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Finite Element Stability Analysis for Coupled 

Rotor and Support Systems 

P~rt III of Final Report Under 

Contract NAS2-76l3 

The conventional way of assessing the dynamic s~ability ~f coupled 

rotor airframe systems is to first determine a few undamped purely 

structural blade and airframe modes, to compute the aerodynamic reaction 

for each structural mode, and to consider an aer')elastic mode as a 

superposition of several structural modes, often of 0.1ly two structural 

modes. The question then arises, how many structural modes are required for 

an adequate representation of an aeroelastic mode, a question that is not 

always easy to answer. The finite element analysis method investigated 

here avoids this difficulty and allows a direct computation of the 

aeroelastic modes. The characteristic equation of the total system is 

obtained by receptance or impedance matching at the interface between rotor 

and airframe. The method is studied for a case of hin~eless rotor cyclic 

blade flap-bending motions in hovering coupled to rotor support rolling and 

pitching motions. Of the many aeroelastic rotor modes only two - the 

progressing first and the regressing ~,econd flap-bending modes - strongly 

~uple with the r~tor support modes and can become unstable for a range of 

rotor support stiffnesses. 
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Preface to Final Report under Contract NAS2-76l3 

Work under Contract NAS2-76l3 started on July I, 1973. The contract 

was originally awarded for a 3 year period. 

Due to the slower than anticipated progress of the experimental work, 

not all research goals had been achieved by 30 June 1976. Since less than 

the anticipated cost for personnel and equipment had been spent, the 

research contract was extended by a year without increase in funding. 

The research goals as stated in the contract were: 

(a) Assess analytically the effects of fuselage nlotions on stability 

... and random response. The problem is to develop an adequate but not 
, ' 

overly complex flight dynamics analytical model and to study the 

..... effects of structural and electronic feedback, particularly for 

hingeless rotors • 
.... 

(b) Study by computer and hardware experiments th.: feasibility of ade-

.... quate perturbation models from non-linear trim conditions. The 

problem is to extract an adequate linear perturbation model for the 

purpose of stability and random motion studies. The extraction is 

to be performed on the basis of transient responses obtained either 

by computed time histories or by model tests. 

(c) Extend the experimental methods to assess rotor wake-blade 

interactions by using a 4-bladed rotor model with the capability 

of progressing and regressing blade pitch excitation (cyclic pitch 

I stirring), by using a 4-bladed rotor model ,,,rith hub tilt stirring, 

and by testing rotor models in sinusoidal up or side flow. 
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Including the final report, 10 reports under Contract NAS2-76ll 

have been submitted. They I,re listed as P. 1 to .,. 10 at the end of 

the Preface. P. 1 and P. 10 pertain to reaearch goal (a). P. 2, P. 4, 

P. 6, P. 7, P. 8, P. 9, pertain to research goal (b). P. land P. 5 

pertain to research goal (c). The latter is not as yet complete ~ince 

neither hub tilt stirring nor testing is sinus,lida1 up or side flow 

has been performed. While P. 10 describes only work done during FY 1977, 

P. 8 and P. 9 combine both FY 1977 work results and summaries of earlier 

results, so that the three parts of the Final Report can be raad without 

recourse to the earlier reports. P. 8 includes much new material not 

available when the preceding Yearly Report P. 7 was writ Len. The 

experimental data of P. 9 have all been obtained in FY 77. 

So far 3 publications came out of the resaarch under Contract NAS2-7613. 

They are listed as P. 11, P. 12, P. 13. 

List of Reports and Papers 

under Contract NAS2-76l3 

P 1. Hohenemser, K. H. and Yin, S. K., "Methods Studies Toward Simplified 
Rotor-Body Dynamics", Part I of First Yearly Report under Contract 
NAS2-7613, June 1974. 

P 2. Hohenemser, K. H. and Yin, S. K., "Computer Experiments in Pre­
pa::ation of System Identification from Transient Rotor Model 
TF.sts", Part II of First Yearly Report under Contract NAS2-76l3, 
.:une 1974. 

P 3. Hohenemser. K. H. and Crews, S. T., "Experiments with a Four-Bladed 
Cyclic Pitch Stirring Model Rotor", Part III of First Yearly Report 
under Contract NAS2-76l3 • 

P 4. Hohenemser, K. H., Banerjee, D. and Yin, S. K., "Methods Studies 
on System Identification from Transient Rotor Tests", Part I of 
Second Yearly Report under Contract NAS2-76l3, June 1975. 
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P 5. Hohl!nemser, K. II. and Crews, S. T., "Additional Experiments with a 
Four-Bladed Cyclic Pitch Stirring Model Rotor". Part II of 
Second Yearly Report under Contract NAS2-76l3, June 1975. 

P 6. Hohenemser, K. H., Banerjee, D. Rnd Yin, S. K., "Rotor Dynamic 
State and Parameter Identification from Simulated Forward Flight 
Transients", Part I of Third Yearly Report under Contract 
NAS2-76l3, June 1976. 

P 7. Hohenemsar, K. H. and Crews, S. T., "Rotor Dynamic State and 
Parameter Identification from Hovering Transients", Part II of 
Third Yearly Report under Contract NAS2-76l3, June 1976. 

P 8. Hohenemaer, K. H. and Crews, S. T., "Unsteady Hovering Rotor 
Wake Parameters Identified from Dynamic Model Tests", Part I of 
Final Report under Contract NAS2-7613, June 1977. 

P 9. lIohenemaer, K. H. and Banerjee, D., "Application of System 
Identification to Analytic Rotor Modeling from Simulated and 
Wind Tunnel Dynamic Test Data", Part II of Final Report under 
Contract NAS2-76l3, June 1977. 

P 10. Hohenemaer, K. H. and Yin, S. K., "Finite Element Stability 
Analysis ~or Coupled Rotor and Support Systems", Part III of 
Final Report under Contract NAS2-76l3, June 1977. 

