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1. INTRODUCTION

The present practice of using high-bypass furbojet engines has
resulted in a decrease in jet noise. However, thesé engines emit noise
from their inlet nacelles above a desirable level. The present work
is part of a considerab]e effort being made tb reduce nacelle noise.

One promising approach to the reduction of inlet noise is the
use of a highAsubsonic Mach number inlet, or partially choked inlet,
in conjunction with an acoustic duct liner. The use of chéked inlets
has Tong been recognized as an effective means of reducing upstream
" propagation although such inlets require carefu]ldesign to prevent
excessive losses in cbmpressor performance. However, the physical
mechanisms respohsib]e for the noiseAreduction in high-éubsonic Mach
number inlets are not completely understood, and techniques for the
theoretfca] analysis of sound propagation through'regions of near-
“sonic mean flow are not available. Two major problems must be over-.
come 1in the development of such a model: (1) the mathematical tech-
niques for the calculation of sound propqgation in ducts are well-
developed for parg]]e] ducts but are not fully developed for ducts
.of varyina cross section that carry mean flows with strong axial and
transverse gradients; (2) 1inéar acoustic equations are inadequate
to describe acoustic propagation.in regions of near-sonic mean flows.
In the investigation presented here, the first of theée two problems
was addressed, and a wave-envelope technique baséd on the method of
variation of parameters was developed. This procedure éan be used as

the basis of the examination of the second aspect of the problem,
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the development of nonlinear models for the near-sonic region.

The concept of sound reduction by choked inlets has been investi-
gated experimentally at great length. The first contribution to the
sonic inlet concept goes back to 1960 when Maestre11o] used a trans-
lating centerquy that could be adjusted to vary the inlet throat area.‘
His experiment showed a 35 dB noise reduction at an inlet throat Math
number.of 0.9. | |

Several expefimehta] investigators followed Maestrello to test
actual jet engines with various shapes of centerbodies as well as
experimental ducts to choke the flow. Surveys qf the concept of the
choked inlet were giyen by Lumsdaine2 and K]ujber3. An updated sur-
vey is presented here.

- Sobell and Welliver4 tested a Bristol Olympus 6 jet engine; this
engine was choked by using a sonic block silencer. The backgrouhd
noise radiation associated with this experiment may be a reason why
only a 12 dB noise reduction was achieved. Greatrex5 éonducted an
experiment on an Avon,eﬁgiﬁe with a bullet shaped centerbody to choke
the flow. He reported a 20 dB noise reduction. |

| .To test the effect of choking the flow on thé reduction of inlet
noise, Sawhi]]s,tested an ST mode] inlet with a translating center-
body and reported a-33 dB noise reduction when the throat Mach num-
ber of the inlet was increased from 0.63 to 0.9. Cawthorn et a17
tested an SST inlet with a Viper 8 turbojet engjne and a translating
centerbody to choke the flow. They found that choking the flow resulted

only in a 3 dB noise reduction. Using two centerbodies of different



sizes to choke the flow of an SST inlet, Anderson® obtained a 20 dB
noise reduction at a throat Mach number of 0.77.

9 tested a T-50 engine to show the acoustic and internal flow

Schaut
characteristics of airfoil grid inlets. The configuration consisted
of an inlet duct with two rows of two-dimensional airfoi]s; the flow
Mach number between the airfoils was maintained at a transonic level
to reduce noise radiation from the inlet. A 13 dB noise reduction was
measured at a Mach number of 0.9. Another test was conducted by Andér- _

son et a]]o

on the airfoil grid inlet; they used two.airfoils posi-
tioned in parallel in én inlet duct. They reported a 1oss of 7% in the
inlet recoVefy pressure when they attained a 27 PNdB noise reduction.
In]et guide vanes also have a significant effect on the noise
reduction. Chestnutt and Stewartn conducted an experiment by using.
an écce]erating inlet. They reported noise reductions up to 25 dB,
due to the elimination of multiple pure tones, when the inlet apbroach-
ed choking conditions. The‘only drawback is that the noise reduction
.was accompanied-by a significant reduction in the cdmpressof efficiency.
To determine the effect of the shape of the guide vane on the noise
reduction, Chestnutt]2 tested uncambered and tapefed,in]ét guide vanes.
He obtained noise reductions of about 28 dB and 36 dB for the uncam-

10 tested.

bered and tapered guide vanes, respectively. Anderson et al
radial vane inlets and showed a 22.5 PNdB noise reduction with a 7%
loss in recovery pressure.

Cope]aﬁd]3 sfudied the noise radiation from a rotor in a 11nedv
annular duct at high subsonic Mach number. He achieved about 7 dB

reduction in the overall noise when he increased the duct length by a

factor of 4.



Hawking and Lawson]4 reported a large reduction in acoustic
energy for a waisted geometry. They suggested that this reduction
is due to an increase in the axial Mach number. Benzakin et al]s
conductéd an experiment on a lined accelerating inlet. They concluded
that the noise increases with increasing Mach number until throat -
Mach numbers of 0.6, then the noise level goes down with further
increases in throat Mach number.

It.is clear from the above experiments that inlet choking may
be an effective»noise suppression mechanism. The amount of noise
reduction depends on how the choking is achieved. However, the
choking may bé accompanied by a loss in the compressor efficiency.
Thus, the optimum choking configuration ié the one accompanied-by
ho loss or a minor loss in the compressor efficiency.

Many investigators studied the possibility of atfaining a signi-
ficant noise reduction'with a minor loss in the compressor efficiency;
they showed that the loss in the compreésor efficiency can be minimiz;
ed by carefully designing the centerbody. |

Klujberls'reported a noise reduction when a sonic inlet is used.
This reduction occurs when the average throat Mach number increases
from 0.5 to 1.0. He reported also that more reduction of the noise can
be attained but with a further decrease in the inlet recovery pressure.

Higgins et a1]7 measured a significant noise reduction with a
moderate loss in recovery pressure by using variable cowl inlets.

