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1. INTRODUCTION

The present practice of using high-bypass turbojet engines has

resulted in a decrease in jet noise. However, these engines emit noise

from their inlet nacelles above a desirable level. The present work

is part of a considerable effort being made to reduce nacelle noise.

One promising approach to the reduction of inlet noise is the

use of a high subsonic Mach number inlet, or partially choked inlet,

in conjunction with an acoustic duct liner. The use of choked inlets

has long been recognized as an effective means of reducing upstream

propagation although such inlets require careful design to prevent

excessive losses in compressor performance. However, the physical

mechanisms responsible for the noise reduction in high-subsonic Mach

number inlets are not completely understood, and techniques for the

theoretical analysis of sound propagation through regions of near-

sonic mean flow are not available. Two major problems must be over-

come in the development of such a model: (1) the mathematical tech-

niques for the calculation of sound propagation in ducts are well-

developeri for parallel ducts but are not fully developed for ducts

of varyinq cross section that carry mean flows with strong axial and

transverse gradients; (2) linear acoustic equations are inadequate

to describe acoustic propagation in regions of near-sonic mean flows.

In the investigation presented here, the first of these two problems

was addressed, and a wave-envelope technique based on the method of

variation of parameters was developed. This procedure can be used as

the basis of the examination of the second aspect of the problem,

1
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the development of nonlinear models for the near-sonic region.

The concept of sound reduction by choked inlets has been investi-

gated experimentally at great length. The first contribution to the

sonic inlet concept goes back to 1960 when Maestrello used a trans-

lating centerbody that could be adjusted to vary the inlet throat area.

His experiment showed a 35 dB noise reduction at an inlet throat Mach

number of 0.9.

Several experimental investigators followed Maestrello to test

actual jet engines with various shapes of centerbodies as well as

experimental ducts to choke the flow. Surveys of the concept of the
2 3choked inlet were given by Lumsdaine and Klujber . An updated sur-

vey is presented here.
4Sobell and Welliver tested a Bristol Olympus 6 jet engine; this

engine was choked by using a sonic block silencer. The background

noise radiation associated with this experiment may be a reason why
5

only a 12 dB noise reduction was achieved. Greatrex conducted an

experiment on an Avon engine with a bullet shaped centerbody to choke

the flow. He reported a 20 dB noise reduction.

To test the effect of choking the flow on the reduction of inlet

noise, Sawhill tested an ST model inlet with a translating center-

body and reported a-33 dB noise reduction when the throat Mach num-

ber of the inlet was increased from 0.63 to 0.9. Cawthorn et al

tested an SST inlet with a Viper 8 turbojet engine and a translating

centerbody to choke the flow. They found that choking the flow resulted

only in a 3 dB noise reduction. Using two centerbodies of different
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sizes to choke the flow of.an SST inlet, Anderson obtained a 20 dB

noise reduction at a throat Mach number of 0.77.
9Schaut tested a T-50 engine to show the acoustic and internal flow

characteristics of airfoil grid inlets. The configuration consisted

of an inlet duct with two rows of two-dimensional airfoils; the flow

Mach number between the airfoils was maintained at a transonic level

to reduce noise radiation from the inlet. A 13 dB noise reduction was

measured at a Mach number of 0.9. Another test was conducted by Ander-

son et al on the airfoil grid inlet; they used two airfoils posi-

tioned in parallel in an inlet duct. They reported a loss of 7% in the

inlet recovery pressure when they attained a 27 PNdB noise reduction.

Inlet guide vanes also have a significant effect on the noise

reduction. Chestnutt and Stewart conducted an experiment by using

an accelerating inlet. They reported noise reductions up to 25 dB,

due to the elimination of multiple pure tones, when the inlet approach-

ed choking conditions. The only drawback is that the noise reduction

was accompanied by a significant reduction in the compressor efficiency.

To determine the effect of the shape of the guide vane on the noise
12reduction, Chestnutt tested uncambered and tapered inlet guide vanes.

He obtained noise reductions of about 28 dB and 36 dB for the uncam-

bered and tapered guide vanes, respectively. Anderson et al tested

radial vane inlets and showed a 22.5 PNdB noise reduction with a 7%

loss in recovery pressure.

Copelarid studied the noise radiation from a rotor in a lined

annular duct at high subsonic Mach number. He achieved about 7 dB

reduction in the overall noise when he increased the duct length by a

factor of 4.



14
Hawking and Lawson reported a large reduction in acoustic

energy for a waisted geometry. They suggested that this reduction
15

is due to an increase in the axial Mach number. Benzakin et al

conducted an experiment on a lined accelerating inlet. They concluded

that the noise increases with increasing Mach number until throat

Mach numbers of 0.6, then the noise level goes down with further

increases in throat Mach number.

It is clear from the above experiments that inlet choking may

be an effective noise suppression mechanism. The amount of noise

reduction depends on how the choking is achieved. However, the

choking may be accompanied by a loss in the compressor efficiency.

Thus, the optimum choking configuration is the one accompanied by

no loss or a minor loss in the compressor efficiency.

Many investigators studied the possibility of attaining a signi-

ficant noise reduction with a minor loss in the compressor efficiency;

they showed that the loss in the compressor efficiency can be minimiz-

ed by carefully designing the centerbody.

Klujber reported a noise reduction when a sonic inlet is used.

This reduction occurs when the average throat Mach number increases

from 0.5 to 1.0. He reported also that more reduction of the noise can

be attained but with, a further decrease in the inlet recovery pressure.