P 11. Hohenemaer, K. H. and Yin, S. K., "On the Use of First Order 
Rotor Dynamics in Multiblade Coordinates", 30th Annual National 
Forum of the American Helicopter Society, May 1974, Preprint 831. 

P 12. Banerjee, D. and Hohenemser, K., "Optimum Data Utilization for 
Parameter Identification with Application to Lifting Rotors", 
Journal of Aircraft, Vol. 13, No. 12, December 1976, pp. 1014-1016. 

P 13. Banerjee, D., Crews, S. T., Hohenemaer, K. H. and Yin, S. K., 
Identification of State Variables and Dynamic Inflow from Rotor 
Model Dynamic Tests", Journal American Helicopter Society, 
Vol. 22, No.2, April 1977. 
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Nomenclature 

blade flap-bending stiffness 

EI/Elo flap-bending stiffness referred to root value 

transfer matrix across massless blade element 

transfer matrix across point mass 

rotor support moment of inertia about rotor center 

blade moment of inertia about rotor center 

non-dimensional blade flap-bending moment (unit PoR302) 

number of finite elements per blade 

polynomials of A 

rotor radius 

non-dimensional blade shear force (unit PoR202) 

non-dimensional blade centrifugal tension force (unit PoR202) 

state vector 

blade airfoil lift slope 

number of blades in rotor 

non-dimensional blade chord (unit R) 

ap.rodynamic damping coefficient for ith blade element 

aerodynamic non-dimensional force at blade station i 
(unit poR202) 

aerodynamic coefficient for blade pitch angle 

non-dimensional length of blade element (unit R) 

non-dimensional point mass at blade station i (unit poR) 

(T/q Ef)1/2 blade tension force parameter 

1 
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Nomenclature (cont') 

q 

t 

y 

z 

0 

[~] 

"'k 
'1 

a 

t 

A 

P 

PCI 

w 

Subscripts 

I, II 

i 

12, 13 ••• 

E1o/pOR4n2 non-dimensional blade root flap-bending stiffness 

non-dimensional ~istance of blade station i from rotor 
center (unit R) 

non-dimensional time (unit lIn) 

non-dimensional normal and tangential velocity at blade 
element (unit nR) 

non-dimensional distance from outer end of blade 
element inboard (unit R) 

non-dimensional blade deflc!ction, pc..sitive up (l.lni R) 

a single blade variable 

blade pitch angle, positive nose-up 

transfer matrix 

azimuth angle of kth blade 

rotor angular speed 

hub tilt angle 

real part of coupled frequency (unit n) 

t ! iw, non-dimensional complex valued frequency, (unit n) 

non-dimensional air density (unit Po/R2) 

blade mass per unit length at blade root 

circular frequency (unit n) 

multiblade coordinates, forward and left respectively 

value at ith blade element, begi.nning at blade tip 

denotes elements of a determinant or matt"i''( 
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Nonl8nclature (cont') 

1, •• Ntl denotes values at blade tip 

I, R imagir,ary and real parts 

M, CI, e polynomials multiplied by 

1, r left, right of mass mi 

supel'Scripts 

• time differentiation 

length differentiation 

truncated polynomials 

and blade root 

F 
' 't4tl' CI, e 
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Introduction 

For the dynamic design of lifting or propeller rotors one usually 

begins by studying potential single blade dynamic instabilities. They 

can be caused by the effects of coupling between blade flap-bending. 

lag-bending. and torsion J by the periodicity of the aerudynamic stiffness 

and damping coefficients. or by unsteady aerodynamics phenomena. Even 

for stable single blade dynamics. potential instabilities can still 

exist. caused by the coupling of t~e blades with each other. with the 

rotor support or ai t'frame. and wi tl. the rotor controls. A widely us ed 

approach to the problem of rotor dynamic stability. loads and vibra~ions 

is to first compute a few purely structural bla,-'e normal modes. using 

for example the methods of references land 2. and then ~o consider the 

aeroelastic modes as truncated series of the structural normal modes. 

The truncation error is sensitive to the details of handling the 

aerodynamic loads, see for example references 3 and 4. The truncated 

normal structural mode expansion is either used as the brlsis of non-linear 

"global" computer programs as for example Rexor or MOSTAB." or it is used in 

linear eigenvalue programs as for example in reference 5. Nhere two 

flapwise bending modes. two chordwise bending modes, one elastic torsion 

mode, and a few airframe and control modes are considered. 

crt 'W"b'# at > 
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The problem with the undamped structural normal mode analysis is 

that in particular the low flap-bending aeroelas~ic modes are 

substant~ally affected by aerodynamics so that sizeable errors e.en be 

expected when only a few purely structural normal flap-bending modes 

are used. In a finite element stability analysis these errors are 

avoided and the aeroelastic modes are obtained directly. A finite 

element eigenvalue analysis results in a high ord.er characteristic 

equation and requires a high precision computer program. The concept 

to be ~~udied here is to perform a separate finite element eigenvalu~ 

analysis for the rotor and for the airframe, and then to couple both 

systems with the help of kinematic and equalibrium equations taken at 

the interface. A simple rotor and support representation is selected to 

gain some initial experience with the finite element stability analysis. 

Modeling of Rotor and Support System 

A schematic view of the rotor and support system used for the 

analysis is shown in Fig. 1. The blades are assumed rigid in chordwise 

bending and torsion, but flexible in flap-bending. They are rigidly 

connected to the hub so that the slope of the deflection. line relative 

to the hub is constant and equal to the built-in coning angle. Since 

blade deflections and coning angle are small and only out-of-plane blade 

bending is considered, the built-in coning angle has no effect on rotor 

dynamics. The rotor shaft is assumed to be rigid and connected to a 

rigid housing that is supported by a focussing mount with focus on the 

1 
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rotor center. Thus th~ hub is rigidly restra;ned against vertical and 

sidewise motions. The elastic restraintBin pit~h and roll of the hub 

~re indicated in Fig. 1 by th~ horizontal springs attached to the shaft 

housing. There also is a gravitational restraint (pendulum effect>. The 

restraining springs may have different stiffness in pitch or roll. 