18

Lumsdaine et al studied experimentally inlets with translating
centerbodies; they showed that translating centefbody inlets are

superior aerodynamically and more effective in reducing the noise than



collapsing cowl inlets. Koch et a119 reported a 15 dB sound Tevel

attenuation with a minimum loss of aerodynamic performance when operat-

0 tested

ing at an average.Mach number of 0.79. Miller and'Abbott2
experimentally an inlet with a translating centerbody to choke the flow;
they reported a 20 dB noise reduction with a pressure recovery of
98.5%. AbbottZ] indicated that the most efficfent method to achieve
aérodynamic performance and noise reduﬁtion 15 to use a cylindrical

centerbody at takeoff and a bulb-shaped centerbody at approach to choke

the flow; He reported that increasing the inlet length results in a

22 tested

higher recovery pressure for a given noise reduction. Groth
a J-85 turbojet engine uéing a translating centerbody inlet with a
“radial vane. He measured a 40 dB reduction in a fully choked inlet

_ , : . 2
while maintaining a "recovery pressure of 92.1%. Savkar and Kazin 3

showed that a 99% recovery pressure can be attained for the same amount
of noise reduction by proper contouring of the centerbody and careful

desiQning of the diffuser.‘ Mi]]er24

experimentally determined how a
sqnic inlet can be designed to have a significant‘noise reduction with
a minimum 1655 of total pressure. |

As we'see above, most, but not all, of these investigdtions have
noted signifjcant reductions of the noise level when the inlet is
choked. The géometry of’the inlet, the geometry of the centerbody and
the operating condition seem to have an effect on the acoustic as wef]
as on the aerodynamic performance. Further, most of the potential
noise reduction is achieved by operation in the partially choked state

(mean Mach number in the throat of 0.8-0.9). Some investigators (e.g.,

Chestnutt and C]ar‘k25 and Sobel and Wellivera) report the possibility



-form ducts. Surveys of'these techniques were made by Nayfeh et al™

of substantial "leakage" through the wall boundary layers, whereas
othefs (e.qg. K]ujber]ﬁ) report-that such leakage is minor. Although
the experimental studies have demonstrated that the choked inlet is
a viable technique, they have not provided insight into the physical
mechanisms that-are responsible for the noise reduction or that ex-
plain the differences amoné the several experimental resutls.

Several analytical as well as numerical techniques have been

developed for the analysis of wave propagation in uniform and nonuni-

26

and Nayfeh27. In this study, only a short critique is presented.

The problem of sound propagation in a uniform duct (rectangular,
circular, etc.), with or without mean flows, for hard as we11'as lined
walled ducts, has been studied extensively. A number-of parametrjc
studies have beén done for the case of uniform ducts,.showing the
effect of each parameter 6n‘noise attenuation. A large number of

papers are cfted in the review article of Nayfeh et a126

R egch of which
discusses at least one of the acoustic.parameterﬁ. |

The investigation of the problem of sound propagation in nonuniform
ducts was motivated by the experimental discoveries discussed earlier
in this introduction. These investigations are discussed below in
order of increasing complexity of the mean flow: no flow; one-dimension-
al flow; and two-dimensional flow. |

The problem of sound propagation in a variable-area duct with no-
mean flow was discussed for horns by Webster28. He considered only the

lowest propagating mode. Stevehsonz9 extended Webster's work to investi-

gate the propagation of various modes. He used the method of weighted



: residuals to solve the problem of wave propagation in hard-walled horns

30 extended the method of weighted

of arbitréry,shape. Eversman et al
residuals to sfudy multimodal propagation in a nonuniform lined duct.

A]fredson3] divided the variable area duct into a finite number
of stepped uniform ducts. Thus, a large number of stepped uniform
ducts are needed to provide sufficient accuracy for cases with large
axial gradients.

Nayfeh and Te]ionis32 used the method of multipie scales to analyze -
wave propagation in ducts with s]ow]y; but arbitrariiy, varying cross
seétions and wall admittance. For the case of hard-walled ducts, the
solution of Nayfeh and Telionis is equivalent to that of Stevenson fér
slowly varying ducts. Nayfeh and‘Te]ionis pointed out that both of the
solutions break down near cut-off; they suggested usingla turning point
analysis (see 7.3.2 of Reference 33) to overcome this problem.

Isakovitch34, Samue]s35 and Sa]ant36 obtained perturbation solu-
tions for wave propagation in ducts whose rigid walls have sinusoidal
undulations of small amplitudes. Their perturbation expansions are not
valid near résonance conditions; thaf'is, whenevér the wave number of
the wall undulation is approximately equal to the sum or difference of
the wave numbers of any two acoustic modes. Nayfeh37 used the method
of multiple scales to obtain an expansion valid near resonance. He

found that neither of the modes involved in the resonance can propagate

in the duct without exciting the other.

38 33 developed finite difference

Quinn™~ and Baumeister and Rice
methods to study a plane wave propagating in nonuniform ducts. We.

- note that a large amount of computation will be required with these



purely numerical techniques because a large number of grid points are
needed to provide sufficient accuracy. The axial step must be small
enough to resolve the smé11est wave length, while the transverse step
must be small enough to resolve the highest mode. Thus, the computa-
tional time increases rapidly with increasing frequency and duct 1éngth.
To reduce the computational time for plane waves in a two-dimensional
duct, Baume‘ister40 expressed the potential function ¢(x,y,t) as ¥(x,y)
exp[i(kx - wt)], where k is a properly chosen constant, such as the
wavenumber in a hard-walled duct. Then he solved for ¢(x,y) using finite
differences.

Approximating the mean flow by a quasi-one-dimensional flow,

Powe11%!

used a multiple reflection method to study the acoustic propa-
‘gation through variable-area ducfs. Eisenberg‘and Kao42 analyzed plane
waves in a variable area duct that yields an equation Qith éonstant co-
efficients. Davis and Johhs_on43 used a forward-integration technique
to solve the aéoustic equation describing the axial variations. Huerre
and Karamcheti44 analyzed the propagation of the iowest mode by usfng
the WKB. approximation, while King qnd Karamcheti45 developed a second-
order-accurate numerical method to solve for the propagation through a -
variable area duct by using the method of characteristics.

Nayfeh and co-workers studied extensively the propagation of various
acoustic modes in ducts having slowly varying cross sections and carrying

4

general mean flows. Nayfeh et al 6 discussed the acoustic propagation

in lined plane ducts with varying cross sections and sheared mean flow.

7

This work was extended to annu]af ducts by Nayfeh et a]4 . The effect

of a compressible sheared mean flow on sound transmission through a



9

variable-area plane duct was studied by Nayfeh and Kaiseras. Using

their method, one can determine the transmission and attenuation of all
modes including the effect of transverse as well as axié] gradients,
but the techniqqé is 1imited to slow variations. Moreover, the expan-
sion needs to be carried out to second order in order to determine re-
flection of the acoustic signal.