Higgins et al measured a significant noise reduction with a

moderate loss in recovery pressure by using variable cowl inlets.
18Lumsdaine et al studied experimentally inlets with translating

centerbodies; they showed that translating centerbody inlets are

superior aerodynamically and more effective in reducing the noise than



19collapsing cowl inlets. Koch et al reported a 15 dB sound level

attenuation with a minimum loss of aerodynamic performance when operat-
20ing at an average Mach number of 0.79. Miller and Abbott tested

experimentally an inlet with a translating centerbody to choke the flow;

they reported a 20 dB noise reduction with a pressure recovery of
2198.5%. Abbott indicated that the most efficient method to achieve

aerodynamic performance and noise reduction is to use a cylindrical

centerbody at takeoff and a bulb-shaped centerbody at approach to choke

the flow. He reported that increasing the inlet length results in a
22higher recovery pressure for a given noise reduction. Groth tested

a J-85 turbojet engine using a translating centerbody inlet with a

radial vane. He measured a 40 dB reduction in a fully choked inlet
23

while maintaining a recovery pressure of 92.1%. Savkar and Kazin

showed that a 99% recovery pressure can be attained for the same amount

of noise reduction by proper contouring of the centerbody and careful

designing of the diffuser. Miller experimentally determined how a

sonic inlet can be designed to have a significant noise reduction with

a minimum loss of total pressure.

As we see above, most, but not all, of these investigations have

noted significant reductions of the noise level when the inlet is

choked. The geometry of the inlet, the geometry of the centerbody and

the operating condition seem to have an effect on the acoustic as well

as on the aerodynamic performance. Further, most of the potential

noise reduction is achieved by operation in the partially choked state

(mean Mach number in the throat of 0.8-0.9). Some investigators (e.g.,

Chestnutt and Clark and Sobel and Welliver ) report the possibility



of substantial "leakage" through the wall boundary layers, whereas

others (e.g. Klujber ) report that such leakage is minor. Although

the experimental studies have demonstrated that the choked inlet is

a viable technique, they have not provided insight into the physical

mechanisms that are responsible for the noise reduction or that ex-

plain the differences among the several, experimental resutls.

Several analytical as well as numerical techniques have been

developed for the analysis of wave propagation in uniform and nonuni-
pc

form ducts.. Surveys of these techniques were made by Nayfeh et al
27and Nayfeh . In this study, only a short critique is presented.

The problem of sound propagation in a uniform duct (rectangular,

circular, etc.), with or without mean flows, for hard as well as lined

walled ducts, has been studied extensively. A number of parametric

studies have been done for the case of uniform ducts, showing the

effect of each parameter on noise attenuation. A large number of
?fi

papers are cited in the review article of Nayfeh et al , each of which

discusses at least one of the acoustic parameters.

The investigation of the problem of sound propagation in nonuniform

ducts was motivated by the experimental discoveries discussed earlier

in this introduction. These investigations are discussed below in

order of increasing complexity of the mean flow: no flow; one-dimension-

al flow; and two-dimensional flow.

The problem of sound propagation in a variable-area duct with no-
28mean flow was discussed for horns by Webster . He considered only the

29lowest propagating mode. Stevenson extended Webster's work to investi-

gate the propagation of various modes. He used the method of weighted



residuals to solve the problem of wave propagation in hard-walled horns
30of arbitrary.shape. Eversman et al extended the method of weighted

residuals to study multimodal propagation in a nonuniform lined duct.

Alfredson divided the variable area duct into a finite number

of stepped uniform ducts. Thus, a large number of stepped uniform

ducts are needed to provide sufficient accuracy for cases with large

axial gradients. .
32Nayfeh and Telionis used the method of multiple scales to analyze

wave propagation in ducts with slowly, but arbitrarily, varying cross

sections and wall admittance. For the case of hard-walled ducts, the

solution of Nayfeh and Telionis is equivalent to that of Stevenson for

slowly varying ducts. Nayfeh and Telionis pointed out that both of the

solutions break down near cut-off; they suggested using a turning point

analysis (see 7.3.2 of Reference 33) to overcome this problem.

Isakovitch , Samuels and Salant obtained perturbation solu-

tions for wave propagation in ducts whose rigid walls have sinusoidal

undulations of small amplitudes. Their perturbation expansions are not

valid near resonance conditions; that is, whenever the wave number of

the wall undulation is approximately equal to the sum or difference of

the wave numbers of any two acoustic modes. Nayfeh used the method

of multiple scales to obtain an expansion valid near resonance. He

found that neither of the modes involved in the resonance can propagate

in the duct without exciting the other.
38 39Quinn and Baumeister and Rice developed finite difference

methods to study a plane wave propagating in nonuniform ducts. We

note that a large amount of computation will be required with these
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purely numerical techniques because a large number of grid points are

needed to provide sufficient accuracy. The axial step must be small

enough to resolve the smallest wave length, while the transverse step

must be small enough to resolve the highest mode. Thus, the computa-

tional time increases rapidly with increasing frequency and duct length.

To reduce the computational time for plane waves in a two-dimensional

duct, Baumeister expressed the potential function <j>(x,y,t) as ̂ (x,y)

exp[i(kx - u)t)], where k is a properly chosen constant, such as the

wavenumber in a hard-walled duct. Then he solved for ̂ (x,y) using finite

differences.

Approximating the mean flow by a quasi-one-dimensional flow,
41Powell used a multiple reflection method to study the acoustic propa-

42gation through variable-area ducts. Eisenberg and Kao analyzed plane

waves in a variable area duct that yields an equation with constant co-
43efficients. Davis and Johnson used a forward-integration technique

to solve the acoustic equation describing the axial variations. Huerre
44

and Karamcheti analyzed the propagation of the lowest mode by using
45the WKB approximation, while King and Karamcheti developed a second-

order-accurate numerical method to solve for the propagation through a

variable area duct by using the method of characteristics.