Fig. 2 shows the hub witn a blade cross section in a position of 

angular deflection in pitch. It is assumed that the blades perf 01'1 •. a 

uniform rotation about the vertical axis Z-Z. In actuality the 

rotational motion is non-uniform in a complex way depending on 

chordwib~ blade-bending and drive system dynamics. The vertical blade 

deflections are measured from the horizontal reference plane through 

the rotor center. indicated in Fig. 2 hy X-X. Aerodynamic forces on the 

blades are produced by their vertical motions with respect to the 

reference '. ~ -me (aerodynamic dampinF) and also by the blade pitch angle 

cha\\ges .... ~ th respect to the reference plane. as seen in Fig. 2. It is 

assumed that the vertical blade motions and pitch angle chdnges do not 

produce a cha .. ge in vertical inflow through the reference plane, an 

assumption approximately satisfied for the higher frequency regime that 

will be here of ~rimary interest. Blade pitch controls are assumed to 

be rigid so that the blade pitch angle is equal to the hub -tilting angle 

about tr.e blade axis, indicated in Fig. 2 by aI = 01' 

Blaaes with constant chord and uniform mass and flap-bending stiffness 

are assumed, thl)ugh 'the method of analysis is suitable also for arbitrary 

blade planform and for non-uniform mass and stiffness distribution. The 
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uniform blade flap-bending stiffness extends to the rotor eenter. In 

actual hingeless rotor designs the hub is ve~y stiff and the root 

section of the blade is MOre flexible then the rest of the blade. 

Extend1ng the uniform blade flap-bending flexibility to the rotor center 

results, however, in first and second bending mode natural frequencies 

typical of actual hingeless rotors. 

The analysis is performed in a non-dimensional way with length 

unit R, mass \.D'iit t'I)R and time unit un. The force unit then becomes 

poR2n2, the unit of angular inertia becomes PoR3, and the unit of 

bending ;\tiffness becomes poR4n2• For given mass and flap-bending 

distribytion the rotor blades are described by the non-dimensional blade 

root bending stiffness q and by the blade Lock number y. The rotor 

support is des~~ibed by the ratio of blade moment of inertia over support 

moment of inertia, both taken about the rotor center, Ib/I, and further 

by the two non-dimensional support frequencies without blades WI and wII. 

Thus the rotor and support system is uniquelY defined by 5 parameters: 

q. y, Ib/I, WI' wII. The parameter q-l/2 is proportional to the rotor 

angular speed n and can be used as rotor speed parameter. In the numerical 

examples q-l/2= 18 is selected to simulate the dynamics of actual 

hingeless rotors. The remaining parameters are then varied ~ithin wide 

limits. 

Method of Analysis 

Reference 1 describes an analysis for determining the undamped 

structural single blade bending modes and frequencies with the help of 

blade element transfer matrices. The natural frequencies are obtained 
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by establishing through trial and error the zeros of the characteristic 

determinant, a method that is not feasible for unconservative systems. 

The following four steps are taken in extension of reference 1. 

1. Aerodynamic terms are included in the blade transfer matrix. 

2. Relations between blade root state variables are derived including 

a dynamid blade pitch feedback term. 

3. Single blade polynomials are transformed into multiblade polynomials. 

4. The total system characteristic equation is derived by receptance or 

impedance matching. 

In a later section an intermediate step will be inserted between Steps 

2 and 3 to reduce the order of the characteristic equation. 

Blade Element Transfer Matrix 

Fig. 3 shows a blade element between station i(outer end of element) 

and station i + 1 (inner end of element). The centrifugal force is 

assumed to act in the und.eformed position of the blade and produces a 

bendi~g moment TiYi' The moment Mi is thus fictitious and Mi + TiYi 

is the actual bending moment acting on the outer end of the blade element. 

All quantities are non-dimensional with the units listed before. The 

inertia force -Yimi = -~2miYi and the aerodynamic damping force 

-y ci = -A ciYi are added to the shear force at the point mass mi' 

Also added is the aerodynamic force from dynamic blade pitch 0, expressed 

as gi 0. Since the blade is rigid in torsion, 0 is constant along the 

radius. Dynamic pitch 0 is caused by hub motions, see Fig. 2. Denoting 

r .. 

, , 



I 

t 1 

i 1 1 
" 

i i W 

• i. 
~ 
~ i ~. 

I L 
f r t , 
~ .... 

f , 

... ' 
1 

1 

-, 

9 

by 1 and r quantities to the left and right of the point mass mi' 

we have 

(1) 

The change of the fictItious moment across the point mass is -miriYi' 

since this incremental centrifugal force is assumed to be located in the 

undeformed blade position rather than at the mass mi. Thus 

Over the length of the blade element li bending stiffness Efq and 

centrifugal force T are constant. The deflection y is determined 

from the differential equation of beam bending 

y" EIq = SJ(' + (M + Tyl (3} 

where x is measured from the outer end of the blade element inboard. 

Sand M are shear force and fictitious bending moment to the left of a 

point mass mi. The slope y'(x) is positive when opposite to Yl 
shown in Fig. 1. The solution to Eq. (3) i.s 

y(x) = y(O)cosh (px) + (y'(O)/p)sirih (px) 

+ (M/T)[cosh (px) - 1] + (SIT)[(l/p)sinh (px) - x] 

The derivative is: 

y'(x) = yeo) p sinh (px) + y'(O) cosh (px) 

+ (MIT) p sinh (px) + S IT[cosh (px) - 1] 

(4 ) 

(5) 

J 
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where p = (T /q EI') 1/2 (6) 

The fictitious bending moment is 

H(x) = H + Sx (7) 

The shear force is constant 

Sex) = S ( 8) 

Denoting the state vector by 

S 

M 

X = y' (9) 

y 

0 

one car. now write the change of the state vector along the blade element 

as a product of two matrices 

Xi+l = [E] [F] Xi (10) 

The matrix [F] gives the change in state vector from the right side of 

the mass mi to the left side and expresses Eqs. (1) and (2) together 

with the continuity relations 

1 0 0 -(A2mi + ACi) g. 
1 

0 1 0 -miri 0 

[F] = 0 0 1 0 0 ( 11) 

t 
0 0 1 0 

0 0 0 1 
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The matrix [E] gives the change in state vector from the left side of the 

mass mi to the right side of the mass mi +
l

• It expresses Eqs. (4) to 

(8) considering that yi = -y'(O), y~+l= -Y'(li)' 9
i
+
l 

= 9
i

• The matrix 

[El then is 

1 0 0 

l. 1 0 1. 