49 developed a theory by using the method of weighted

Eversman
residuals to determine the transmission of sound in plane nonuniform
hard-walled ducts with mean flow.  He obtained equations describing the
axial variations of the modes. To éo]ve these equations, one needs a
1argé number 6f axial steps, especially as the mean Mach humber ap--
proaches unity and the frequency becomes large, leading to a rapid de-
crease in the axial wavelength. |

In summary, purely numerical techniques suffer from the require-
ment of large computation times, and they have been restricted thus far
to caées of no-mean flow. Ana1ytica1 téchniques have 6n1y been applied
thus far to simple cases of one-dimensional mean'f10w5'and/of plane
acoustic waves and/or slowly varying duct geometry and promise to be-
coﬁe unwieldy for more general cases. Thus, the specific analytical
and computationa]vtools that are needed for the study of wave propagation
in ducts involving'large gradients in both the axial and transverse
directions are lacking. | |

In this study an acoustic theory is developed to Qetermine the
sound transmission and attenuation through an infinite, hard-walled or
lined circular duct carrying compressible, sheared, mean flows and

having a variable cross section. The theory is applicable to large



10

as well as small axial variations, as long as the mean flow does nqt
separate. The technique is based on solving for the envelopes of the
quasi-parallel acoustic modes that exist in the duct instead of soiving-
for the actual wave. The feasibility of this technique has been demon-
strated by Kaiser and Nayfeh50 for plane ducts with no-mean flow. -

The probiem is formu]éted in the following section, the method of
‘'solution is presented in Section 3, the numerical solution is des-
cribed in Section 4, the numerical results and discu;sion are presented
in Section 5, and}the‘conc1usions and recommendations are presented in

Section 6.



2. PROBLEM FORMULATION

The transmission and attenuation of sound in hard- and soft-
walled circular inlet ducts (Figure 1) carrying viscous or inviscid
. high §ubsonic mean flows is examined. The mean Mach number in the
throat is near sonic; thus, the axial and radial gradients of the mean
flow are large. The cross section of the duct varies arbitrarily
with the axial distance.

- It is convenient to work with dimensionless quanfities. To fhis
end, velocities, lengths, and time are made dimensioﬁ1ess by using
the ambient speedvof sound Cyo the radius R, of the duct in the uni-
form regioh (Figure f) and Ro/ca, respectively. The pressure p_is
made dimensionless by using pac;, the density p.and temperature T are
‘made dimensionless by using their corresponding ambient values, whiTe
the viscosity v and the thermal conductivity k are made dimensionless
by using their corresponding wall values in the uniform section. In
terms of these dimensionless variables, the equations which describe

the unsteady viscous flow in a duct are (see for example, Sch]ichtingS]).

conservation of mass

conservation of momentum

>

-> .
o+ VW) = - vtV (2)

11
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conservation of energy

p@L 47 Ty - (1)@ 4T - ) -
G ¥ e () + (Y-1)e] 3

Aequation of state

For a perfect gas,

Yp = pT | (4)

where V is the velocity vector, t is the time, Y is.the ratio of the

gas specific heats, Pr = uwcp/Kw js the Prandtl number, Cb

specific heat at constant pressure, and Re = pacaRo/pw.is the'Reynolds

is the gas

number. For a Newtonian fluid, the dimensionless viscous-stress ten-
sor 1 and the dimensionless dissipation function ¢ are related to v
by

W[V + (W)*] + AV - V

fl-
"

> 3 3 3 /a
=1 : W= jz] izl T3 50V4/3%;
where (Vv)* denotes the transpose of Vv.
In general, the ducts carry a high subsonic, steady, sheared mean
flow that satisfies equations (1) through (4). The presence of sound
in the ducts results in the perturbation of the flow quantities so

that

qQ(Ft) = qo(¥) + a,(F,t) 1 (5)

where‘q stands for any flow quantity, ¥ is the position vector, q, is
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the mean-f1ow part, and q; is the acoustic part. Substituting equa-
tion (5) into equations (1) through (4) and eliminating the mean-flow

quantities, one obtains the following acoustic equations:

30,
it TV (povy + p1Ve) = NL (6)
3V
. > > > :
Pol3E+ Vo * Wi # Vi * Wo) + pyVo » Wy =
] .
~ Wt Vet M (7)

e

3T |
PolGE- + Vo * VIi +.V1 + VTo) + o1V 7T, - (-1 GE

. . ‘
+ vy * Vp, + vx * Vpo) = %E'[%; Ve (koWTy + k,VT,)

+(r-ey] + N - C®)
DU R B | _
Po  po | To ()

where T and ¢lvare linear in the acoustic quantities and NL stands .

for the nonlinear terms in the acoustié quantities.

| No solution to equations (6) through (9) shbject to génera1'

initial and boundary conditions is available yet. To determihe solu-
tions for the propagation of sound in ducts, researchers have used
simplifying assumptions. Here, the nonlinear and viscous terms in the
acoustic eduations are neglected, and the mean flow is taken to be a func-
tion of the akia] énd radial coordinates only. Thus, we neglect

swirling mean flows. The assumption of linearization is not valid for
high sound-pressure levels. The effects of the nonlinear acoustic

properties of the lining material become significant when the sound-
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pressure level exceeds about 130 dB (re 0.0002 dyne/cm ) while the
effects of the gas nonlinearity become significant when the sound
pressure level exceeds about 160 dB. In particular, the nonlinearity of
the gas must be included when the mean flow is transonic (i.e., near
the throat). 'Nayfehsz showed that the viscous terms in the acoustic
equations produce an effective admittance at the wall that leads to
small dispeksion and attenuation. Fdr linedlducts, this admittance
produced by the acoustic boundary layer may be neglected, but it
cannot be neglected for hard-walled ducts as demonstrated analytically
and experimentally by Pestorius and B1ackst0ck53;

A cylindrical coordinate system (r,6,x) i§ introduced as shown-
in Figure 1, Since>there is no swirling flow, each'f]ow-quantity

q,(r,x,8,t) can be expressed, for sinusoidal time variations, as
q:{r,x,8,t) = J q (r,x)exp[-i(wt + mg)] (10)
‘ m=0 im

where  is the dimensionless frequency. Using the above assump- -
tions, one can. rewrite equations (6) through (9) in cylindrical

coordinates as

. o, m 19 -
- iwpy + 57 (pour + uepy) + 7 Wi+ — oo (rppvy * rveps) = 0 ;
. (11)
e 4 +vo SUL 4y By, oop. Bug , . Bugy
pol-iwuy + 5= (uour) + vo st V1 g + palue S+ ve 570 =
P ,

. 3 oV, Qv 3Vy 9Vy
- —_— =
pol-iwv, + a7 (vovi) + up X T W 5§ﬁﬂ + pl[v9 o T oUo 3y

ap, - - ' . :
gEL | (13)
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. W VoW . oW im
pol-iuww, + vg 5?11+ —£7A'+ Uo Siii R (14)

. oT oT oT oT oT
- 9y CABY olg CARS LAY
pol-iwT, + v, ar + U ™ + v, or +u, X + p1lve r

| : ? 3
+ Up %%“J - (1) [-dwpy + up L+ v S+ Uy o

X 9X
+ V1%gn] =0 . . | | (15)
pr.por, , (16)
Po ©Po To

where u, v, and w are the ve]ocities in the axial, radial, and
azimuthal directions, respectively, and the sub;cript m has been
suppressed.

| To complete the problem formulation, one needs to specify the
initia]_and'boundary conditions. The boundary conditions are based
on the assumption that the duct wall is lined with a point-reacting
acoustic material whose specific acoustic admittance 8 may vary
along the duct. -For no-s]ip mean flow, a requirement of continuity

of the particle displacement gives

Vi - R'Ul = pBC P1 /1 + R'2 | atr =R (]7)
- WW '

where R' is the slope of the wall and the subscript w refers to values

at the wall.



