSE

1. Totally inoperative
parts, functionally.

2. Normal process and
packaged related failures.

3. Package devices are pre-
dominantly functional
failures.

4. DC tests are predominantly
leakage failures; func-
tional failures are parts
that wholly inoperative.

5. No data available.

7. No comment.

DEVICE
8080

1

1

1

2

1

6800

1

2

8008

1

2901

1

2

1

1802

1

-179-

VI. Types of Problems Encountered in Testing Microprocessors

The problems being encountered in the testing of microprocessors

do not reflect upon an individual microprocessor but rather the con-

cept of testing a central processing unit intergrated on one LSI chip,

The following is a summary of all comments received.

The range of problems encountered in testing microprocessors is

best presented by establishing a categorical list derived from both

manufacturer's and user's. These problems are:

1. None

2. Time Involved

3. Money Expenditures

4. Knowledge of Device

5. User Understanding of Device Operation and Application

6. Appreciation of Total Efforts

7. Test Equipment

8. Accurate Technical, Information on Device

Item 1

Four (4) interviewers stated that no one area of testing presented

unusual problems or problems considered to approach the limits of pre-

sent test technology.

-180-

Item 2

The time factor encompasses all aspects of testing microprocessors.

This includes test time, preparation of the total test program (pro-

duction and characterization) and analysis of test results.

Item 3

The amount of monies involved in testing includes capital expend-

itures for equipment and program development.

Item 4 & 8 .

Before the device can properly be tested complete knowledge of the

microprocessor is essential. Users are of the opinion that this effort

is hindered by a lack of adequate technical information concerning

device operation including accurate timing and instruction operations.

Item 5 & 6

User's who test microprocessors for outside companies and in-house

departments are finding that those people responsible for management

of these tasks do not appreciate the total effort of testing. The

device application is often not fully stated, nor, is the complexity

of the test hardware and software requirements understood.

-181-

Item 7

Only one interviewer indicated that presently available test

equipment posed a problem in testing. This comment concerned the

speed of test equipment with respect to test time. However, the time

involved in preparing test programs as viewed from an ease of program

development standpoint and the actual test time due to test system

overhead requirements can also be considered a valid criticism under

this heading.

Item 8

All user's except one stated that existing technical information

about specific device operation is not sufficient. Additional infor-

mation is needed which will accurately define total device operation

in terms of timing and instruction execution.

-182-

VII. Recommendations for User Testing

Recommendations for user testing were found to touch upon just

about every aspect of testing, ranging from determining the extent of

testing required to tips on test program structure.

Collating all the comments gathered results in the following

summary.

First, determine the nature of the MPU testing problem from con-

sideration of such factors as application, reliability requirements,

and money available.

The results of this study should then indicate the capabilities of

the test system to be used including hardware/software trade-offs, ease

of use, DC and AC test capabilities and provision of test result ana-

lysis. Test equipment possibilities also include the end product sys-

tem or a uP development system, in addition to the option of designing

a system in-house. Another alternative is to not buy test equipment

but use a. testing laboratory instead.

Overall test philosophy should be defined as early in the process

as possible with the key objective of being as thorough as possible within

the confines of times, money, and manpower available.

The actual test program should retain the objective of thoroughness

-183-

by functional verification of each module of the device followed by

an interactive type test to insure that there is no.module-to-module

destruction of data. If possible, the test scheme should be designed

such that modifications are easily installed at some later time.

Be prepared for the time and money expenditures that will be

necessary for the design and implementation of a thorough testing

plan. Additional considerations to be included are resources for

providing facilities for the test equipment and personnel to operate

and maintain these items.

-184-

VIII. DETECTED PROBLEMS

The following instruction sequence sensitivities, module weaknesses,

or failures were either described during the study conducted and/or

detected by Macrodata Corporation during its characterization of the de-

vice prior to this contract. All problems described that were verified

by Macrodata have been reported to the manufacturer(s). In all cases,

parts manufactured after reporting the problem areas did not exhibit

these characteristics.

Verified By

Device Problem Macrodata

8080 1. It was detected on some devices that the 01 Yes

clock cross couples noise that exceeded the

. threshold level on the HLDA input 1 ns.

2. When running a test similar to the one Yes

described for the program counter, certain

devices would fail to respond to a reset

pulse every time.

3. When performing a test similar to the test Yes

described for the register array, some

devices showed a sensitivity to H—-B and

H—-D transfers when the 5 MSB's, in the

data sequence were all Vs.

4. Not all manufactured parts operate exactly Yes

alike. One 8080 will not execute a program

-185-

Verified By

Device Problem • Macrodata

instruction identical to that of another

manufacturers part. The main differences

lies in the execution of arithmetic instruc-

tions in that status flag operation is not

always identical from one manufacturer to

another. This difference between parts

produced by different manufacturers still

is present.

8008 1. It has been detected that if an instruction Yes

sequence which causes the stack registers to

perform push and pop operation is repeated

multiple times, the device fails to operate.

This was not detected on any other area

within the device.

2. Some of the fail devices operated correctly No

for a short period of time, but after a

period of time the devices would fail to

operate. This period of time was around 5

to 10 seconds. Once the device failed, it

would not ever become operational again,

even if power was removed and reapplied.

The device became a total failure.

-186-

Verified By

Device Problem . Macrodata

2901 1. The "A" output.latch for the RAM would Yes

change state on some devices that were

operated at a slightly elevated temperature ,

and voltage (still within specification).

The problem was detected by shifting a

binary pattern of 1110 into the RAM and

holding this pattern and then addressing

another location with a pattern of 1111,

but not clocking this pattern into the

latch. The parts that exhibited this

sensitivity showed that the output latch

value changed from a 1110 pattern to a

1111 pattern.

2. Some parts that have been tested showed a No

sensitivity to a CHECKERBOARD pattern on the

RAM.

3. Not all parts will operate at their rated Yes

speed. Newer versions of these devices do

not exhibit this problem.

4. It has been reported that the ALU section No

has shown some kind of sensitivity to

either data, instruction, or a combination

of the two. This sequence was not defined,

so this failure could not be verified.

-187-

Verified By

Device Problem • Macrodata

6800 & No problems were reported on these parts

1802 other than normal manufacturing process

problems, which were detected by the '

manufacturers. User's reported no

extensive testing on either of these

devices, therefore, no errors were

reported by them.

-188-

IX. TEST EQUIPMENT

DC Requirement

1. Voltage/Current Force Function

Voltage Force Range = 0 to +_ 15 Volts

It is recommended that there should be two ranges within this total

range.

Accuracy > .7% of Full Scale

Current Force Range = 500 pa to 50 ma

This range should be divided into at least three ranges.
!

Accuracy > .7% of Full Scale

2. Voltage/Current Measurement

Voltage Measurement = +15 Volts to -5 Volts

Recommended at least two ranges.

Accuracy > .3% Full Scale

Current Measurement = 500 pa to 300 ma

Recommended ranges: 2 uA Full Scale, 20 uA, 200 uA, 2 ma, 20 ma,

300 ma.

Accuracy - 0.5% Full Scale

-189-

Power Supplies

Three Device Bias Supplies Plus Ground

Voltage Range = +_ 15 Volts

Current Range = 300 ma, Minimum

Accuracy = 0.2% of Set Voltage for Testing

AC Voltage Requirements

Logical input voltage swing: +15 Volts to -1.5 Volts, Maximum

This voltage should be variable in 10 mV increments throughout the

range.

+15 V

-1.5 V

-190-

Logical output voltage detection: +15 Volts to -1.5 Volts, Maximum

This voltage should be variable in 10 mV increments throughout the

range.

It is recommended that the output sampling circuit be able to

detect both a VOL and VOH voltage simultaneously. This will allow for

a functional test measurement in one pass.

Timing Requirements

It should be noted that all timing edges produced for input or output

timing are required to be synchronized to one master clock generator.

Input

Clock Frequency = 10 MHz to DC.

Minimum Clock Pulse Width = 20 ,ns.

Clocks required = 2 Minimum - Device Clocks

1 Minimum - Data Bus Clock

1 Minimum - Data Bus I/O Control

2 Minimum - Control Signals for Setup and Hold Time

Measurements

Timing edge should be capable of being variable in 1 ns increments.

Output

Minimum of one output comparator strobe with both edges variable in 1 ns

increments. Strobe positioning should vary over the complete clock input

cycle.

With only one comparator strobe it will be required to make more than

one functional test on the devices. This is required to verify all output

timing of the particular devices.

Tester Configuration

To generate the basic patterns to test the microprocessor that have

been previously described the following tester would be required. Figure

21 illustrates the block diagram of a basic tester.

Mass storage, such as disc, or extended RAM or shift register memory

is used to store total test patterns.

A high-speed storage media consisting of high-speed RAM or shift register

memory (minimum of IK deep X 48 wide) is used to hold portions of total test

pattern. Overlay of this memory is required from the mass storage medium.

The Pattern Control and Sequence control logic allows repetition of the

same test pattern or series of patterns to reduce total test pattern size

and enable performance of tests that would otherwise not be possible due

-192-

PATTERN

CONTROL &

SEQUENCER

T

HIGH

SPEED

STORAGE

MEDIA

INTERFACE LOGIC

ERROR DETECT
CIRCUIT

VOLTAGE

CONTROLS

TIMING

CONTROLS

SAMPLE

TIMING STROBE

REFERENCE

VOLTAGE

Figure 21: Basic Tester Block Diagram

-193-

to size of test pattern. The capability to allow real time error inter-

rupt is also provided.

The Interface logic provides the necessary formatting of signals to

OUT including voltage and timing levels and signal format in addition to

the capability of holding a test pattern on the device while the high-

speed storage media is overlayed by the mass memory.

The Error Detect circuit compares the output of the device under test

with the previously stored output response pattern, alerting the pattern

control and sequencer module of error conditions.

This basic system can be developed by a company whose testing require-

ments ne.cessitate the use of such a system. Because of the design vari-

ations for the different microprocessors, a project of this type can become

costly and time consuming. Since at least three test equipment manufacturers

produce equipment that can perform the described test, it is recommended

that a company consider purchasing this type of system from a commercially

available supplier. Companies that produce this type of equipment are:

Fairchild Systems Macrodata Corporation Tektronic Systems

San Jose, CA Woodland Hills, CA Beaverton, OR

Software Requirements

The software requirements for the test system described in the preceding

-194-

section can be itemized as follows:

1. Disc Operating System

2. Test System Executive Program

3. Microprocessor Test Pattern Development Program

Discussion

In order to efficiently store the large quantities of test data neces-

sary to execute the tests previously described, a magnetic disc based

computer system was chosen. The use of the disc requires a sophisticated

computer program to control storing and retrieval of information to and

from the disc. Programs of this type are available from the manufacturer

of the computer chosen for use and can be incorporated in the total system

software by the manufacturer of the test system. The user also has the

option of designing his own program. The test system Executive Program is

a custom computer program designed and developed specifically by the manu-

facturer of the test equipment. The elements of such a program are many.

First, a test system language must be developed to allow the user to easily

develop test programs for a wide variety of devices. Additional necessary

programs are Editor, List, and Assembly programs.

An Editor program is one which allows the user to modify existing pro-

grams in source language. List programs output the entire source or object

code contents of a test program to a peripheral medium (line printer or

video terminal) to allow examination of the contents of a program. The

-195-

Assembly Program converts the source statements of a test program to a

binary object code which is understandable by the computer. An Executive

Program must be able to initiate to the different modules of the test

system for storage and retrieval of information in addition to controlling

their activities. •

The Microprocessor Test Pattern Development Program is designed to sim-

plify the development of the test patterns previously described. The

most desirable and accurate form of this program would be one which would

completely simulate the microprocessor from an input string consisting of

mnemonics and data patterns. The total output of such a program is a clock

cycle by clock cycle definition of all input and output pins of the micro-

processor in response to the defined input instructions. This program also

includes test system control data such as when to input microprocessor

instructions and data patterns and also when to test the output pins. If

the test system cannot accomodate testing of all device outputs simultaneous-

ly, several versions of the test pattern are necessary to completely verify

each device pin.

-196-

X. QUALIFICATION TEST VERSUS SCREENING TEST

The test required for qualification of the device should include:

1. All functional and DC tests as previously described.

2. Each functional module test should be verified over the complete vol-

tage operating range of the device. The best means to do this is to

generate shmoo plots which plot voltage (VDD, VBB, etc.) versus timing

parameters and also voltage versus voltage.

3. All AC timings specified in the manufacturers data sheet should be

verified. Again, the best method is shmooing voltage versus each

individual timing parameter and other voltages. Voltage should be

varied over the complete specification range.

4. Qualification should consist of testing the device over the manufacturers

full temperature range. Recommended temperatures are +125, +70, +25,

0, and -55°C. All manufacturers do not perform this test except for

normal AQL sampling.

5. An extensive burn-in program should be performed since manufacturers

only perform this upon specific request from a customer. A recommended

burn-in program should be at least 160 hours at 125°C with elevated

voltages. Also, random dynamic signals should be applied continuously

during the burn-in cycle. This is only a recommendation since further

-197-

performed on the subject of microprocessor burn-in procedures.

6. All DC specifications on the device should also be varied over the

complete voltage range of the device. Again, using the shmoo plot

method is recommended.

A 100% screening test should be based on the results from the qualifi-

cation test. This test should include:

1. Testing each functional module as previously described at upper and

lower power supply limits and all combinations.

2. Testing all manufactures DC parameters.

3. If the device is to be used over the complete military temperature

range, the test should be performed at +125, +25, and -70°C.

4. A burn-in conditioning should be conducted as previously recommended.

5. Only critical timing should be verified in order to reduce test time.

These should include minimum clock pulse width, clock frequency, and

access time.

-198-

ATTACHMENT i

-199-

8080A

8080A FUNCTIONAL PIN DEFINITION

The following describes the function of nil of the 8080A I/O pins.

Several of the descriptions refer to internal timing periods.

A]5 Ag (output threo-itate)

ADDRESS BUS; the address bus provides the address to memory

(up to 64K 8-bit words) or denotes the I/O device number for up

to 256 input and 256 output devices. A0 is the least significant

address bit.

D7 DO (input/output three-state)

DATA BUS; the data bus provides bi-directional communication

between the CPU, memory, and I/O devices for instructions and

data transfers. Also, during the first clock cycle of each machine

cycle, the 8080A outputs a status word on the data bus that de-

scribes the current machine cycle. DQ is the least significant bit.

SYNC (output)

SYNCHRONIZING SIGNAL; the SYNC pin provides a signal to

indicate the beginning of each machine cycle.

DBIN (output)

DATA BUS IN; the DBIN signal indicates to external circuits that

the data bus is in the input mode. This signal should be used to

enable the gating of data onto the 8080A data bus from memory

or I/O.

READY (input)

READY; the READY signal indicates to the 8080A that valid

memory or input data is available on the 8080A data bus. This

signal is used to synchronize the CPU with slower memory or I/O

devices. If after sending an address out the 8080A does not re-

ceive a READY input, the 8080A will enter a WAIT state for as

long as the READY line is low. READY can also be used to single

step the CPU.

WAIT (output)

WAIT; the WAIT signal acknowledges that the CPU is in a WAIT

state.

WR (output)

WRITE; the WR signal is used for memory WRITE or I/O output

control. The data on the data bus is stable while the WR signal is
active low (WR = 0).

HOLD (input)

HOLD; the HOLD signal requests the CPU to enter the HOLD

state. The HOLD state allows an external device to gain control

of the 8080A address and data bus as soon as the 8080A has com-

pleted its use of these buses for the current machine cycle. It is

recognized under the following conditions:

• the CPU is in the HALT state.

• the CPU is in the T2 or TW state and the READY signal is active.

As a result of entering the HOLD state the CPU ADDRESS BUS

(A,b-A0) and DATA BUS (D7-D0) will be in their high impedance

state. The CPU acknowledges its state with the HOLD AC-

KNOWLEDGE (HLDA) pin.

HLDA (output)