Nayfeh and co-workers studied extensively the propagation of various

acoustic modes in ducts having slowly varying cross sections and carrying
46general mean flows. Nayfeh et al discussed the acoustic propagation

in lined plane ducts with varying cross sections and sheared mean flow.

This work was extended to annular ducts by Nayfeh et al . The effect

of a compressible sheared mean flow on sound transmission through a



48variable-area plane duct was studied by Nayfeh and Kaiser . Using

their method, one can determine the transmission and attenuation of all

modes including the effect of transverse as well as axial gradients,

but the technique is limited to slow variations. Moreover, the expan-

sion needs to be carried out to second order in order to determine re-

flection of the acoustic signal.
49Eversman developed a theory by using the method of weighted

residuals to determine the transmission of sound in plane nonuniform

hard-walled ducts with mean flow. He obtained equations describing the

axial variations of the modes. To solve these equations, one needs a

large number of axial steps, especially as the mean Mach number ap-

proaches unity and the frequency becomes large, leading to a rapid de-

crease in the axial wavelength.

In summary, purely numerical techniques suffer from the require-

ment of large computation times, and they have been restricted thus far

to cases of no-mean flow. Analytical techniques have only been applied

thus far to simple cases of one-dimensional mean flows and/or plane

acoustic waves and/or slowly varying duct geometry and promise to be-

come unwieldy for more general cases. Thus, the specific analytical

and computational tools that are needed for the study of wave propagation

in ducts involving large gradients in both the axial and transverse

directions are lacking.

In this study an acoustic theory is developed to determine the

sound transmission and attenuation through an infinite, hard-walled or

lined circular duct carrying compressible, sheared, mean flows and

having a variable cross section. The theory is applicable to large
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as well as small axial variations, as long as the mean flow does not

separate. The technique is based on solving for the envelopes of the

quasi-parallel acoustic modes that exist in the duct instead of solving

for the actual wave. The feasibility of this technique has been demon-

strated by Kaiser and Nayfeh for plane ducts with no-mean flow.

The problem is formulated in the following section, the method of

solution is presented in Section 3, the numerical solution is des-

cribed in Section 4, the numerical results and discussion are presented

in Section 5, and the conclusions and recommendations are presented in

Section 6.



2. PROBLEM FORMULATION

The transmission and attenuation of sound in hard- and soft-

walled circular inlet ducts (Figure 1) carrying viscous or inviscid

high subsonic mean flows is examined. The mean Mach number in the

throat is near sonic; thus, the axial and radial gradients of the mean

flow are large. The cross section of the duct varies arbitrarily

with the axial distance.

It is convenient to work with dimensionless quantities. To this

end, velocities, lengths, and time are made dimensionless by using

the ambient speed of sound c , the radius R0 of the duct in the uni-a
form region (Figure 1) and R0/c: , respectively. The pressure p isa
made dimensionless by using p c*, the density p and temperature T area a

made dimensionless by using their corresponding ambient values, while

the viscosity y and the thermal conductivity K are made dimensionless

by using their corresponding wall values in the uniform section. In

terms of these dimensionless variables, the equations which describe

the unsteady viscous flow in a duct are (see for example, Schlichting )

conservation of mass

at

conservation of momentum

V • (Pv) = 0 (1)

p(*f + v • Vv) = - Vp + I- V • T (2)Re

11
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conservation of energy

p(|I+ v • VT) - (Y-l)(f| + v • Vp) =

equation of state

For a perfect gas,

Yp = pT (4)

where v is the velocity vector, t is the time, Y is the ratio of the

gas specific heats, Pr = y C /K is the Prandtl number, C_ is the gas

specific heat at constant pressure, and Re = p c RO/IJ is the Reynolds
G Q W

number. For a Newtonian fluid, the dimensionless viscous-stress ten-

sor ̂  and the dimensionless dissipation function $ are related to v

T, = y[Vv + (Vv)*] + XV • v

* = 1 : Vv = I I T.-3V./3X,
j=l i=l J J

where (Vv)* denotes the transpose of Vv.

In general, the ducts carry a high subsonic, steady, sheared mean

flow that satisfies equations (1) through (4). The presence of sound

in the ducts results in the perturbation of the flow quantities so

that

q(r.t) = q0(r) + qi(r.t) (5)

where, q stands for any flow quantity, r is the position vector, q0 is
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the mean-flow part, and qj is the acoustic part. Substituting equa-

tion (5) into equations (1) through (4) and eliminating the mean-flow

quantities, one obtains the following acoustic equations:

V- (p0vi + Plv0) = NL (6)

, •*• •*• -*• -»• •*• ->•
+ V0 • Vvi + Vi • Vv0) + piV0 • Vv0 =

- Vpi + yg V • T^I + NL (7) .

Po^3TL + ^° * VTl + ^ * VT°) + P i V o -VT0 -

+ V0 • VPl + V! • V P o ) = i-e- [^ V-

+ (Y-l)»i] + NL . (8)

£JL = £JL + IL . (9)
Po Po To V '

where ̂  and $1 are linear in the acoustic quantities and NL stands .

for the nonlinear terms in the acoustic quantities.

No solution to equations (6) through (9) subject to general

initial and boundary conditions is available yet. To determine solu-

tions for the propagation of sound in ducts, researchers have used

simplifying assumptions. Here, the nonlinear and viscous terms in the

acoustic equations are neglected, and the mean flow is taken to be a func-

tion of the axial and radial coordinates only. Thus, we neglect

swirling mean flows. The assumption of linearization is not valid for

high sound-pressure levels. The effects of the nonlinear acoustic

properties of the lining material become significant when the sound-
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pressure level exceeds about 130 dB (re 0.0002 dyne/cm ) while the

effects of the gas nonlinearity become significant when the sound

pressure level exceeds about 160 dB. In particular, the nonlinearity of

the gas must be included when the mean flow is transonic (i.e., near
c2

the throat). Nayfeh showed that the viscous terms in the acoustic

equations produce an effective admittance at the wall that leads to

small dispersion and attenuation. For lined ducts, this admittance

produced by the acoustic boundary layer may be neglected, but it

cannot be neglected for hard-walled ducts as demonstrated analytically
53

and experimentally by Pestorius and Blackstock .