3. METHOD OF SOLUTION
3.1 Critique of the Existing Methods

Since there is no exact solution available yet for equations (]1)
through (16) in ducts of varying cross sections and since purely nu-
merical solutions of this problem are not feasible owing to the ex-
cessive amount of computation time needed, a number of approaches have
been developed to determine approximate solutions -to this prob]em2 ’27.
These approaches include quasi-one-dimensional approximations, solu-
tions for slowly varying cross sections, solutions for weak wall un-
duiatfons, Variationa] methods, and approximation of the duct by a
series of stepped unifdrm cross sections. A short critique of these
approaches fs discussed next (more detai]éd crftiques are given in
references 26 and 27), and it is followed by the pfobosed'acoustic-
wave-envelope technique{

In the‘quasi-one-dimeﬁsiona] appfoach, one can determine only
the lowest mode in ducts with s]ow1y>yarying Ccross section§ and cannot
account for transverse mean-flow gradients or large wall admittance.

In the slowly varying cross-section approach, one can determine -
the transmission and attenuation for all modes inc]udfng the effects
of transverse as well as axial gradients, but the technique is limited
to slow variations and the expansion needs to be carried out to second
order to determine reflections of the acoustic.sfgnal.

In the weak-wall-undulation approach, one assumes that the dimen-

sionless duct radius is described by R = 1 + eR;(x), where € is small.

17
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Thus, in this approach one can account for all effects except large
axial variations.

In the variational approach, one uses either the.Rayleigh-Ritz
,procedure, which requires knowledge of the Lagrangian describing the
problem,or the Galerkin procedure (the method of weighted resiquals).
Since the Lagrangian is notlknown yet for the general problem, the
Galerkin procedure is the only applicable technigue at this time.
According to thié procedure, one chooses basis functions (usually the
mode shapes of a quasi-parallel problem) and represents the pressure,

for exampTe, as .
Py = ngl P (X4, (rsx) | (18)

where the wn are the basis functions which, in general; do not satisfy
the boundary conditions. On expanding all flow varfaS1es in the form
of equation (18), substituting the result into equations (11) through
(17), aﬁd using the Galerkin procedure to minimize the error, one ob-
tains differentia] equations describing the P Since the'wn do not
satfsfy the equations and the boundary conditions, a large number of
terms are needed to satisfy the equations and the boundary conditions
and hence represent the so]ution for large cross sectional variations;
this leads to serious convergence questions. These problems can be
minimized by choosing the wn vto be the quasi-parallel mode shapes’
corresponding to the propagation constants kn' -The functions pn(x)
vary rapidly even for a uniform duct: pn(x) « exp(iknx), and kn can

be very large for high frequency, low-order modes. Thus, very small
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axial steps must be used in the computations, resulting in a ]arge-cbm—
putation time, which increases very rapidly with axial distance and
sound frequency.A

In approkimating a duct with a continuously varying cross-sectional
area by a series of stepped uniform ducts, a Targe number of uniform
'segments are needed to provide sufficient accuracy for the so]utioﬁ
when the axial gradients are large. Thus, this approach is impraéti-
cal in the present problem because an enormous amount of computation
time is needed even for the case of a moderate number of uniform
segments.

This short discussion shows that presently available techniques
would certainly fail'té.prbdg;e sufficient accuracy for the preﬁent
problem. Thus, a]te#ﬁate techniques must.be developed. In addition,
purely numérica] techniques would be impractical because of the ex-
cessive amount'of computation time. This is a result of the necessity
of using very small axial énd radial Steps to represent the rapidly
varying mode shapes aﬁd the axial oscillations of each modé. (In fact,
a computational difficulty exists in calculating the higher-order
Bessel functions that represent the mode shapes in a uniform duct carry-
ing uniform meanlflow unless asymptotic expansions aré used.) More-
over, the axial step must be much smaller than the wavelength of the
Towest mode in dfder to be able to determine the axial variations.
These small steps would cause the error in the numerical solution to
increase very rapidly with axial distance. Similar problems have béen
encountered by astronomers who developed what is usually called the

special perturbation method in. which one solves only’for the wave
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envelope instead of solving for the wave .itself. Here, we use this
idea to develop a wave-envelope technique for solving the present pro-

blem.
3.2 Form of Solution

According to this approach, one uses the method of variation of
parameters to change the dependent variables from the fast-varying vari-
ables to others that vary slowly. Moreover, the solution is approximat-
ed by a finite sum of the quasi-parallel duct eigenfunctions. |

Thus, we seek an approximate solution to ‘equations (11) through

(17) in the form

N L .
pl‘: n§13 An(x)wﬁ(r,x)exp(tfkn(x)dx)+An(x)wﬁ(f,X)eXp(ifkn(x)dx)f
(19)

Uy =
n

I~ =
-—

{An(x)wzfr,x)exp(ifkn(x)dx) + An(x)@z(F,X)exp(tfkn(x)d@;

(20)
with similar expression for vi, wi, T1, and p,, where the tilde refers

to upstream propagation, the’wn(r,x) are the quasi-parallel mode shapes
corresponding to the quasi-parallel propagation constants kn(x), and
the An(x) are complex functions whose moduli and érguments represent, in

some sense, the amplitudes and the phases of the (m,n) modes. The cir-
cumferential mode number m is assumed to be specified and the corres-

ponding subscript on A, ¥ and k is not exp]iéit]y stated; each variable
is expressed as a summation over a finite number:of radial modes n,
with n =1 denoting the fundamental radial mode rather than the conven-
tional n = 0. Since Ky is complex, the exponentfa] factor contains an
estimate of the attenuation of the (m,n) mode. Thus, the envelope

of the (m,n) mode is given by
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A (x)] exp-fa_(x)dx]

where o is the imaginary part of‘kn.
Since the wn_are the quasi-parallel mode shapes, they are the solu-

tions of the following problem:

- P+ kot # 1RAR N e LB YY) =0 (21)
- ipaab + oy 2o y¥ 4 kP =0 (22)
oo’ + 2 | |
= Ipowyp + ar =0 ‘ (23)
- dpowy” + T yP = 0 I (24)
- Ao’ + pg SL Y+ i(Y-1)5P = 0 (@)
Py T -
LTS S (26)
Po po To :
’ q)V _ (B: wp = (0 at 'r = R (27)
pW w .
where
® = w - Kug | - (28)