HOLD ACKNOWLEDGE; the HLDA signal appears in response

to the HOLD signal and indicates thai the dala and address bus

•V^WH

Aio °~ '
GND O 2

D« 0—- 3

O5 O" » 4

D6 CW-— 5

0, O« «• 6

D, O • ' 7

Dj O« — •• 8

0, O-« — •• 9

D0 0~—~ 10

-5V O— — 11

RESET O •• 12

HOLD O •• 13

INT O •• 14
C2 O " 15

INTE O-« 16
DBIN O-« 17

WR o-« — is
SYNC O-« 19

*5V O 20

~~~~\s
40

39

38

37

36

35

'34

INTEL* 33

32

8080A 31
30

29

28

27

26

25

24

23

22

21

A

"O AM
-0 A,3

«-O AI2

-0 A, 5

«-O A9

"O Aj

*-O A,

» Q Ag

-0 AS
«-0 A,
i-O A3

O +12V

»-O A2

«-O A,
«-O A,,
f~O WAIT

•* O READY

" O «i

«-O HLDA

Pin Configuration

will go to the high impedance state. The HLDA signal begins at:

• T3 for READ memory or input.

• The Clock Period following T3 for WRITE memory or OUT-

PUT operation.

In either case, the HLDA signal appears after the rising edge, of 0j

and high impedance occurs after the rising edge of 02-

INTE (output)

INTERRUPT EN ABLE; indicates the content of the internal inter-

rupt enable flip/flop. This flip/flop may be set or reset by the En-

able and Disable Interrupt instructions and inhibits interrupts

from being accepted by'the CPU when it is reset. It is auto-
matically reset (disabling further interrupts) at time T1 of the in-

struction fetch cycle (M1) when an interrupt is accepted and is

also reset by the RESET signal.

INT (input)

INTERRUPT REQUEST; the CPU recognizes an interrupt re-

quest on this line at the end of the current instruction or while

halted. If the CPU is in the HOLD state or if the Interrupt Enable

flip/flop is reset it will not honor the request.

RESET (input)M)

RESET; while the RESET signal is activated, the content of the

program counter is cleared. After RESET, the program will start

at location 0 in memory. The INTE and HLDA dip/flops are also

reset. Note that the flags, accumulator, stack pointer, and registers

are not cleared.
vss Ground Reference.

VDD » 1 2 ' 5 % Volts. >

Vcc *5 i 5% Volts.
VBB -5 t5% Volts (substrate bias),

^t. 02 2 externally supplied clock phases, (non TTL compatible)

-200-



8080A

8080A FUNCTIONAL PIN DEFINITION

The following describes the (unction of all of the 0080A I/O pins.
Several of the descriptions relcr to internal timing periods.

A)5 A0 (output three-state)
ADDRESS BUS; the address bus ptovides the address to memory
(up to 64K 8-bit words! or denotes the I/O device number for up
to 256 input and 256 output devices. A0 is the least significant
address bit.

D; DO (input/output three-state)

DATA BUS; the data bus provides bi-directional communication
between the CPU. memory, and I/O devices for instructions and
data transfers. Also, during the first clock cycle of each machine
cycle, the 8080A outputs a status word on the data bus that de-
scribes the current machine cycle. Do is the least significant bit.

SYNC (output)
SYNCHRONIZING SIGNAL; the SYNC pin provides a signal to
indicate the beginning of each machine cycle.

DBIN (output)

DATA BUS IN; the DBIN signal indicates to external circuits that
the data bus is in the input mode. This signal should be used to
enable the gating of data onto the 8080A data bus from memory
or I/O.

READY (input)

READY; the READY signal indicates to the 8080A that valid
memory or input data is available on the 8080A data bus. This
signal is used to synchronize the CPU with slower memory or I/O
devices. If after sending an address out the 8080A does not re-
ceive a READY input, the 8080A will enter a WAIT state for as
long as the READY line is low. READY can also be used to single
step the CPU.

WAIT (output)

WAIT; the WAIT signal acknowledges that the CPU is in a WAIT
state.

WR~ (output)
WRITE; the WR~ signal is used for memory WRITE or I/O output
control. The data on the data bus is stable while the WR signal is
active low (WR = 0).

HOLD (input)
HOLD; the HOLD signal requests the CPU to enter the HOLD
state. The HOLD state allows an external device to gain control
of the 8080A address and data bus as soon as the 8080A has com-
pleted its use of these buses for the current machine cycle. It is
recognized under the following conditions:
• the CPU is in the HALT state.
• the CPU is in the T2 or TW state and the READY signal is active.
As a result of entering the HOLD state the CPU ADDRESS BUS
(Ajj-Afj) and DATA BUS (Dy-Ofjl will be in their high impedance
state. The CPU acknowledges its state with the HOLD AC-
KNOWLEDGE (HLDA) pin.

HLDA (output)
HOLD ACKNOWLEDGE; the HLDA signal appears in response
to the HOLD signal and indicates that the data and addiess bus

Aio°" '
GND O 2

D4 0—* 3

D5 O« • 4

D6 O-« — •• 5

D, O« — * 6

D3 0- — " 7

0, CM — •• 9

D0 0— 10

-5V O 11
RESET O *• 12

HOLD O •• 13

INT O •- 14

*2 O •• 15

INTE O-« 16
DBIN O • 17

VVR <>• 18

SYNC O" 19
+5V O 20

N.X
40

39

38

37

36

351

34

INTEL* 33

32

8080A 31
30

29

28

27

26

25

24

23

22

21

A

~O A,«

-0 A,3
«-0 A,j

«-O A, 5
"O A9

»O A8

*-O A,

» Q Ag

-0 AS

"-O A4

«O A3

O *12V

»-O A2

«-O A,

"-O AO
MD WAIT

O READY

-i O <S,

«-O HLDA

Pin Configuration

at:will go to the high impedance state. The HLDA signal begins
• T3 for READ memory or input.
• The Clock Period following T3 for WRITE memory or OUT-

PUT operation.

In either case, the HLDA signal appears after the rising edge of Q\
and high impedance occurs after the rising edge of $2-

INTE (output)
INTERRUPT ENABLE; indicates the content of the internal inter-
rupt enable flip/flop. This flip/flop may be set or reset by the En-
able and Disable Interrupt 'instructions and inhibits interrupts
from being Accepted by the CPU when it is reset. It is auto-
matically reset (disabling further interrupts) at time T1 of the in-
struction fetch cycle (Ml) when an interrupt is accepted and is
also reset by the RESET signal.

INT (input)
INTERRUPT REQUEST; the CPU recognizes an interrupt re-
quest on this line at the end of the current instruction or while
halted. If the CPU is in the HOLD state or if the Interrupt Enable
flip/flop is reset it will not honor the request.

RESET (inputllD
RESET; while the RESET signal is activated, the content of the
program counter is cleared. After RESET, the program will start
at location 0 in memory. The INTE and HLDA flip/flops are also
reset. Note that the flags, accumulator, stack pointer, and registers
are not cleared.

VSS Ground Reference.
+12 15% Volts.
+5 i 5% Volts.
-5 i5% Volis (substrate bias).
2 externally supplied dock phases, (non TTL compatible)

VDO
VCc
VBB

01 . $2

-201-



8080A

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias 0°C to -»70° C
Storage Temperature -65°C to +150°C
All Input or Output Voltages

With Respect to VBB -0.3V to +20V
Vcc, V00 -I"*) Vss With Respect to VBB -0.3V to +20V
Power Dissipation 1.5W

'COMMENT: Strcsscsabove those listed under Absolute Maxi-
mum Ratings may cause permanent damage to the device.
This is a stress rating only and functional operation of the de-
vice at these or any other conditions above those indicated in
ihe operational sections of this specification is not implied. Ex-
posure to absolute maximum rating conditions for extended
periods may affect device reliability.

D.C. CHARACTERISTICS
TA = 0°C to 70°C. VOD = + 12V ± 5%. Vcc = +5V ± 5%, VBB = -5V ± 5%. Vss * 0V. Unless Otherwise Noted.

Symbol

V.LC

VIHC

VIL

V,H

VOL

VOH

'DO IAV)

'CCIAVI

'BB (AVI

I.L

"CL

IDL(2]

'FL

Parameter

Clock Input Low Voltage

Clock Input High Voltage

Input Low Voltage

Input High Voltage

Output Low Voltage

Output High Voltage

Avg. Power Supply Current (VDD)

Avg. Power Supply Current (V^c)

Avg. Power Supply Current (VBB)

Input Leakage

Clock Leakage

Data Bus Leakage in Input Mode

Address and Data Bus Leakage
During HOLD

Min.

Vss-'
9.0

Vss-1
3.3

3.7

Typ.

40

60

.01

Max.

Vss+0.8

VDD + I
Vjs+0.8

Vcc + l

0.45

70

80

1

±10

±10

-100
-2.0

+ 10
-100

Unit

V

V

V

V

V

V

mA

mA

mA

u*
(/A

AfA
mA

PA

Test Condition

IOL = 1.9mA on all outputs,
" lon = -150{jA.

Operation

TCY = .48 A*sec

vss < v,N < vcc

Vss < VCLOCK < VDD

VSS<V|N<VSS+0.8V

Vss + 0.8V<V|N<Vcc

VADDR/DATA = Vcc

VADDR/DATA = Vss + 0.45V

CAPACITANCE
T. = 25°C VCC ' = vss = ov. VBB = -5V

TYPICAL SUPPLY CURRENT VS.
TEMPERATURE. NORMALIZED.!3!

Symbol

c*
CIN

COUT

Parameter

Clock Capacitance

Input Capacitance

Output Capacitance

Typ.

17

6

10

Max.

25

10

20

Unit

Pf

pf

P»

Test Condition

fc = 1 MHz

Unmeasured Pins

Returned to VSs

NOTES:
1. The BESET lignal must be active for a minimum of 3 clock cycles.
2. When DBIN is high and V|f\j > Vm an internal active put! up will

be switched onto the Data Bus.
3. Al supply / aT A - -0.45%/"C.

DATA BUS CHARACTERISTIC
DURING DBIN

-202-



8080A

A.C.-CHARACTERISTICS
TA = 0°C to 70°C. VDD = 112V ± 5%. Vcc - <5V ± 5%. VBO = -5V 1 5%. Vss <= 0V. Unless Otherwise Noted

Symbol

lev'31

t,.t(

««l

<«2

«D1

«02

tD3

IDA'21

too'21

toe12'

top'2)

to.'11

*DS1

Parameter

Clock Period

Clock Rise and Fall Time

0, Pulse Width

02 Pulse Width

Delay 0, to 02

Delay 02 to 0t

Delay 0] to 02 Leading Edges

Address Output Delay From 02

Data Output Delay From 02

Signal Output Delay From 0,. or 02 (SYNC. WR.WAiT.HLDAI

DBIN Delay From02

Delay for Input Bus to Enter Input Mode

Data Setup Time During 0j and DBIN

Min.

0.48

0

60

220

0

70

80

25

30

Max.

2.0

50

200

220

120

140

«DF

Unit

/jsec

nsec

nscc

nsec

nsec

nscc

nsec

nsec

nsec

nsec

nsec

nsec

nsec

Test Condition

- CL = 100pf

- CL = 50pf

TIMING WAVEFORMS
114]

(Note: Timing measurements are made at the following reference voltages: CLOCK "1" = 8.0V
"0" = 1.0V; INPUTS "1" = 3.3V. "0" = 0.8V; OUTPUTS "1" = 2.0V. "0" = 0.8V.)

;

»i

SYNC

OBIN

wa

READY

WAIT

HOLD

KlOA

INT

«

?

»'OJ~

— »

— >cv •
1

1
|-»— 'o»— I

_.. .1 L— » —

i
•—•DO—)

r
_jf •
•ocr—

f\

f

—

—

-~

T

p — v_

!oi !•*-

L~~ J&AJ*
-» Posi

HL U-o
'ocl—

t-•.,-1

r

1W

?-*"

•OH|

© T̂

-'o

J
,

"1
iT

^~

"V

»4"

•»—

;
)-

—
<oc— -

ny
1

, /u

n1
,

— -oo-^j

~-&

• 11

,'H-

i<u>
•..U-.

y
i-

f

f '0«

'oc
r~
X

•oc

^

— «

— .
\

IM

) (<-1.

1-I

\.
-.

9
-,

f 1

i
I

DATA OUT

1

j

1

I- -

• X

~~>fa
'"ifn

ir
it'

-203-



A.C. CHARACTERISTICS (Continued)

TA « 0°C to 70°C. VOD = + 12V i 5%. Vcc = 1 5%. VBB = -5V ± 5%, Vss = 0V, Unless Otherwise Noted

Symbol

«DS2

IDH'"
tIE!2l

tRS

«HS

tis
tH

tFD

tAw'2'
tow'21

two'21

tWA'21

tHFI2)

tWF121

tAH'21

Parameter

Data Setup Time to 0? During DQIN

Data Hold Time From £2 During DBIN

INTE Output Delay From <J2

READY Setup Time During 02

HOLD Setup Time to #2

INT Setup Time During 02 (During «j in Halt Mode)

Hold Time From 02 (READY. INT, HOLD)

Delay to Float During Hold (Address and Data Bus)

Address Stable Prior to WR

Output Data Stable Prior to WR

Output Data Stable From WR

Address Stable From WR

HLDA to Float Delay

WR to Float Delay

Address Hold Time After DBIN During HLDA

Mm.

150

ID

120

140

120

0

.15]

(6)

17]

171

18]

[91

-20

Max.

200

.120

Unit

nsec

nsec

nscc

nsec

nsec

nsec

nsec

nsec

nsec

nsec

nsec

nsec

nsec

nsec

nsec

Test Condition

-,

CL «= 5,0pf

_ CL= lOOpf: Address. Data
Ci~50pf" WR HLDA DBIN

WR

— 'FO

,,-H
•oc

£— V.F-

- t§f -^

^5t

NOTES:
1. Data input ihould be enabled with 08IN itatut. No but conflict can then occur and data hold time ii auured.

'DH " 60 nj or IQF. whichever ii leu.
1. Load Circuit.

«SV

3- 'CV - '03 * 'r« ' '»2 * '1*2 * '02 * <r«1 >

TYPICAL a OUTPUT DELAY VS. & CAPACITANCE

• 10

0

-1C

^^^^

/

/
X~

10 -M 0 «50 . «1«

i CAPACITANCE ipii
'CACIU*t " CSr-<C*

4. The following are relevant when interfacing the 8080A to device, having V)H * 3.3V:
a) Maximum output rite lime from .8V to 3.3V • 10Oni <*> C|_ " SPEC.
b) Output delay when meaiured to 3.0V - SPEC *60m & CL • SPEC.

5 AW 2 ICY -'D3 -'<*? - KOmee.
DW'CY -'D3 -i»02-l'OMte.
f not MLDA, two " 'WA " »03 * 'rO2 * ̂ ni. If HLDA, t ' 'WF-

HF " ID3 * ' 2 -50ni.6.

9.
10. Data in mutt be liable for thii period during OOIN 'Tj. Both iQSt and IQS2 mutt be unified.
11. Fleedy ngnal tnuit be liable for thii period during Tj or Tyy, IMutt be enUfnjMy tynchronnexl.)
12. Hold lignel muit be il*ljle lor Ihit period during T 7 or 7yy whan emaiing hotd mode, and dunng T3, 74,

end Tyyn when in hold mode. (C »Urn*l tynchronuation it noi (equirert.)
13. Interrupt tignal muit be liable during ihn period of the lail clock cycle of any milructiun in orde* to be

tecognited on the following inmuclion, (C Rternal. lynchronmtion it nni required.I
14. Thfi timing <Ji*gi»m thowi uming t«fa(w>nth*pi only; il do«t not r#p/*t«/t| «ny ip*ci(< machine cyc'e

-204-



8080A

INSTRUCTION SET

The accumulator group instructions include arithmetic and
logical operators with direct, indirect, and immediate ad-
dressing modes.

Move, load, and store instruction groups provide the ability
to move cither 8 or 16 bits of data between memory, the
six working registers arid the accumulator using direct, in-
direct, and immediate addressing modes.

The ability to branch to different portions of the program
is provided with jump, jump conditional, and computed
jumps. Also the ability to call to and return from sub-
routines is provided both conditionally and unconditionally.
The RESTART (or single byte call instruction) is useful for
interrupt vector operation.

Double precision operators such as stack manipulation and
double add instructions extend both the arithmetic and
interrupt handling capability of the 8080A. The ability to

increment and decrement memory, the six general registers
and the accumulator is provided as well as extended incre-
ment and decrement instructions to operate on the register
pairs and stack pointer. Further capability is provided by
the ability to rotate the accumulator left or right through
or around the carry bit.

Input and output may be accomplished using memory ad-
dresses as I/O ports or the directly addressed I/O provided
for in the 8080A instruction set.

The following special instruction group completes the 8080A
instruction set: the NOP instruction, HALT to stop pro-
cessor execution and the DAA instructions provide decimal
arithmetic capability. STC allows the carry flag to be di-
rectly set. and the CMC instruction allows it to be comple-
mented. CM A complements the contents of the accumulator
and XCHG exchanges the contents of two 16-bit register
pairs directly.

Data and Instruction Format!

Data in the 8080A is stored in the form of 8-bit binary integers. All data'transfers to the system data bus will be in the
same format.

|D7 D6 D5 D4 D3 D2 D0 |

DAT A WORD

The program instructions may be one, two, or three bytes in length. Multiple byte instructions must be stored
in successive words in program memory. The instruction formats then depend on the particular operation
executed.

One Byte Instructions

D7 O6 D5 04 03 D2 QI Dp OPCODE

Two Byte Instructions

[ 07 06 D5 D4 D3 0; 0, Dp] OPCODE

| D7 06 D5 D4 D3 D? PI Op] OPERAND

Three Byte Instructions

| D7 06 D5 D4 03 0; Q! 00 | OP CODE

' ), DO 1 LOWADDRESSOROPERAND 1D7 D6 D5 D3

TYPICAL INSTRUCTIONS

Register to register, memory refer-
ence, arithmetic or logical, rotate,
return, push, pop. enable or disable
Interrupt instructions

Immediate mode or I/O instructions

Jump, call or direct load and store
instructions

D7 Dc D5 D4 D3' D? D, Dp HIGHADDRESSOROPERAND2

F or ihe 8080A a logic " 1" is defined as a high level and a logic "0" is defined as a low level.

-205-



8080A

INSTRUCTION SET

Summary of Processor Instructions

lint rue I ion CotJt''t
Mntmenit

•no.-,,.,,
MOV H.I

MCVr. M
Hlf

MVIr
MVIM
INR •

DCRr
INR M
O C R M
AOOr
AOCr
SUBr
SBBi

ANAr
XRAi
O R A r
CMPr
ADDM
ADCM
SUBM
SBBM

ANAM
X R A M
O R A M
CMPM
ADI
ACI

SUI
Sfil

ANI
XRI

ORI
CPI
RLC
RRC
RAL
RAR

JMP
JC
JNC
11
iHl
Jf
JM
JPE
jro
CALL
CC
CNC
12
CN2
V
CM

CPt

CPO

RET

RC

RNC

Oetcriplion C*j Of Dj D< Oj Oj 0| DO

Move register to register 0
Move register to memoiy 0
Move memory to register 0
Hilt 0
Move immediate regnter 0
Move immediate memory 0
Increment register 0
Decrement rlgistlr 0
Incrimtnt mimory 0
Oicriminl inemory 0
Add reguter to A 1
Add register 10 A with carry 1
Subtract register from A 1
Subtract register from A t
with borrow
And register with A 1
Eutusivi Or register with A 1
Or register with A 1
Compare register with A 1
Add memory to A 1
Add memory to A with carry 1
Subtract memory from A 1
Subtract memory from A 1
with borrow
And memory with A t
Eiclusive Or memory with A 1
Or mimory with A 1
Compirl mimory with A 1
Add immediate to A 1
Add immediate to A with 1
carry
Subtract immediate from A 1
Subtract immediate from A 1
with borrow

.And immediate with A 1
delusive Or immediate with 1

A
Or immediate with A 1
Compare immediate with A 1
Rotate A led 0
Rotate A rigM 0
Rotate A left through carry 0
Rotate A rigM through 0

uriy
Jump unconditional
Jump on carry
Jump on no Carry
Jump on lero
Jump on no /ero
Jump on positive
Jump on minus
Jump on parity even
Jump on parity odd
Call unconditional
Call on carry
Call on no carry
Call on lero
Cell on no fero
Cttl on positive
Call on mmu*
Call Oft parity even
Catl on parity odd
Return
Return on cerry
Return on ftg tarty

1 0 0 0 S
1. 1 1 0 S
1 0 0 0

1 1 1 0

0 0 0 0
0 1 1 0

0 0 0 0
0 0 0 0
0 1 1 0

0 1 1 0

0 0 0 0 S
0 0 0 1 S
0 0 1 0 S
0 0 1 1 S

0 1 0 0 S
0 1 0 1 S
O I 1 0 S
0 1 1 1 S
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1

0 1 0 0 1

0 1 0 1 1

0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1

1 0 1 0 1
1 0 1 1 1

1 1 0 0 1
1 1 0 1 1

1 1 1 0 1
1 1 1 1 1
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1

0 0 0 0
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0
1 1 0 0
1 1 1 0
1 0 1 0
1 0 0 0
0 0 1
0 1 1
0 1 0
0 0 1
0 0 0
1 1 0
1 1 1
1 0 1
1 0 0
0 0 1 0
0 1 1 0
0 1 0 0

S S
S S
1 0
1 0
t 0
1 0
0 0
0 1
0 0
0 t
S S
S S
S S
S S

S S
S S
S S
S S
1 0
t 0
1 0
1 0

1 0
1 0
1 0
1 0
1 0
1 0

1 0
1 0

1 0
1 0

1 0
1 0
1 1
1 1
1 1
1 1

1 1
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
0 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 1
0 0
0 0

Clod 1"
Cycles

S
7
7
7
7
to
5
5
10
10
4

4

4

4

4

4

4

4

7
7
7
7

7
7
7
7
7
7

7
7

7
7

4

10
10
10
10
10
10
to
10
10
17

11/17
U/tJ
11/17
11/11
11/11
11/17
11/17
11111

10
S/ll
5m

Innruclion Cedet'l
Mnemonic

RZ
RN2
RP •
RM
RPE
RPO
RST
IN
OUT
L X I B

LXID

1X1 H

IXISP
PUSHB

PUSHO

PUSHH

PUSH PSW

POPB

POPO

POPH

POP PSW

' STA
IDA
XCHC

xm
SPHl
PCHL
OADB
DADO
OADH
DAOSP
S T A X B
S T A X D
IOAXB
LDAXO
INXB
INXO
INXH
INXSP
O C X S
D C X D
O C X H
OCXSP
CMA
STC
CMC
DAA
SHLO
LHLO
(1
01
HOP

OeKription

Return on tero
Return on no /ero
Return on positive
Return on minus
Return on parity even
Return on parity odd
Restart
Input
Output
Load immediate register
Pair B J C
Load immediate register
Pair 0 & E
Load immediate register
Pair H & I
load immediate stack pointer
Push legum Pan B & C on
stack
Push register Pair 0 & E on
stack
Push register Pair H & I on
start
Push A and Flags
on stack
Pop register pair B & C off
stack
Pop register pair 0 & E of)
slack
Pop register pair H & L off
slack
Pop A and Flags
off stack
Store A direct
Load A direct
EichengeO&E.Hi L
Registers
EtcKmge lop of stick. H & L
H & I to stack pointer
H & L to program counter
Add B 1 C to H S I
Add D & E to H & L
AdJl H & L to H & I
Add stack pointer to H & L
Store A indirect
Store A indirect
Load A indirect
Load A indirect
Increment B & C registers
Increment 0 & E registers
Increment H & I registers
Increment stack pointer
Decrement B & C
Decrement 0 & E
Decrement H & I .
Decrement stack pointer
