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ABSTRACT.



Marine atmosphere and laboratory stress corrosion tests on 

smooth and precracked specimens from 7075, 7475, 7050, and 7049 

alloy plates (1.25 and 3.0-in. thick) show that for a given strength 

level, alloys 7050-T7X and 7049-T7X have superior short-transverse 

stress corrosion resistance (SCR) to 7X75-T7X-. (t' typical strength2 

levels above the minimum o Y7075-T61 for example, SCR of these 

alloys is considerably better than that of 7075-T76, and approach s 
 

that of 7075-T73. Alloy 7475 maintains an advantage in the area' 
 

of fracture toughness, however, because it can be thermally proc­


essed to give particularly "clean" microstructures.



According to tests in synthetic seawater and a marine atmos­


phere on bolt-loaded DCB specimens containing pop-in precracks,



7050-T7X and 7049-T7X have SL threshold stress intensities (Kiscc)



of about 24 MPam (22 ksiIEH.) at a yield strength of 450 MPa



(65.3 ksi). The corresponding K value for 7X75-T7X at this 

strength level is about 19 MPai.t these environments Ks is. _o> " /_ __ . Isee-- --­

independent of plate thickness, per se; absolute strength level 
 

appears to be the controlling factor, Kiscc being inversely pro­


portional to yield strength. In a salt-chromate solution, however,



the thicker material appeared inherently more resistant than the



thin plate.



Results from precracked specimens are in good qualitative



agreement with those obtained from smooth specimens. Although



both specimen types are capable of distinguishing between -T6,



-T76 and -T73 tempers in relatively short time periods (<2 weeks),



the precracked specimen provides more information about crack



growth rates.
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Examination of fracture surfaces and metallographic cross



sections showed a considerable amount of crack blunting, crack


jogging, crack branching, unfailed ligaments, and mechanical frac­


turing in the precdacked specimens. Stress corrosion cracks gen­


erated from pop-in precracks show these features to a greater



extent than specimens containing fatigue precracks. In view of



these crack morphologies, it is apparent that measured stress



intensities can be higher than effective values at the crack tip.



Apparent (measured) stress intensities should therefore be con­


sidered as phenomenological parameters only, useful for comparing


alloys and tempers under a particular set of experimental condi­

tions. They are also useful from a practical point of view in


estimating crack velocities that could be expected under known



environmental conditions.
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FOREWORD



This report was prepared by Kaiser Aluminum & Chemical



Corporation under Contract NAS8-30890 for the George C. Marshall



Space Flight Center of the National Aeronautics and Space Adminis­


tration. The work was performed in the period October 1, 1974 to



September 30, 1976, and was administered under the technical



direction of the Propulsion and Vehicle Engineering Laboratory,



Materials Division of the George C. Marshall Space Flight Center,
 


with T. S. Humphries serving as Contracting Officer's Representative.



All investigations on alloys 7075-T7351, 7475-T7351, and



7050-T73651 were sponsored by NASA; costs incurred for the con­


current evaluation of alloy 7049 and for the inclusion of 7075-


T651 and 7075-T7651 control materials were supported by KACC.



The investigation conducted under this contract has been



completed with the writing of this report. However, marine atmos­


pheric exposure tests will be continued, the results to be reported



on a biannual basis.
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I. INTRODUCTION



The overaged alloy 7075-T73 was the first of the stress­


corrosion resistant 7000-series aluminum alloys to be used in



aerospace applications. Although this alloy offers excellent
 


stress-corrosion resistance (SCR) in the short-transverse orienta­


tion, its use can result in weight penalties because of its lower



strength compared to 7075-T6, 7178-T6, and 7079-T6. This situa­


tion has provided the impetus for the development of alloys



designed to have good SCR in combination with high strength
 


(Refs 1, 2). Fracture toughness has also become increasingly



important in aerospace applications requiring high strength and



stress-corrosion resistance. Commercially available alloys devel­


oped to satisfy these needs are 7050-T736X, 7475-T73X and 7049-


T73X. Before these alloys are to be utilized to their full capa­


bility, however, it must be demonstrated that they have SCR com­


parable to the established alloy 7075-T73.



Measurements of stress-corrosion susceptibility have tradition­


ally been given in terms of the time-to-failure of "smooth" speci­


mens which have been loaded at various stresses and then exposed



to an appropriate corrosive environment. In recent years, stress­


corrosion tests utilizing precracked specimens have become popular



because they provide a means of determining quantitative crack



growth rate information. Such data are a valuable addition to



smooth-specimen results in the same way that fatigue crack growth



rate data are a valuable addition to the standard S-N fatigue



curves for different alloys.