[E] = E3l E32 E33 

E41 E42 E43 

0 0 0 

where 

E31 = -E42 = -(l/Ti)[cosh (Pili) - 1] 

E32 = -(l/Ti ) Pi sinh (Pili) 

(p.l. ) 
1. 1. 

E43 = -(l/Pi) sinh (Pili) 

p. = (T./q Ef.)1/2 
1. 1 1. 

0 0 

0 0 

E34 0 (12) 

E44 0 

0 1 

(13) 

In comparing these expressions with those given in reference lone should 

note tha,t >, is defined differently leading to the opposite sign of >,2 

in Eq. (11). Furthermore the unit of cirCUlar frequency in reference 1 is 

(EI Ip R4)1/2 while it is here n. 00' 

, 1 

l 

1 
i 

j 



i ... 
f. 

~ 

l 
, 
\ 

t 

I 
I 

>'-'-_ c._ 

12 

Denoting the matrix product [E][r] _ [~], Eq. (10) can be written 

in the form 

For N masses one obtains by successive transfer matrix multiplication, 

beginning at the blade tip, for the root quantities the following relation 

SN+l ~ll ~12 ~13 ~14 Sl f15 
MN+l ~21 ~22 ~23 ~24 Ml ~25 

= + 0 (15) 

YN+l ~31 ~32 ~33 ~34 Yi 4>35 

YN+l ~"l 4>42 4>43 ~44 Yl ~45 

All elements of [</>] are polynomials of A. Eq. (15) completes step one. 

Before proceeding further, the aerodynamic coefficients c. and gl.' must 
J. 

be determined. 

Aerodynamic Coefficients 

As before, x is mea' ~ed from the outer end of the blade element 

toward the rotor center. Non-dimensional tangential and normal flow 

velocities at the blade element ~ and up are, if aynamic inflow is 

ignored, and if up is averaged over li: 

u.r= r. - x l. u -p -
, . 

(1/2)(Yl + Yi+l> (16) 

r "l 
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The non-dimensional aerodynamic force acting on the blade element of 

length li is: 

li 

fA = (1/2) J p ac(0 u; + up u.r)dx 
o 

Introducing the Lock number for a uniform blade which takes in our 

non-dimensional units the form y = 3 pac, and inserting Eq. (16) 

into Eq. (17): 

fA • (1/6)y ~i Ie (ri -x)2 - (1/2)(YitYitl)(ri -x)}dX 

o 

Performing the integrations: 

- r. 
~ 

l~ + 1~/3) 
~ ~ 

One half of the first term 5.s assumed to act at station.i, the other half 

(17) 

(19) 

at station i+l. Of the second term the force with factor Yi is assumed to 
. 

act at station i, the force with factor Yi+l at station i+l. With this 

assumed distribution of the aerodynamic forces the total aerodynamic 

force at station i is: 

fAi = (l/.U)y 

(20) 

The factor of 0 is equal to gi' the factor of Yi is equal to ci • 

I 
I 

1 

11 
1 
l 
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Blade Root Relations 

Equation (15) relates the variables at the blade tip to those at the 

blade root. We need, however, a relation between blade root variables. 

Two variables at the tip are known, since shear force and bending 

moment are zero. The centri fugal force is also zero at the tip, thus 

the fictitious bending moment is zero. There is no vertical motion at 

the rotor center, so that 

, 
The two remaining tip variables Yl , Yl will be expressed in blade root 

variables, as follows 

Inserting Eq. (21) into Eq. (15) we have 

~13 +11 
, 

~:~ 
Yl 

+ 
41 23 4124 Y1 

= o (22) 

, 

~33 +31 Yl ~3~ + 
4143 ~44 Yl ~45 

o = 
o 

( 23) 

From Eq. (23) : 

~~ 41 33 

= 
Y1 41 43 

41 34 

-1 

(24) 

• i 
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We now substitute Eq. (24) into Eq. (22): 

SN+l ·13 ~14 ·33 ·34 
-1 

+35 )e +15 
= + (25) 

MN+l +23 +24 '43 '44 0 '45 ·25 

After performing the required manipulations, one obtains for the second 

equation 

MN+l PM(A) 
t 

+ a PaC>.) .. YN+l PClOt) 

'33 +34 '23 '24 
+23 +33 +43 

where PMO.) = , PClO.) = • Pa(>') = '24 +34 +44 
'43 +44 '43 '44 

'25 '35 '45 

(26) 

Equation (26) can only be used for a single blade characteristic 

equation, if the dynamic pitch angle a is either zero or related to a 

root variable. For example a hinged blade without pitch-flap coupling, 

~+l = a = 0, gives as characteristic equation 

Pa (>') = 0 (27) 

, 
A hinged blade with a pitch-flap coupling defined by e = kYN+l' gives 

the characteristic equation 

, 

1 
I 

i 
1 
l 
i 
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I 
I 
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, 
Finally a cantilever blade, where YN+l = e = 0 gives the characteristic 

equation 

This completes step 2 of the analysis. 

Multi Blade Transformations 

The relations between single blade and multi blade coo~dinates are, 

when only cyclic terms are retained, see reference 6, 

aI' MI , eI refer respectively to nose down rotor tilting angle. nose 

down rotor moment on its support, and nose down cyclic pitch angle. 

all' MI , ell refer to left rotor tilting angle, left rotor moment on 

its support, and left cyclic pitch angle. Equations (30) are easily 

inverted. 