A cylindrical coordinate system (r,e,x) is introduced as shown

in Figure 1. Since there is no swirling flow, each flow quantity

qi(r,x,e,t) can be expressed, for sinusoidal time variations, as

00

qi(r,x,e,t) = I q (r,x)exp[-i (ut + me)] (10)
m=0 J

where u is the dimensionless frequency. Using the above assump-

tions, one can rewrite equations (6) through (9) in cylindrical

coordinates as

- |p (rp0vi + rv0pi) = 0

(11)

3X

PoC-iuVj + — (v0vi) + u0 -^ + ui l̂
1-] + P![VO |^- + u0 —^3 =

(13)
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V0 >- + U0 + Vl *. + u, ] H- Pl[vo

(15)

; PO PO O

where u, v, and w are the velocities in the axial, radial, and

azimuthal directions, respectively, and the subscript m has been

suppressed.

To complete the problem formulation, one needs to specify the

initial and boundary conditions. The boundary conditions are based

on the assumption that the duct wall is lined with a point-reacting

acoustic material whose specific acoustic admittance 3 may vary

along the duct. For no-slip mean flow, a requirement of continuity

of the particle displacement gives

= - Pi v/T~rRTT at r = R (17)
pww

where R' is the slope of the wall and the subscript w refers to values

at the wall .



3. METHOD OF SOLUTION

3.1 Critique of the Existing Methods

Since there is no exact solution available yet for equations (11)

through (16) in ducts of varying cross sections and since purely nu-

merical solutions of this problem are not feasible owing to the ex-

cessive amount of computation time needed, a number of approaches have
26 27

been developed to determine approximate solutions to this problem

These approaches include quasi-one-dimensional approximations, solu-

tions for slowly varying cross sections, solutions for weak wall un-

dulations, variational methods, and approximation of the duct by a

series of stepped uniform cross sections. A short critique of these

approaches is discussed next (more detailed critiques are given in

references 26 and 27), and it is followed by the proposed acoustic-

wave-envelope technique.

In the quasi-one-dimensional approach, one can determine only

the lowest mode in ducts with slowly varying cross sections and cannot

account for transverse mean-flow gradients or large wall admittance.

In the slowly varying cross-section approach, one can determine

the transmission and attenuation for all modes including the effects

of transverse as well as axial gradients, but the technique is limited

to slow variations and the expansion needs to be carried out to second

order to determine reflections of the acoustic signal.

In the weak-wall-undulation approach, one assumes that the dimen-

sionless duct radius is described by R = 1 + eRi(x), where e is small.

17
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Thus, in this approach one can account for all effects except large

axial variations.

In the variational approach, one uses either the Rayleigh-Ritz

procedure, which requires knowledge of the Lagrangian describing the

problem,or the Galerkin procedure (the method of weighted residuals).

Since the Lagrangian is not known yet for the general problem, the

Galerkin procedure is the only applicable technique at this time.

According to this procedure, one chooses basis functions (usually the

mode shapes of a quasi-parallel problem) and represents the pressure,

for example, as ,
CO

Pi = I Pn(xU(r,x) (18)
n=l n n

where the fy are the basis functions which, in general, do not satisfy

the boundary conditions. On expanding all flow variables in the form

of equation (18), substituting the result into equations (11) through

(17), and using the Galerkin procedure to minimize the error, one ob-

tains differential equations describing the p .' Since the ^ do not

satisfy the equations and the boundary conditions, a large number of

terms are needed to satisfy the equations and the boundary conditions

and hence represent the solution for large cross sectional variations;

this leads to serious convergence questions. These problems can be

minimized by choosing the if/ to be the quasi-parallel mode shapes

corresponding to the propagation constants k . The functions Pn(x)

vary rapidly even for a uniform duct: p (x) « exp(ik x), and k can

be very large for high frequency, low-order modes. Thus, very small
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axial steps must be used in the computations, resulting in a large com-

putation time, which increases very rapidly with axial distance and

sound frequency.

In approximating a duct with a continuously varying cross-sectional

area by a series of stepped uniform ducts, a large number of uniform

segments are needed to provide sufficient accuracy for the solution

when the axial gradients are large. Thus, this approach is impracti-

cal in the present problem because an enormous amount of computation

time is needed even for the case of a moderate number of uniform

segments.

This short discussion shows that presently available techniques

would certainly fail .to produce sufficient accuracy for the present
o .

problem. Thus, alternate techniques must be developed. In addition,

purely numerical techniques would be impractical because of the ex-

cessive amount of computation time. This is a result of the necessity

of using very small axial and radial steps to represent the rapidly

varying mode shapes and the axial oscillations of each mode. (In fact,

a computational difficulty exists in calculating the higher-order

Bessel functions that represent the mode shapes in a uniform duct carry-

ing uniform mean flow unless asymptotic expansions are used.) More-

over, the axial step must be much smaller than the wavelength of the

lowest mode in order to be able to determine the axial variations.

These small steps would cause the error in the numerical solution to

increase very rapidly with axial distance. Similar problems have been

encountered by astronomers who developed what is usually called the

special perturbation method in. which one solves only for the wave
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envelope instead of solving for the wave itself. Here, we use this

idea to develop a wave-envelope technique for solving the present pro-

blem.

3.2 Form of Solution

According to this approach, one uses the method of variation of

parameters to change the dependent variables from the fast-varying vari

ables to others that vary slowly. Moreover, the solution is approximat

ed by a finite sum of the quasi -parallel duct eigenf unctions.