Equations (21) - (28) can be combined to yield the following pro-

blem54. for wp:
a2yP 1 L T8, 2kugq o’ L 22,2 miyp
a‘rg_J'[F*TF*—g—] = +[T_0-k - Tzl = 0 (29)
P
%%— - i $% WP =0atr=R (30)
W

At each axial location, the solution of equations (29) and (30) yields
'wﬁ(r;x) and its corresponding propagation constant kn(x). §ince the

basis functions wﬁ(r;x) vary in the axial direction, they must be nor-
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malized in some manner to provide significance to the axial variations
- of the mode amplitudes. The normalization used in this study is the

same as that defined by Zorumski55

R.
f rlvP (r;x)1%dr = 1

0
Then, equations (21) - (26) are used to express the mode shapes of

the other flow variables in terms of wg and kn‘

3.3 Coﬁstraints

Since the transverse dependence in the assumed solution, equa-
tions (19) and (20), is chosen a priori, it cannot satisfy equations
(11) - (17) exactly. Thus, the assumed solution must be subjected
to constraints. Rather than using the usual'method df'weighted
residuals which forces the residuals in each of the basic equations
(11) - (16) aﬁd the boundary conditon (17) to be orthogonal to some
a priori chosen functions, one requires the deviations from the quasi-
parallel so]utjon.to be orthogonal to every solution of the adjoint
quasi-para]Te] problem. This approach assures the recovery of the

33 when the axial variations

results of the method of multiple scales
50

are slow

To enforce the contraints, one must define the problem adjoint
to the quasi-paraliel problem. To this end, one can multiply equations '
(21) - (26) by the functions ¢1, d2, ¢35, ¢u, s, and ¢g, respectively,
where the ¢n(r,x) are solutions of the adjoint problem, add the re-
sulting equations, integrate the result by parts fromr = 0 tor =R

thereby transferring the r-derivatives from the y's to the ¢'s, and

obtain
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R R ~ R X
]‘Pp[‘i:@l - Topodsldr +fipo¢u[' (:’¢z +k¢, Jdr +~/‘Aoo‘l’v[" iwes;
0 0 : R 0
+ 'g’k:'.‘o‘ ¢ - ‘337 (%‘L) + %}.‘Q' ¢s]dr +[ig)odrw[- Wby
R 0
+ ?}‘Dl]dr +[‘Dp[ik¢2 - %%j' + _:‘_m_ ¢y + 1'(Y'])(;fl)s + poTodedr
’ 0

R
+[ Do\PT['i(TWs - Podeldr+ [po‘l’v“bx + ‘Pp¢3]§ =0 (31)
0 . -

'Then, the adjoint equations are obtained by setting each of the brackets

in the integrands of equation (31) to zero; that is

100, +' PoTobe = 0 ' | (32)
-Gyt ke =0 o (33)
A S 1 SRt T (34)
-Gy + T =0 o . (35)
ikeo - %%l + —‘rﬂ 0y + i(Y-1)00s + peTode = O (36)
i0ps + Ppods = 0 (37)

Equation (31) is reduced to
(oo¥'0r + ¥P03) o = (po¥'or + wPos) o (38)

From equations (32) - (35) and (37), one can express each of the ¢,

as a function of ¢,:
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6, = % b1 | ' :A(39)
0r = Itfe 2 B0 (40)
- o
o5 = | - (42)
d¢ = - ipoTowdy | (43)

Using equations (39) - (43) in equation (36),one then obtains the

governing equation for ¢,:

1 9_rlg onq Tok? 2 :
r or [37&'5?1 + 0 - o %%giﬂn =0 | (44)
where
n = Qa0
rTo (45)

It can be shown easily that equations (29) and (44) are the
same; thus n and wp satisfy the same differentia] equation. The
boundary conditions on n are obtained from equation (38) by sub-
stitution for wv from equation (23), for ¢, from equation (40),

and for ¢1 from equation (45). The result is

irTo r_ an S T P S 1 G R
~a [ or n¥ wp ar] ~o [ or | T ar]

w r=R r=0

(46)
If one requires that n be bounded at r = 0, just as wp is, then the

right-hand side vanishes. The use of equation (30) to eliminate

aP/ar leads to
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pran _ iwg 4 _ i
w[ar Tlﬁ ﬂ] Oatr"R
W
Since yP is arbitrary at r = R,
) 0
5%" ;gﬁ'n =0 atr=R (47)
w oo

Since the boundary Condition (47) is the same as the boundary condi-
tion (30), n ='¢p, without loss of generality, and hence, one does
not need to solve the adjoint problem. One needs only to_solve the

quasi-parai]e] problem to determine wﬁ and then determine O1n from

Y'To {pg

w

éin = (48)

according to equation (45). The remaining ¢'s are then determined

from equations (39) - (43).

Once the adjoint functions are known, the constraint conditions
are determined as follows. On multiplying equations (11) - (16) by

¢ ¢ ;""¢én’ respectively, adding the resulting equations,

1n’> Tap
integrating the result by parts from r = 0 to r = R to transfer the
r-derivatives to the ¢'s, and using equations (32) - (37) and (17),

one obtains the following constraint:
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R .< . ¢ .
. 5 . ]
Jf {¢ln['7uokn01 - 1knOoU1 + 5;‘(00“1 + UODl)] = Vo0, %F ( r-)
0 . '

. : d{Ugu : p
+ ¢2n [ = TUoknpoul - ]knpl + Py ._(é%l.). pl(Uo _5%)__'. Vo %-)

3 ) ‘ e By
+ 5%*] - U 5;'(00Vo¢2n) + ?an[- fuok povy + PoUs I

Vv 2V vV
+ pouy 5;1'+ p1(vy 5;£'+ Ug 5}191 - VoVi g;'(po¢3n)

. VoW oW d
+0,n[-1kpoouowy + Qﬂ;f—4-+ pouo 5] - Wy ar (Poved, )

. . : T
*og,L-Tuok poTy +(Y=1)iuck P1+ poug %;L + pouy %%1

¢ ortve 224 4 210y - (yo1)(u. L4 g Do L . 3
p1 (Vo 7 + Ug Y ) - (Y-1){u, X + U 55"+ Vi §%i)]

- N %7 (p°v°¢sn) + (-Tey %F (V°¢sn)} dr +.Do¢1[R'U1

+;S§p; (VIR - 1] =0 o (a9)
r=

3.4 Equations Describing the Wave Envelopes

Substituting the assumed solution, equations (19) and (20), into

equation (49) yields the following 2N equations for the A's:

2N dAn 2N :

nZ] fon ax -~ ng] Il | (50)
where R |

fon = §/~{¢1m(powg + uowﬁ) + ¢, (Pouo¥y) + 9, (Pouoty

0

y T oo ik dx
* ¢, mlpouo,) *+ 0, (pouo¥p - (v-1)uey )}dr]e (51)
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v
o
+ ¢3m[DoUo “X*Q + Dow:%(!"- + Wf(va _Q'_‘\jo * u, ;%‘(Y'Q-)]
. _n W
’ Povgy Y
- Vo'//nv ;r, (ﬂo¢ )+ ¢,‘m[’"7.\a<‘" Pgu, ""‘QJ - r‘;/;r (DoVo%m)
T
, Y :
+ ¢Sm[ﬂouo "x“a + Dol//: *%(LL + ‘IJR(VD (%.IQ- * u, g}g-)‘ (7‘7) x
p
Y
ug V3 T3 P 3
(g 1 (el 5741 - nor (o), (1pyp o
(Voo ORI k )( U+ uphy P itk L ) (yP
Yoo, m m? 4Po " 2 m’ ¥y
u)+ i(k k)uwv.+l 7(k-k)uww
Dauown ¢>3m m/Pal, n Q%m - m/Pou,
T p U
+ 5m7(kn - m)Uo(Do'll - (Y"”lﬂn) r "‘Do¢1 [R ‘/’n
" i/k dx
i MRy n (52)
pCc ¥y A -
W r=R ‘
For onvenience the up tream mog, are no, denoted by An, n = N+7, ,
2N, e.,
AN+n = An n ],2,3
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4. NUMERICAL SOLUTION

A schematic drawing of the duct configuration under consideration
is shown in Figure 1. The method of solution described can be applied
to any type of circular duct, converging or diverging. For the purpose
of demonstrating the method, a simple cosine variation of the duct
radius is chosen. '

R=1+a,[- 1+ cos(2r x/L)] (53)
The radius of the duct at the entrance has been chosen as the reference
“length, a, is a constant that specifies the magnitude of the variation
in the outer wall (if a, = 0, the duct is uniform), and L is the dimen-
sionless length of the dﬁct. The entireA1ength of the duct is assumed
to be )ined with a point-reacting liner consisting of a thin porous
facing sheet backed by cellular cavities of depth d;‘if the facing sheet
is thin and the cavity depth is small, the specific acoustic admittance
is described by

Re(1 - jw/wg) + icot(wd/T&/z)

where Re is the flow resistance and wp {s the characteristic frequency
of the facing sheet. Thus, the physical characteristics of the duct
are prescribed by input of the values of a,, L, Re’ Wo and d to the
program. |

A simple model of the mean flow has been se]ectgd for the prelimi-
nary stages of the application of the theory. This model uses one-
“dimensional gas dynamics theory to describe the mean-flow variables in
the inviscid core; the velocity profile in the boundary layer is takgn

to be a quarter-sine profile, that is

29



30

l
o
i

sin[n(R - f)/26] r>R-3§

(=
(o)

_ (55)
= ] r<R-3$§

: . . . . 51
The temperature profile is related to the velocity profile by

T - T
T Y-1 d
e wn . (e, M ad g Uy (56a)
C C C C
T /T =1+ r2tw » | (56b)
©ad’ ‘¢ 12 ¢ .

where the subscript ¢ refers to values in the inviscid core, Tw'is the
wall temperature,‘Tad is the adiabatic wall température, § is the bound-
ary-layer thickness, r; is the recovery factor and Y = 1.4 is the ratio
of the gas specific heats. The axial variation-of the boundary-layer
displacement thickness &* js assumed to be known and is specified in

the program by a simple polynomial variatiqn;

§*/8% = 1 + by(x/L) + by(x/L)?

The displacement thickneés_and the Mach number within the uniform core
Have prescribed values &% and Mco’ at x = 0; the éubsequent axia} varia-
tion of § énd MC are calculated within the proqfam f}om the defiﬁition of
disp]dcement thickneSS‘and from mass-flow considerations. The one-dimen-
sional gas-dynamics theory provides the axial variation of TC, P Ues
etc. and the‘boundary layer profiles are computed from equations (55)
and (56). Thus, the mean flow within the duct is prescfibed by input
of the values of Mco’ 8%, bi, by, r1, Y, and Tw to the program.

To calculate the changes in the amplitude of the acoustic wave
first requires the eigenfunctions wn. The qgasi-para]]e1 flow equations
(29) and (30) are solved by using a Runge-Kutta‘forward-integration

technique and by employing a Newton-Raphson procedure to determine the

eigenvalue k.
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To determine the coefficients 9an of equation (52), one has to
evaluate the axial gradients of the wavenumber, k, and of the eigen-
functions wn' These axial derivatives can be obtained from equations

(29) and (30); these two equations are written in the form

o A .'
~ 2 ) 2 : 2
G < De b Ty Zaigl e g

P iuaP (57)
oy _ JwBy  _ - ,
3r TT?Z— 0 atr R

W (58)

Differentiating the above equations with respect to x and using
;{(wp) =0, bneﬂgptains

P : w2
Doy o .l_._;Lm 1 AT ATy, 2 dup dk | 2k d%uy
‘”éﬁax ) To arox TE'ax or f B3r dx & arax

2K 3ug dk Uy 28 dug
* o7 Br (uo ax k dX )] or 1 [ To (uy d vk 9X )
w- 9Ty dk+, P
+ 7 5% + 2k ]V (59)
d _a_lﬁ Cw oo \ az.g_gp W aypPy
ar (ax ) - 71/2 Box = - R (ar - Tl/z'B ar )
w ' w
piw o p 1w Yo
77 dx 2 13/ dax atr =R . (60)
Thus, equation (59) can be written as
dk ' T
é(? = z;(x r)a;'+ T2 (X,r) - | (61)

where

d

=

. P
c,=—2—(u°&+k)wp-%¢%(&+uok)‘g—$— (62)
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S 12 dup 1 ATgq P 1 o3 1 3T,
I At To 9x "+ o (- X (To ar )

a UQ k 8UQ aUQ]a P 63
-2 ‘( arax ar  9x )'ig‘ (63)

b ,
Equations (60) - (61) will have a solution for %%— if, and only

if, a solvability condition is satisfied. To determine the solvability

condition, one multiplies equation (61) by mpp, integrates} from r = 0 to

= R, and obtains

> |
P
dk ?
. . . dT , .
(dw dg _ 1 dw —w p '
+ i ey By

The intedra]s in equation (64) are eva]uated nUmerica]]y by using
dk dk

Simpson's rule, and the value of a—-1s thus determ1ned With ax
known, equation (61) can be integrated by letting |
P
LA P lrsx)E(r;x) : _ (65)