Complement A
Set carry
Complement carry
Decimal adiust A
Store H & I direct
Load H & I direct
Enable Interrupts
Disable interrupt
No operation

D, D,

1

1
t
1
0 0

0 0

0 0

0 0
1 1

1 1

1 1

1 1

1 1

1 1

1 1

1. 1
0 0
0 0
t t

1 1
1 1
1 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 1
1 1
0 0

t>5

0
0
1
1
t
1
A
0
0
0

0

1

1
0

0

1

1

0

0

1

1

1
1
t

1
1
1
0
0
1
1
0
0
0
0
0
0
1
1
0
0
1
1
1
1
1
1
1
1
1
1
0

Clock IN
|D4 Dj 0} 0, Drj Cycles

0
0
1
1
0
0
A
1
1
0

1

0

1

0

1

0

1

0

1

0

1

1
1

0

0
1
0
0
1

0
1
0
1
0
1
0
1
0
1
0
1
o-
1
0
1
1

0
0
0
1
1
0

1 0 0
0 0 C
0 0 0
1 0 0
1 0 0
0 0 0
A 1 1
1 0 1
0 0 1
0 0 0

0 0 0

0 0 0

0 0 0
0 1 0

0 1 0

0 1 0

0 1 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 1
1 0 1
1 0 1

0 0 1
1 0. 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
0 0
0 0
1 0
1 0
0 0
0 0
0 0
0 0
1 0
1 0
1 0
1 0
1 1
0 1
1 1
0 1
0 0
1 0
t 0
0 0
0 0 0

0 VI 1
0 VII
0 VII
0 VII
0 VII
0 VII
1 11
1 10
1 10
1 10

1 10

1 10

1 10
1 II

1 II

1 II

1 11

1 10

1 10

1 10

1 10

0 13
0 13
1 4

1 IS
1 •>
1 •>
1 10
1 10
1 10
1 10
0 7
0 7
0 7
0 7

5
S
1,
5

5
. 5

5
S
4

4

4

4

16
1C
4

4

0 4

NOTES: t. ODOOf SSS - 000 B - 001 C - 010 D - Oil E - 100 H -- 101 L - 110 Memory - 111 A.
?. Two pouible cycle time*. (5/11) mdicat* instruction eyelet dependant on condition Mags.

-206-



8008/8008-1

EIGHT-BIT MICROPROCESSOR

Instruction Cycle Time —
12.5 »s with 8008-1 or 20 /i.s
with 8008

Directly addresses 16K x 8
bits of memory (RAM, ROM,
or S.R.)

Interrupt Capability

48 Instructions, Data
Oriented

Address stack contains
eight 14-bit registers
(including program counter)
which permit nesting of
subroutines up to seven
levels

The 8008 is a single chip MOS 8-bit parallel central processor unit for the MCS-8 microcomputer system.

This CPU contains six 8-bit data registers, an 8-bit accumulator, two 8-bit temporary registers, four flag bits (carry, zero, sign,
parity), and an 8-bit parallel binary arithmetic unit which implements addition, subtraction, and logical operations. A memory
stack containing a 14-bit program counter and seven 14-bit words is used internally to store program and subroutine addresses.
The 14-bit address permits the direct addressing of 16K words of memory (any mix of RAM, ROM or S.R.).

The instruction set of the 8008 consists of 48 instructions including data manipulation, binary arithmetic, and jump to sub-
routine.

The normal program flow of the 8008 may be interrupted through the use of the INTERRUPT control line. This allows the
servicing of slow I/O peripheral devices while also executing the main program.

The READY command line synchronizes the 8008 to the memory cycle allowing any type or speed of semiconductor memory
to be used.

8008 CPU
Block Diagram

CUD, BI-DIRECTIONAL
DAT A BUS

-207-



8008 PHOTOMICROGRAPH

-208-



8008, 8008-1

8008 FUNCTIONAL PIN DESCRIPTION

DATA '

BUS " i

1

J

3

4

5

C

7

e

9

— \S
18

17

16

INTEL t5

6008 )4

13

12

11

10

~—C,Vt°«U>l

— OBEOr

•— 0 ,

-. — o ,

— «-C SY\C

— *-o s,"
— »0 S, -STATE

-»° *»

OVK

D0-D7

BI-DIRECTIONAL DATA BUS. All address and
data communication between the processor and the
program merrory, data memory, and I/O devices
occurs on these 8 lines. Cycle control information
is also available.

INT

INTERRUPT inDut. A logic "1" level at this input
causes the processor to enter the INTERRUPT
mode.

READY

READY input. This command line is used to syn-
chronize the 8003 to the memory cycle allowing
any speed merrory to be used.

SYNC

SYNC output. Synchronization signal generated by
the processor! It indicates the beginning of a ma-
chine cycle.

Two phase clock inputs.

MACHINE STATE OUTPUTS. The processor con-
trols the use of the data bus and determines whether
it will be sending or receiving data. State signals
SQ, Si, and 82, along with SYNC inform the pe-
ripheral circuitry of the state of the processor.

VCC +5V±5%

VDD -9V ±5%

-209-



8008, 8008-1

BASIC INSTRUCTION SET

Data and Instruction Formats i

Daia in the 8008 is stored in the form of 8 bit binary integers. All data transfers to the system data bus will be
in Ihe same format.

[o, D6 PS D, D3 0? O, D0

DATA WORD

The program instructions may be one. two, or three bytes in length. Multiple byte instructions must be stored
in successive words in program memory. The instruction formats then depend on the particular operation
executed.

TYPICAL INSTRUCTIONS

OP CODt 1/0 "'VnliTriogT.TTo'.'.V'o.'""'
ntu'n .ntxucriont

OP CODE

[O, Dt

Tv.0 Bvlt ln

[O, D6 P., 04 D3 D, 0,

[O, D6D., D. P., D, D, 00[ op COOE

| °> 06
 D5 °< °3 °? °l °o] ' LOW ADDRESS

HIGH ADDRESS*°. Do| l.ucl'On. Dg tna Oj ttf "don'l arc" D.II

TM
For the MCS-8 a logic "V is defined as a high level and 3 logic "0" is defined as. a low level.

Index Register Instructions
The load instructions do not affect the flag flip-flops. The increment and decrement instructions' affect alt flip-
flops except the carry.

MNEMONIC

(11 MOV r ,. »2

12* MOV r. M

MOV M. i

(3>MVI ,

MVI M

INRr

OCR,

MINIMUM
STATES

REQUIRED

(5)

(81
(71

(8)

IS)

(SI

(SI

INSTRUCTION COOE
D? D6 05 Ds 03 D2 0, D0

1 1 O D D S S S
1 1 D O D 1 1 1

1 1 1 1 1 S S S

0 0 O D D 1 1 0

8 B B B S E B B

0 0 1 1 1 1 1 0

B B B B B B B B

0 0 O D D 0 0 0

0 0 O D D 0 0 1

DESCRIPTION OF OPERATION

Load index register rj with the content ot index register f2-
Load index register i with the content of memory register M.

Load memory register M with the content of index register r.

Load index register r with data B . . . 8.

Load memory register M with data 8 . . . B.

Increment the content of index register r (r t A).
Decrement the content of index register r |r t Al.

Accumulator Group Instructions

The result of the ALU instructions affect all of the flag flip-flops. The rotate instructions affect only the carry flip-flop.

AOOr

ADDM

ADI

AOCr

ADC M

ACI

SUB.

SUBM

SHI

SBBr

SBBM

SBI

(SI

IB)

181

(51

18)

181

(SI

181

181

IS)

18)

(81

1 0 0 0 0 S S S
1 0 0 0 0 l i t

0 0 0 0 0 1 0 0
B 8 B B B B B B

1 0 0 0 1 S S S

10 O 0 \ \ \ \

0 0 0 0 1 1 0 0
B B B B B B B B

1 0 0 1 0 S S S

1 0 0 1 0 1 1 1

0 0 0 1 0 1 0 0

B B 8 8 8 B 8 8

1 i f l Oil & S S

1 0 O i l 1 1 1

0 0 O i l 1 0 0

D O B B B B B B

Add the content ol index register t . memory register M. or data
8 ... B to the accumulator. An overflow (carry) sets the carry

II. p flop.

Add the content of index register r. memory register M. or data

B ... B Irom the accumulator with carry. An Overflow (carry)

sets the carry flip-flap.

data B . . . B Irom Ihe accumulator . An underflow (borrow)

fis Ihe cany flip-flop.

Subtract the content ol index register r. memory register M, or data

data 8 . . . B Irom the accumulator with borrow. An unOvrllom

(boriow) v\\ the carry flip-flop.

-210-



8008, 8008-1

BASIC INSTRUCTION SET

MNEMONIC

ANAM

ANI

XBA.

XRA M

XRI

ORAr

OR I

CMP M

CPI

RLC

RRC

RAL

RAR

MINIMUM

STATES

REQUIRED

I8I

18)

IS)

18)

18)

15)

(8)

(5)

18)
(81

(5)

(SI
(SI

15)

INS1 RUCTION CODE

D;°6 °iD«D3 '°J°t^>

1 0 1 0 0 1 1 1

00 100 1 • 0 0

B B R B B B B S

1 0 1 0 1 S S S

1 0 1 0 1 1 1 1

0 0 1 0 1 1 0 0
' B B B B S 8 B B

1 0 1 1 0 S S S

0 0 1 1 0 1 0 0
8 8 6 6 8 B B B

1 0 1 1 1 1 1 1
0 0 1 1 1 1 0 0

6 6 8 6 6 6 6 6

0 0 0 0 0 0 1 0
0 0 0 0 1 0 1 0

0 0 0 1 0 0 1 0

0 0 0 1 1 0 1 0

DESCRIPTION OF OPERATION

fr>-rno>v rfgntrr M. or iMid B . . . 0 wnh the accumulaior.

Compute the EXCLUSIVE OR ol the conteni of md»>* register

Comimif ihr INCLUSIVE OR o» the content ol tndt* regnter

or data B . . . B with the accumulator. The content of the

accumulator is unchanged.

Rotate the content of the accumulator right.

Rotate the content of the accumulator lelt through the carry.

Rotate the content of the accumulator right through the carry.

Program Counter and Stack Control Instruction!

(«l JMP

(SljNC. JNZ
JP. JPO

JC. JZ
JM, JPE

CALL

CMC. CNZ.
CP. CPO

cc. cz.
CM. CPE

RET

RNC. RN2.
RP. RPO

RC. RZ
RM. RP£

RST

111)

19 or 111

19 or 11)

(11)

I9or 111

(9 or 111

IS)

(3 or SI

(3 or S)

IS)

0 1 X X X 1 0 0
8363 ' 8 2 8 2 8 2 626783
X X 838383 838383

0 1 0 C4C3 0 0 0
Bj 87 626262 638283
X X 838363 8 3 8 3 8 3

0 1 1 C 4C 3 000
63 63 63 63 82 63 63 63
XX 83 83 83 63 83 83
0 1 x x x 1 1 0
83 83 63 83 83 B2 63 83
XX 83 83 63 83 83 83

0 1 0 C 4C 3 0 1 0
63 83 63 83 63 83 83 63
XX 63 63 83 83 63 63

0 1 1 C4C3 0 1 0

63 63 82 B2 B2 83 83 63
XX 83 83 83 63 83 83

o o x x x 1 1 1
0 0 0 C 4C3 O i l

0 0 1 C 4C3 O i l

0 0 A A A 1 0 1

Unconditionally jump to memory address 83'. .. 8363 . . . 82.

Jump to memory address 83 ... 6383 ... 83 if the condition

Jump to memory address 83 . . . 8363 . . . 83 ir the condition

Unconditionally call the subroutine at memory address 83 ...
6383 . . . 83. Save the current address (up one level in the stack).

Call the subroutine at memory address 63 ... 6383 ... 63 if the
condition flip-flop is false, and save the current address (up one
level m the stack.) Otherwise, execute the next instruction in sequence.

Call the subroutine a* memory address 83 ... 8383 ... 63 if the
condition Hip-flop is true, and save the current address (up one

Unconditionally return (down one level m the slack).

Return (down one level in the stack) il the condition nip-flop is

Return (down one level m the stack! il the condition Ilip-floo is

Call (he subroutine at memory address AAAOOO lup one level in the stack).

Input/Output Instructions

IN

OUT

181

(61

01 0 0 M M M 1

01 R R M M M 1

Read the content of the selected input port (MMM) into the

accumulator.

Write the content of the accumulator into the selected output

port (RRMMM. (IR / 001.

Machine Imlruction

HLT (41

14)

0 0 0 0 0 O O X

1 1 1 1 1 1 1 1

Enter the STOPPED slate and remain there until interrupted.

NOTES
(It

(?)
(3)
<4>

(SI

SSS - Sourr* Indfi Hrgntrt
ODD ' t>ttin«l.on Irwle- ftfqtiier
MenKwy itqi\trn *>e *ftJi<rtw>d tiy
Additional byte, O< mitructinn tie
X - "Don'l C*««".
F l«g llip.flopt tie drlined by ^40^
pA'.ty (1 1-pdfily >t CVCM).

I Thcte rrgnren. ',. jr* dfirgnafeef A(*ccumul»fO'-OOOJ.

BIOOU. ClOlOt. 0(0111. E(100>. H(101). LUlO).
ihp comrnn ot ifquireri M & L.
drtignitrd by BBUBRBBB.

CJ"V 100 Ovf»liOW O» underIIO*-v1. /*'O (01-'Hull H /r«Ol. lign 110 MSB O* fflull H "1"|.

-211-



8008, 8008-1

ABSOLUTE MAXIMUM RATINGS"
Ambient Temperature

Under Bias . 0°C lo«70"C

Storage Temperature -55°C to t150°C

Input Voltages and Supply
Voltage With Respect
to Vcc 40.5 to -20V

Power Dissipation 1.0 W @> 25°C

•COMMENT

Stresses above those listed under "Absolute Max-
imum Ratings" may cause permanent damage to

tional operation of the device at these or any other
condition above those indicated in the operational
sections of this specification is not implied.

D.C. AND OPERATING CHARACTERISTICS
T4 = 0°C to 70°C. Vcc « «5V 15%. V00 • -9V i5% unless otherwise specified. Logic "1" is defined
as the more positive level (V,M. VOM ). Logic "0" is defined as the more negative level (V,L. VOL I.

'DO

'u
V

\i
IM

VOL

vo-

AVERAGE SUPPLY CURRENT-
OUTPUTS LOADED-

INPUT LEAKAGE CURRENT

INPUT LOW VOLTAGE
(INCLUDING CLOCKS)

INPUT HIGH VOLTAGE
(INCLUDING CLOCKS)

OUTPUT LOW VOLTAGE

OUTPUT HIGH VOLTAGE

MIN.

VPO'

vcc-i.s

Vcc-).5

LIMITS
TYP.

30

MAX.

60

10

Vcc-4.2

Vcc*0.3

0.4

mA

«A

V

V

V

V

TEST
CONDITIONS

TA -25°C

v,N -ov

'OL * 0.44mA
CL •= 200 pF

IOM -°-2mA

'Measurements are made while
the 8008 is executing a typical
sequence of instructions. The
test load is selected such thai
at V0|_ = 0.4V. IOL= 0.44mA
on each output.

A.C. CHARACTERISTICS
TA = 0°C to 70°C; Vcc = +5V ±5%. VDD = -9V ±5%. All measurements are referenced to 1.5V levels.

SYMBOL

tCY

«R.«F

101

'02

«D1

«D2

'03

*DD

<OH

t|H

«SO

«S1

'S2

'RW

'RO

PARAMETER

CLOCK PERIOD

CLOCK RISE AND FALL TIMES

PULSE WIDTH OF 0,

PULSE WIDTH OF <>2

CLOCK DELAY FROM FALLING

EDGE OF 0, TO FALLING EDGE

OF02

CLOCK DELAY FROM 02 TO 0,

CLOCK DELAY FROM 0, TO 02

DATA OUT DELAY

HOLD TIME FOR DATA BUS OUT

HOLD TIME FOR DATA IN

SYNC OUT DELAY

STATE OUT DELAY (ALL STATES

EXCEPT T1 AND Til)171

STATE OUT DELAY (STATES

T1 AND Til)

PULSE WIDTH OF READY DURING

<>„ TO ENTER T3 STATE

READY DELAY TO ENTER WAIT

STATE

8008
LIMITS

MIN.

2

.70

.55

.90

.40

.20

.10

in

.35

.20

MAX.

3

50

1.1

1.0

.70

1.1

1.0

8008-1
LIMITS

MIN.

1.25

.35

.35

.35

.20

.10

HI

.35

.20

MAX.

3

50

1.1

1.0

.70

1.1

1.0

UNIT

I*

ns

PS

PS

/«

PS

PS .

PS

PS

PS

PS

PS

P«

PS

P«

TEST CONDITIONS

tR.tF = 50ns

CL= lOOpF

CL= lOOpF

CL= lOOpF

CL= lOOpF

III
1|MMIN2lso II the INTERRUPT is not used, all Hales have I he sam« output dtlay.lg,

-212-



8008, 8008-1
TIMING DIAGRAM

SYNC

DATA BUS
LINES

ID, ...0,1

STATE
LINES

_,"•
—I '„>

'01 I—

ADDRESS OUT

• >0

DATA

.,/

IDO
r

'no H-

_T
Notes: 1. READY line must be at "0" prior to 052 °' ^2 *° auarantee entry into the WAIT state.

2. INTERRUPT line must not change levels within 200ns (max.) of falling edge of 4\.

TYPICAL D.C. CHARACTERISTICS

POWER SUPPLY CURRENT
VS. TEMPERATURE

OUTPUT SINKING CURRENT
VS. TEMPERATURE.

OUTPUT SOURCE CURRENT
VS. OUTPUT VOLTAGE

i.

i r

TYPICAL A.C. CHARACTERISTICS
DATA OUT DELAY VS.

OUTPUT LOAD CAPACITANCE

CAPACITANCE f = 1MHz; T. = 25°C; Unmeasured Pins Grounded

SYMBOL

C,N

Co.

Cou.

TEST

INPUT CAPACITANCE

DATA BUS I/O CAPACITANCE

OUTPUT CAPACITANCE

LIMIT (pF|
TYP.

5

6

6

MAX.

10

10

10

-213-



Four-Bit Bipolar Microprocessor Slice

DISTINCTIVE CHARACTERISTICS

• Two-address architecture —
Independent simultaneous access to two working
registers saves machine cycles.

• Eight-function ALU -
Performs addition, two subtraction operations, and
five logic functions on two source operands.

• Flexible data source selection —
ALU data is selected from five source ports for a
total of 203 source operand pairs for every ALU
function.

• Left/right shift independent of ALU -
Add and shift operations take only one cycle.

• Four status flags —
Carry, overflow, zero, and negative.

• Expandable -
Connect any number of Am2901 's together for longer
word lengths.

• Microprogrammable —
Three groups of three bits each for source operand,
ALU function, and destination control.

GENERAL DESCRIPTION

The four-bit bipolar microprocessor slice is designed as a
high-speed cascadable element intended for use in CPU's,
peripheral controllers, programmable microprocessors and
numerous other applications. The microinstruction flexibi-
lity of the Am2901 will allow efficient emulation of almost
any digital computing machine.

The device, as shown in the block diagram below, consists
of a 16-word by 4-bit two-port RAM, a high-speed ALU.
and the associated shifting, decoding and multiplexing
circuitry. The nine-bit microinstruction word is organized
into three groups of three bits each and selects the ALU
source operands, the ALU function, and the ALU destina-
tion register. The microprocessor is cascadable with full
look-ahead or with ripple carry, has three-state outputs, and
provides various status flag outputs from the ALU. Ad-
vanced low-power Schottky processing is used to fabricate
this 40-lead LSI chip.

TABLE OF CONTENTS

Block Diagram 3

Function Tables 4

Package Outlines 6

Connection Diagram 7

Pin Definitions '. 7
Screening 8

Order Codes 8

DC Characteristics ; 9

AC Characteristics 10
Switching Waveforms 11

Applications 13
Metallization Pattern 7

Burn-in Circuit 12
Microphotograph •. 18

MICROPROCESSOR SLICE BLOCK DIAGRAM

• 1 ' l«
DtSTihATIOM

CONTOQi

MICRO

S| 4 | 1

ALU

FUNCTION

Nl!«OC1lONC

> 1 ' I »

SOUKCC

VX Mi* out

-214-



ARCHITECTURE

A detailed block diagram of the bipolor microprogrammable
microprocessor structure is shown in Figure 1. The circuit is a
four-bit slice cascadable to any number of bits. Therefore, all
data paths within the circuit are four bits wide. The two key
Clements in the Figure 1 block diagram are the 16-word by 4-bit
2-port RAM and the high-speed ALL).

Data in any of the 16 words of the Random Access Memory
(RAM) can be read from the A-port of the RAM as controlled by
the 4-bit A address field input. Likewise, data in any of the J6
words of the RAM as defined by the 6 address field input can be
simultaneously read from the B-port of the RAM. The same code
can be applied to the A select field and B select field in which case
the identical file data will appear at both the RAM A-port and
B-port outputs simultaneously. • •

When enabled by the RAM write enable (RAM EN), new data is
always written into the file (word) defined by the B address field
of the RAM. The RAM data input field is driven by a 3-input
multiplexer. This configuration is used to shift the ALU output
data (F) if desired. This three-input multiplexer scheme allows the
data to be shifted up one bit position, shifted down one bit posi-
tion, or not shifted in either direction.

The RAM A-port data outputs and RAM B-port data outputs
drive separate 4-bit latches. These latches hold the RAM data
while the clock input is LOW. This eliminates any possible race
conditions that could occur while new data is being written into
the RAM.

The high-speed Arithmetic Logic Unit (ALU) can perform three
binary arithmetic and five logic operations on the two 4-bit input
words R and S. The R input field is driven from a 2-input multi-
plexer, while the S input field is driven from a 3-input multi-
plexer. Both multiplexers also have an inhibit capability; that is,
no data is passed. This is equivalent to a "zero" source operand.

Referring to Figure 1, the ALU R-input multiplexer has the RAM
A-port and the direct data inputs (D). connected as inputs. Like-
wise, the ALU S-input multiplexer has the RAM A-port, the
RAM B-port and the Q register connected as inputs.

This multiplexer scheme gives the capability of selecting various
pairs of the A. 8, D, Q and "0" inputs as source operands to the
ALU. These five inputs, when taken two at a time, result in ten
possible combinations of source operand pairs. These combin-
ations include AB, AD, AQ. AO, BD, BQ. BO, DQ, DO and 00.
It is apparent that AD, AQ and AO are somewhat redundant with
BD. BQ and BO in that if the A address and B address are the
same, the identical function results. Thus, there are only seven
completely non-redundant source operand pairs for the ALU.
The Am2901 microprocessor implements eight of these pairs.
The microinstruction inputs used to select the ALU source
operands are the Ig. I], and \% inputs. The definition of 10, IT,
and \2 for the eight source operand combinations are as shown in
Figure 2. Also shown is the octal code for each selection.

The two source operands not fully described as yet are the D in-
put and Q input. The D input is the four-bit wide direct data
field input. This port is used to insert all data into the working
registers inside the device. Likewise, this input can be used in the
ALU to modify any of the internal data files. The Q register is a
separate 4-bit file intended primarily for multiplication and
division routines but it can also be used as an accumulator or
holding register for some applications.

The ALU itself is a high-speed arithmetic/logic operator capable
of performing thice binary arithmetic and five logic functions.
The (3, (4. aiul Ig microinstruction inputs are used to select the

ALU function. The definition of these inputs ii shown in Figure 3.
The octal code is also shown for reference. The normal technique
for cascading the ALU of several devices is in a look-ahead carry