Thus, we seek an approximate solution to 'equations (11) through

(17) in the form
N ( . , ,

Pi = I j An(x.)U»P(r,x)exp(i/kn(x)dx)+An(x)i|>P(r,x)exp<iJkn(x)dx)

(19)
N r

(20)
with similar expression for vi, Wi, Ti, and PI, where the tilde refers

to upstream propagation, the ̂  (r,x) are the quasi-parallel mode shapes

corresponding to the quasi-parallel propagation constants k (x), and

the A (x) are complex functions whose moduli and arguments represent, in

some sense, the amplitudes and the phases of the (m,n) modes. The cir-
cumferential mode number m is assumed to be specified and the corres-

ponding subscript on A, ty and k is not explicitly stated; each variable

is expressed as a summation over a finite number of radial modes n,

with n = 1 denoting the fundamental radial mode rather than the conven-

tional n = 0. Since k is complex, the exponential factor contains an

estimate of the attenuation of the (m,n) mode. Thus, the envelope

of the (m,n) mode is given by
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|Ap(x)| exp[-Jan(x)dx]

where a is the imaginary part of ,k .

Since the 4) are the quasi -parallel mode shapes, they are the solu-

tions of the following problem:

- iu/ * ikp/ + l*f / + - 1 f^rp/ ) = 0 (21 )

»

- ipoiV + PO f^1/ + ik/ = 0 (22)

- ipo<V + fjr = 0 (23)

/ = 0 (24)

Po |^/ + i(Y-l)^p = 0 (25)

^=^ + $I (26)
Po Po To

3_(jJP = o at r = R . (27)

where
pw w

w = w - kuo ' (28)

Equations (21) - (28) can be combined to yield the following pro-

blem for \lP:

C^R+^l^fSi -k ' . a^o (29)

- 1 **p = 0 at r » R (30)
'

w

At each axial location, the solution of equations (29) and (30) yields

(̂r;x) and its corresponding propagation constant k (x). Since the

basis functions ̂ (r;x) vary in the axial direction, they must be nor-
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malized in some manner to provide significance to the axial variations

of the mode amplitudes. The normalization used in this study is the

same as that defined by Zorumski :

("!>•? (r;x)]2dr = 1

Then, equations (21) - (26) are used to express the mode shapes of

the other flow variables in terms of <|;P and k .rn n

3.3 Constraints

Since the transverse dependence in the assumed solution, equa-

tions (19) and (20), is chosen a priori, it cannot satisfy equations

(11) - (17) exactly. Thus, the assumed solution must be subjected

to constraints. Rather than using the usual method of weighted

residuals which forces the residuals in each of the basic equations

(11) - (16) and the boundary conditon (17) to be orthogonal to some

a priori chosen functions, one requires the deviations from the quasi-

parallel solution to be orthogonal to every solution of the adjoint

quasi-parallel problem. This approach assures the recovery of the
33results of the method of multiple scales when the axial variations

. 5 0
are slow •

To enforce the contraints, one must define the problem adjoint

to the quasi-parallel problem. To this end, one can multiply equations

(21) - (26) by the functions <j>i, <j>2, <J>3, <K> 4>s> and <}>6, respectively,

where the <j> (r,x) are solutions of the adjoint problem, add the re-

sulting equations, integrate the result by parts from r = 0 to r = R

thereby transferring the r-derivatives from the i|;'s to the (f>'s, and

obtain
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;•
•'O

R

]dr + / p0^
VC-

R- °

I?4- *> - r If
R

/*/[ik<i>2

°
- Po<J> 6 ]dr + [po^V4>i + ^3]* = 0

Then, the adjoint equations are obtained by setting each of the brackets

in the integrands of equation (31) to zero; that is

p 0T 04>6 - 0

k<J>i = 0

= 0 05)

= 0

= 0

Equation (31) is reduced to.

(Po/*i + /4>3)r=0 = (Po/<J>! + ^aJ^R (38)

From equations (32) - (35) and (37), one can express each of the <|>

as a function of ̂ >1:
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<f>2 = TT«|)I (39)

*• • IF

»5 - J- (42)
U

<f>6 = - ipoT0w<j>i (43)

Using equations (39) - (43) in equation (36). one then obtains the

governing equation for <j>x:

where

n = rT0 (45)

It can be shown easily that equations (29), and (44) are the

same; thus n and IJA satisfy the same differential equation. The

boundary conditions on n are obtained from equation (38) by sub-

stitution for ij/ from equation (23), for <J>3 from equation (40),

and for <f>i from equation (45). The result is

Irlo. r. 3i n + / la] = JILL r. l n + / in.]
^ L 9r r 8rJ r=R ^2

 L ar 8rJ r=Q

(46)

If one requires that n be bounded at r = 0, just as ̂  is, then the

right-hand side vanishes. The use of equation (30) to eliminate

r leads to
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l] = 0 at r = R
OI -p^

W

Since top is arbitrary at r = R,

- o . t r . R (47)
W

Since the boundary condition (47) is the same as the boundary condi

tion (30), n = V\ without loss of generality, and hence, one does

not need to solve the adjoint problem. One needs only to solve the

quasi-parallel problem to determine ^ and then determine <j>in from

(48)

according to equation (45). The remaining <J>'s are then determined

from equations '(39) - (43).