X
and solving for E(r;x).
The number of radial modes to be considered and the values for

their propagation constants at x = 0 must be supplied as input to

the program. The propagation.constants at each subsequent axial sta-
tion are estiméted from k and %% at the prevf0us station and the usual
iteration procedure is used to obtain convergence. This helps to
reduce the time required for the calculation and avoids the usual

jumps encountered between the modes.
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The adjoint functions are found by using the relations (39) - (43)
p
from the quasi-parallel-flow variables wp, %%—3 and k. The coefficients

fmn and g are then evaluated from equations (51) and (52). Writing
equation (50) in matrix form, FdA/dx = GA, and solving for dA/dx, one
obtains | |

dA 1

ax - F

GA o : A (66)

where A is a column métrix whose elements are the An.'

| A Runge-Kutta forward-integration technique is used td solve equa-
tions (66) for the function A at each axial station. Since the problem
is linear, one can detérmine the solution for any problem subject to
general boundary conditions at the two ends of the duct by a linear
combination of 2N 1inear1y independent solutions:

The 1inearly independent solutions are obtained by setting all
mode amplitbdes except one to zero at x = 0 and integrating equation
(66) to x = L! One such integration for each of the 2N modes allows
one to obtain the transfer matrices TRi, TR», TR3,'TRQ which are
defined by

BY(L)

B™(L)

TR,B*(0) + TR,B7(0)

TR,BY(0) + TR,B7(0) - (87)
+ - ifkndx
where B (x) is a column vector of the amplitudes Ane of the

right-running modes and B (x) is a column vector of the amplitudes
Rne1fkndx of the left-running modes. Fo]]owing Reference 5&,resu1fs
are obtained in the form of transmission and reflection coefficients
for the variable-area segment being considered. Tﬁé transmission and
reflection coefficients relate the magnitudes of the'outgoing modes to

those of the incoming modes,



34

8°(L) = T-%8%(0) + Rbobg (1)

B (0) = TO’LB'(L) + RO’OB+(0) « (68)
and are ca]cp]a;ed from the transfer matrices byso
10t = 1q]]!
R00 = - TRy TR,
(69)
REoL = R, TR
0=+ RO

[The reflection coefficients are the negative of those defined
in reference 55 as a consequence of the use of the positive sign on
the $2 term in equation (19)]. The {(m,n) term of TL’0 represents the

th

transmission of the mth radial mode at x =L due to the n™" radial

mode incident at x = 0, etc.



5. DISCUSSION

The computer program describéd in the previous section has been
used to investigate the effect of a compressfb]e mean flow on the multi-
modal wave pfopagation in a nonuniform circular duct. There exist no.
numerical or experimental results for this problem that can be used
for comparison purposes. However, as stated in the method of solution,
the bresent solution recovers that based on the method of mu]tib]e
séa]es if the axial variations are slow. Moreover, calculations made
for a uniform duct with a fully developed boundary layer agree with
the well-known Eesults for waves propagating in a uniform dﬁct.'

In all the cases reported here, the coefficient a, was chosen to-
be 0.12 and the duct length L to be 2. This giveS a maximum wall slope
of 0.37, sufficiently large to produce modal coupling but not so large
as to entirely negaté the validity of the mean flow model. The bound-
ary-layer disp]acément thickness at the entrance is 6% = 0.02 and it
is assumed that it decreases linearly in the converging duct section
0 <x <1 withb;, = -1and b, = 0; although this is artificial, it
serves to illustrate the applicability of the method. The circumferen-
tial mode number is zero in all the reported calculations. The re-
covery factor for the mean temperature profile is assumed to be unity.
The calculations are terminated at the minimum cross section of the
duct at x = 1 in all cases. Thus, the transmission and reflection co-
efficients presented ére for a converainag duct for downstream oropaga-
ting modes and a diverging duct for the upstream-propaqating modes. |
In all lined-duct cases, the liner properties are Re = 0.8, we = 15,

d = .05.

35
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In Figure 2, the axial variations of the functions A, and A exp
(ifk,dx) have been plotted. It can be seen that the function A; varies
more slowly than the mode amplitude A;exp(iSk,dx). As noted earlier,
this is the basic advantage of the wave-envelope technique, since fewer
numerical steps are required to describe the more slowly-varying curvé.
The wave envelope technique becomes more advantageous as the duct
- length and the frequency are increased. Figure 3 shows the results for
a higher frequency. Clearly, as the wavelength of the signal decreases
further, a direct numerical calculation of thevamp]itude Anexp(fikndx)
becomes more difficult.

In Figufes 4 and,5,_the strength of the interaction among the
~ modes is demonstrated. In Figure 4, the first right-running mode is
incident at the entrance of the duct with én amb]itude (1.0 + 0.01).

As this mode propagates through the duct the second fight—running mode
develops and starts propagating Qith an amplitude that is small compared
with the incident mode. Aithough the 1eft-runningAmodes also develop,
they are insignificant throughout the duct indicating that.refleétion

50 that

effects are véry small. It was reported by Kaiser and Nayfeh
reflection is insignificant for the case of no mean flow except near
cut off; the results shown in Figure 4 are consistent with this general
conclusion. However, in some cases with mean flow, such as the one
shown in Fjgure 5, a signifitaht development of left-running modes may
occur. Thus, both sets of modes must be included for determining the
propagation in lined ducts with flow.

In Figure 6, the axial variation of the absolute value of the

amplitude A exp[/ik dx] for the left-running modes has been plotted.

It can be seen that as the Mach number approaches unity, the amplitudes
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AMPLITUDE

00 0.2 0.4 0.6 0.8 10
AXIAL DISTANCE

Figure 2. Comparison between the slowly varying function A, and

Arexp(ifk,dx) in a lined duct; first right-running mode in-

cident at x = 0; w=4, N=1, Mc0 = (.3.
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AMPLITUDE

A2 exp (lszdX)
l 1

-10 | |
00 2 | 4 6 8 1.0

AXIAL DISTANCE

Figure 3. Comparison between the slowly-varying function A, and
A,exp(ifk,dx) in a lined duct; second right-running mode

incident at x = 0; w = 10, N = 3, Mc = 0.3.
. ~ Co
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Figure 4. The absolute value of mode amplitudes in a hard-wall duct;
first right-running mode incident at x = 0; w=7, N = 2,

MCo = 0.36, Mt =»0.86 where Mt is the throat Mach number

(at x = 1.0).
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Figure 5. The absolute value of mode amplitudes in a lined duct: |
first right-running mode incident at x = 0; w =7, N = 2,