mode. Carry generate. G. and carry propagate, P. are outputs of
the device for use with a carry-look-ahead-generator such as the
Am2902 ('182). A carry-out. Cnt4. is also generated and is avail-
able as an output for use as the carry flag in a status register. Both
carry-in (Cn) and carry-out (Cn+4) are active HIGH.

The ALU has three other status-oriented outputs. These are F^.
f - 0, and overflow (OVR). The F% output is the most significant
(sign) bit of the ALU and can be used to determine positive or
negative results without enabling the three-state data outputs.
p3 is non-inverted with respect to the sign bit output Yg. The
F = 0 output is used for zero detect. It is an open-collector out-
put and can be wire OR'ed between microprocessor slices. F ° 0
is HIGH.when all F outputs are LOW. The overflow output (OVR)
is used to flag arithmetic operations that exceed the available
two's complement number range. The overflow output (OVR)
is HIGH when overflow exists. That is, when Cn+3 and Cn+4 are
not the same polarity.

The ALU data output is routed to several destinations. Jt can be a
data output of the device and it can also be stored in the RAM or
the Q register. Eight possible combinations of ALU destination
functions are available as defined by the Ig, \-j, and Ig micro-
instruction inputs. These combinations are shown in Figure 4.

The four-bit data output field (Y) features three-state output; and
can be directly bus organized. An output control (OE) is used to
enable the three-state outputs. When OE is HIGH, the Y outputs
are in the high-impedance state.

A two-input multiplexer is also used at the data output such that
either the A-port of the RAM or the ALU outputs (F) are selected
at the device Y outputs. This selection is controlled by the Ig, (•/.
and Ig microinstruction inputs. Refer to Figure 4 for the selected
output for each microinstruction code combination.

As was discussed previously, the RAM inputs are driven from a
three-input multiplexer. This allows the ALU outputs to be
entered non-shifted, shifted up one position (X2) or shifted down
one position (-r2). The shifter has two ports; one is labeled RAMg
and the other is labeled RAM3. Both of these ports consist of a
buffer-driver with a three-state output and an input to the multi-
plexer. Thus, in the shift up mode, the RAM3 buffer is enabled
and the RAMg multiplexer input is enabled. Likewise, in the shift
down mode, the RAM0 buffer and RAM3 input are enabled. In
the no-shift mode, both buffers are in the high-impedance state
and the multiplexer inputs are not selected. This shifter is con-
trolled from the I6, I? and lg microinstruction inputs as defined
in Figure 4.

Similarly, the Q register is driven from a 3-input multiplexer. In
the no-shift mode, the multiplexer enters the ALU data into the
Q register. In either the shift-up or shift-down mode, the multi-
plexer selects the Q register data appropriately shifted up or
down. The Q shifter also has two ports; one is labeled Q0 and the
other is Qj. The operation of these two ports is similar to the
RAM shifter and is also controlled from I6, I7, and Ig as shown
in Figure 4.

The clock input to the Am2901 controls the RAM, the Q register,
and the A and B data latches. When enabled, data is clocked into
the Q register on the LOW-to-HIGH transition of the clock. When
the clock input is HIGH, the A and B latches are open and will
pass whatever data is present at the RAM outputs. When the
clock input is LOW. the latches are closed and will retain the
last data entered. If the RAM-EN is enabled, new data will be
written into the RAM file (word) defined by the B address field
when the clock input is LOW.

-215-



o
5

1

§,

-216-



MICROCODE

'3

L
L
L
L
H

M

H

H

'l

L
L
H
H
L
L
H
H

'0

u
M

L
H

L
H

L
H

Ocul
CtxX

0

1

2
3
4
S
6
7

ALU SOURCE
OPERANDS

R

A
A
0
0
o
D
O
D

S

0
e
o
8 .
A
A
O
O

MICRO CODE

l l l
'B "4 '3

L L L
L L H
L H L
L H H
H L L
H L H
H H L
H H H

Ocul
Cod.

0
1
2
3

- 4
S
6
7

ALU
Function

R Plui S
S Minul R

R Minul S

R O R S
R AND S
RANDS
R EX On S
B EX.NOH S

Symbol

R » S
S-R
R - S
R V S
RA S
R A s
R V S
H V S

Figure 2. ALU Source Operand Control. Figure 3. ALU Function Control.

MICROCODE

'8 '7 's

L L L

L L H

L H L

L H H

H L L

H U H

H H L

H H H

Octll
Cod*

0

1

1

3

4

S

6

7

RAM
FUNCTION

Shift

X

X

NONE

NONE

DOWN

DOWN

UP

UP

Load

NONE

NONE

F-»B

F-»B

F/Z-.B

F/2-»B

2F-.B

2F->B

OR EG.
FUNCTION

Shift

NONE

X

X

X

DOWN

X

UP

X

lc*d

F-»Q

NONE

NONE

NONE

O/2-»O

NONE

2O -»O

NONE

V
OUTPUT

F

F

A

F

F

F

f

F

RAM
SHIFTER

HAM0

X

X

X

X

Fo

Fo

.NO

IN0

RAM]

X

X

X

X

IN3

IN3

f3

F3

0
SHIFTER

°0

X

X

X

X

°0

°0

INg

X

°3

X

X

X

X

INj

X

°3

°3

X» Don't care. Electrically, the shift pin U a TTL input internally connected to a three-state output which i$ in the high-
impedance state.

8= Register Addressed by B Inputs.
Up is toward MSB, Down is toward LSB.

Figure 4. ALU Destination Control.

X^O OCTAL

Cl.s s
L 3

0

1

2

3

4

5

6

7

\ ALU
\Source

ALU NX
FunctiolVN.

Cn-L
R Plui S
Cn-H

Cn=t-
S Minul R

Cn"H
Cn-L

R Minus S
Cn'H

R O R S

RANDS

RANDS

R EX-OR S

REX NORS

0

A. 0

A«Q

A»Q«1

O-A-I

O-A

A-O-I

A-O

A v Q

A AO

A AQ

A V O

A~vO

1

A.B

A»B

A»B»1

B-A-1

8-A

A-B-1

A-B

A V B

A A B

A A B

A V B

A-̂

2

0. Q

0

O«1

O-1

o
-O-l

-o

o

0

o

o

o

3

O.B

B

B»1

B-1

B

-B-1

-B

B

0

B

B

§

4

0. A

A

A»1

A-t

A

-A-1

-A

A

0

A

A

X

5

D. A

D«A

D«A«1

A-D-1

A-D

O-A-1

O-A

OVA .

D A A

D A A

O V A

•OV~A

6

D,Q

D.Q

D'Q+1

O-D-I

O-D

O-Q-1

D-O

DVO

DAQ

DAO

D V Q

OV5

7

D. O

D

Dtt

-D-l

-D

D-l

O

D

0

0

O

5

, . p|01; _ . Mmui: v • on. A - AND: v - EX-OR

FigureG. Source Operand and ALU Function Matrix.

-217-



SOURCE OPERANDS AND ALU FUNCTIONS

There arc eight source operand pairs available to the ALU as
selected by the In. I j. and (2 instruction inputs. The ALU can
perform eight (unctions; live logic and three arithmetic. The
'3. (4. and 1^ instruction inputs control this (unction selection.
The carry input, Cn. also af fects the ALU results when in the
arithmetic mode. The Cn input has no cf(ect in the logic mode.
When In through (5 and Cn are viewed together, the matrix o(

Figure 5 results. This matrix fully defines the ALU/sourcc
operand function for each state.

The ALU functions can also t>c examined on a "task" basis,
i.e., add, subtract. AND, OR, etc. In the arithmetic mode, the
carry will a f fect the function performed while in the logic
mode, the carry will have no bearing on the ALU output.
Figure G defines the various logic operations that the Am2901
can perform and Figure 7 shows the arithmetic functions of
the device. Both carry-in LOW (Cn = 0) and carry-in HIGH
(Cn = 1) are defined in these operations.

- -

• •

Octal

'543- '210

4 0
4 t
4 5
46

3 0
3 1
3 5
36

6 0
6 1
6 5
6 6

7 0
7 1
7 5
7 6

7 2
7 3
7 4

7 7

6 2
63
6 4
6 7

3 2
3 3
3 4
3 7

4 2
4 3
4 4
4 7

5 0
B 1
5 S
5 6

Group

AND

OR

EX-OR

EX-NOR

INVERT

PASS

PASS

"ZERO"

MASK

Function

AAO
AAB
DAA
DAQ

AVQ

AVB
DVA
DVQ

AVQ
AVB
DVA
DVQ

AVO
AVB
OVA
DVQ

g
B
A
5

Q

B
A
D

Q
B
A
D

0
0
0
0

AAQ

AAB

DAA
DAQ

- •

Figure C. ALU Logic Mode Functions.
(Cn Irrelevant)

Octal

'543. '210

0 0

0 1

0 5

0 6

0 2

0 3

0 4

0 7

1 2

1 3

1 4

2 7

2 2

2 3

2 4

1 7

1 0

1 1

1 5

1 6

2 0

2 1

2 S

2 6

Cn = 0 (Low)
Group

ADO

PASS

Decrement

1's Comp.

Subtract

(1'« Comp)

Function

A+Q

A+B

D+A

D+Q

Q

B

A

D

Q-1

B-1

A-1

D-1

-Q-1

-B-1

-A-1

-D-1

Q-A-

B-A-

A-D-

O-D-

A-Q-

A-B-

D-A-

D-O-

C n=1 (High)
Group

ADO plus

one

Increment

PASS

2's Comp.

(Negate)

Subtract

(2's Comp)

Function

A+Q+1

A+B+1

D+A+1

D+Q+1

Q+1

B+1

A+1

D+1

Q

B

A

D

-Q

-B

-A

-O

Q-A

B-A

A-D

Q-D

A-Q

A-B

D-A

D-Q

Figure 7. ALU Arithmetic Mode Functions.

-218-



LOGIC FUNCTIONS FOR G. P, Cn.»4. AND OVR

carry and overflow conditions when the Am2901 is in the add
or subtract mode. The table below indicates the logic equations
for these four signals for each of the eight ALU functions. The
R and S inputs are the two inputs selected accprding to
Figure 2.

Definition! (+ - OR)

The four signals G. P. Cn+4. and OVR are designed to indicate P0 " R0 +

PI « R! + S|

P2 - R2 + S2

P3 - R3 + S3

GO

G, -R,S,

G2 - R2S2

G3 - R3S3

C< = G3 + P3G2 + P3P2G| + P3P2P,G0

C3 = G2 + P2G, + P2P,G0 + P2P1P0Cn

I543

0

1

2

3

4

S

6

7

Function

R +S

S R

R - S

R V S

R A S

HAS

R V S

R V S

P

P3?2PlPo

G

G3 + P3G2 + PaPjGl * P3P2PlGo

Cn+4

C4

OVR

C3VC4

Some 3i R t S c uati n- ut -ub5 iftp f? 'f-

_

te_, or_llnddm.tij..i

LOW

LOW

LOW

P3PJP,P0

G3 + G2 + GI +GO

P3PjP,P0 + Cn

G3 + G2 + Gi +Go + Cn

s. but substitute Rj for Rj in defin

P3P2P,P0 + Cn

G3 <-G2 tG| + GO + Cn

G3 + 62 + G| + G0 G3+P3G2 + P3PzGl +P3P2PlGo
G3 + P3G2 + P3P2G,

+ P3P2P,P0(G0 + Cn)
See note

Figure 8.

PACKAGE OUTLINE

40-Pin Ceramic (Side Brazed) 42-Pin Flat Package

II 0JC =» 20°CAV 1

lio L (MIL-STO-883 t?5 f^ 5
1015 f M«thod 1012. C2) •— ~ 1

II. - ^1

-*-j t— SMOULDER WIDTH osst 015 c~-— — ~=7

~|.
too

»»"C«L <»OI>A>tlDII«»NISS SIAttOHIIOMl.>JOMA«.

1 înonnnnnnnnnnronnnnnl 1 1 \ ™*
^_lUlU!UnIiilinn!0,A,No .•-«-{- • =!=,,

il_P-L_J2

— a—

4 ^ SH

1 ^^ oil

on

T
'. i ;: _^---:-| i.*ky =J

«JC « 2S*C/W

Figur« 9.

-219-



METALLIZATION AND PAD LAYOUT

0,, Oj

DIE SIZE 0.167" x 0.198"

CONNECTION DIAGRAM
Top View

DIP

•td
vc

FLAT PACK CONNECTIONS
Top View

"*»oC
V«C

•oC
'

•oC
••C

sir
MAlf

t'C

D5
D' j

CKD

<.
D'4

a-'i
2'»D°o

•cC

D't

US

Not*: Pin 1 ii marked for orientation.
Nota: Both grounds (pins 12 and 27)

must ba connected.

Figure 10.

PIN DEFINITIONS

Ao-3

Bo-3

lo-s

RAM3

QO
RAM0

D0-3

The four address inputs to the register stack used to
select one register whose contents are displayed
through the A-port.

The four address inputs to the register stack used to
select one register whose contents are displayed
through the B-port and into which new data can be
written when the clock goes LOW.

The nine instruction control lines to the Am2901,
used to determine what data sources will be applied
to the ALL) (Ioi2>. what function the ALL) will
perform ((345), and what data is to be deposited in
the Q-register or the register stack

A shift line at the MSB of the Q register (03) and the
register stack (RAM3). Electrically these lines are
three-state outputs connected to TTL inputs internal
to the Am2901. When the destination code on 1573
indicates an up shift (octal 6 or 7) the three-state out-
puts are enabled and the MSB of the Q register is
available on the 03 pin and the MSB of the ALL) out-
put is available on the RAM3 pin. Otherwise, the
three-state outputs are OFF (high-impedance) and the
pins are electrically LS-TTL inputs. When the desti-
nation code calls for a down shift, the pins are used
as the data inputs to the MSB of the Q register
(octal 4) and RAM (octal 4 or 5).

Shift lines like 03 and RAM3, but at the LSB of the
Q-register and RAM. These pins are tied to the 03
and RAM3 pins of the adjacent device to transfer
data between devices for up and down shifts of the
Q register and ALU data.

Direct data inputs. A four-bit data field which may
be selected as one of the ALU data sources for
entering data into the Am 2901. Do is the LSB.

Y(j_3 The four data outputs of the Am2901. These are
three-state output lines. When enabled, they display
either the four outputs of the ALU or the data on the
A-port of the register stack, as determined by the
destination code \$jg.

OE Output Enable. _When OE is HIGH, the Y outputs
are OFF; when OE is LOW, the Y outputs are active
(HIGH or LOW).

P, G The carry generate and propagate outputs of the
Am2901's ALU. These signals are used with the
Am2902 for carry-lookahead. See Figure 8 for the
logic equations.

OVR Overflow. This pin is logically the Exclusive-OR of
the carry-in and carry-out of the MSB of the ALU.
At the most significant end of the word, this pin
indicates that the result of an arithmetic two's com-
plement operation has overflowed into the sign-bit.
See Figure 8 for logic equation.

F = 0 This is an open collector output which goes HIGH
(OFF) if the data on the four ALU outputs Fo_3
are all LOW. In positive logic, it indicates the result
of an ALU operation is zero.

Cn The carry-in to the Am2901's ALU.

Cn+4 The carry-out of the Am290Ts ALU. See Figure 8
for equations.

CP The clock to the Am2901. The Q register and register
stack outputs change on the clock LOW-to-HIGH
transition. The clock LOW time is internally the
write enable to the 1 6 x 4 RAM which comprises the
"master" latches of the register stack. While the clock
ft LOW. the "slave" latches on the RAM outputs are
closed, storing the data previously on the RAM
outputs. This allows synchronous master-slave opera-
tion of the register stack.

-220-



MAXIMUM RATINGS (Above which the; uictul life may be impaired)

Storage Temperature
Temperature (Ambient) Under Bias

Supply Voltage to Ground Potential

DC Voltage Applied to Outputs lor HIGH Output State
DC Input Voltage

-65"

-55"

-0.5

Cto+150"C

Cto <125°C
V to 46.3 V

-0.5 V to +VCC max.

-0.5
DC Output Current. Into Outputs

DC Input Current

P/N

Am2901PC.

Am2901DM

V to +5.5 V

30mA

-30 mA to +5.0 mA

OPERATING RANGE

Ambient Temperature Vcc
DC 0"C to +70°C 4.75 V to 5.25 V

. FM -55°Cto+125°C 4.50 V to 5.50 V

STANDARD SCREENING .
(Conforms to MIL-STD-883 for Class C Parts)

•Not applicable

MIL-STO-883
Step Method

Pre-Seal Visua nspection

Stabilisation Bake

Temperature Cycle

Centrifuge

Fine Leak

Gross Leak

Electrical Test

Subgroups 1 and 7

2010 B

Conditions

24-hour
1008 C ,50.c

1010 C -65'Cto+150°C
10 cycles

2001 B 10.000 G
1014 A 5x 10~8 3tm-cc/cm3

1014 C2 Fluorocarbon

-,<(,. See below for
50O4 definitions of subgroups

Level
Am2901PC. DC

100%

100%

100%

100% '

100% '

100% •

100%

Am2901DM. FM

100%

100%

100%

100%

100%

100%

100%

Insert Additional Screening here for Class B Parts

Group A Sample Tests
Subgroup 1

Subgroup 2

Subgroup 3

Subgroup 7

Subgroup 8

Subgroup 9

for Am2901PC

M See below for
55 definitions of subgroups

LTPD = 5

LTPD - 7

LTPD • 7

LTPD » 7

LTPD = 7

LTPD = 7

LTPD - 5

LTPD • 7

LTPD = 7

LTPD - 7

LTPD - 7

LTPD - 7

ADDITIONAL SCREENING FOR CLASS B PARTS

Step

Burn-In

Electrical Test
Subgroup 1
Subgroup 2
Subgroup 3
Subgroup 7
Subgroup 9

MIL-STO-883
Method

1015

5004

0 125°C
160 hours min.

Level

Am2901DMB, FMB

100%

100%
100%
100%
100%
100%

Return to Group A Tests in Standard Screening

ORDERING INFORMATION

Package Temperature Order
Type Range Number

Molded DIP 0°C to i70°C
Hermetic DIP 0°C to +70°C
Hermetic DIP -55°C to * 125°C

Hermetic Flat Pack -55°C to 4 125°C
Dice 0°C to f70°C

AM 2001 PC
AM2901DC
AM2901DM
AM2901FM
AM2901XC

GROUP A SUBGROUPS
(as defined in MIL-STD-883. method 5005)

Subgroup

1
2
3
7
8

9
10
11

Parameter Temperature

DC 25"C
DC Maximum rated tempo
DC Minimum rated temper
Function 25°C
Function Maximum and minimu

temperature
Switching 25*C
Switching Maximum Rateil Teme
Switching Minimum Rated Temp

rature
ature

Ti rated

perature
eraliire

-221-



ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)
(Group A, Subgroups 1. 2 and 3)

Parameters Description Test Conditions (NOI» i) Min.
TVP.

<NOK 21 Max. Units

VOH

'CEX

VOL

V,H

VIL

V|

'IL

IIH

ii

'OZH

'OZL

"OS

'cc

Output HIGH Voltage

Output Leakage Current
for F •> 0 Output

Output LOW Voltage

Input HIGH Level

Input LOW Level

Input Clamp Voltage

Input LOW Current

Input HIGH Current

Input HIGH Current

Off State (High Impedance)
Output Current

Output Short Circuit Current
(Note 3)

Power Supply Current

Vcc • MIN.
VIN -VIH or V|L

'OH " -1.6mA
Y0. Y t .Y 2 .Y 3

'OH • -1.0mA. Cn44

'OH • -800<iA.OVFt.P

'OH • -600uA. F3

IOH • -600wA
RAMQ 3, QQ. 3

'OH ' -1.6mA. G

VCC-MIN.. vOH -5.5V
VIN • V|H<>r V|U

VIN • VIH or VIL

IOL " 16mA

Yo.Y,.Y2.Y3.G

lOL " 10mA. Cn*4. F*0

IQL • 8.0mA. OVR.P

lOL "6.0mA. F3
RAM0 3. Q0 3

Guaranteed input logical HIGH
voltage for all inputs

Guaranteed input logical LOW Military
voltage for all inputs Commercial
VcC * MIN., IIN = —18mA

VCC - MAX.
VIM - o.5v

vcc-MAX.
v,N •= 2.7V

Clock. OE

AQ. AI . A2. A3

BQ. Bi.. 67.83

DQ. D). 02.03

'0. '1.'2.''6.'8

'3. '4. '5- '7
RAM0| 3. QO, 3 (Note 4)

Cn

Clock, OE

AQ, AI , A2, A3

BO. B,. 82.63

DQ. DI , 02. 03

'0. '1.'2- '6- '8

'3.'4. '5. '7
RAM0 3. Q0 3 (Note 41

Cn

VCG " MAX., VIN = 5.sv

Vcc " MAX.

VCC ' 5.75V
VQ • 0.5V

VCC • MAX.

YO. YI, V0 • 2-4V
V2. Y3 vo • 0.5V

V0 - 2.4V

RAM0 3, (Note 4)

°°- 3 VQ • 0.5V

(Note 4)

Yo.Yl.Y2.Y3 .G

Cn.4

ovn. p
f-3

RAMo. 3. OQ, 3 .

Military
Commercial

2.4

2.4

2.4

2.4

2.4

2.4

2.0

-15

-15

-15

-15

-15

IBS
185

250

0.5

0.5

0.5

0.5

0.7

0.8

-1.5

-0.36

-0.36

-0.36

-0.72

-0.36

-0.72

-0.8

-3.6 '

20

20

20

40

20

40

100

200

1.0

SO

-50

100

-800

-40

-40

-40

-40

-40

780

?80

Volts

,A

Volts

Volts

Volts

Volts

mA

HA

mA

-

mA

mA

Motet: 1. for condlnont thowrt ai MIN. or MAX.. u»« the appropriate veluo ipoclflod undo/ Floctrlcal Character Ullci tor the applicable devi
2. Typical linilit aid et V^£ - 6.0V. ?&"C ambient end nia»lniufn loadloy.
3. Not more tdoit one oniput ihould lie ihoried at a tlnto. Di»»olion of the tftort circuit teit iltoiild not excooU one tecond.
4. That* are three ttalo Ouiputi Intornally conriectett to Tl L Inpult. Input characteristic* era meatuied vwtth '573 In • tiate tuch

three ttate output it Of P.

-222-



GUARANTEED OPERATING CONDITIONS
OVER TEMPERATURE AND VOLTAGE
Tables I, II. and III below define the timing requirements of
the Am2901 in a system. The Am290I is guaranteed to
function correctly over the operating range when used within
the delay and set-up time constraints of these tables for the
appropriate device type. The tables are divided into three
types of parameters;clock characteristics, combinational delays
from inputs to outputs, and set-up and hold time requirements.
The latter table defines the time prior to the end of the cycle
(i.e., clock LOW-to-HIGH transition) that each input must be
stable to guarantee that the correct data is written into one of
the internal registers.

The performance of the Am2901 within the limits of these
tables is guaranteed by the testing defined as "Group A,
Subgroup 9" Electrical Testing. For a copy of the tests and
limits used for subgroup 9, contact Advanced Micro Devices'
Product Marketing.

TABLE I

CYCLE TIME AND CLOCK CHARACTERISTICS

TIME

Read-Modily-Wriie Cycle .
(time from selection of
A. B registers to end of
cycle)

Maximum Clock Frequency to
' Shift Q Register (50% duty

cycle)

Minimum Clock LOW Time

Minimum Clock HIGH Time

Minimum Clock Period

Am2001DC,PC

105ns

9.5MHz

30ns

30ns

105ns

Am29010M.FM

120ns

8.3MHz

30ns

30ns

120ns

TABLE II

MAXIMUM COMBINATIONAL PROPAGATION DELAYS (all in ns, C[_ < 15pF)

^v. To

From\°utput

Input ^s.

A, B

D (arithmetic mode)

D(I = X37) (Note 5)

Cn

'012

1345

'678

OE Enable/Disable
A bypassing
ALL) (1 = 2xx)

Clock Jf~ (Note 6)

Am2901DC. PC (0°C to +70°C; 5V ±5%)

Y

110

100

60

55

85

70

55

40/25

60

115

F3

85

70

50

35

65

55

-

-

-

85

Cn-M

80

70

-

30

65

60

-

-

-

100

G, P

80

70

-

-

65

60

-

'-

-

100

F = 0
RL=
470

110

100

60

50

80

70

-

-

-

110

OVR

75

60

-

40

65

60

-

-

-

95

Shift
Outputs

RAM0

RAM3

110

95

60

55

80

65

45

-

-

105

QO
03
-
-
-
-

-
45

-

-

60

Am2901DM, FM (-55°C to -H25°C; 5V ±10%)

Y

120

110

65

60

90

75

60

40/25

65