Once the adjoint functions are known, the constraint conditions

are determined as follows. On multiplying equations (11) - (16) by

<f> , 4> , ..., <f> , respectively, adding the resulting equations,* n 2 n 6 n
integrating the result by parts from r = 0 to r = R to transfer the

r-derivatives to the 4>'s, and using equations (32) - (37) and (17),

one obtains the following constraint:
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f <J> in[-iuoknPl - Tk^oU! + |^ (PoUl + uoPl)] - rvoPl fp (-p1)

Pl(u. - + v0

- Ul (Pov0<j)2n) > 4»3n[- iuoknPoVl -f PoUo

P1(V. + U0 }] - V O V 1

+(Y-l)iu0knPi+ Pou0

3 a
gp (PoV0<J>5 n ) + (Y-l)pi |p (vo< t> s n )> dr

77" - 1)] = 0 (49)
w w r=R

3.4 Equations Describing the Wave Envelopes

Substituting the assumed solution, equations (19) and (20), into

equation (49) yields the following 2N equations for the A's:

2N dA 2N
I f T^ = I 9 A (50)

n£l mri dx n^
 ymn n

where R

fmn = C/{*im(p«*n + u«*n} + *2m(p«u«*n) + <|)3m(poUol|'n
0

' i/k dx
e (51)
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4. NUMERICAL SOLUTION

A schematic drawing of the duct configuration under consideration

is shown in Figure 1. The method of solution described can be applied

to any type of circular duct, converging or diverging. For the purpose

of demonstrating the method, a simple cosine variation of the duct

radius is chosen.

R = 1 + a?[- 1 + cos(2ir x/L)] (53)

The radius of the duct at the entrance has been chosen as the reference

length, a2 is a constant that specifies the magnitude of the variation

in the outer.wall (if a2 = 0, the duct is uniform), and L is the dimen-

sionless length of the duct. The entire length of the duct is assumed

to be lined with a point-reacting liner consisting of a thin porous

facing sheet backed by cellular cavities of depth d; if the facing sheet

is thin and the cavity depth is small, the specific acoustic admittance

is described by

0 = ] _- (54)
Re(l - 1a>/u0) + icot(wd/y )

where R is the flow resistance and u0 is the characteristic frequency

of the facing sheet. Thus, the physical characteristics of the duct

are prescribed by input of the values of a2, L, R , u>o and d to the

program.

A simple model of the mean flow has been selected for the prelimi-

nary stages of the application of the theory. This model uses one-

dimensional gas dynamics theory to describe the mean-flow variables in

the inviscid core; the velocity profile in the boundary layer is taken

to be a quarter-sine profile, that is

29
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^- = sin[ir(R - r)/26] r >_ R - 6
C (55)

= 1 r <_ R - 6

51
The temperature profile is related to the velocity profile by

T Y 1 w ~" 3rl n
,- , + r, -i-M*[l - <^H *-T—[1 --] (S6a,

T ./T = 1 + r,-^- M! (56b)
dU L C {*

where the subscript c refers to values in the inviscid core, T is the

wall temperature, T, is the adiabatic wall temperature, 6 is the bound-

ary-layer thickness, rx is the recovery factor and Y = 1.4 is the ratio

of the gas specific heats. The axial variation of the boundary-layer

displacement thickness 6* is assumed to be known and is specified in

the program by a simple polynomial variation:

. 6*/6$ = 1 + b,(x/L) + b 2 ( x /L ) ?

The displacement thickness and the Mach number within the uniform core

have prescribed values 6$ and M , at x = 0; the subsequent axial varia-
C0 • .

tion of 6 and M are calculated within the program from the definition of

displacement thickness and from mass-flow considerations. The one-dimen-

sional gas-dynamics theory provides the axial variation of T , p , u ,
\f \f \*

etc. and the boundary layer profiles are computed from equations (55)

and (56). Thus, the mean flow within the duct is prescribed by input

of the values of M , 6£, bi, b2 , ri, Y, and T to the program.
GO W

To calculate the changes in the amplitude of the acoustic wave

first requires the eigenfunctions i^. The quasi-parallel flow equations

(29) and (30) are solved by using a Runge-Kutta forward-integration

technique and by employing a Newton-Raphson procedure to determine the

eigenvalue k.
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To determine the coefficients g of equation (52), one has to

evaluate the axial gradients of the wavenumber, k, and of the eigen-

functions ip . These axial derivatives can be obtained from equations

(29) and (30); these two equations are written in the form

K' - » - 0

(57)

at r - Rat r - R
w (58)

Differentiating the above equations with respect to x and using

= 0, one obtains

_ rl_ i!lo. 1 ilLL 2JJL + 1 a JJJL dk 2k"_ . _
T0 3r9x " TJ 3x 8r .a 3r dx to 3r3x

(59,

'3r v»y ' i/ M a* vP>r 2 " ' I/or dX T T
W W

dTw OIP at r = (60)
W 1 / 2

Thus, equation (59) can be written as

where
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(63)

g^PEquations (60) - (61) will have a solution for ̂ — if, and only
dX

if, a solvability condition is satisfied. To determine the solvability

condition, one multiplies equation (61) by n|;P, integrates from r = 0 to

r = R, and obtains

R

...Vdr -

R-

- -jf

w w
The integrals in equation (64) are evaluated numerically by using

Simpson's rule, and the value of ^ is thus determined. With -p

known, equation (61) can be integrated by letting

= /(r;x)E(r;x) (65)

and solving for E(r;x).

The number of radial modes to be considered and the values for

their propagation constants at x = 0 must be supplied as input to

the program. The propagation constants at each subsequent axial sta-

dktion are estimated from k and -r̂ - at the previous station and the usual

iteration procedure is used to obtain convergence. This helps to

reduce the time required for the calculation and avoids the usual

jumps encountered between the modes.
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The adjoint functions are found by using the relations (39) - (43)

from the quasi-parallel-flow variables ijjp, ^— , and k. The coefficients
oX

f and g are then evaluated from equations (51) and (52). Writing

equation (50) in matrix form, FdA/dx = GA, and solving for dA/dx, one

obtains

H£ = F-]GA (66)

where A is a column matrix whose elements are the A .