Actual stress-corrosion crack growth rate data are also use­


ful for setting inspection intervals and for monitoring purposes



in a variety of structures. Moreover, if a stress intensity



actually does exist below which stress-corrosion cracks do not



propagate (KIscc), this stress intensity value can be determined.



(Appendix A describes stress intensity and its relevance to
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stress corrosion). In addition, a precracked specimen has the



particular advantage of representing a practical situation in



which flaws are always present.



The objective of this evaluation was to compare the stress­


corrosion crack growth behavior of the newer stress-corrosion



resistant, high strength alloys (7475-T7351, 7050-T73561 and



7049-T7351) with that of the established alloy 7075-T7351. The



crack growth tests were supplemented with conventional time-to­


failure results for smooth tensile-type specimens.
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II. GENERAL PLAN OF STUDY



The alloys under consideration were evaluated in plate of



two thicknesses- stress-corrosion is known to be dependent on



section thickness for reasons that are not completely resolved



(metallurgical factors involved are grain structure, strength



level, and quench rate). In addition, two aging conditions were



included, one intended to produce a "typical" -T73X temper, and



the other to give a "borderline" (high strength) -T73X temper.



For control purposes, 7075-T651 and 7075-T7651 were also evaluated.



Stress-corrosion tests using smooth specimens were conducted



in the short-transverse and long-transverse plate directions



using round tensile-type samples subjected to alternate immersion



in synthetic seawater and to a seacoast atmosphere (Daytona Beach,



Florida). Times to failure were determined at a number of stress



levels for each alloy, orientation (short- and long-transverse),



* and test environment.



Most of the crack growth evaluations were conducted on bolt­


loaded double-cantilever beam (DCB) specimens. This-type of speci­


men has a favorable history for characterizing crack growth of



aluminum alloys in environments conducive to stress corrosion



(Refs 6,7). Crack growth data can be determined as a function



of stress intensity, KI, on a single portable sample that canbe



machined to test the short-transverse direction of material of



almost any thickness. The precracked specimens were tested in



three environments by the constant deflection method: a seacoast



atmosphere at Daytona Beach, Florida, synthetic seawater, and a



salt-chromate solution. A few additional precracked DCB specimens



were tested by the constant load technique in the laboratory



environments.
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In addition to the stress-corrosion tests, supplemental data



on fracture toughness and other mechanical properties (tensile



and yield strength, elongation), chemical compositions, and elec­


trical conductivities were also determined.
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III. MATERIAL FABRICATION



A. CASTING AND HOT ROLLING



One 907 kg (2000 ib), 30.5 cm (12 in.) thick ingot of each



of the compositions given in Table I was cast in Kaiser's Center



for Technology pilot plant. For comparative purposes, all the



new alloys had the same purity level (0.06% Si, 0.10% Fe). The



ingots were stress relieved at 3160C (6000F) for 12 hr, and then



homogenized for 24 hr at 4680C (8750F). They were then scalped



(10 mm per side) and end cropped in preparation for hot rolling.



In sawing the heads and butts, cracks were found in the 7050 and



7049 ingots. Successive end slices were taken until no cracks



were visually apparent, and as a precaution all the ingots were



inspected ultrasonically. This examination showed all ingots



to be sound.



The ingots were preheated to 4000C (7500F) and hot rolled



to 150 mm (6 in.) slab in six passes of approximately equal drafts.



Final slab temperatures were about 370'C (7000F), ranging from



363 0C (6851F) for 7050 and 3800C (7200F) for 7075. Figure 1 shows



a plot of cumulative horsepower-hour/ton values (measure of the



specific energy or work required for deformation) against exit



thickness for each pass reduction. It appears that of the four



alloys, 7050 required the least deformation energy.7049 and 7475



were about equal-, and 7075 was the "hardest" to roll. We also



note that the 7050 slab was the coldest, whereas 7075 was the



hottest. Had these temperatures been the same, the curves for



the two alloys would probably have been more divergent. Differ­


ences in the amount of magnesium in solution at the rolling temp­


erature probably account for the varying deformation energies.



7050 had only about 2.1% Mg, compared to 2.5% for 7075 and 7049.



Furthermore, the relatively high copper level in 7050 increases



its solvus temperature so that less magnesium is in solution



during rolling.
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At the 15.2 cm slab stage, the 7050, 7475 and 7049 alloys



were given an additional thermal treatment of 20 hr at 4930C



(920 0F). This type of practice is recognized to be beneficial



in alloys that are intended to be used in applications requiring



good fracture toughness. The slabs were then hot rolled further



to final gage: 76 mm (3.0 in.) and 32 mm (1.25 in.).



B. HEAT TREATMENT



After hot rolling, 10-ft lengths of each plate were solution



heat treated at 482C (9000 F) for 6 hr and quenched in cold water.