125

F3

95

80

55

40

70

60

-

-

-

95

Cn+4

90

75

-

30

70

65

-

-

-

110

G, P

90

75

-

-

70

65

-

-

-

110

F = 0
RL=
470

120

110

65

55

85

75

-

-

-

120

OVR

85

65

-

45

70

65

-

-

-

105

Shift
Outputs

RAM0

RAM3

120

105

65

60

85

70

50

-

-

115

QO
03

-

-

-

-

-

-

50

-

-

65

SET-UP AND HOLD TIMES (all in ns) (Note 1) TABLE III

From Input

A. B
Source

B Dest.

D (arithmetic mode)
D(l = X37)(Note5)

cn

'012

'345
!678
RAMQ. 3. QO. 3

Notes

2.4
3.5
2,4

4
1

Am2901DC,PC(0°C to -H70°C.5V ±5%)

Set-Up Time

105
tpwL + 30

tpwL+ 15

100

60

55

85

70

tpwL+ 15

30

Hold Time

0

0

0

0

0

0

0

0

0

Am2901 DM. FM (-55°C to -U25°C, 5V ±10%)

Set-Up Time

120
tpwL + 30

tpwL-H5

110

65
60

90

75

tpwL + 15

30

Hold Time

0

0

0

0

0

0

0

0

0

Notes: f. S*« Flffura 11 and 1?.
2. If the 8 eddrois Is used at * source operand, allow for the "A, B lourco" set-up time; If It Is used only for the destination address, use the

"B dott." tot-up time.
3. Whore two numbers eta shown, both must be met.
4. "IPWL" Is lhe clock LOW time.
5. DVO ii the fattest way 10 load lhe RAM from the D Inputs. This function Is obtained with I - 337.
6. Using O roQittoi at source operand in arithmetic mode. Clock is not normally in critical ipved path whon Q It not e source.

-223-



SET-UP AND HOLD TIMES (minimum cycles from each input) time prior to the clock until the hold time after the clock. The
set-up times allow sufficient time to perform the correct

Set-up and hold times are defined relative to the clock LOW-to- operation on the correct data so that the correct ALU data
HIGH edge. Inputs must be steady at all times from the set-up can be written into one of the registers.

-rL

>0—J

Figure 11. Minimum Cycle Times from Inputs. Numbers Shown are Minimum Data Stable
Times for Am2901 DC, in ns. See Table III for Detailed Information.

A, B. 0.1

6. P" OUTPUTS

Cn TO 2901
<Cn . . FROM Z902I

SHIFT OUTPUTS

Notai: 1. Thlt delay It the max. tpd of tho roaitter containing A. 0, D, and I. For the Am2918, uio 13ns.

2. lOnt for look-ehaad carry. Tor ripple carry over 16 blti uta 2 * (Cn -• Cn + 4). or COni.

3. 1 hit It I ha dalay aitocltitod with tho multiplexor between the thill outputi and shift Inputs on the Am 2901*. Sao

Flgura 19.

4. Not applicable for logic operations.

5. Clock flifng edge may occur here If add end ihifi do not occur on same cycle.

Figure 12. Switching Waveforms for 16-Oit System Assuming A, D, D and I are nil Driven from
Registers wild the sarno Propagation Delay. Clocked by the Am2901 Clock.

-224-



OHIVIN INPUT

Jt_

I =° 5.0pF. all fnputt.

J'"

CQ «= S.OpF, all outputs.

Figure 13. Am2901 Input/Output Current Interface Conditions.

M« Ct» CEt .„ »,

0 , 0 , 0 , 0 ,

'0 '< '1 t. °0 ">, O, 0, VCC C«0 A, ., ., •„ Y0 », Y, Y,

Vcc -5.0V

Froqugncy - 100KHf

Thli circuit conform, to MIL STO 883.

molhod 1015. condition D.

10 I K

Fiyure 14. Am2901 Burn-In Circuit.

-225-



MICROPROCESSING UNIT (MPU)
Tho MCG800 is a monolithic 8-bit microprocessor forming the

central control function for Motorola's M6800 family. Compatible
with TTL, the MCG800. as with all MG800 system parts, requires
only one +5.0-volt power supply, and no external TTL devices for
bus interface.

The MC6800 is capable of addressing 65K bytes of memory
with its 16-bit address lines. The 8-bit data bus ft bidirectional as
well as 3-state, making direct memory addressing and multiproces-
sing applications realizable.

• Eight-Bit Parallel Processing

• Bi-Directional Data Bus

• Sixteen-Bit Address Bus — 65K Bytes of Addressing

• 72 Instructions — Variable Length

• Seven Addressing Modes — Direct, Relative, Immediate, Indexed,
Extended, Implied and Accumulator

• Variable Length Stack

• Vectored Restart

• Maskable Interrupt Vector

• Separate Non-Maskable Interrupt — Internal Registers Saved
In Stack

• Six Internal Registers — Two Accumulators, Index Register,
Program Counter, Stack Pointer and Condition Code Register

• Direct Memory Addressing (DMA) and Multiple Processor
Capability

• Clock Rates as High as 1 MHz

• Simple Bus Interface Without TTL

• Halt and Single Instruction Execution Capability

(N-CHANNEL. SILICON-GATE I

MICROPROCESSOR

L SUFFIX
CERAMIC PACKAGE

CASE 715

NOTSHOWN: P SUFFIX
PLASTIC PACKAGE

CASE 711

M6800 MICROCOMPUTER FAMILY
BLOCK DIAGRAM

MC6600
Microprocessor

1

(

'

Read Only
Memory

Random
Access

Memory

Interface
Adaptor

Modern

MC6800 MICROPROCESSOR
BLOCK DIAGRAM .

Data Bus Address Bus

Input/

Output
Coiil'ul

(Ins Iliii

-226-



ELECTRICAL CHARACTERISTICS (Vcc - 5.0V > D%.VSS » 0, TA - 0 to 70°C unless othorwito noted.)

Characteristic

Input High Voltage Logic
01.02

Input Low Voltayo Logic
01.02

Clock Overshoot/Undershoot — Input High Level
— Input Low Level

Input Leakage Current
(Vin = 0 to 5.25 V. VCC = max) Logic*
(Vin = 0 to 5.25 V. VCC = 0.0 V) 01 ,02

Three-State (Off State) Input Current DO-D7
(V jn0.4 to 2.4 V,VCC = max) AO-A15.R/W

Output High Voltage

"Load = -205 ^Adc- VCC = min> DO-D7
"Load = -145>jAdc. VCC = min) AO-A15.R/W.VMA
(lLoad = -100 Mdc. VGC = mini BA

Output Low Voltage
<! Load = 1 -6 mAdc. Vcc = min)

Power Dissipation

Capacitance * 01,02
(Vin = 0, TA = 25°C.f = 1.0MHz) TSC

DBE
DO-D7 .
Logic Inputs

AO-A15.R/W.VMA

Frequency of Operation

Clock Timing (Figure 1)
Cycle Time

Clock Pulse Width
(Measured at Vcc - 0.3 V) 01

02

Total 01 and 02 Up Time

Rise and Fall Times 01,02
(Measured between V$s + 0.3 V and VQC - 0-3 V)

Delay Time or Clock Separation

(Measured at VQV = VSS + °-5 V)

Overshoot Duration

Symbol

VIH
VIHC
VIL.

VILC
VQS

<in

"TSI

VOH

. VOL

PD
cin

cout

f

lcyc

PW0H

tut

t0r. t0f

«d "

'OS

Min

VSS + 2.0
VGC - 0-3
VSS - 0.3
Vss-o.i

vcc - °-5
VSS - 0.5

-

~~

VSs + 2.4
VSS + 2.4
VSs + 2.4

"

-

80

-

0.1

1.0

430
450

940

5.0

0

0

Typ

_

—

1.0

~ (

2.0

'-

"

0.600

120

7.0
10
6.5

.

-

-

-

-

—

"

—

Max

vcc
VCC + Q.I

Vss + 0-8
VSS * 0.3

VCG + o-s
VSS + 0.5

2.5
100

10
100

. -

VSS + 0.4

1.2

160
15
10

12.5
8.5

12

1.0

10

4500
4500

-

50

9100

40.

Unit

Vdc

Vdc

Vdc

/jAdc

A*Adc

Vdc

Vdc

W •

pF

pF

MHz

JJS

ns

ns

ns

ns

ns

"Except IRQ and NMI, which require 3 kn pullup load resistors for wire-OR capability at optimum operation.
^Capacitances are periodically sampled rather than 100% tested.

FIGURE 1 - CLOCK TIMING WAVEFORM

01

fC

lut "

«0f

~ vos
j 'V—Vos '

\}

Overshoot

VQS

vIHCn

VDS

Undershoot

VOV '" VSS * 0-** V c Clock Ovmlap
point

-227-



MAXIMUM RATINGS

noting

Supply Voltage

Input Volt;if|(!

Operating Temperature Range

Storage Temperature liange

Thermal Resistance

Symbol

VCG
Vjn

TA
Tstg

0JA

Voluo

-0.3 to +7.0

-0.3 to + 7.0

0 to +70

-55 to +150

70

Unit

Vdc

Vdc
. oc

°C

°C/W

This device contains circuitry to protect the
inputs against damage due to high suitic volt-
ages or electric fields; however, it is advised that
normal precautions tic taken to avoid applica-
tion ol any voltage higher than maximum rated
voltages to this high impedance circuit.

READ/WRITE TIMING Figures 2 and 3. f = 1.0 MHz. Load Circuit of Figure G.

Characteristic

Address Delay

Peripheral Read Access Time

'ace = lut ~ 'tAD + 'DSR>

Data Setup Time (Read)

Input Data Hold Time

Output Data Hold Time

Address Hold Time (Address, R/W, VMA)

Enable High Time for DBE Input

Data Delay Time (Write)

Processor Controls*

Processor Control Setup Time

Processor Control Rise and Fall Time

Bus Available Delay

Three State Enable

Three State Delay

Data Bus Enable Down Time During 01 Up Time (Figure 3)

Data Bus Enable Delay (Figure 3)

Data Bus Enable Rise and Fall Times (Figure 3)

Symbol

«AD

«acc

1DSR

»H

tH

tAH

»EH

IDDW

tPCS

tPCr. tPCf
1BA

1TSE

*TSD

«DBE
1DBED

'DBEr. «DBEf

Min

-

—

100

10

10

50

450

-

200

-
—
-
-

150
300

—

Typ

220

—

-

-

25

75

-

165

-
—
—
—
—

-
—

—

Max

300

540

-

-

-

-

-

225

-

100
300

40
700
-
-

25

Unit

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns
ns

ns
ns

ns

ns

ns

'Additional information is given in Figures 12 through 16 of the Family Characteristics — see pages 17 through 20.

FIGURE 2 - READ DATA FROM MEMOHY OR PERIPHERALS

Start of Cycle

R/W

Address 2.4 V~
From MPU 0.4 V —

VMA

Data
From Memory
or Peripheral?

t\\\\\\\Vip"»N°'vali"

-228-



.FIGURE 3 - WHITE IN MEMOHY OR PERIPHERALS

Start of Cvcla

/ VCG -
- 0.3 V

«r

0.3 V

02

R/W

0.4 V-

Address 2.4 V —
From MPU O.4 V_

2.4 V-

VMA

tAD

tAD

tAD

Data
From MPU"

DBE = 02

\

0.3 V

— 'AH

• 'DDW-

2.4 V——

0.4 '
Data Valid

2.0V

'EH
•(DBE)'

fe>

'H

.0.8V

DBE 4= 02

Data Not Valid

FIGURE 4 - TYPICAL DATA BUS OUTPUT DELAY
versus CAPACITIVE LOADING

OUU

500

_. 400
C

UJ

P 300

S 200

100

0

1
- IfJH =-205

I O L = 1 - 6 i
vcc

»"

-— •"

1
^A max (? 2

nA max @ 0.'
V

-— "

4 V
V

^-—
— "^

^_ '

C|. incluili'i iiiay c:i|):tcinince

) 100 2UO 3UU 400 iUO CO

FIGURE 5 - TYPICAL READ/WRITE, VMA. AND
ADDRESS OUTPUT DELAY versus CAPACITIVE LOADING

OUU

500

| 400
UJ

E

£ 300

UJ

0 200

100

0

1 1
. lgH~-M5/jA max C3 2.
'|QL = 1.6 mA max @ 0.'
' Vcc = 5.0V
- T A = 2 5 ' C

^—L—
,̂

4 V
V

^-— '

.

""""~

Aihl

^^

. — —

ESS. V

L —

HAV

Cl i

.1A

icluiltrs Mciy r.ii|i.)rii.ntrR

( IUU 2IIU Ml) 4UU WO CU

C|..lOADCAPACITANCt<|iF) L. IOAD CAPACITAHCt IpFI

-229-



FIGURE 6 - DUS TIMING TEST LOAD

c; - «
•* <

4.75 V

| 0L" 2.2 k

>

^ \
\

or Equiv.

T or Equiv.

C " 13O pF for DO-D7
«= 90 pF for AQ-A15, R/W. and VMA
•= 30 pF for BA

R = 11.7 kS7 for OO-D7
= 16.5 kH for AO-A15, Ft/W. and VMA
= 24 kn for BA

C
. 

S
U

P
P

LY
 C

U
R

R
E

N
T 

(m
A

) 
IQ

C
. 

S
U

P
P

LY
 C

U
R

R
E

N
T 

(m
A

J

Z
>
 K

J
 

^
 
O

l
' 

.
U

>
i

f
c
 
(
J

l 
C

l
3
 

O
 c

s
 

<
r

>
 

O
O

O
O

FIGURE 7 - VARIATIONS WITH FREQUENCY

Ol Only Cycln -= 0? Only Cycln -.

V|
V(

1

.c =
:c =
A =

5.UV
0 V
5.0V
25"C

1 200 400 600 , BOO 1000 1200

f. OPERATING FREQUENCY (kHz)

FIGURE 8 - VARIATIONS WITH TEMPERATURE

^

^
\>

~""~

0' Duly Cycle ^02 Duly Cycle

-̂ -, ^^
~~— .

-~-_

vac
vcc

= 50'i
= b.OV -
= 0V
= 5.0V
= 500kHz-

X 0 20 40 60 80 100 120
A. AMBIENT TEMPERATURE (°C)

EXPANDED BLOCK DIAGRAM

A15 A14 A13 At2 All AID AS AS
25 24 23 22 20 19 18 17

A7 A6 AS A4 A3 A2 A1 AO
16 15 14 13 12 11 10 9

t t t M t t t t M M t-M

Clock, 01 3-

Clock. 02 37-

F(¥set 40 -

6 -Non-MastTable Tnierrupr

Haft 2

(n t er r u"pt~Rcqu~est" 4 -

Three-Stale Control 39-

Oata Bus Enable 36 -

Bus Available 7 •

Valid Memory Address & -

Read/Writs 34

Output
Buffers

Instruction
Decode

and
Control

Onto
Butt«r

V C C -
TTTTTTT

'76 yt 70 W 30
O / UO OS O4 OH

Output
Buffers

Program
Counter

Stack
Pointer

Index
Register

Accumulator
A

Accumulator
O

ConcMiun
Cotto

TT

-230-



MPU SIGNAL DESCRIPTION

. Proper operation of tin: MPU requires that certain con-
trol and timing signals be provided to accomplish specific
(unctions and that other signal lines be monitored to
determine the state of the processor.

Clocks Phase Ono and Phase Two (01, 02) — Two pins
are used for a two-phase non-overlapping clock' that runs
at the VCG voltage level.

Address Bus (AO-A15) — Sixteen pins are used for the
address bus. The outputs are three-state bus drivers capa-
ble of driving one standard TTL load and 130 pF. When
the output is turned off, it is essentially an open circuit.
This permits the MPU to be used in DMA applications.

Data Bus (DO-D7) — Eight pins are used for the data
bus. It is bi-directional, transferring data to and from the
memory and peripheral devices. It also has three-state
output buffers capable of driving one standard TTL load
and 130 pF.

Halt — When this input is in the low state, all activity
in the machine will be halted. This input is level sensitive.
In the halt mode, the machine will stop at the end of an
instruction, Bus Available will be at a one level, Valid
Memory Address will be at a zero, and all other three-state
lines will be in the three-state mode.

Transition of the Halt line must not occur during the
last 250 ns of phase one. To insure single instruction
operation, the Halt line must go high for one Clock cycle.

Three-State Control (TSC) - This input causes all of the
address lines and the Read/Write line to go into the off or
high impedance state. This state will occur 700 ns after
TSC= 2.0 V.The Valid Memory Address and Bus Available
signals will be forced low. The data bus is not affected by
TSC and has its own enable (Data Bus Enable). In DMA
applications, the Three-State Control line should be
brought high on the leading edge of the Phase One Clock.
The 01 clock must be held in the high state and the 02
in the low state for this function to operate properly. The
address bus will then be available for other devices to
directly address memory. Since the MPU is a dynamic
device, it can be held in this state for only 4.5 us or
destruction of data will occur in the MPU.

Read/Write (R/W) - This TTL compatible output
signals the peripherals and memory devices whether the
MPU is in a Read (high) or Write (low) state. The normal
standby state of this signal is Read (high). Three-State
Control going high will turn'Read/Write to the off (high
impedance) state. Also, when the processor is halted, it

will be in the off state. This output is capable of driving
one standard TTL load and 90 pF.

Valid Memory Address (VMA) -• This output indicates
to peripheral devices that there is a valid address on the
address bus. In normal operation, this signal should be
utilised for enabling peripheral interfaces such as the
PIA and ACIA. This signal is not three-state. One standard
TTL load and 90 pF may be directly driven by this active
high signal.

Data Bus Enable (DBE) — This input is the three-state
control signal for the MPU data bus and will enable the
bus drivers when in the high state. This input is'TTL com-
patible; however in normal operation, it would be driven by
the phase two clock. During an MPU read cycle, the data
bus drivers will be disabled internally. When it is desired
that another device control the data bus such as in Direct
Memory Access (DMA) applications, DBE should be-
held low.

Bus Available (BA) — The Bus Available signal will
normally be in the low state; when activated, it will go to
the high state indicating that the microprocessor has
stopped and that the address bus is available. This will
occur if the Halt line is in the low state or the processor
is in the WAIT state as a result of the execution of a
WAIT instruction. At such time, all three-state output
drivers will go to their off state and other outputs to their
normally inactive level. The processor is removed from the
WAIT state by the occurrence of a maskable (mask bit
I = 0) or nonmaskable interrupt. This output is capable
of driving one standard TTL load and 30 pF.

Interrupt Request (IRQ) — This level sensitive input
requests that an interrupt sequence be generated within
the machine. The processor will wait until it completes the
current instruction that is being executed before it recog-
nizes the request. At that time, if the interrupt mask bit
in the Condition Code Register is not set, the machine will
begin an interrupt sequence. The Index Register, Program
Counter, Accumulators, and Condition Code Register are
stored away on the stack. Next the MPU will respond to
the interrupt request by setting the interrupt mask bit high
so that no further interrupts may occur. At the end of the
cycle, a 16-bit address will be loaded that points to a
vectoring address which is located in memory locations
FFF8 and FFF9. An address loaded at these locations
causes, the MPU to branch to an interrupt routine
in memory.

The Halt line must be in the high state for interrupts to
be serviced. Interrupts will be latched internally while
Halt is low.

The IRQ has a high impedance pullup device internal
to the chip; however a 3 kfi external resistor to VCG
should be used for wire-OR and optimum control
of interrupts.

Reset - This input is used to reset and start the MPU
from a power down condition, resulting from a power
failure or an initial start-up of the processor. If a high level
is detected on the input, this will signal the MPU to be-
gin the restart sequence. This will start execution of a
routine to initialize the processor from its reset condition.
All the higher order address lines will be forced high. For
the restart, the last two (FFFE, FFFF) locations in
memory will be used to load the program that is addressed
by the program counter. During the restart routine, the
interrupt mask hit is set and must be reset before the MPU
can be interrupted by

-231-



Figure 9 shows the initiali/.ation of the microprocessor
after restart. Reset must be held low (or at least eight
clock periods after Vcc'rcacncs 4.75 volts. If Reset goes
high prior to the leading edge of 02, on the next 01
the first restart memory vector address (FFFE) will
appear on the address lines. This location should contain
the higher order eight bits to be stored into the program
counter. Following, the next address FFFF should contain
the lower order eight bits to be stored into the pro-
gram counter.

Non-Maskable Interrupt (NMI) — A low-going edge on
this input requests that a non-mask-interrupt sequence be
generated within the processor. As with the Interrupt
Request signal, the processor will complete the current
instruction that is being executed before it recognizes the
NMI signal. The interrupt mask bit in the Condition Code
Register has no effect on NMI.

The Index Register, Program Counter, Accumulators,
and Condition Code Register arc stored away on the
stack. At the end of the cycle, a IG-bit address will be
loaded that points to a vectoring address which is located
in memory1 locations FFFC and FFFD. An address loaded
at these locations causes the MPU to branch to a non-
maskable interrupt routine in memory.

NMI has a high impedance pullup resistor internal to
the chip; however a 3 kS2 external resistor to VQC should
be used for wire-OR and optimum control of interrupts.

Inputs IRQ and NMI are hardware interrupt lines that
are sampled during 02 and will start the interrupt
routine on the 01 following the completion of an
instruction. .

Figure 10 is a flow chart describing the major decision
paths and interrupt vectors of the microprocessor. Table
1 gives the memory map for interrupt vectors.

FfGURE 9 - INITIALIZATION OF MPU AFTER RESTART
4.75 V

Reset

VMA

— Hr— First Instruction Loaded into MPU

Address Out
« FFFE

Address Out
- FFFF

.Address Out = Contents of
FFFE + FFFF

•

TABLE 1 - MEMORY MAP FOR INTERRUPT VECTORS

Vector

MS LS

FFFE FFFF

FFFC FFFO

FFFA FFFO

FFF8 FFFO

Description

Restart

Non-mdskablu Interrupt

Software Interrupt

Inturrupt Roquust

-232-



FIGURE 10 - MPU PLOW CHART

MPU REGISTERS

The MPU has three 16-bit registers and three 8-bit
registers available for use by the programmer (Figure 11).

Program Counter — The program counter is a two byte
(16-bi ts) register that points to the current program
address.

Stack Pointer — The stack pointer is a two byte register
th;it contains the address of the next available location
in an external pusJi-down/pop-up stack. This stack is
noimally a random access Read/Write memory that may

have any location (address) that is convenient. In those
applications that require storage of information in the
stack when power is lost, the stack must be non-volatile.

Index Register — The index register is a two byte register
that is used to store data or a sixteen bit memory address