A Runge-Kutta forward-integration technique is used to solve equa-

tions (66) for the function A at each axial station. Since the problem

is linear, one can determine the solution for any problem subject to

general boundary conditions at the two ends of the duct by a linear

combination of 2N linearly independent solutions.

The linearly independent solutions are obtained, by setting all

mode amplitudes except one to zero at x = 0 and integrating equation

(66) to x = L. One such integration for each of the 2N modes allows

one to obtain the transfer matrices TRi, TR2 , TR 3 , TRi+ which are

defined by

B+(L) = TR!B+(0) + TR2B"(0)

B"(L) = TR3B+(0) + TRUB~(0) (67)

+ i/kndxwhere B (x) is a column vector of the amplitudes A e of the

right-running modes and B~(x) is a column vector of the amplitudes
. 1/E dx
A e of the left-running modes. Following Reference 55,, results

are obtained in the form of transmission and reflection coefficients

for the variable-area segment being considered. The transmission and

reflection coefficients relate the magnitudes of the outgoing modes to

those of the incoming modes,
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B+(L) = TL'V(0) + RL'LB-(L)

B'(0) = T°'LB-(L) + R°'°B+ (68)

50and are calculated from the transfer matrices by

T°'L -

(69)

RL,L =

TL'° = TR, + TR/'0

[The reflection coefficients are the negative of those defined

in reference 55 as a consequence of the use of the positive sign on

the ̂  term in equation (19)]. The (m,n) term of T represents the

transmission of the m radial mode at x = L due to the n radial

mode incident at x = 0, etc.



5. DISCUSSION

The computer program described in the previous section has been

used to investigate the effect of a compressible mean flow on the multi-

modal wave propagation in a nonuniform circular duct. There exist no

numerical or experimental results for this problem that can be used

for comparison purposes. However, as stated in the method of solution,

the present solution recovers that based on the method of multiple

scales if the axial variations are slow. Moreover, calculations made

for a uniform duct with a fully developed boundary layer agree with

the well-known results for waves propagating in a uniform duct.

In all the cases reported here, the coefficient a2 was chosen to

be 0.12 and the duct length L to be 2. This gives a maximum wall slope

of 0.37, sufficiently large to produce modal coupling but not so large

as to entirely negate the validity of the mean flow model. The bound-

ary-layer displacement thickness at the entrance is 6* = 0.02 and it

is assumed that it decreases linearly in the converging duct section

0 £ x 5 1 with b] = -1 and b2 = 0; although this is artificial, it

serves to illustrate the applicability of the method. The circumferen-

tial mode number is zero in all the reported calculations. The re-

covery factor for the mean temperature profile is assumed to be unity.

The calculations are terminated at the minimum cross section of the

duct at x = 1 in all cases. Thus, the transmission and reflection co-

efficients presented are for a converging duct for downstream propaga-

ting modes and a diverging duct for the upstream-propagating modes.

In all lined-duct cases, the liner properties are R = 0.8, w0 = 15,

d = .05.

35
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In Figure 2, the axial variations of the functions AI and Aiexp

(i/kidx) have been plotted. It can be seen that the function AI varies

more slowly than the mode amplitude Aiexp(i/kidx). As noted earlier,

this is the basic advantage of the wave-envelope technique, since fewer

numerical steps are required to describe the more slowly-varying curve.

The wave envelope technique becomes more advantageous as the duct

length and the frequency are increased. Figure 3 shows the results for

a higher frequency. Clearly, as the wavelength of the signal decreases

further, a direct numerical calculation of the amplitude A exp(/ik dx)

becomes more difficult.

In Figures 4 and 5, the strength of the interaction among the

modes is demonstrated. In Figure 4, the first right-running mode is

incident at the entrance of the duct with an amplitude (1.0 + O.Oi).

As this mode propagates through the duct the second right-running mode

develops and starts propagating with an amplitude that is small compared

with the incident mode. Although the left-running modes also develop,

they are insignificant throughout the duct indicating that reflection

effects are very small. It was reported by Kaiser and Nayfeh that

reflection is insignificant for the case of no mean flow except near

cut off; the results shown in Figure 4 are consistent with this general

conclusion. However, in some cases with mean flow, such as the one

shown in Figure 5, a significant development of left-running modes may

occur. Thus, both sets of modes must be included for determining the

propagation in lined ducts with flow.

In Figure 6, the axial variation of the absolute value of the

amplitude Anexp[/ik'dx] for the left-running modes has been plotted.

It can be seen that as the Mach number approaches unity, the amplitudes
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Figure 2. Comparison between the slowly varying function AI and

Aiexp(i/kidx) in a lined duct; first right-running mode in-

cident at x = 0; u = 4, N = 1, M = 0.3.
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Figure 3. Comparison between the slowly-varying function A2 and

A2exp(i/k2dx) in a lined duct; second right-running mode

incident at x = 0; u = 10, N = 3, M = 0.3.
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become very large. This is to be expected because the wavenumbers of

the left-running modes become very large. This can be seen more easily

from an examination of the wavenumbers for the case of uniform flow;

that is

M u> + w2 - (1 - M2)tc2
k = _ _c c

1 " Mc

where'M is the Mach number and K is the eigenvalue. As M -*• 1, one

of the values of k approaches infinity, while the other remains bounded.

This unusual behavior of the solution is due to the linearization of the

acoustic equations. Thus, the inclusion of nonlinear terms becomes

necessary at high Mach numbers. Although the numerical results may

qualitatively show the correct behavior for cases in which M is greater

than about 0.75, they are quantitatively in error because the linearized

theory is not valid at these high Mach numbers. Thus, Figure 6 shows

qualitatively that the amplitude of an incident mode at x = L must be

very large for its amplitude at x = 0 to be non-negligible. Consequently,

the transmission and reflection coefficients for such modes will be small.