They were then stretched 1.75%, held at ambient temperature for



2 (1.25-in. plates) or 4 (3.0-in. plate) days, and step-l aged



for 24 hr at 1210C (2500F), i.e., -T651 temper.



Ultrasonic inspection of the plates showed all the 3-in.



thick materials to conform to Class A discontinuity limits (Ref



10). The 1.25-in. thick plates conformed to Class B limits.



In any case, however, test samples were taken only from areas



shown to be free of defects giving responses equal to, or greater



than, that from a 3/64 in. flat-bottomed hole, i.e., exceeding



Class A limits.



To establish the step-2 aging conditions necessary for the



desired "minimum" and "typical" -T73 temper conditions, long­


transverse tensile blanks from each of the eight plates were aged



at 1650C (3300F) for times ranging from 6 to 36 hr. Aging treat­


ments were then selected primarily on the basis of target tensile



properties. The desired yield strength for "typical" 7075 and'



7475 was 34.5,MPa (5 ksi) above the minimum specified strength



level for the particular plate thickness. The corresponding'



difference for the borderline condition was 75.8 MPa (11 ksi)'; at



the same time, a minimum electrical conductivity of 38% IACS
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was chosen.* Similarly, for 7050 and 7049, the desired typical



yield strength was 27.6 MPa (4 ksi) above the minimum value, and



the strength for the borderline condition was set at 55.1 MPa



(8 ksi) above the minimum. Again, the electrical conductivity



had to be greater than 38% IACS. Table II gives the minimum.



yield strengths and the target values for all the materials.



C. AGING CURVES



Figure 2 shows the electrical conductivities as a function



of aging time at 1650C (3300F) for each plate thickness. 7075



had the lowest conductivity for a given aging practice, whereas



7475 gave the highest values. This is probably related to higher



purity and a slightly lower magnesium content in 7475. Although



alloys 7050 and 7049 had the lowest conductivities in the -T6



temper, they had intermediate levels when step-2 aged.



Long-transverse yield strengths (1/2t position for the 1.25-in.



plates and 1/4t position for the 3.0-in. plates) as a function of



aging time are shown in Figures 3 and 4. For the 1.25-in. thick­


ness, 7050 and 7049 had the same as-overaged strength levels for



a given aging time. 7050 revealed its characteristic pronounced



peak in strength at short overaging times (Ref 12). 7075 and 7475



also had similar aging curves. For the 3.0-in. thickness, 7050



had higher strength levels for a given overaging time than any



of the other alloys. This is probably related to its relatively



low quench sensitivity (Ref 13), which would be revealed to a



*Lot acceptance criteria for 7075-T73 are (Ref 11):


Elec. Conductivity Tensile Properties Status


>40.0 Above min. Acceptable

<3.8\. 0 , -<U9.9 <11.'9 ksi above min. Acceptable

38.0 _539.9 >12.0 ksi above min. Suspect



38.0 An§ level Unacceptable
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greater extent in the thicker gage. 7049 and 7075 had similar
 


strengths after about 20 hours of overaging, but 7475 strength



levels were considerably lower for all aging times. This could



be related to the lower magnesium content in 7475 (2.2% vs. 2.5%



in 7075).



Correlation plots of electrical conductivity with yield



strength for all the alloys are given in Figure 5. For a given



conductivity level, 7075 was the weakest, and 7050 was the strongest.



The difference between the curves for 7075 and 7475 is noteworthy,



considering their similar compositions.



Based on the overaging curves in Figures 3 and 4, aging times



were chosen to -enjthe desired strength levels for the "typical"



and "minimum" -T73X51 temper conditions. These times, together



with the resultant yield strengths are given in Table III.



Strength levels were generally within 14 MPa (2 ksi) of the target



value (average deviation of 9 MPa), thereby allowing an evaluation



of the alloys at comparable strength levels and over a fairly



wide strength range. The typical and minimum temper conditions
 


will be denoted by the designations -T73X51(T) and -T73X51(M),



respectively.
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IV. MATERIAL CHARACTERIZATION



In addition to evaluating the plates for stress-corrosion



resistance, supplemental data were obtained on microstructures,



chemical compositions, tensile properties and fracture toughness.
 


The results of these evaluations follow.



A. METALLOGRAPHIC EVALUATION



The grain structures of the eight plates (mid-plane location)



are shown in Figures 6 and 7. Grain size and shape were quite



comparable between alloys for each thickness. There were some



minor differences in extent of recrystallization, however (see



also Figure 8). Both 7475 plates were essentially unrecrystallized,



whereas the 7050 materials were about 20% recrystallized. The



thinner 7075 plate was also about 20% recrystallized, but only a



trace was evident in the 3-in. thick material. Both 7049 plates



were slightly recrystallized (=5%).