For example 

b 

)~ (YN+l)k cos Wk 
k=l 

(30) 

(31) 

.. i 
• 1 , 

. 
J 

I 
1 

I 
I 
I 
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with b the numbe~ of blades of the ~oto~. Eqs. (30) and (31) a~ 

valid fo~ b ~ 3. Equation (26) is now t~ansformed into relations 

between multiblade coo~dinates. The question is how to t~ansform a 

polynomial of A fo~ a single blade coo~dinate into polynomials of 

A fo~ multiblade coo~dinates. Each facto~ of A co~sponds to a 

diffe~ntiation. Assume an a~bit~a~ single blade va~iable z and its 

multiblade counte~pa~t ZIt zII related by 

Z = zI cos t + zII sin t 

whereby the azilnuth angle has been w~i tten in the form of the non-

dimensional time t in which the time of one ~oto~ ~volution is 

equal to 2w. Differentiating Eq. (32) once: 

Differentiating a second time. 

+ 

(32 ) 

(33) 

( 34) 

Replacing the diffe~ential quotients by facto~s ·of ). Ecp. (33) and (34) ~ad 

Let us ~eplace in the polynomial on the left hand side A by (A+1) and let 

us then form a matrix that has as diagonals th~ real pa~ts of the left 

hand side polynomial and as off diagonal terms the plus and minus 

~"' ~~~~''''-,"",",'t'''-:I''''''''''"''' -::_~::::1d~7,::~:"":;~:::':::;·::+*'t;,a(;;) ;;:Oi: ''>:L.>...~'U'''''''.-''k~~'_· _~ -' _ am&A 
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imaginary parts of the polynomial. plus being used for the first roW. 

For Eq. (35) this matrix reads 

For Eq. (36) this matrix reads. since (A + i)2 = A2 - 1 + 2i A 

~2 _ 1 

L-n 2A J 
),2 _ 1 

Post multiplying these matrices by the column [zI!zII] one cbtains 

(37) 

(38) 

Equations (37) and (38) yield the factors of cos t and sin t In Eqs. (35) 

and (36). In general, if a single blade coordinate z is multiplied by 

a polynomhl PO) as in Eq. (26), one obtains the multiblade expressions 

by splitting the polynomial peA + i) in real and imaginary parts: 