for the Indexed mode of memory addressing.

Accumulators — The MPU contains two 8-bit accumu-
lators that are usiicl to hold operands and results from an
arithmetic logic unit (ALU).

-233-



FIGURE 11 - PROGRAMMING MODEL OF THE MICROPROCESSING UNIT

15

15

15

ACCA

ACCB

IX

PC

SP

Accumulator A

Accumulator B

Index flegister

Program Counter

Stack Pointer

Condition Codes
Register

•- Carry (From Bit 7)rry I

Overflow

Hero

Negative

Interrupt

Half Carry (From Bit 3)

FIGURE 12 - SAVING THE STATUS OF THE MICROPROCESSOR IN THE STACK

SP = Stack Pointer

CC = Condition Codes (Also called the Processor Status Byte)

ACCB = Accumulator B

IXH = Index Register, Higher Order 8 Bits

(XL = Index Register, Lower Order 8 Bits

PCL - Program Counter Lower Order 8 Bits m "

m -1

in

m » 1

m « 2

sr

Ootora

m-9

m - 8

m - 7

m - G

m- 5

m - 4

m - 3

m - 2

m - 1

1' rrH 1

x m * 2
n
fi

I

__^

CC

ACCB

ACCA

IXH

IXL

PCH

^
After

Jf

(0
*->

CO

-234-



Condition Code Hcgistor — The condition code register
indicates tin; results of an Arithmetic Logic Unit operation:
Negative (N), Zuro (Z), Overflow (V), Carry from bit 7
(C), and half carry from l>it 3 (H). These bits of the
Condition Code Register are used as testable conditions
(or the conditional branch instructions. Bit 4 is the
interrupt mask bit (I). The unused bits of the Condition
Code Register (bG and b7) are ones.

Figure 12 shows the order of saving the microprocessor
status within the stack.

MPU INSTRUCTION SET
The MC6800 has a set of 72 different instructions.

Included are binary and decimal arithmetic, logical, shift,
rotate, load, store, conditional or unconditional branch,
interrupt and stack manipulation instructions (Tables 2
thru 6).

MPU ADDRESSING MODES

The MC6800 eight-bit microprocessing unit has seven
address modes that can be used by a programmer, with the
addressing mode a function of both the type of instruction
and the coding within the instruction. A summary of the
addressing modes for a particular instruction can be found
in Table 7 along with the associated instruction execution
time that is given in machine cycles. With a clock fre-
quency of 1 MHz, these times would be microseconds.

Accumulator (ACCX) Addressing — In accumulator
only addressing, either.accumulator A or accumulator B is
specified. These are one-byte instructions.

Immediate Addressing — In immediate addressing, the
operand is contained in the second byte of the instruction
except LDSand LDX which have the operand in the second
and third bytes of the instruction. The MPU addresses

this location when it fetches the immediate instruction
for execution. These are two or three-byte instructions.

Direct Addressing — In direct addressing, the address of
the operand is contained in the second byte of the
instruction. Direct addressing allows the user to directly
address the lowest 25G bytes in the machine i.e., locations
zero through 255. Enhanced execution times arc achieved
by storing data in these locations. In most configurations,
it should be a random access memory. These are two-byte
instructions.

Extended Addressing — In extended addressing, the
address contained in the second byte of the instruction is
used as the higher eight-bits of the address of the operand.
The third byte of the instruction is used as the lower
eight-bits of the address for the operand. This is an abso-
lute address in memory. These are three-byte instructions.

Indexed Addressing — In indexed addressing, the address
contained in the second byte of the instruction is added
to the index register's lowest eight bits in the MPU. The
carry is then added to the higher order eight bits of the
index register. This result is then used to address memory.
The modified address is held in a temporary address regis-
ter so there is no change to the index register. These are
two-byte instructions.

Implied Addressing — In the implied addressing mode
the instruction gives the address (i.e., stack pointer, index
register, etc.). These are one-byte instructions.

Relative Addressing— In relative addressing, the address
contained in the second byte of the instruction is added
to the program counter's lowest eight bits plus two. The
carry or borrow is then added to the high eight bits. This
allows the user to address data within a range of -125 to
+129 bytes of the present instruction. These are two-
byte instructions.

TABLE 2 - MICROPROCESSOR INSTRUCTION SET - ALPHABETIC SEQUENCE

ABA Add Accumulators
ADC Add with Carry
ADD Add
AND Logical And
ASL Arithmetic Shift Left
ASR Arithmetic Shift Right

BCC Branch if Carry Clear
BCS Branch if Carry Set
BEO Branch if Equal to Zero
BGE Branch if Greater or Equal Zero
BGT Branch if Greater than Zero
BHI Branch if Higher
BIT Bit Test
BLE . Branch if Less or Equal
BLS ' Branch if Lower or Same
BLT Branch if Less than Zero
BMI Branch if Minus
BNE Branch if Not Equal to Zero
BPL Branch if Plus
BRA Branch Always
BSR Branch to Subroutine
BVC Branch if Overflow Clear
BVS Branch if Overflow Set

CBA Compare Accumulators
CLC Cloar Carry
CLI Cloar Interrupt Mask

CLR
CLV
CMP
COM
CPX

DAA
DEC
DBS
DEX

EOR

INC
INS
INX

JMP
JSR

LDA
LOS
LDX
LSR

NEG
NOP

ORA

PSH

Clear
Clear Overflow
Compare
Complement
Compare Index Register

Decimal Adjust
Decrement
Decrement Stack Pointer
Decrement Index Register

Exclusive OR

Increment
Increment Stack Pointer
Increment Index Register

Jump
Jump to Subroutine

Load Accumulator
Load Stack Pointer
Load Index Register
Logical Shift Right

Negate
No Operation

Inclusive OR Accumulator

Push Data

PUL

ROL
ROR
RTI
RTS

SBA
SBC
SEC
SEI
SEV
STA
STS
STX
SUB
SWI

TAB
TAP
TBA
TPA
TST
TSX
TXS

WAI

Pull Data

Rotate Left
Rotate Right
Return from Interrupt
Return from Subroutine

Subtract Accumulators
Subtract with Carry
Set Carry
Set Interrupt Mask
Set Overflow
Store Accumulator
Store Stack Register
Store Index Register
Subtract
Software Interrupt

Transfer Accumulators
Transfer Accumulators to Condition Code Reg.
Transfer Accumulators
Transfer Condition Code Reg. to Accumulator
Tost

Transfer Stack Pointer to Index Register
Transfer Index Register to Slack Pointer

Wait for Interrupt

-235-



TABLE 3 - ACCUMULATOR AND MEMORY INSTRUCTIONS

Aormf SSINC, Moots BOOUANMRHMMEllCOPfHATION CONO. COOF RCG.

U C t N O

OP

OPERATIONS MNEMONIC

Add ADDA

ADUB

Add Acniltn ABA

Add iviih Ory AOCA

ADCB

And ANOA

ANBU

6.1 l.il BltA

BITB

Clear CIR
CIRA

CIRB

Compare CMPA

CMPB
Compare Acmllri CBA

Complement. I'l COM

COMA

COMB

Complement, 2's NEC

INfuate) NEGA

NEGB

Decimal Adjust. A OAA

Decrement DEC

DECA

OECB

Exclusive OR EORA

EORB

Increment INC

IfJCA

INCB

load Acmlu IDAA

IOAB

Or. Inclusive ORAA

ORAB

Push Data PSHA
PSHB

pill ftrULo

ROIA

ROLB

Rotate Right ROR

RORA

RORB

Shift Left. Arithmetic ASL

ASIA

ASIB

Shift Right. Arithmetic ASR

ASRA

ASR8

Shift Right, logic ISR

ISRA

LSRB

Store Acmllr. STAA

STAB

Subtract SUBA

SUBB

Subtract Acnilus. SBA

Subtr. with Drry S6CA

SBCB

Transfn Acniltn TAB

T8A

Tut. Zero 01 Minus TS1

TSTA

TS1B

IMMI n

OP - i

38 2 2

CB 2 2

80 2 2

C9 2 2

84 2 2

C4 2 2

85 2 2

C5 2 2

81 2 2

Cl 1 2

88 2 2

C8 ? 1

86 2 2

C6 2 2

8A 2 2

CA 2 2

80 2 2

CO 2 2

82 2 2

C2 2 2

omrr.T

OP - =

3H 3 2

06 3 )

n 3 2
tn 3 2
94 3 2

04 3 2

95 3 2

05 3 2

91 3 2

01 3 2

98 3 2

08 3 2

96 3 2

D6 3 2

9A 3 2

DA 3 2

97 4 2

07 4 2

90 3 2

00 3 2

92 3 2

02 3 2

INDEX

OP - .-••

AB 5 7

E8 5 2

A3 5 2

E9 5 7

A4 5 2

E4 5 2

A5 . 5 2

£5 5 2

6F 7 2

Al 5 2

El S 2

63 7 2

60 7 2

6A 7 2

A3 5 2

E8 5 2

6C 7 2

A6 5 2

E6 5 2

AA 5 2

EA 5 2

69 7 7

66 7 2

68 7 2

6/ 7 2

M 7 2

A7 6 2

E7 6 2

AO 5 2

£ 0 5 2

A2 5 7

E2 5 7

60 7 2

EXINU

OP - -

8B 4 3

IB 4 3

B9 4 3

f9 4 3

B4 4 3

E« 4 3

B5 4 3

F5 4 3

n 6 3

81 4 3

Fl 4 3

73 6 3

70 6 3

7A 6 3

B8 4 3

F8 4 3

7C 6 3

B6 4 3

F6 4 3

BA 4 3

FA 4' 3

79 6 3

76 6 3

78 6 3

77 6 3

74 6 3

67 5 3

F7 5 3

BO 4 3

FO 4 3

62 4 3

F2 4 3

70 6 3

IMP1IFD

OP - -

IB 2 1

4F. 2 1

5F 2 t

II 1 \

43 2 1

S3 2 t

40 2 1

50 2 1

19 2 1

4A 2 1

5A 2 '1

4C 2 1

5C 2 1

IK A IJo *» 1

37 4 1

32 4 1
TT 6. 1JJ *» I

49 2 1
59 2 1

46 2 1
56 2 1.

48 2 1
58 7 1

47 2 1

57 2 1

44 2 1
54 2 1

10 2 1

16 2 1
17 2 1

40 2 1
50 2 1

(All ir|iitii librh

trier to contents)

A • M -A

B • M • B
A • B -A

A • M • C -A
8 • M «C -6 !

A • M - A

B - M - B ,

A • M
8 • M
00 -M
00 -A
00 -B
A - M
B - M

A - B

H-'M

X - A

B-8

00 - M - M
00 - A - A
00- B-B
Converts Binary Add. ol BCD Characters

into BCD Format

M -1 -M

A - 1 -A

B -1-B

A©M -• A

B0M-B
M«1-M

A» 1 -A

B» 1 -B

M-A

M-B

A « M - A

8 « M - B

A -* MSP. SP - 1 — SP

B ~* MSP, SP — 1 ~* SP

SP + 1 ~* SP, Mjp ~* A

SP + 1 ~* SP, Mgp~* 8

''1

BJ C b7 — bO

"1

eJ c b7 — toA! a ,,,,-,,,
B) C b7 bO

M] | | _

6 j 67 bO Cs o M..T..M
BJ b? bO C

A - M

B-M

A - M - A

B - M - B

A - B " A

A - M- C-A
B - M - C • B
A - B

B -A
M - 00
A -00
B -00

S

H

1

t

1

I

I

•

•
•

•

•
•

•

•

•

•

•
»

•
»

•

•

•

•

*
•

•

*
•

*
•

•

•

•

•

0

•

•

•

•

•

•

•

•

•

*

•

•

•

•

•

•

•

•

*

•

•

•

•

•

•

•

H

4

1

•

•
•

•
•

•

•

•

•

•

*
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

0

•
•

•

•

•

•

•

•
•
•
•

*
•

•

•

•

•
•

•

*
•

•

•

•

•

•

i

)
N

I

:
!
H

R

R

I

!
1
1
1
!
I
I
j

!
1
i
1
:
!
t
!

1

t

!

!

1
t
t

I

!
;

!

I

t

R

R

R

I
i

I
t

N

7

/

S

S

S
I
j

!

!

t

t

1

1

:
i

j
!

t

!

I

!

!

i

!

1

!
j

j

1
t
t

1

1

i
!

I

!

!

I

1

I

I

1

1

1

1

i

1

1

1

2

1

V

1

I

I

1
:
R

R

»
n
R

R

R

t

!

1

R
R

R

®

(D
®

4

4

4

R

R

®

®

®
R

R

R

R

ffTj•SJ

©
®
®
®
®
®
®
®
®
®
®
©
®
®
R

R

t

!
1
I
1
R

R

H

R
R

V

0

C

I

1

1

I

!

•
•

•
•

n
R

R
!

I

!

S

S

S

®
©
®
0)

•

*
•
•

•
•

•
•

•

•
•

•

f

t

I

\
t

!
!
1

I

I
I
I
•
•
:
!
j

I
I
•
•
K

R

H

C

Ourialillil Cudf lll'.jitî ui

Numb" ol MPU tyilrs.

Niimun ul Pioqrjii, [|,|,,.

Adlhmrtii hut.

AfllllllMMII Mlllll\.

Ua:,lrj,i Mil}.

Q
M

0
00

Boui»»lnil..sivrOR.
Boulrjn l.iliinveUH.

Coiiipli-iiirnl ul M.

Iramfrr lulu.

Bit /no.

BvJr - /cry.

MSP Cunlriiti ul i kit In lir Suit Pin

Nutr AKuniiiljtiii ddiliruinijiminY mill in lions *i • mtliiili-d ill Ilir luliiiiin lot IMPl II U jildic

CONDITION COOI SYMBOLS:

H Hall carry liom bit 3.

I Inlnrupt null

N Nr,|4li.f liiijn bill

I /rio (llylr)

V Ovrfflo*. 7'Muinjjlrilirnl

C CjiryliiiiuLiI /

R Nrirt Alwjyl

S Sri Al«<v>

1 lilt and irl it line, ilraffd ultirrwiia

• Nul Allnlrd

-236-



TABLE 4 - INDEX REGISTER AND STACK MANIPULATION INSTRUCTIONS

CONO.COOE REG.

POINTER OPERATIONS MNEMONIC

Compare Index Reg

Load Index Reg
Load Slack Pnir

Store Index Reg
Store Stack Pntr

Stack Pntr --Indx Reg

CPX

LOX
LOS
STX
STS

TSX

lit

Of

8C

CE
8E

AMI

3

3
3

0

.1

3

3
3

DIRECT

OP

9C

OE
9E
DF
9F

-

4

4
4
5
5

2

2
2
2
2

. If

OP

AC

EE
AE
E.F
AF

JOE

C

6
6

.7
7

<

2

2
2
2
2

E

OP

UC

FE
BE
FF
8F

XTN

5

5
5
6
6

)

3

3
3
3
3

IMPLIED

OP

30

-

4 1

BOOLEAN/ARITHMETIC OPERATION

XH - M. XL •- IM < 11'

M-XH.IM » i) -XL
M-SP||. CM * 1) -SPL
XH-M. XL -MM * 11
SPH"M,$PL -MM + 1)

SP « 1 - X

5

II

•

.

•

•

•

4

1

•

.

•

•

•

3

N

©

©

®

(?)

(3)

2

Z

;

i

r
V

<D

R

R

R

R

0

C

•

.
•
•
•

TABLE 5 - JUMP AND BRANCH INSTRUCTIONS
CONO. CODE REG.

OPERATIONS MNEMONIC

Bianch Always
Branch If Carry Clear

Branch If Carry Set

Branch If = Zero
Bianch II > Zero

Branch If > Zero
Branch II Higher

Branch II <Zero

Bianch II Lower Or Same

Bianch If <Zeio

Branch II Minus
Branch II Not Equal Zero
Bianch If Overflow Cleai

Branch If Overflow Set
Bianch II Plus

. Bianch To Subroutine
Jump

Jump To Subioutine
No Operation

Return From Inteirupt

Return Fiom Subroutine

Sollwjre Inteitupl
XVjit for Interrupt •

BRA

BCC

BCS

BEQ

BGE

BGT

BHI

BLE

BLS

BLT

BMI

BNE

BVC

BVS

BPL

BSR
JMP

JSR

NOP

RTI

RTS

SVVI
WAI

RELATIVE

OP

20

24

25

27

2C

2E

22

2F

23

20

2B

26

28

29

2A

80

-

4

4

4

4

4'

4

4

4

4

4

4

4

4

4

4

8

=

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

INDEX

OP

6E

AO

~

4

8

=

2

2

EXTND

OP

7E

BD

~

3

9

=

3

3

IMPLIED

OP

01

3B

39

3F

3E

~

2
to

12
9

=

1

1
1

1

BRANCH TEST

None

C= 1

Z= 1

N© V = 0

Z + (N © V) = 0

Z t (N © V) = 1

C + Z= 1

N = 0

/ See Special Operations

Advances Prog. Cnti. Only

\ See Special Operations

5

H

•

4

1

©

3

N

2

Z

• •

1

V

•

0

C

•WAI puts Addiess Bus, H AV. J"d Ujta Bus in Hit! three state mode while VMA is held low.

-237-



SPECIAL OPERATIONS

JSR. JUMP TO SUI1HOUTINC:

PC Main ('im)ram

n

nt I

n « 2

Stock

INOXO •=>

EXTNO

BSR BRANCH TO SUBROUTINE:

INDXD

RTS. RETURN FROM SUBROUTINE:

PC Subroutine

39 = RTS <==>
RTI. RETURN FROM INTERRUPT:

pr Interrupt Program

S | 38= RTI

PJC
INX » K

Siilirnntinr

hi Sulir. Instf.

Subroutine

1st Stibr. Instf.

(S Formed From SH an

P£
n » 2 ± K

Subroutine

n + 2 Formed From [n + 2) ^ and In-* 2) t_

EXTENDED

Sp Stack

Sf

SP +

- SP + :

S£
SP

S P + 1

SP + 2

SP + 3
SP-M

SP + 5
SP + 6

SP + 7

NH

NL

Stack

Condition Code

Acmltr B

Acmltr A

ndex Register (XH)

Index Register (XL)

NH

NL

1st Subr Instr.

Main Program

PC
n

Main Program

Next Ma n Instr.

TABLE 6 - CONDITION CODE REGISTER MANIPULATION INSTRUCTIONS

COND. CODE REG.

OPERATIONS MNEMONIC

Clear Carry
Clear Interrupt Mask

Clear Overflow
Set Carry

Scl Interrupt Mask
Set Overflow
Acmll! A - C C R
CCII" Acmllr A

CLC
CLI
CLV
SEC
SEI
SFV
TAP
TPA

IMPLIED

OP

DC
OE
OA
00
OF
01)
OG
01

-

2
2
2
2
2
2
2
2

BOOLEAN OPERATION

0 - C
0-1
0-V

1 -1
1-V

A - C C R
ccn -A

S

H

•

•

•
•

4

1

R
•

S
•

• ! •

3

N

•
•

•

•
(T

2

Z

•
•

•

•
fi

1

V

•

R

•

S

0

c
R

•
•

S
•
•

•••uy
.,.|.|.

CONDITION COOL REGISTER N01 ES: Illn set if li".l is true and cluarril ulhnwiw)

1 in. i vi iru Ri-siiit iouiiunoir>
2 (Uil Cl li-sr H,-M,!J . OUUUDUUO?

3 Illit C) Ir'.t tlruiiul vjlnf ill incut sii|iiiliuiil HC1) Clurjrl.T ipeMrt Hun nine?
INnt llcjlnl if inrviuii'Jv M'l ) '

4 (Uil V) Inl 0|iridiii1 IIIU(]llllllU|iiiiii lur.i'1 ...... n7

s (iiiivi IITSI Uiinaiiii oiiinn IIHUI iiioMuiiiiii?
6 . (flit VI Irsl. S4!l ri|uj| lu iruili til NWC jlHT thill luioriuntd.

?
8

9
10

(Oil N) Tell: Sign bit ul inusniumliijnl IMS) byli- I'

(Bit V) Tfsl: 2's rumpli'ini'iu uvrrlluw lium •.nlilijtliun of MSuvtr

(Uil N) l ll.-iull Ins Itun /nn? ( M i l l!> I)

(All) . I cud Cuuililmn Cinlir Kinjisli-r IIIHU Suik ISre S|II>I.M! U|n'ijliiins)

(Bit 0 Set wtw:n intitilii|it III.LIII\ II |iii'viuii-.lv \rl, J Nun M.i\kjtilf<
InlPifupt is teijiiiittl in f^it (hit wjtl sule.

12 (All) Set actniding lu Ilie lonlrnls of ALiiiinuljim A.

-238-



TAOLE 7 - INSTRUCTION ADDRESSING MODES AND ASSOCIATED EXECUTION TIMES
(Tirnus in M.ir.hino Cycles)

t I
I

ADA
ADC
ADD
AND
ASL
ASR
BCC
DCS
BEA
BGE
BGT
BHI
BIT
BlE
BLS
BLT
BMI
BNE
BPL
BRA
BSR
BVC
BVS
CBA
CLC
CLI
CLR
CLV
CMP
COM
CPX
DAA
DEC
DES
DEX
EOR

i
O

3
O

X

X

X

X

X

X

x 1 8 In i l
. 2 3 4
. 2 3 4
. 2 3 4
2 . . 6
2 . . 6

• 2 3 4

2 . . 6

. 2 3 4
2 . . 6
. 3 4 5

2 • . 6

• 2 3 4

TJ

5
5
5
7
7

5

7

5
7
6

7

5

•a
»
a

.

2

2

•
.!

J•j
a

INC
INS
INX
JMP
JSR
IDA
IDS
LDX
LSR
NEC
NOP
.ORA
PSH
PUL
ROL
ROH
RTI
RTS
SBA
SBC
SEC
SEI
SEV
STA
STS
SIX
SUB
SWI
TAB
TAP
TBA
TPA
TST
TSX
TSX
WAI

* x i

1 3 1
2 •

.

.
x 2

3
3

2 .
2 .

x . 2

2 .
2 .

x . 2

x • .
. .

• •
x . 2

2 .

C
b
O
.

.

.

3
4
4
.
.

3

,
.

3

4
5
s
3

.

M
UJ

6

3
9
4
5
S
6
6

4

6
6

4

5
6
6
4

6

p
«
»
»
p
u
|

7

4
e
5
6
6
7
7

S

7
7

5

6
7
7
5

7

Im
p
lw

d

.

4
4

•
.
.
,
.
.
.

2
.
4
4
.
.

10
5
2
,
2
2
2
.
.
.
.
12
2
2
2
2
.
4
4
9

NOTE: Interrupt time is 12 cycles from the end of
the instruction being executed, except following
a WAI instruction. Then it is 4 cycles.

PIN ASSIGNMENT

1 C

2 C

3 C

4 C

5 C

e q
7 C

8 C

9 C

10 C

11 C

12 C

13 t

14 t

15 C

16 [

17 t

18 C

19 C

20 C

L.

O

Halt

01

IRQ

VMA

NMI

BA

VCG
AO

A1

A2

A3

A4

AS

A6

A7

AS

A3

A10

All

Reset

TSC

N.C.

02

DBE

N.C.

R/W

DO

D1

02

O3

D4

DO

06

D7

A15

A14

A13

A12

Voe
*J J

} 38

J 35

3 32

] 29

) 28

1

' i i j i i-i i i i i i i i i J/llQin
SEATING PLANE-/ I '

• G—I I-

DIM

A
B
C
0
F
G
II
J
K
L
M

"N

MILLIMETERS
MIN

50.29
U.8G

2.54

0.38

0.7C

MAX

51.31
15.62
4.19

0.53

1.40

2.54 BSC
0.7C

0.20

2.54

J4JJO

~0".lT"

1.78

0.33

4.19

15.37
"iO«

1.S7~

INCHES
MIN

1.980
0.585
0.100
0.015
0.030

MAX

2.020
0.615
0.1G5
0.021
0.055

0.100 USC
0.030
0.008
0.100

'O.S/b

l'.02T

0.0/0
0.013
0.165
O.GOD
" 10°

O.OGO

PACKAGE DIMENSIONS
CASE 715-02
(CERAMIC)

See Page 165 for
Plastic Package dimensions.

NOTE:
1. LEADS. TRUE POSITIONED WITHIN

0.25 mm (0.010) OIA (AT SEATING
PLANE). AT MAX. MAT!
CONDITION.

-239-



SUMMARY OF CYCLE BY CYCLE OPERATION

Table 8 provides n detailed description of the informa-
tion present on the Address Bus, Data Bus, Valid Memory
Address line (VMA), and the Read/Write line (R/W) dur-
ing each cycle for each instruction.

This information is useful in comparing actual with ex-
pected results during debug of both software and hard-

ware as the control program is executed. The information
is categorized in groups according to Addressing Mode and
Number of Cycles per instruction. (In general, instructions
with the same Addressing Mode and Number of Cycles
execute in the same manner; exceptions are indicated in
the table.)

TABLE 8 - OPERATION SUMMARY

Address Mode
and Instructions Cycles

Cycle VMA
Line Address Bus'

R/W
Line Data Bus

IMMEDIATE

ADC EOR
ADD LDA
AND ORA
BIT SBC
CMP SUB

CPX
LDS
LDX

2

3

1

2

1

2

3

1

1

1

1

1

Op Code Address

Op Code Address + 1

Op Code Address

Op Code Address + 1

Op Code Address + 2

1

1

1

1

1

Op Code

Operand Data

Op Code

Operand Data (High Order Byte)

Operand Data (Low Order Byte)

DIRECT

ADC EOR
ADD LDA
AND ORA
BIT SBC
CMP SUB

CPX
LDS
LDX

STA

STS
STX

3

4

4

5

1

2

3

1

2

3

4

1

2

3

4

1

2

3

4

5

1

1

1

1

1

1

1

1

1

0

1

1

1

0

1

1

Op Code Address

Op Code Address + 1

Address of Operand

Op Code Address

Op Code Address + 1

Address of Operand

Operand Address + 1

Op Code Address

Op Code Address + 1

Destination Address

Destination Address

Op Code Address

Op Code Address + 1

Address of Operand

Address of Operand

Address of Operand + 1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

0

0

Op Code

Address of Operand

Operand Data

Op Code

Address of Operand

Operand Data (High Order Byte)

Operand Data (Low Order Byte)

Op Code

Destination Address

Irrelevant Data (Note 1)

Data from Accumulator

Op Code

Address of Operand

Irrelevant Data (Note 1 )

Register Data (High Order Byte)

Register Data (Low Order Byte)
INDEXED

JMP

ADC EOR
ADD LDA
AND ORA
BIT SBC
CMP SUB

CPX
LDS
LDX

%

4

5

C

1

2

3

4

1

2

3

4

5

1

2

3

4

5

G

1

1

0

0

1
1
0

0

1
1
1
0

0

1
1

Op Code Address

Op Code Address + 1

Index Register

Index Register Plus Offset (w/o Carry)

Op Code Address

Op Code Address •*• 1

Index Register

Index Register Plus Offset (w/o Carry)

Index Register Plus Of fset

Op Code Address

Op Code Address + 1

Index Register

Index Register Plus Offsut (w/o Carry)

Index Register Plus Of fset

Index Register Plus Of fset * 1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Op Code

Offset

Irrelevant Data (Note 1)

Irrelevant Data (Note 1)

Op Code

Offset

Irrelevant Data (Note 1)

Irrelevant Data (Note 1)

Operand Data

Op Code

Offset

Irrelevant Data (Noto 1)

Irrelevant Data (Note 1)