Figures 7 and 8 show the variation of the transmission coefficients

at x = 0 due to modes incident at x = L with throat Mach number for hard

and soft-walled ducts, respectively. In this case, the transmission co-

efficients represent waves propagating against the mean flow. The direct

transmission coefficients decrease rapidly with increasing throat Mach

number. The effect of the axial variations is evident in these figures

which show the coupling of the modes. However, the intermodal trans-

mission coefficients are small compared with the direct transmission

coefficients except for throat Mach numbers larger than 0.75. This is
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perhaps expected because, although the axial variations are not small,

they are not very large; the maximum wall slope in all cases is 0.37.

Figure 7 shows also that the intermodal transmission coefficient Ti2

from the high to the low mode is smaller than the intermodal transmission

coefficient T2i from the low to the high mode. Comparing Figures 7

and 8 shows as expeced that the overall direct transmisssion coeffici-

ents for the sofl-walled case are smaller than those for the hard-

walled case. Moreover, the intermodal transmission coefficients de-

crease when the walls are lined.

The transmission coefficients at x = L for modes incident at x = 0

are plotted in Figure 9 for a hard-walled duct. In this case, the trans-

mission coefficients represent waves propagating with the flow. It in-

dicates that the amplitudes of the transmitted modes in a converging

duct decrease with increasing throat Mach number. Hiqher throat Mach

numbers tend to decrease the coefficients of the direct transmitted

modes more than the intermodal coefficients. As in the case of upstream

propagation, Figure 9 indicates that the intermodal coupling is more

effective from the lower to the higher-order modes. Comparing Figures

9 and 10 indicates that.lining the duct walls leads to a quantitative

reduction in the direct transmission coefficients without any signifi-

cant qualitative change. The intermodal coefficients seem not to be

affected significantly by the throat Mach number or the wall liner.

Figures 11, 12, and 13 present the transmission coefficients at w = 10

in a lined duct for the first, second, and third upstream modes, re-

spectively, including the intermodal coupling. In most cases an increase

in Mach number reduces the magnitude of the transmitted mode; however,
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the direct transmission of the third mode (T33) and the transmission of

the first mode due to the input of the second (112) increase with in-

creasing Mach number up to M^~ 0.5 - 0.7 before decreasing at high Mach

numbers.

Figures 14 and 15 show the variation of the reflection coefficients

at the left end for hard and soft-walled ducts, respectively. For the

hard-walled case, the direct and intermodal reflection coefficients are

insignificant even compared with the intermodal transmission coefficients

shown in Figures 9 and 10. Comparing Figure 14 and 15 indicates that

the reflection coefficients depend strongly on the wall lining and

throat Mach number. A rather abrupt increase in the magnitude of the

reflection of the downstream propagating waves into the lowest upstream

mode occurs at a throat Mach number of ~ 0.4. Reflection into the second

upstream mode and all reflections at x = 1.0 (not shown) remain small

even in the lined-duct case.
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6. CONCLUSIONS AND RECOMMENDATIONS

An acoustic theory is developed to determine the sound transmission

and attenuation through an infinite, hard-walled or lined circular duct

carrying compressible, sheared, mean flows and having a variable cross

section. The theory is applicable to large as well as small axial vari-

ations, as long as the mean flow does not separate. The technique is

based on solving for the envelopes of the quasi-parallel acoustic modes

that exist in the duct instead of solving for the actual wave, thereby

reducing the computation time and the round-off error encountered in

purely numerical techniques. The solution recovers the solution based

on the method of multiple scales for slowly varying duct geometry.

A computer program has been developed based on this theory for

general mean flows. Numerical calculations performed for waves propa-

gating in uniform ducts carrying fully developed mean flows agree with

the well-known results for uniform ducts. To investigate the effect

of the axial variations of the flow and the duct geometry, calculations

using a simple mean-flow model have been performed. The model consists

of a one-dimensional flow in an inviscid core and a quarter-sine pro-

file in the boundary layer.

Results are presented for the reflection and transmission coeffi-

cients in ducts with varying slopes and carrying different mean flows.

The main conclusions are:

1. Axial variations of the duct properties and the mean flow pro-

duce coupling between the modes.

2. It is found that coupling between modes travelling in oppos.ite

directions can be significant for some cases with a mean flow in contrast

with the no-mean-flow case.
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3. At high Mach numbers the wavenumbers for the upstream modes

become very large, and the nonlinear terms must be included.

4. Overall direct transmission coefficients decrease when the

duct wall is lined, but the addition of a liner may lead to an increase

in the intermodal transmission coefficients in some cases.

5. As the throat Mach number increases, the transmission coeffi-

cients are reduced; however, the coefficients for the upstream modes

are reduced more than those of the downstream modes.

6. The addition of a liner may lead to an increase in the reflec-

tion coefficients.

The only limitation of the wave envelope technique is that it is

not suitable near cut off, since the coefficient multiplying the term
dAn
-T—- approaches zero. This problem is more apparent for a hard wall
\J A • .

duct than for a soft wall duct, because k is exactly zero for a hard

wall duct. Near cut off, the problem requires a turning-point analysis

33using either the method of multiple scales or the Langer transformation

Although the present theory is an important step towards qualita-

tively understanding the physical mechanisms responsible for noise re-

duction in choked or partially-choked inlets, it cannot be applied to

actual inlet configurations. . To accomplish this, one needs to extend

the present work by (1) coupling the present program with a computer

code that calculates the actual mean flow in such inlets, (2) including

the nonlinear terms in the acoustic equations, and (3) incorporating a

turning-point analysis for cases when modes approach cut-off conditions.
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