peA + i) = PR(A) + i PI(A) and by writing 

l
~~~-"· ~ 

, ~+ .. 

'11" 

-'-~ 
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To apply this rule, we write Eq. (26) as 
, 

MN+l PM(A+i) = YN+l Pa(A+i) + e Pe(A+i) 

In multiblaie coordinates Eq. (26) then becomes, considering Eq. (30) 

= 

+ 

(39) 

(40) 

(41) 

From Fig. 2 there 5.s a cyclic pitch feedback represented by the relation 

(42) 

Inserting Eq. (42) into Eq. (41) one then obtains the r-elations between 

the rotor moments and the hub angular ~eflections, from which either 

rotor receptance or rotor impedance can be computed. The characteristic 

equation for the rot')r alone is obtained by setting MI = MI! = O. 

Including the feedback from Eq. (42) the char.acteristic equation reads 



! 
~. 
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f 

t 1 
f 

20 

PaR Pal -Pel PeR 
t I: 0 

-Pal PaR -PaR -Pel 

This completes step 3 of the analysis. 

Impedance or Receptance Matching 

It now only remains to match the rotor support to the rotor. 

moments transferred from the rotor to the support are 

3 
(b/2) Po R MI 

3 
(b/2) Po R MIl 

whereby the number of blades per rotor, b, must be at least 3, see 

reference 6. The factor P £\3 if;; required to obtain dimensional o 

The 

moments. The time unit is still lin, otherwise the expressions (44) 

would also have to be multiplied by 0 2 • For uniform blades 

3 
Po R = 3 lb 

and the rotor support dynamic equations without support damping are 

o 

o 

(43) 

(44) 

(45) 

(46 ) 

We can now either insert from Eq. (46) into Eq. (41) (receptance 

matching) to obtain with Eq. (42) a set of homogeneous equations for MI , 

MIl' The coefficient determinan~ then represents the characteristic 

polynomial. We can also insert MI , MIl from Eq. (46) into Eq. (41) 

~l __________________ ~ 
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(impedance matching) and then obtain with Eq. (42) a set of homogeneous 

equations for ~I' ~II' 

The total system characteristic equation is then given by 

= 0 (48) 

The mode shapes can be easily computed by inserting into Eq. (47) one of 

the eigenvalues obtained from Eq. (48). One then f~nds that all modes 

are either regressing or progressing in the non-rotating reference system. 

This completes step 4 of the analysis. 

If each blade is represented by N point masses, the characteristic 

equation (48) will be of 4N + 4 order. For an airframe the receptance 

or impedance matrix at the rotor-airframe interface will be less 

simple than Eq. (46). If the airframe is represented by L masses or 

moments of inertia, the order of the system characteristic equation 

will be 4N + 2L. A method to reduce this order without appreciable loss 

in accuracy of the lower eigenvalues will be discussed later. First 

some numerical results of solving for the roots of Eq. (48) will be 

presented. 
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Numerical Examples 

The computations were performed on the IBM··360/65 computer using 

double precision (16 digits). Single blade computations were made 

for 5, 8, 10, 15 and 20 elements per blade. The number of 20 elements 

was found to be too high for the 16 digit precision used. With 10 

blade elemen~s no computational difficulties were encountered for the 

multiblade analysis, provided that the evaluation of the 3 by 3 

determinant in Eq. (26) was numerically optimized by writing 

whereby the set '33' '34' '35 represents the column with the highest 

values of the elements. A convenient check for adequate computer 

precision consists of looking at the coefficients of >.nmax , 

,nmax+l , ~ etc., in Pe, whereby nmax is the highest power that should 

occur theoretically in this polynomial. For a single blade with N 

point masses nmax = 2 n-2 for Pe• If the computer p~ecision is 

nmax+l ,nmax+2 adequate, the coefficients of >. , ~ are several orders 

smaller than those of >.nmax. The accuracy of the computation 

depended on how this determinant was evaluated, see Eq. (49). 

(49) 

Once the single blade problem could be solved without difficulties, 

the complete coupled system solution posed no further obstacles. The 

computer accuracy depends on the highest eigenValue considered and does 

not suffer when the number of eigenvalues is approximately doubled as for 
1 
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the coupled system. as long as the highest eigenvalue remains approxi­

mately the same. Though 10 point masses per blade would have been 

satisfactory, the parametric studies for which selected results will 

be presented here were made with 8 masses per blade. The errors in 

the first 3 blade eigenvalues shown here were found to be less than one 

to two percent. For S blade elements more substantial eigenvalue errors 

occur. For' 8 masses per blade the equivalent CPU time to obtain a 

complete set of eigenvalues for the coupled system was 4 seconds, for 

SS cases computed in one run the CPU time was 34 seconds. 

S5.ngle Blade 

The two parameters that determine the eigenvalues for the uniform 

single blade are the non-dimensional bending stiffness q and the Lock 

number y. As mentioned before, the rotor speed parameter q-l/2 = 18 is 

selected to match the flap-berlding frequencies of actual hingeless rotors. 

For the blade Lock number we select the values y = 5 and y = 8 that 

also cover the range of actual hingeless rotors. Though computed for a 

single blade with Eqs. (27) and (29). we give in Table 1 the eigenvalues 

in multiblade form to facilitate the comparison with the coupled system 

eigenvalues to be determined later. The letters Rand P refer to 

regressing and progressing modes respectively. The numbers I, 2, 3 

refer to first, second, third blade flap-bending mode. ~ and ware real 

and imaginary part respectively of an eigenvalue. 
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Flap-Bending \ 
Mode .-

, 
y = 

t 

lR 
-.311 

IP 

2R 
-.257 

2P 

3R 
-.229 

3P 

Table 1 

Uncoupled Blade Eigenvalues in Non-Rotating 

Reference System. q-l/2 = 18 

Hinged Blade Cantilever Blade 

5 Y = 8 Y = 5 Y = 8 

II) t II) t II) t II) 

.05 .13 .01 .07 
-.501 -320 -.514 

1.95 1.87 2.01 1.93 

1. 57 1.55 1. 74 1. 72 
-.409 -.265 -.424 

3.57 3.55 3.74 3.72 

3.80 3.79 4.17 4.16 
-.366 -.237 -.378 

5.80 5.79 6.17 6.16 

It is seen that there is little difference between the eigenvalues 

for th~ hinged and cantilever blade. This is due to the relatively low 

flap-bending stiffness of the blade as expressed in q-l/2 = 18. The 

first natural frequency without aerodynamic damping is 1 for the 

hinged blade and 1.06 for the cantilever blade. The aerodynamic 

damping has the effect of lowering the natural fr~quency. The effect 

of increasing the Lock number from y = 5 to Y = 8 is merely to increase 

the damping of each mode in the ratio of 8/5 and to lower the natural 

frequencies somewhat. The numerical examples for the coupled system will 

be limited to y = 5. When determining the mode shape one finds 

substantial phase shifts along the blade. For example with y = 5 the 