Operand Data (High Order Byte)

Opurand Diita (Low Order Oytc)

-240-



TABLE 8 - OPERATION SUMMAHY (Continuucl)

Address Modo
and Instructions Cyclos

Qyclo
II

VMA
Lino Addrost But

H/W
Lino Data GUI

INDEXED (Continue.!)

STA

ASL LSR
ASR NEC
CLR HOL
COM ROR
DEC TST
INC

STS
STX

JSR

6.

7

7

8

1

2

3

4

5

6

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

8

1

1

0

0

0

1
1
1
0

0

1
0

1/0
(Note

3)

1

1

0

0

0

1

1

1

1

0

1

1

0

0

0

Op Codo Address

Op Codo Address + 1

Index Register

Index Register Plus Offset (w/o Carry)

Index Register Plus Offset

Index Register Plus Offset

Op Codo Address

Op Code Address + 1

Index Register

Index Register Plus Offset (w/o Carry)

Index Register Plus Offset

Index^Register Plus Offset

Index Register Plus Offset

Op Code Address

Op Code Address + 1

Index Register

Index Register Plus Offset (w/o Carry)

Index Register Plus Offset

Index Register Plus Offset

Index Register Plus Offset + 1

Op Code Address v

Op Code Address + 1

Index Register

Stack Pointer

Stack Pointer — 1

Stack Pointer — 2

Index Register

Index Register Plus Offset (w/o Carry)

1

1

1

1

1

0

1

1

1

1

1

1

0

1
1
1
1
1
0

0

1
1
1
0

0

1
1
1

Op Codo

Offset

Irrelevant Data (Note 1)

Irrelevant Data (Noto 1)

Irrelevant Data (Note 1)

Operand Data

Op Code

Offset

Irrelevant Data (Note 1)

Irrelevant Data (Note 1)

Curren; Operand Data

Irrelevant Data (Note 1)

New Operand Data (Note 3)

Op Code

Offset

Irrelevant Data (Note 1)

Irrelevant Data (Note 1)

Irrelevant Data (Note 1)

Operand Data (High Order Byte)

Operand Data (Low Order Byte)

Op Code

Offset

Irrelevant Data (Note 1)

Return Address (Low Order Byte)

Return Address (High Order Byte)

Irrelevant Data (Note 1)

Irrelevant Data (Note 1)

Irrelevant Data (Note 1)
EXTENDED

JMP

ADC EOR
ADD LDA
AND ORA
BIT SBC
CMP SUB

CPX
LDS
LDX

STA A
STA B

ASL LSR
ASR NEC
CLR ROL
COM ROR
DEC TST
INC

3

4

5

5

1

2

3

1

2

3

4

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

C

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1
1
1
1
1
0

1/0
(Note

3)

Op Code Address

Op Code Address + 1

Op Code Address + 2

Op Code Address

Op Code Address + 1

Op Code Address + 2

Address of Operand

Op Code Address

Op Code Address + 1

Op Code Address + 2

Address of Operand

Address of Operand + 1

Op Code Address

Op Code Address + 1

Op Code Address -I- 2

Operand Destination Address

Operond Destination Address

Op Code Address

Op Code Address + 1

Op Code Address + 2

Address of Operand

Address of Operand

Address of Operand

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0

1
1
1
1
1
0

Op Code

Jump Address (High Order Byte)

Jump Address (Low Order Byte)

Op Code

Address of Operand (High Order Byte)

Address of Operand (Low Order Byte)

Operand Data

Op Code

Address of Operand (High Order Byte)

Address of Operand (Low Order Byte)

Operand Data (High Order Byte)

Operand Data (Low Order Byte)

Op Code

Destination Address (High Order Byte)

Destination Address (Low Order Byte)

Irrelevant Data (Note 11

Data from Accumulator

Op Code

Address of Operand (High Order Byte)

Address ol Operand (Low Order Byte)

Current Operand Data

Irrelevant Data (Noto 1)

Nqw Operand Data (Noto 3)

-241-



TABLE 8 - OPERATION SUMMAHY (Conlinuuil)

Address Mode
and Instructions Cycles

Cycle
II

VMA
Lino Address Bui

R/W
Lino Data Bus

EXTENDED (Continued)

STS
STX

JSR

6

9

1

2

3

4

5

6

1

2

3

4

5

6

7

8

9

1

1

1

0

1

1

1

1

1

1

1

1

0

0

1

Op Code Address

Op Code Address + 1

Op Code Address + 2

Address of Operand

Address of Operand

Address of Operand + 1

Op Code Address

Op Code Address + 1

Op Code Address + 2

Subroutine Starting Address

Stack Pointer

Stack Pointer - 1

Stack Pointer — 2

Op Code Address + 2

Op Code Address + 2

1

1

1

1

0

0

1

1

1

1

0

0

1
1
1

Op Code

Address of Operand (High Order Byte)

Address of Operand (Low Order Byte)

Irrelevant Data (Note 1)

Operand Data (High Order Byte)

Operand Data (Low Order Byte)

Op Code

Address of Subroutine (High Order Byte)

Address of Subroutine (Low Order Byte)

Op Code of Next Instruction

Return Address (Low Order Byte)

Return Address (High Order Byte)

Irrelevant Data (Note 1 )

Irrelevant Data (Note 1 )

Address of Subroutine (Low Order Byte)

INHERENT

ABA DAA SEC
ASL DEC SEI
ASR INC SEV
CBA LSR TAB
CLC NEC TAP
CLI NOP TEA
CLR ROL TPA
CLV ROR TST
COM SBA

DES
DEX
INS
INX

PSJH

PUL

TSX

TXS

RTS

2

4

4

4

4

4

5

1

2

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

5

1

1

1

1

0

0

1
1
1
0

1
1
0

1
1
1
0

0

1
1
0

0

1
1
0

1

1

Op Code Address

Op Code Address + 1

Op Code Address

Op Code Address +• 1

Previous Register Contents

New Register Contents

Op Code Address

Op Code Address + 1

Stack Pointer , •

Stack Pointer - 1

Op Code Address

Op Code Address + 1

Stack Pointer

Stack Pointer + 1

Op Code Address

Op Code Address + 1

Stack Pointer

New Index Register

Op Code Address

Op Code Address + 1

Index Register

New Stack Pointer

Op Code Address

Op Code Address + 1

Stack Pointer

Stack Pointer + 1

Stack Pointer + 2

1
1

1
1 .
1
1
1
1.
0

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1

Op Code

Op Code of Next Instruction

Op Code

Op Code of Next Instruction

Irrelevant Data (Note 1)

Irrelevant Data (Note 1)

Op Code

Op Code of Next Instruction

Accumulator Data

Accumulator Data

Op Code

Op Code of Next Instruction

Irrelevant Data (Note 1)

Operand Data from Stack

Op Code

Op Code-of Next Instruction

Irrelevant Data (Note 1)

Irrelevant Data (Note 1)

Op Code

Op Code of Next Instruction

Irrelevant Data

Irrelevant Data

Op Code

Irrelevant Data (Note 2)

Irrelevant Data (Note 1)

Address of Next Instruction (High
Order Byte)

Address of Next Instruction (Low
Order Byte)

-242-



TAULE B - OPERATION SUMMARY (Continued)

Address Mode
mill Instructions Cycles

Cycle
II

VMA
Lino Addross Dus

H/W
Line Data Out

INHERENT (Coiitinuod)

WAI

RTI

SWI

9

10

12

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

11

12

1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

Op Code Addross

Op Codo Address + 1

Stack Pointer

Stack Pointer— 1

Stack Pointer - 2

Stack Pointer - 3

Stack Pointer — 4

Stack Pointer — 5

Stack Pointer — 6 (Note 4)

Op Code Address

Op Code Address + 1

Stack Pointer

Stack Pointer + 1
•

Stack Pointer + 2

Stack Pointer + 3

Stack Pointer + 4

Stack Pointer + 5

Stack Pointer + 6

Stack Pointer + 7

Op Code Address

Op Code Address + 1

Stack Pointer

Stack Pointer — 1

Stack Pointer - 2

Stack Pointer - 3

Stack Pointer — 4

Stack Pointer — 5

Stack Pointer — 6

Stack Pointer — 7

Vector Address FFFA (Hex)

Vector Address FFFB (Hex)

1

1

0

0

0

0

0

0

1
1
1
1
1

1
1
1

1

1

1

1
1
0

0

0

0

0

0

0

1
1

1

Op Coda

Op Code ol Next Instruction

Return Address (Low Order Byte)

Return Address (High Order Byte)

Index Register (Low Order Byto)

Index Register (High Order Byte)

Contents of Accumulator A

Contents of Accumulator B

Contents of Cond. Code Register

Op Code

Irrelevant Data (Note 2)

Irrelevant Data (Note 1)

Contents of Cond. Code Register from
Stack

Contents of Accumulator B from Stack

Contents of Accumulator A from Stack

Index Register from Stack (High Order
Byte)

Index Register from Stack (Low Order
Byte)

Next Instruction Address from Stack
(High Order Byte)

Next Instruction Address from Stack
(Low Order Byte)

Op Code

Irrelevant Data (Note 1)

Return Address (Low Order Byte)

Return Address (High Order Byte)

Index Register (Low Order Byte)

Index Register (High Order Byte)

Contents of Accumulator A

Contents of Accumulator B

Contents of Cond. Code Register

Irrelevant Data (Note 1)

Address of Subroutine (High Order
Byte)

Address of Subroutine (Low Order
Byte)

RELATIVE

BCC BHI BNE
BCS BLE BPL
BEQ BLS BRA
BGE BLT BVC
BGT BMI BVS

8SR

4

8

1

2

3

4

1

2

3

4

5

6

7

8

1

1

0

0

1

1

0

1
1
0

0

0

Op Code Address

Op Code Address -f 1

Op Code Address + 2

Branch Address

Op Code Address

Op Code Address + 1

Return Address of Main Program

Stack Pointer

Stack Pointer — 1

Stack Pointer - 2

Return Address of Main Program

Subroutine Address

1

1

1

1

1

1

1

0

0

1

1

1

Op Code

Branch Offset

Irrelevant Data (Note 1)

Irrelevant Data (Note 1)

Op Code

Branch Offset

Irrelevant Data (Note 1)

Return Address (Low Order Byte)

Return Address (High Order Byto)

Irrelevant Data (Noto 1)

Irrelevant Data (Noto 1)

Irrelevant Data (Noto 1)

Note 1. If device which is uclilrus&etl during this cycli; uses VMA. then the DjU Bus will go to the hi<)h impedance three-state condition.
Depi:ndin<i on bus capacitance, data from the previous cycle may be retained on the Data Bus.

Noto 2. D;il;i is ignored liy the Mf'U.
Note 3. For TS I". VMA 0 and Opi:r;inil data does not change.
Note 4. While lh<: MI'U is wailing lor the intorrupt, Bus Available will >jo high indicating the following states of Iho control lines: VMA it

low: Address (Jus. H/W. and Uutj Uus ure ull in the high imptnljncu slate.

-243-



ICE
Splid State
Division

Microprocessor Products

Preliminary Data*

CDP1802D
CDP1802CD

40 Lead Dual-In-
Line Ceramic
Package (D)

CDP1802D

CDP1802CO

COSMAC Microprocessor
Features:
• Static silicon-gate CMOS circuitry—

C04000 scries compatible
• Instruction fetch-execute time of 2.5/3.75 (it

Compatible with CDP1801 software
Full military-temperature range (—55 to -H25°C)
High noise immunity, wide operating-voltage range
Single voltage supply
No minimum clock frequency "
Low power
TTL compatible
Single-phase clock; optional on-chip
crystal-controlled oscillator
Simple control of reset, start, and pause
8-bit parallel organization with bidirectional data bus

The RCA-CDP1802 is an LSI COS/MOS
8-bit register-oriented central-processing unit
(CPU) designed for use as a general-purpose
Computing or control element in a wide
range of stored-program systems or products.

It has the same basic COSMAC architecture
as the CDP1801 microprocessor (see Fig. 5).
but has an expanded instruction set. including
a more powerful set of branch and ALU
instructions, and enhanced hardware and
performance features. The CDP1802 incor-
porates both the register and control chips
of the COP1801 on a single chip in a 40-lead
hermetic dual-in-line ceramic package.

The CDP1802D is functionally identical to
the CDP1802CD. The CDP1802D has a
recommended operating voltage range of
3-12 volts; the CDP1802CO. a recommended
operating voltage range of 4-6 volts.

Any combination of standard RAM and ROM
Memory addressing up to 65.536 bytes
Flexible programmed I/O mode
Program interrupt mode
On-chip DMA
Four I/O flag inputs directly tested by
branch instructions
Programmable output port
91 easy-to-use instructions
16x16 matrix of registers for use as
multiple program counters, data
pointers, or data registers

CUB

.JJ

.Cjtf̂ HJ^* 'Our

Wti PUS "

1
8
8
I
o
S:

Fig. 1-Typicol CDP1802 microprocessor xystem.

Printed in USA/2-76
Information fur nuhedby RCA \\ believed
lo be accurate and re'mb'e. However, no

The cfanct it nu.« b«.ng <fet.gn*d lo mcluvon m out reiponnbilil v '» »t turned by RCA for ill
itindMd 1,0*1 of commciciaiiy •*•.!* t>i« ptoducn. uie. nor lor *ny m(t mgementi of p>iicn(i Tfademaik(i) Reg.
ft* Cwr(«n< tnlonn»tton on th« tuiut ol irt.t pfoygm. Or Olher nghll ol third partiet which may . . f.

mull from .ti u»e. No hcmw ,t granted M*fca(>l »*g""«
by imp(ic*l*on or ofherwiw under <ny
p«l*nl Of p«(«n| right, of HCA.

• Th« fi«hm«n*'v Dm •*• initndcd to* flwicUnct pui-
pout m tv»lu«linQ lh« dovicc lot tqwipmvnf dtlign.

ptoM coniMI vow' HCA S*ln Ollic*.

-244-



Preliminary CDP1802D, CDP1802CD.

/0. 3—Typical instruction time vs. memory
system access time.

ARCHITECTURE
The COSMAC block diagram is shown in
Fig. 5. The principal feature of this system is
a register array (R) consisting of sixteen 16-
bit scratchpad registers. Individual registers
in the array (R) are designated (selected) by a
4-bit binary code from one of the 4-bit
registers labeled N, P, and X. The contents of
any register can be directed to any one of the
following three paths:

1. the external memory (multiplexed,
higher-order byte first, on to 8 memory
address lines);

2. the D register (either of the two bytes
can be gated to 0);

3. the increment/decrement circuit where
it is increased or decreased by one and
stored back in the selected 16-bit
register.

The three paths, depending on the nature of
the instruction, may operate independently
or in various combinations in the same
machine cycle.

With two exceptions, COSMAC instructions
consist of two 8-clock-pulse machine cycles.
The first cycle is the fetch cycle, and the
second—and third, if necessary—are execute
cycles. During the fetch cycle the four bits
in the P designator select one of the 16 regis-
ters R(P) as the current program counter. The
selected register R(P) contains the address of
the memory location from which the instruc-
tion is to be fetched. When the instruction is
read out from the memory, the higher-order
4 bits of the instruction byte are loaded into
the I register and the lower-order 4 bits into
the N.register. The content of the program
counter is automatically incremented by one
so that R(P) is now "pointing" to the next
byte in the memory.

The X designator selects one of the 16 regis-
ters R(X) to "point" to the memory for an
operand (or daia) in certain ALL) or I/O
operations.

The N designator can perform the following
five functions depending on the type of
instruction fetched:

1. designate one of the 16 registers in R
to be acted upon during register opera-
tions;

Fig. 4— Typical total power dissipation n.
clock input frequency.

2. indicate to the I/O devices a command
code or device-selection code for peri-
pherals;

3. indicate the specific operation to be
executed during the ALL) instructions,
types of tests to be performed during
the Branch instructions, or the specific
operation required in a class of mis-
cellaneous instructions (70-73 and 78-
7B);

4. indicate the value to be loaded into P
to designate a new register to be used
as the program counter R(P);

5. indicate the value to be loaded into X
to designate a new register to be used
as data pointer R(X).

The registers in R can be assigned by a pro-
grammer in three different ways: as program
counters, as data pointers, or as scratchpad
locations (data registers) to hold two bytes
of data.

Program Counter!

Any register can be the main program
counter; the address of the selected register
is held in the P designator. Other registers in
R can be used as subroutine program counters.
By a single instruction the contents of the P
register can be changed to effect a "call" to a
subroutine. When interrupts are being ser-
viced, register R(1) is used as the program
counter for the interrupt servicing routine. At
all other times the register designated as pro-
gram counter is at the discretion of the user.

Data Pointeri
The registers in R may be used as data
pointers to indicate a' location in memory.
The register designated by X (i.e., R(X)1
points to memory for the following instruc-
tions (see Table I):

1. ALL) operations FO F5. F7, 74, 75. 77;
2. output instructions 61 through 67;
3. input instructions 69 through 6F;
4. certain miscellaneous instructions—70-

73. 78.
The register designated by N (i.e.-. R(N)I
points to memory for the "load D from
memory" instructions ON and 4N and the
"Store D" instruction 6N. The register
designated by P (i.e.. the program counter) it

- 4 -

-245-



. Preliminary CDP1802D. CDP1802CD

r 4MWI« UNtl

MAO I M»; I •"< 1 ».«"f' '(,) (?) (rt" (F) M (J A Oil M M M (O (5)iniitfi if T t u f T ( i il

used as the data pointer for ALU instructions
F8-FD, FF, 7C. 70, 7F. During these instruc-
tion executions the operation is referred to
as "data immediate".

Another important use of R as a data pointer
supports the built-in Direct-Memory-Access
(DMA) function. When a DMA-ln or DMA-
Out request is received, one machine cycle is
"stolen". This operation occurs at the end of
the execute machine cycle in the current
instruction. Register R(0) is always used as
the data pointer during the DMA operation.
The data is read from (DMA-Out) or written
into (DMA-ln) the memory location pointed
to by the R(0) register. At the end of the trans-
fer, R(0) is incremented by one so that the
processor is ready to act upon the next DMA
byte transfer request. This feature in the
COSMAC architecture saves a substantial
amount of logic when fast exchanges of
blocks of data are required, such as with
magnetic discs or during CRT-display-refresh
cycles.

A program load facility, using the DMA-ln
channel, is provided to enable users to load
programs into the memory. This facility pro-
vides a simple, one-step means for initially
entering programs into the microprocessor
system and eliminates the requirement for
specialized "bootstrap" ROM's.

Data Register]

When registers in R are used to store bytes of
data, four instructions are provided which
allow D to receive from or write into either
the higher-order- or lowcr-oidcr-byte portions

Fig. S-CDP1802 block diagram.

of the register designated by N. By this
mechanism (together with loading by data
immediate) program pointer and data pointer
designations are initialized. Also, this tech-
nique allows scratchpad registers in R to be
used to hold general data. By employing
increment or decrement instructions, such
registers may be used as loop counters.

The Q Flip Flop
An internal flip flop, Q. can be set or reset by
instruction and can be sensed by conditional
branch instructions. The output of Q is also
available as a microprocessor output.

Interrupt Servicing
Register R(1) is always used as the program
counter whenever interrupt servicing is ini-
tiated. When an interrupt request comes in
and the interrupt is allowed by the program
(again, nothing takes place until the comple-
tion of the current instruction) the contents
of the X and P registers are stored in the
temporary register T, and X and P are set to
new values; hex digit 2 in X and hex digit 1
in P. Interrupt enable is automatically de-
activated to inhibit further interruptions. The
interrupt routine is now in control; the
contents of T are saved by means of a single
instruction (78) in the memory location
pointed to by R(X). At the conclusion of the
interrupt, the routine restores the pre-intcr-
rupted values of X and P wilh a single in-
struction (70 or 71). The interrupt-enable
flip-flop can be activated to permit further
interrupts or can be disabled to prevent them.

-246-



Preliminary CDP1802D, CDP1802CD.

COSMAC Register Summary

D

DF

R

P

X

8 Bus
t flu

1C Bits
4 Bits

4 Bits

Data Register (Accumulalot)
Data Flag IALU Carry)
1 ot 1C Scratchpad Registers
Designates which register is

Program Counter

Designates which register is
Data Pointer

N

1

T

IE

Q

4 Hits
4 Hits
8 Bits

1 Bit

1 Bit

Molds Low Order Instr. Digit
Holds High Order Inilr. Digit
Holds old X. P after Interrupt

(X is high byte)

Interrupt Enable

Output Flip Flop

INSTRUCTION SET

The COSMAC instruction summary is given
in Table I. Hexadecimal notation is used to
refer to the 4-bit binary codes.

In all registers bits are numbered from the
least significant bit (LSB) to the most signi-
ficant bit (MSB) starting with 0.

R(W): Register designated by W. where
W=Nor X. or P

R(W).0: Lower-order byte of R(W)
R(W).1: Higher-order byte of R(W) .
NO = Least significant Bit of N Register