M. =0.3, M

Co = 0.6.
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become very large. This is to be expected because the wavenumbers of
the left-running modes become very large. This can be seen more easily
from an examination of the wavenumbers for the case of uniform flow;

that is

M.w +/ 0 - (1 - Mé)K2

k =
~ 1 - M2
[

where‘MC'is the Mach number and « {s the eigenvalue. As Mc + 1, one
'of.the values of k approaches infinity, while the other remains bounded.
This unusual behavior of the solution is due to the linearization of the
acoustic equations. Thus, the inclusion of nonlinear terms becomes‘
necessary at high Mach numbers. A1thohgh the numerical results may
qua]itativé]y show the correct behavior for cases in which MC is greater
than about 0.75, they are qUahfitativé]y in,errgr because the linearized
theory is not vaTid at these hiqh Mach numbers. THus, Figure 6 shows
qualitatively that the émp]itude of an incident mode at x = L must be
very large for its amplitude at x =‘0 to be non-negligible. Consequently,
the-transmission and refiection coefficients fér such modes wi]i be small.
?igures 7 and 8 show the variation of the transmission coefficients
at x = 0 due to modes incident at x = L with throat Mach number for hard
and soft-walled ducts, respectively. In this case, the transmissioh co-
efficients represent waves propagating againét the mean flow. The direct
transmission coefficients decrease rapidly with incréasing throat Mach
number. The effect of the axial variations is evident in these figures
which show the coupling of the modes. However, the intermodal trans-
mission coefficients are small compared with tﬁe direct transmission

coefficients except for throat Mach numbers larger than 0.75. This is
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perhaps expected because, although the axial variations are not smail,
they are not very large; the maximum wall slope in all cases is 0.37.
Figure 7 shows also that the intermodal transmission coefficient Ti;

from the high to the low mode is smaller than the intermodal transmission
coefficient T,; from the low to the high mode. Comparing Figures 7

ahd 8 shows as expeced that the overall direct transmisssion coeffici-

- ents for the sofl-walled case are sma]ier than those for the hard-
walled case. Moreover, the intermodal transmjssion coefficients de-
crease when the walls are Tined.

The transmission coefficients at x = L for modes incident at x = 0
are plotted in Figure 9 for a hard-walled duct. In this case, the trans-
mission coefficients represent wavés propagating with the f]ow;' It in-
dicates that the émp]itudes of the transmitted modes}iﬁ a converging
duct decrease with increasing throat Mach number. Hiaher throat Mach
numbers tend to decrease the coefficients of the direct transmitted
mbdes more than the intermodal coefficients. As in the case of upstream
propagation, Figure 9 indicates that the intermodal coupling is more |
effective from the lower to the hiqhef—order modes. 4Comparing Figures
9 and 10 indicates that 1ining the duct walls leads to a quantitative
reduction in the direct trangmission coefficients without any signifi-
caht qualitative change. The intermodal coefficients seem not to be
affected significantly by the throat Mach number or the wall liner.
Figures 11, 12, and 13 present the transmission.coefficients at w = 10
in a lined duct for the first, second, and third upstream modes, re-
spectively, including the intermodal coupling. ' In most cases an increase

in Mach number reduces the magnitude of the transmitted mode; however,
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the direct transmission of the third mode (T33) and the transmission of
the first mode due to the input of the second (T;,) increase with in-
creasing Mach number up to My~ 0.5 - 0.7 before decreasing at high Mach
lnumbers.

Figures 14 and 15 show the variation of the ref]éction coefficients
at the left end for hard and soft-walled ducts, respeétive]y. For the.
hard-walled case, the direct and interﬁoda] reflection coefficients are
insfgnificant even compared with the intermodal transmission coefficients
shown in Figures 9 and 10. Comparing Figure 14 and 15 indicates that
the reflection coefficients depend strongly on the wall lining and
throat Mach huﬁber. A rather abrupt increase in the magnitude of the
reflection of the downstreamlpropagating waves into thé 10we$t‘upstreém
mode occurs at é throat Mach number of ~ 0.4. Reflection into the seqond
upstream mode and all reflections at x = 1.0 (not shown) remain small

even in the lined-duct case.
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6. CONCLUSIONS AND RECOMMENDATIONS

An acoustic theory is developed to determine the'sound transmission
and attenuation through an infinite, hard-walled or lined circular duct
carrying compressible, sheared, mean flows and having a variable cross
section. The theory is applicable to large as well as small axial vari-
ations, as long as the mean flow does not separate. The technique is
based on,soiving for the envelopes of the quasi-parallel acoustic modes
that exist in the duct instead of solving for the actual wave, thereby
reducing the computation time and the round-off error encountered in
purely numerical techniques. The solution recdvers the so]ution'based
on the method of multipie scales for slowly varying duct geometry. |

A computer program has been developed based on this theory for
general mean flows. Nuherical calculations performed for wavéé propaF
gating in uniform ducts carrying fully developed mean flows agree with
the well-known results for uniform ducts. To investigate the effect
of the axial variations of the flow and the duct geometry, ca1cu1a£ions
using a simple mean-flow model have been performed. The model consists
of a one-dimensional flow in an inviscid core and a quarter-sine pro-
%i]é in the boundary layer. |

Results are presented fbr the reflection and transmission coeffi-
cients in ducts with varying slopes and carry{nq different mean flows.
The main conclusions are:

1. Axial variations of the duct propertiés and the mean_f]ow pro-
duce coupling between the modes.

2. It is found that éoup]ing between modes travelling in opposite
directions can be significant for some cases with a mean flow in contrast
with‘the no-meén—f]ow case.
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3. At high Mach numbers the wavenumbers for the upstream modes

. become very large, and the nonlinear terms must be included.

4. OveralT direct transmission coefficients decrease when the
duct wall is lined, but the addition of a liner may lead to an increase
jn the intermodal transmission coeff{cients in some cases.

5. As the throat Mach number increases, the transmission coeffi-
- ¢cients are reduced; howevef, the coefffcients~for the upstream modes_
are reduced more than those of the downstream modes.
| 6. The addition of a liner may lead to an increase in the reflec-
tion coefficients.

The only 1imitetion of the wave envelope technique is that it is

not suitable near cut off, since the coefficient multiplying the term

dA :
——ﬂ-approaches zero. This problem is more apparent for a hard wall

dx

duct than for'a‘soft wall duct, because k is exact]y‘zero for a hard

wall duct. Near cut off, the problem requires a turning-point analysis

using either the method of multiple scé]es or the Langer transformation33.
Although the present theory is an importent step towafds qualita-

tively understanding the physical mechanisms responsible for noise re-

duction in choked or partially-choked inlets, it cannot be applied to.

actual inlet configurations. . To accomplish this, one needs to extend

the present work by (1) coupling the present program with a computer

code that ca1¢u1ates the actual mean f]ow in such infets, (2) including

the nonlinear terms in the acoustic equations, and (3) incorporating a

turning-point analysis for cases when modes approach cut-off conditions.
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