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first mode of a hinged blade shows between root slope and tip slope a 

phase shift of 12 degrees. For y = 8 the phase shift is still higher. 

Thus there is a substantial difference between the structural mode 

shape and the aeroelastic mode shape. 

Rotor Alone (Inter Blade Coupling) 

Coupling the blades to each other and assuming zero moments at the 

rotor center, the evaluation of Eq. (43) for q-l/2 = 18 and y = 5 

yields the following eigenval'~s, whereby the character of a mode as 

regressing (R) or progressing (P) can be determined from Eq. (47) • 

Table 2 

Rotor Alone Eigenvalues for q-l/2 = 18, Y = 5 

Flap-Bending 
Mode 

lR 0 o 

lP -.616 1.96 

2R ··.327 1.57 

2P -.193 

3R -.240 3.87 

3P -.214 5.87 

The values of Table 2 should be compared to the values in Table 1 

for the hi~ged blade and y = 5. The frequencies are almost the same, 

and the sum of regressing and progressing mode damping are also the same. 

However now the regressing and progressing modes have different damping. 

I 
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With respect to the first regressing mode the frequency and damping are 

now zero, the damping of the progressing mode is doubled. With respect 

to the second and third mode the progressing mode damping is reduced, 

the regressing mode damping is increased. 

Unrestrained Rigid Body 

When omitting the restraining springs shown in Fig. 1 and the 

gravitational effect. so that the rotor is coupled to an inertia, one 

obtains an approximation to the short period pitch and roll modes in 

helicopter hovering flight mechanics. In Eq. (46) we have wI = w
II 

= O. 

\ole present here a case of a rotor with 4 blades (b = 4). and an 

inertia ratio Ib/I = .2. Eq. (46) could of course easily be written 

for different body inertia in pitch and roll. For q-l/2 = 18. Y = 5 

one obtains: 

Table 3 

Coupled Rotor-Rigid Body Eigenvalues 

q-l/2 = 18, 

MODE 

Pre do rr.in ant 
Body 

y = 5, b = 4, 

R 

P 

lR 

IP 

.2, 

W 

-.157 .16 

-.167 .16 

o o 

-.316 2.01 

= 0 

Predominant .----------~----------~------.------------
2F. 1. 74 

Flap-Bending -.265 
2P 3.74 

3R 4.17 
-.237 

3P 6.17 
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The coupling with a rigid body has added two modes and has substantially 

changed the rotor alone modes of Table 2. The progressing rotor mode 

with first flap-bending has only one half the damping. There are now 

two predominant body modes. one regressing. the other progressing. 

both with about the same frequency. The second and third flap-bending 

modes have not been much changed by the coupling with the rigid body. 

Rotor and Support Coupling 

In evaluating Eq. (46) for a case of a rotor coupled to its support. 

we assume again 4 blades (b = 4). and now stipulate Ib/I = 5. The 

support frequencies without roto~ will be varied from wI=wII= .4 to 5.5. 

The frequencies in pitch and roll will first be assumed equal. followed 

by a case of unequal support frequencies. Table 4 shows the coupled 

rotor and support eigenValues for a number of support frequencies 

WI = wII • Figure 4 shows the imaginary parts of the eigenvalues. w, 

Fig. 5 shows their real parts, t. At low support frequencies up to 

WI = wII < .8 one can clearly identify a mode as predominantly support 

or rotor mode. The same is true for high values of WI = wII > 2.5. 

In between there is strong coupling between support and rotor. and no 

predominance can be established. There is an essentially aperiodic 

mode with very low frequency. It's almost aperiodic decay is quite low 

for small WI' but increases to -.30 at high WI. The first progressing 

rotor flap-bending mode with an uncoupled frequency 1.96 (Table 2) and a 

high damping increases its frequency and loses its damping with stiffer 

support. This mode becomes unstable at WI = WII = 1.5 and only 

-, 

'j 
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Table 4 

Coupled Rotor and Support Eigenvalues 

q -1 /l = 18, Y = 5, b = 4, 1b II = 5 

, , 
1.\)1 = I.\)II .4 .8 1.2 1.6 , 

MODE ~ 1.1) : t 1.1) t 1.1) t 

Support .. Rotor 2 R -.HU 1.08 -.168 1.24 -.188 1.44 -.235 

Support .. Rotor 1 P : -.310 1.19 ! -.301 1.37 -.339 1.60 -.403 

.001 1 • Rotor 1 R -.037 -.109 0 -.172 0002 -.216 , 
Rotor 1 .. Support P -.176 2.02 I -.145 2.03 -.071 2.06 +.019 

Rotor 2 .. Support k -.206 1.85 1 -.lB8 1.87 -.141 1.94 I -.077 

I 
I 

Rotor 2 P -.269 3.76 -.269 3.76 -.269 3.76 1 -.269 

Rotor 3 R -.232 4.21 I -.232 4.21 -.232 4.21 I -.231 

Rotor 3 P -.237 6.19 -.237 6.19 -.237 -.236 6.19 
-- --- - - ...... - - - ----- ---- - - - --- ---~ 

1.\)1 = 1.\)11 2.5 ! 3.5 I 4.5 5.5 

MODE ~ 1.1) t I.\) I t I.\) t 

Support .. Rotor 2 R -.268 1.69 -.269 1. 72 -.268 1.73 -.268 

Support .. Rotor 1 P -.398 1.96 -.357 2.00 -.341 2.01 -.333 

Rotor 1 R -.267 .008 -.290 .Oll -.301 .012 -.307 

Rotor 1 .. Support P +.042 2.77 -.053 3.60 -.012 4.65 -.024 
, 

Rotor 2 .. Support R I -.028 2.76 -.049 3.60 -.037 4.74 -.013 

Rotor 2 P j -.26'/ 3.77 -.199 3.83 -.251 3.72 -.261 

Rotor 3 R I -.226 4.22 -.197 4.28 1 -.206 4.07 -.232 
I 

Rotor 3 P I -.236 6.19 . -.236 6.19 -.233 6.20 -.216 

- . . 
!""-- -~ ___ \!IIIII!IIII!i\ ........... 

1.1) 

1.58 
I 

1.77 

.004 

2.19 

2.10 

3.76 

4.21 

6.19 

1.1) 

1. 73 

2.01 

.013 

5.56 

5.63 

3.73 

4.13 
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stabilizes again at IIoIr = Ilol II = 3.0, where it has become a predominant 

support mede. The second regressing rotor flap bending mode with an 

uncoupled frequency of 1.57 (Table 2) and a high damping follows 

essentially the same trend, however without becoming actually unstable. 

The progressing second flap-bending mode with an uncoupled frequency 

of 3.6 (Table 2) and a damping of -.19 increases frequency and 

damping due to coupling with the support. The third flap-bending modes 

are not much affected by the coupling and correspond to the cantilever 

cases of Table 1. The change in type of mode when increasing support 

stiffness is indicated in 'I'able 4 by an arrow. For example 

Support + Rotor 2 means that for low IIoI r = wrr we have predominantly a 

support mode, at high IIoI r = Ilol II we have predominantly a second flap­

bending rotor mode, both regressing. 

The question has often been raised whether airframe modes can be 

damped by coupling with the rotor. Fig. 5 shows for our case that 

the support damping from the rotor is very small for support frequencies 

above 4.5, and that one must avoid support frequencies between 1.5 

and 3.0 where a coupled mode is unstable. However for low support 

natural frequencies below 1.2 the rotor provides very good damping to 

the support. Obviously the result of Fig. 5 cannot be generalized, 

since it pertains only to the selected combinations of rotor and support 

parameters • 

In some studies, it was found that unequal stiffness of the rotor 

support in pitch and roll can alleviate instabilities. In the case of 

Il0l1 = 1.6, IIoIrI = 4.8, the following eigenvalues were obtained. 