Operation Notation

M(R(N))»D; R(N) + 1
This notation means: The memory byte
pointed to by R(N) is loaded into D. and
R(N) is incremented by 1.

TABLE I - INSTRUCTION SUMMARY
(For Notes, see page 9)

INSTRUCTION

MEMORY REFERENCE
LOAD VIA N
LOAD ADVANCE
LOAD VIA X
•LOAD VIA X AND ADVANCE
LOAD IMMEDIATE
STORE VIA N
STORE VIA X AND

DECREMENT

MNEMONIC

LDN
LDA
LDX
LDXA
LDI
STR
STXD

OP
CODE

ON
4N
FO
72
F8
5N
73

OPERATION

M(R(N))-D; FOR N NOT 0
M(R(N)hD; R(N) +1
M(R(X))«D
M(R(X))-»D;R(X)-H
M(R(P)hD; R(P)+1
D-M(RIN))
D-M(RIX)); R(X) -1

REGISTER OPERATIONS
INCREMENT REG N
DECREMENT REG N
INCREMENT REG X
GET LOW REG N
PUT LOW REG N
GET HIGH REG N
PUT HIGH REG N

INC
DEC
IRX
GLO
PLO
GHI
PHI

IN
2N
60
8N
AN
9N
BN

R(N)+1
RIN1-1
RIX1+1
R(N).0*D
D»R(N).0
R(N).1*D
D»R(N).1

LOGIC OPERATIONS**
OR
OR IMMEDIATE
EXCLUSIVE OR
EXCLUSIVE OR IMMEDIATE
AND
AND IMMEDIATE
SHIFT RIGHT

SHIFT RIGHT WITH
CARRY

RING SHIFT RIGHT
SHIFT LEFT

SHIFT LEFT WITH
CARRY

RING SHIFT LEFT'

OR
ORI
XOR
XRI
AND
ANI
SHR

SHRC 1

RSHR )
SHL

SHLC /

RSHL )

F1
F9
F3
FB
F2
FA
F6

76*

FE

7E«

M(R(X)) OR D*L>
M(R(P)1 OR D*D; R(P) +1
M(R(X)I XOR D*D
M(R(P)) XOR f>D; R(P) +1
M(R(X)I AND D*D
M(R(P1) AND OD; R(P) +1
SHIFT D RIGHT. LSB(0)>DF.
0»MSB(D)
SHIFT D RIGHT. LS8(D)*DF.
DF^MSB(D)

SHIFT D LEFT. MSB(D)»DF,
O-LSB(D)
SHIFT D LEFT. MSBIDI'DF.
DF«LSB(D)

• NOTE: THIS INSTRUCTION IS ASSOCIATED WITH MORE THAN ONE
MM MONIC r ACH MUfMONlC IS INDIVIDUALLY LISTED.

•NOTE THE AHlItlMt UC OPf RATIONS AND THE SHIFT INSTRUCTIONS
ARC THf ONLY INSTRUCTIONS THAT CAN ALTER THE Of.
AF1ER AN AOO INSTRUCTION

Of • i 01 NOUS A C A R R Y HAS OCCURRED
DF -OOINOTIS A CAMRY HAS NO I OCCURHCO

AFTER A SUBTRACT INSTRUCTION
Of • 1 OINOHSNO UOHHOW D IS A TRUE POSITIVE NUMBER
OF -OOINOKSAUOHRUW D IS TWO'S COMfM f MINT
THE SYNTAX --(NOT oir Of NOTES THE sue INACTION OF THE SORROW

-247-



Preliminary CDP1802D. CDP1802CD

INSTRUCTION SUMMARY (CONT'D)

INSTRUCTION MNEMONIC
OP

CODE OPERATION

ARITHMETIC OPERATIONS**
ADD
ADD IMMEDIATE
ADD WITH CARRY
ADD WITH CARRY.

IMMEDIATE
SUBTRACT o
SUBTRACT D IMMEDIATE
SUBTRACT D WITH

BORROW
SUBTRACT D WITH

BORROW. IMMEDIATE
SUBTRACT MEMORY
SUBTRACT MEMORY

IMMEDIATE
SUBTRACT MEMORY WITH

BORROW
SUBTRACT MEMORY WITH

BORROW. IMMEDIATE

ADD
ADI
ADC
ADCI

SO
SDI
SDB

SDBI

SM
SMI

SMB

SMBI

F4
FC
74
7C

F5
FD
75

7D

F7
FF

77

7F

M(R(XI) 4D-DF. 0
M(R(P|) <D'DF. D; R(P| +1
M(RIX)) +D *DF*DF. D
M(R(P)) *D + DF-DF. D
R(P) 41

M(R(X)I-D'DF. D
M(R(P))-D-DF. D; RIP) +1
M(R(X))-D-(NOT DFbDF, D

M|R(P))-D-(NOT DF)>OF. D;
R(P) +1
D-M(R(X))»DF. 0
D-M(R(P)hDF, D;
R(P) +1
D-M(R(X))-(NOT DFhDF. D

D-M(R(P))-(NOT DF1-DF. D
RIP) +1

BRANCH INSTRUCTIONS-SHORT BRANCH

SHORT BRANCH
NO SHORT BRANCH

(SEE SKP)
SHORT BRANCH IF D=0

SHORT BRANCH IF
D NOTO

SHORT BRANCH IF DF=1
SHORT BRANCH IF POS

OR ZERO
SHORT BRANCH IF EQUAL

OR GREATER
SHORT BRANCH IF DF=0
SHORT BRANCH IF MINUS
SHORT BRANCH IF LESS
SHORT BRANCH IF 0=1

SHORT BRANCH IF O=0

SHORT BRANCH IF EF1 = 1

SHORT BRANCH IF EF1=0

SHORT BRANCH IF EF2=1

SHORT BRANCH IF EF2=0

SHORT BRANCH IF EF3=1

SHORT BRANCH IF EF3=0

SHORT BRANCH IF EF4=1

SHORT BRANCH IF EF4=0

BR
NBR

BZ

BNZ

BDF )
BPZ (

(
BGE \

/

BNF |
BM V
BL j
BQ

BNQ

B1

BN1

B2

BN2

B3

BN3

B4

BN4

30
38*

32

3A

33*

3B*

31

39

34

3C

35

3D

36

3E

37

3F

M(R(P)bR(P).0
R(P) +1

IF 0=0, M(R(P)bR(P).0
ELSE R(P) +1

IF D NOT 0, M(R(P))>R(P).0
ELSE R(P) +1

IF DF=1. M(R(P))*R(P).0
ELSE R(P) +1

IF DF=0. M(R(P))-R(P).0
ELSE R(P) +1

IF 0=1. M(R(P)hR(P).0
ELSE RIP) +1

IF Q=0. M(R(P))-R(P).0
ELSE RIP) +1

IF EF1 = 1. M(R(P))-R(PI.O
ELSE RIP) +1

IF EF1=0. M(R(P))»R(P).0
ELSE R(P) +1

IF EF2=1. M|R(P)hR(P).0
ELSE RIP) +1

IF EF2=0. M(R(P)hR(P).0
ELSE RIP) 41

IF EF3=1. M(R(P)hR(P).0
ELSE RIP) +1

IF EF3=0. M(R(P)hR(P).0
ELSE RIP) +1

IF EF4=1. M(R(P))'R(P).0
ELSE RIP) +1

IF EF4=0. M(R(P))*RIP).0
ELSE RIP) +1

«NOT£: THIS INSTRUCTION IS ASSOCIATED WITH MORE THAN ONE
MNEMONIC EACH MNEMONIC IS INDIVIDUALLY LISTED

••NOTE: THF ARITHMETIC OPERATIONS AND THE SHIFT INSTRUCTIONS
ARE THE ONLY INSTRUCTIONS THAT CAN ALTEH THE OF.
AFTER AN ADO INSTRUCTION:

Of* 1 DENOTES A CAHHV HAS OCCURRED
OF • OOENOrtS A CARRY HAS NOT OCCURRED

AFTER A SUUTHACT INSTRUCTION:
Of • 1 OlNOTES NO UOHttOW. O (S A TRUE POSITIVE NUMBER
OF-OO! NOUS A BORROW. 0 IS TWO'SCOMPLfMtNT
1HE SYNTAX "-(NUI UJfULNOIli IH( &UBT H AC I ION Of THE BORROW

-248-



Preliminary CDP1802D, CDP1802CD

INSTRUCTION SUMMARY (CONT'D)

INSTRUCTION MNEMONIC
OP

CODE OPERATION

BRANCH INSTRUCI IONS- LONG ((RANCH
LONG BRANCH

NO LONG BRANCH
(SEE LSKP)

LONG BRANCH IF D=0

LONG BRANCH IF D NOT 0

LONG BRANCH IF DF=1

LONG BRANCH IF DF=0

LONG BRANCH IF Q=1

LONG BRANCH IF 0=0

LBH

NLBR

LBZ

LBNZ

LBDF

LBNF

LBQ

LBNO

CO

C8*

C2

CA

C3

CB

C1

C9

M(R(P))-R(P).1 '
M(R(P| 41)-R(P|.0
RIP) 42

IF D=0. M|R(P))-R(P).1
M(R(P) t1)-R(P).0

ELSE R(P) +2
IF D NOTO. M(R(P))-R(P).1

M(R(P) *1)--R(P).0
ELSE RIP) +2

IF DF=1, M(R(P))*R(P).1
M(R(P) +1)-R(P).0

ELSE RIP) +2
IF DF=0. M(R(P))-R(P).1

M(R(P) +1)-R(P).0
ELSE RIP) +2

IF Q=1, M(R(P))*R(P).1
M(R(P) + 1)«R(P).0

ELSE RIP) +2
IF 0=0, M(R(P))*R|P).1

M|R(P) + 1)*R(P).0
ELSE R(P) +2

SKIP INSTRUCTIONS
SHORT SKIP

(SEE NBR)
LONG SKIP

(SEE NLBR)
LONG SKIP IF D=0

LONG SKIP IF D NOT 0

LONG SKIP IF DF=1

LONG SKIP IF DF=0

LONG SKIP IF Q=1

LONG SKIP IF 0=0

LONG SKIP IF IE=1

SKP

LSKP

LSZ

LSNZ .

LSDF

LSNF

LSQ

LSNQ

LSIE

38»

C8*

CE

C6

CF

C7

CD

C5
"

cc

RIP) +1

R(P) +2

IF D=0, RIP) +2
ELSE CONTINUE

IF D NOT 0, RIP) +2
ELSE CONTINUE

IF DF=1, R(P) +2
ELSE CONTINUE

IF DF=0, RIP) +2
ELSE CONTINUE

IF Q=1. R(P) +2
ELSE CONTINUE

IF Q=0, RIP) +2
ELSE CONTINUE

IF IE=1, R(P) +2
ELSE CONTINUE

CONTROL INSTRUCTIONS
IDLE

NO OPERATION
SET P
SET X
SETQ
RESET Q
SAVE
PUSH X,P TO STACK

RETURN

DISABLE

IDL

NOP
SEP
SEX
SEO
REO
SAV
MARK

RET

DIS

00*

CA
DN
EN
7B
7A
78
79

70

71

WAIT FOR DMA OR
INTERRUPT; M(R(0))*BUS
CONTINUE
N*P
N»X
1*0
0*0
T*M(R(X)l
(X.P)»T; (X.P)»M(RI2))
THEN P*X; R(2)-1
MIR(X)MX.P); R(X) +1

M(R(X))'(X,P); R(X) +1
0-IE

#An idle instruction initiates a repeating SI cycle. The processor will continue to idle
until an I/O request (INTERRUPT. DMA-IN. or DMA-OUT) is activated. When the
request is acknowledged, the IDLE cycle is terminated and the I/O request is serviced,
and then normal operation is resumed.

•MOTE: THIS INSTRUCTION IS ASSOCIATED WITH MODE THAN ONE
MNEMONIC. EACH MNEMONIC IS INDIVIDUALLY LISTED.

- 8 -

-249-



.Preliminary CDP1802D, CDP1802CD

INSTRUCTION SUMMARY (CONT'D)

INSTRUCTION MNEMONIC
OP

CODE OPERATION

INPUT-OUTPUT BYTE TRANSFER
OUTPUT 1
OUTPUT 2
OUTPUT 3
OUTPUT 4
OUTPUT 5
OUTPUT 6
OUTPUT 7
JNPUT 1
INPUT 2
INPUT 3
INPUT 4
INPUT 5
INPUT 6
INPUT 7

OUT 1
OUT 2
OUT 3
OUT 4
OUTS
OUT 6
OUT 7
INP 1
INP 2
INP 3
INP 4
INP 5
INP 6
INP 7

61
62
63
64
65
66
67 .
69
6A
6B
6C
60
6E
6F

M(R(XII'BUS; R(XI +1; N LINES = 1 ,
M(R(X)hBUS; R(X) +1; N LINES = 2 '
M(R(X))'BUS; R(X) +1; N LINES = 3
M(R<xn>BUS; R(X| +1; N LINES = 4
M(R|X)hBUS; R(X) +1; N LINES = 5
M(R(X)hBUS; R(X) +1; N LINES = 6
M(R(X)hBUS; RtX) +1; N LINES = 7
BUS»M(R(X)); BUS*D; N LINES = 1
BUS*M(R(XH; BUS-0; N LINES = 2
BUS*M(R(X)I; BUS-D; N LINES = 3
BUS*M(R(XI); BUS-D; N LINES = 4
BUS-M(R(XI); BUS*0; N LINES = 5
BUS*M(R(XI); BUS-D; N LINES » 6
BUS»M(R(X)1; BUS-D; N LINES = 7

1 Long-Branch, Long-Skip and No Op instructions are the only instructions that require
three cycles to complete (1 fetch + 2 execute).

Long-Branch instructions are three bytes long. The first byte specifies the condition to
be tested; and the second and third byte, the branching address.
The long-branch instructions can:

a) Branch unconditionally
b) Test for D=0 or D*Q
c) Test for DF=Oor DF=1
d) Test for 0=0 or O=1
e) effect an unconditional no branch

If the tested condition is met, then branching takes place; the branching address bytes
are loaded in the high-and-low-order bytes of the current program counter, respectively.
This operation effects a branch to any memory location.

If the tested condition is not met. the branching address bytes are skipped over, and
the next instruction in sequence is fetched and executed. This operation is taken for
the case of unconditional no branch.

2. The short-branch instructions are two bytes long. The first byte specifies the
condition to be tested, and the second specifies the branching address.
The short-branch instructions can:

a) Branch unconditionally
b) Test for O=0 or D=#>
c) Test for DF=Oor DF=1
d) Test for Q=0or Q=1
e} Test the status (1 or 0) of the four EF flags
f) Effect an unconditional no branch

If the tested condition is met, then branching takes place; the branching address byte
is loaded into the low-order byte position of the current program counter. This effects
a branch with the current 256-byte page of the memory, i.e., the page which holds the
branching address. If the tested condition is not met, the branching address byte is
skipped over, and the next instruction in sequence is fetched and executed. This same
action is taken in the case of unconditional no branch.

3. The skip instructions are one byte long. There is one Unconditional Short-Skip (SKP)
and eight Long-Skip instructions.

The Unconditional Short-Skip instruction takes 2 cycles to complete (1 fetch + 1 execute).
Its action is to skip over the byte following it. Then the next instruction in sequence is
fetched and executed. This SKP instruction is identical to the unconditional no-branch
instruction (NBR) except that the skipoed-over byte is not considered part of the program.
The Long-Skip instructions take three cycles to complete (1 fetch + 2 execute).
They can:

a) Skip unconditionally
b) Test for D=0 or D*0
c) Test for DF=Oor DF-=1
d) Test for O^Oor O=1
e) Test for IE»1

II the tested condition is met. then Long Skip takes place; the current program counter
is incremented twice. Thus two bytes are skipped over and the next instruction in sequence
is fetched and executed. If the tested condition is not met. then no action is taken.
Execution is continued by (etching the next instruction in sequence.

.9.

-250-



Preliminary CDP1802D. CDP1802CD .

SIGNAL OESCniPTIONS

OUSOto OUS7
(Data Bus)

NO to N2 (I/O Command)

EF1 IOEF4
(4 Flags)

INTERRUPT. DMA-IN.
DMA-OUT
(3 I/O Reouestsl

SCO. SC1.
(2 State Code Lines)

TPA. TPB
(2 Timing Pulses)

8-bit directional DATA BUS lines. These lines arc used for
translurring data between the memory, the microprocessor,
and I/O devices.
Issued by an I/O instruction to signal the I/O control logic
ol a data transfer between memory and I/O interlace. These
lines can be used to issue command codes or device selection
codes to the I/O devices (independently or combined with
the memory byte on the data bus when an I/O instruction
is being executed). The N_J)iU are low at all times except
when an_l/O_ instruction is being executed. During thisjime
t(V^sta^is_the_same_as_the_cprx«pondjng bits in the N.
r°ecjjsTe?~~
The direction of data .flow is defined in the I/O instruction
by bit N3 and is indicated by the level of the MRD signal.

MRD = VCc: Data from I/O to CPU and Memory
MRD = Vgg: Data from Memory to I/O

These levels enable the I/O controllers to transfer status
information to the processor. The levels can be tested by
the conditional branch instructions. They can be used in
conjunction with the INTE R RUPT request line to establish
interrupt priorities. These flags can also be used by I/O
devices to "call the attention" of the processor, in which
case the program must routinely test the status of these
flag(s). The flag(s) are sampled at the beginning of every SI
cycle.

These signals are sampled by the COP 1802 during the
interval between the leading edge of TPB and the leading
edge of TPA.
Interrupt Action: X and P are stored in T after executing
current instruction; designator X is set to 2; designator P is
set to 1; interrupt enable is reset to 0 (inhibit); and instruc-
tion execution is resumed.
DMA Action: Finish executing current instruction; RIO)
points to memory area for data transfer; data is loaded into
or read out of memory; and increment R(0).

Note: In the event of concurrent DMA and INTERRUPT
requests, DMA-IN has priority followed by DMA-OUT and
then INTERRUPT.
These lines indicate that the CPU is: 1) fetching an instruc-
tion, or 2) executing an instruction, or 3) processing a DMA
request, or 4) acknowledging an interrupt request.The levels
of state code are tabulated below. AM states are valid at TPA.
H = VCC. L = VSS.

State Type

SO (Fetch)
SI (Execute)
S2 (DMA)
S3 (Interrupt)

State Code Lines
SCI
L
L
H
H

SCO
L
H
L
H

Positive pulses that occur once in each machine cycle (TPB
follows TPA). They are used by I/O controllers to interpret
codes and to time interaction with the data bus. The
trailing edge of TPA is used by the memory system to latch
the higher-order byte of the 16 bit memory address. TPA is
suppressed in IDLE when the CPU is in the load mode.

MAO to MA7
(8 Memory Address Lines)

The higher-order byte of a 16-bit COSMAC memory address
appears on the memory address lines MAO-7 first. Those
bits required by the memory system are strobed into ex-
ternal address latches by timing pulse TPA. The low-order
byie ol the IGbit address appears on the address lines
after the termination ol TPA. Latching ol all 8 higher-order
address bits would permit d memory system of C4K bytes.

•10-

-251-



.Preliminary CDP1802D. CDP1802CD

MWR (Wiilc Pulse)

MRD (Read Level)

CLOCK

XTAL

WAIT. CLEAR
(2 Control Lines)

A'negative pulse appearing in a memory-write cycle, after
the address lines have sMbili/cd.
A low level on MRD indicates a memory read cycle. It can
be used to control three-state outputs from the addressed
memory which may have a common data input and output
bus. If a memory doei not have a three-state high-impcdonce
output, MRD is useful for driving memory/bus separator
gates. It is also used to indicate the direction of data trans-
fer during an I/O instruction:

MRD = V(;c: Data from I/O to CPU and Memory

MRD = Vgg: Data from Memory to I/O

Single bit output from the CPU which can be set or reset
under program control. During SEQ or REQ instruction
execution. O is set or reset between the trailing edge of
TPA and the leading edge of TPB.

Input for externally generated single-phase clock. A typical
clock frequency is 6.4 MHz at VQQ = VQQ = 10 volts.

The clock is counted down internally to 8 clock pulses per
machine cycle.
Connection to be used with clock input terminal, for an
external crystal, if the on-chip oscillator is utilized. The
ctystal is connected between terminals 1 and 39 (CLOCK
and XTAL) in parallel with a resistance (10 megohms typ.K
Frequency trimming capacitors may be required at terminals
1 and 39.
Provide four control modes as listed in the following truth
table:

CLEAR
L
L
H
H

WAIT
L
H

L
H

MODE
Load
Reset
Pause
Run

The function of the modes are defined as follows:
Load
Holds the CPU in the IDLE execution state and allows an
I/O device to load the memory without the need for a
"bootstrap" loader. It modifies the IDLE condition so that
DMA-IN operation does not force execution of the next
instruction.
Reset
Registers I. N, Qare reset. IE is set and O's (Vgg) are placed
on the data bus. TPA and TPB are suppressed while reset is
held and the CPU is placed in SI. The first machine cycle
after termination of reset is an initialization cycle. During
this cycle the CPU remains in SI and registers X, P. and R(0)
are reset. Interrupt and DMA servicing are suppressed during
the initialization cycle.
The next cycle is an SO. SI. or an 52 but never an S3. With
the use of a 71 instruction followed by 00 at memory
locations 0000 and 0001, this feature may be used to reset
IE. so as to preclude interrupts until ready for them. Power-
up reset can be realized by connecting an external RC to
CLEAR.

Pause
Stops the internal CPU timing generator on the first negative
high-to-low transition of the input clock. The oscillator
continues to operate, but subsequent clock transitions are
ignored.
Run

May be initiated from the Pause or Reset mode functions.
If initiated from Pause, the CPU resumes operation on the
first negative high-to-low transition of the input clock.
When initiated from the Reset operation, the first machine
cycle following Reset is always the initialization cycle. The
initialization cycle is then followed by a DMA IS?) cycle or
fetch (SO) from location 0000 in memory.

- 11 •

-252-



Preliminary CDP1802D. CDP1802CD

(Power Levels)
The internal voltage supply Vfjrj is isolated from the Input/
Output voltage supply VQC *° that the processor may
operate at maximum speed while interfacing wilh various
external circuit technologies, including T'L at 5 volts. VQQ
must be less than or equal to Vrjr> All outputs swing from
V£S to VCG- The recommended input voltage swing is

vss'°vcc

Fig. 6-CDP1802 microprocessor state
transitions (Run Mode).

The CDP1802 and CDP1802C CPU state
transitions when in the RUN mode are shown
in Fig. 6. Each machine cycle requires the
same period of time-8 clock pulses. The
execution of an instruction requires either
two or three machine cycles. SO followed by
a single SI cycle or two S1 cycles. S2 is the
response to a DMA request and S3 is the
interrupt response.

OPERATING AND HANDLING CONSIDERATIONS FOR CDP1802D AND CDP1802CD

1. Handling
All inputs and outputs of this device have
a network for electrostatic protection
during handling. Recommended handling
practices for COS/MOS devices are de-
scribed in ICAN-6000 "Handling and
Operating Considerations for MOS In-

tegrated Circuits", available on request
from RCA Solid State Division. Box 3200,
Somerville, N.J. 08876.

2. Operating

Operating Voltage
During operation near the maximum
supply voltage limit, care should be taken
to avoid or suppress power supply turn-
on and turn-off transients, power supply
ripple, or ground noise: any of these
conditions must not cause VoD'^SS to

CDP1802D. CDP1802CD
40-Lead Dual-In-Line Ceramic

exceed the absolute maximum rating. VQQ
must be less than equal to VQQ. Power
supplies should be sequenced to insure
compliance.

Input Signals
To prevent damage to the input protec-
tion circuit, input signals should never be
greater than VQD nor less than V$s.
Input currents must not exceed 10 mA
even when the power supply .is off.

Unused Inputs

A connection must be provided at every
input terminal. All unused input termi-
nals must be connected to either VDD °<
VgS. whichever is appropriate.

Output Short Circuiti

Shorting of outputs to VQQ or V$S may
damage COS/MOS devices by exceeding
the maximum device dissipation.

DIMENSIONAL OUTLINE

'I d"

DIM.

A

C

D

f

C

H

1

K

I

M

f>

N

MILLIMETERS

MIN.

50. 30

242

043

MAX.

51 30

393

OS6

1.27 R£F.

2&4BSC

076

020

318

14 74

-

064.

1 78

030

445

1!> 74

7»

1 27

40

INCHES

MIN.

1.980

0095
0017

MAX.

2020
0 155

0023
O.O&OREF.
0 100BSC

0030
0008
0125

OS80
-

0025

0070
0012

0 175

0620
7°

0000
40

NOTfS

1. tt*dt wiihm 0 13 mm (0 0061 fidiui ol liu* pout ion

•l m*«tmum nuUdai condition.

2. Dim*nnon "I" IO cento ol le*dl when I Of mod pjfjll«l.

3. When ihit device tt tuppited toidei dipped, the

Wh.n lrvrocr.oi.ilno RCA Solid Si.i. n.vlt.. In
•qulpm*nt. II U t«cormn«niUil lint lh« d««lun«r
l»f»r to ••Op«r»tlng Contld«t»lloni lof MCA Solid
£(•!• O«vlc««", rorm Ha. ICt 407, cvciutil* on
rxiu.it from MCA Soil.I Si.t, OKI,lor,. Oo> MOO,

. 6om.,,lll.. N. J. OUU/0.

RCAISohd Slate Division|Someiville. NJ 08876

l««d lh«chn«u t

(0 33 mm)

,

ow puilion) will not eic««d 0013 in.

-253-