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Table 5 

Coupled Rotor and Support Eigenvalues 

Mnde t 1.11 

Support R -.266 1.63 

P -.018 4.96 

R -.216,-.303 0 

P -.357 1.90 

R -.027 2.15 
Rotor 2 

p -.262 3.74 

R - .226 4.16 
Rotor 3 

p -.234 6.20 

',I . I. 
As compared to the ,of wI = 1.1111 = 1.6 in Table 4 the instability is 

removed, though the second regressing rotor mode has now almost no 

damping. 

Reducing the Order of the Characteristic Equation 

Although for the simple case assumed her there was no difficulty 

in solving the characteristic equation, the introduction of more 

degrees of freedom for the blades (in-plane bending and torsion) and 

of a much higher order for the airframe receptance or impedance 

polynomial:; may lead to difficulties. It has been suggested in 

reference 7 to reduce the order of the characteristic equation of 

coupled large systems by modalizing and truncating the component 

receptance matrices. It is, therefore, of interest to find out 
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whether the method suggested in reference 7 can result in a lower order 

characteristic equation without an appreciable reduction in accuracy for 

the low~r eigenvalues. Let us write Eq. (26) in the form 

w~ now determine the roots of 

(50) 

(51) 

which according to Eq. (27) are the eigenvalues for the single blade that 

is hinged at the root and experiences no feedback from pitch angle e. 
We then pel·form a partial fraction eXl-'ansion of the two polynomials 

PM(A)/Pa(A) and Pe(A)/Pa(A) with respect to the roots of Eq. (51). 

Since the roots occur in conjugate complex pairs, we have for example 

= Co + + •••• 

and a similar expression for Pe(A)/Pa(A). This partial fraction 

expansion is now truncated, and Eq. (2€) is rewritten as 

where the new polynomials PM(A), Pa(A). Pe(A) are of lower order than 

the original polynomials. From here on the analysis follows the same 

procedure as described before leading to the total system characteristic 

equation (48) which now is of lower order. 

(52 ) 

(53) 

Using the case WI = wII = 1.2 in Table 4 and omitting in Eq. (52) the 

last 8 terms, one obtains the following total &ystem eigenvalues. 
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Table 5 

Coupled Rntor and Support Eigenvalues 

with Truncated Polynomials 

MODE ~ w 

Support .... Rotor 2 R -.200 1.44 

Support .... Rotor 1 P -.384 1.62 

Rotor 1 R -.158 .008 

Rotor 1 .... Support P -.038 2.11 

Rotor 2 .... Support R - .139 2.04 

Rotor 2 P -.271 3.80 

R -.232 4.34 
Rotor 3 

p -.239 6.31 

In comparing these numbers with those in Table 4 for WI = wII = 1.2 

it is seen that the truncation method has resulted in !IoOd approximationc~. 

It can be shown that these approximations are better than those obt2ined 

from performing the eigenvalue analysis with only 4 blade elements. 

Further'nore reference 7 suggests an iteration method to improve the 

accuracy of any specific eigenvalue. that was found to rapidly converp,c 

to the exact value in a numerical example. From Table 5 there see'.TIS to 

be no doubt that for the rotor-airframe coupling problem modalization of 

the polynomials with the single hinged blade eigenvalues and subsequent 

truncation of the partial fraction expansion is a viable method to reduce 

the order of the total system characteristic equations if this is required. 
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Concluding Remarks 

In the conv.ntional8tllbWtyanalysis for coupled rotor-airframe 

syst.ms structural modes are used where all parts of the system 

oscillat. in ph.... In order to approximate the actual mod.s, wh.re 

due to a.rodynamic effects substantial phase differences exist between 

the oscillations of the various parts of the system, several structural 

modes must be superimposed, and it is difficult to judge how many of the 

structural modes are needed to properly represent a true aeroelastic mode. 

In the finite element stability analysi~ explored here for the case of 

coupled blade flap-bending and airframe oscillations the aerodynamic 

effects are directly incorporated into the blade element transfer 

matrices. The resulting natural modes are true aeroelastic modes and 

the problem of structural mode superposition is eliminated. Computational 

limitations occur due to numerical errors from repeated mUltiplications 

of high order polynomials. For 10 blade elements and performing the 

computations with 16 digits the numel'ical errors present no problem. 

The analysed system is then of 44th order. Though the method should be 

tried out on more sophisticated descriptions of both the rotor and the 

airframe to include blade chordwise bending and blade torsion and a more 

complex airframe structure, it appears from the experience gained so far, 

that the principal limitation is in the largest eigenvalur _ considered. 

It can be anticipat~d that with more eigenvalues but approximately 

retaining the largest one, no numerical difficulties will be encow1tered, 

except that the order of the characteristic equation may become too high 

for accurate root extraction. In this case the method of modalizing and 

truncating the polynomials, briefly studied herein. could be applied to 

reduce the order of the total system characteristic equation. 
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While the main purpose of this investigation wa~ to :,hed :.;omt. 

light on the tractability of the finite element st~ ility c.lndly~; b for 

coupled rotor-airframe systems, interesting results were ol·tained in 

the numerical examples. for th~ selected ratio of blade tlappinr 

moment of inertia over rotor support inertj a of 5, and for the sell!ct(~d 

hingeless blade first natural flap-bendir;!:> frequency \'d thout damrd ng 

and while rotating of 1.06 there are 4 stf '~gly coupled aeroelastic 

modes, 2 modes that are for small and fo!' large support st iffness 

mainly support modes, and 2 further modes that are in these regions 

mainly progressing first blade-flap bending and regressinrr second 

blade-flap bending modes. Two of these modes can Lecome unsta.ble or 

near unstable in the illtermediate range of support sti ffne05s. Thf: 

progressing second blade flap bending and the hi gher blade bencirl,> 

modes show little tendency of coupling with the rotor sUPI;ort dn,j 

retain high damping. ThE:: extension of the finite element staLilitv 

analysis to forward flight conditions should pose no rreat diffiu.li ie .. 

as long as the rotor advance ratio is moderate and con;;tClnt cn/,ffl d 0;1,1 

in the multiblade equations can be considered adequate. 
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~ Figure Captions 

~ 
r Fig. 1 Schematic of Rotor and Support System 
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Fig. 2 Angular Deflection in Pitch of HI'~' Fdative 

rig. 3 Blade Element in Flap-Bending 

Fig. a. Freqcenci •• of Aeroelastic Coupled Modes for 

Fig. S Damping of Aeroelastic Coupled Modes for the 
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