All the plates had a discernible sub-grain structure (Fig. 9),



but it was most evident in alloys 7049 and 7050. Subgrains in



the 3.0-in. thick 7050 plate were particularly well developed.
 


Figures 10 and 11 show the "insoluble" constituent disper­


sions in each of the plates. As would be expected on the basis



of differences in composition (higher Fe and Si in 7075) and



fabrication processes (more thorough homogenization for 7475, 7050



and 7049), there were more, and larger, constituents in the 7075



plates. These phases were AI 2CuMg, AI 7 Cu 2Fe, and Mg 2Si in all



materials (see Figure 12).
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B. CHEMICAL COMPOSITIONS
 


Table IV shows the compositions of each plate. Zinc, magnes­


ium, and copper contents were determined by "wet" chemical analy­


sis on each plate (both plates of each alloy were rolled from the
 


same ingot). Agreement between the two samples was generally



within experimental error. Other elements (Si, Fe, Cr, Ti, Zr,



etc.) were analyzed spectrographically; determinations on melt



buttons and on plate samples gave the same results.



C. TENSILE PROPERTIES
 


All the plates were tested for ultimate tensile strength,



0.2% offset yield strength, and elongation. iWe used 0.505-in.



rounds for the long-transverse and longitudinal directions, and



miniature specimens for the short-transverse direction (0.125-in.



diam for 1.25-in. plate, 0.250. diam for 3-in. plate). All tests
 


wet-e conducted in triplicate using an Instron model TTD testing



machine. The test location was the midpoint of each 1.25-in.



plate and at quarter thickness for the 3.0-in. plate (except for



short-transverse direction).



The tensile data are listed in Table V, and the short and



long transverse yield strength levels for all the materials are



compared in Figure 13. The "typical" strengths for alloys 7050



and 7049 were 34-48 MPa (5-7 ksi) higher than those of 7075 and



7475. Minimum-aged 7049 and 7050 wereL stroDser than the corres­


pondiing 7075-T7651 plates. We also note that the typically aged



7050 and 7049 materials had yield strengths equal to, or greater



than, the minimum values for 7075-T651 (420 and 462 MPa for 3.0



and 1.25-in. thick plate, respectively).
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D. FRACTURE TOUGHNESS



KIc data were determined using compact tension specimens



according to ASTM E 399-72. Fatigue precracks were introduced



with a 6-kip MTS axial-stress fatigue machine. Fracture toughness
 


measurements were made in three directions (SL, TL, LT) using



triplicate specimens. The test location was the midplane for the



1.25-in. plates; SL measurements in the 3.0-in, plates were also



made at midplane, but LT and TL values were determined at quarter



thickness.



In addition to the Kic values obtained as described above,



approximate fracture toughness values were generated by mechanical



precracking of the DCB specimens used in the stress-corrosion -\



evaluation. This value is known as Kia, the stress intensity at



which mechanical crack arrest occurs.



The results are given in Table I, and K values are correlated 

with yield strength in Fiures 14 to 16. The usual inverse rela­

- o w o ined, ach 35 MPa increase in strength generally 

giving about 2 MPaviK decrease in Kic The TL values, however, 

appeared somewhat less dependent on strength than those in the LT 

and SL orientations.



LT and TL Kic values for the 3-in. thick plates were about



3 MPaAim lower than those of the 1.25-in. materials. In the SL



orientation, the same relationship was observed for the 7075



plates. With the exception of the 3.0-in. 7049 plates, Kic



values for the other materials seemed to be independent of both



plate thickness and alloy. The 3.0-in. thick 7049 plate had a



lower Kic value than the other high-purity materials; it also



had lower fracture toughness in the LT and TL orientations. Kic



values for the 1.25-in. thick 7049 plate, however, were in good



agreement with the 7475 and 7050 materials-.
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The fracture toughness levels of the 7475 plates were some­


what lower than the tentative minimums published for the alloy



(Ref 14): LT-42 MPaAm (38 ksiV ii.) and TL-36 MPa/mi (33 ksili/h.)
Y	in thicknesses ranging from 0.75 to 1.5 in. Values obtained for 

1.25-in. thick plate in this study were'38.5-42 MPavE LT) and 

32 MPaVm CTLI-_-Tre resbn for this difference undoubtedly lies 

in thiC'abrication practice. We used the same practice for alloys 

7475, 7050 and 7049. Achieving optimum fracture toughness in 

alloy 7475 requires high-temperature thermal treatments that are 

not possible with the other alloys because their liquidus temper­

atures are too low. To demonstrate the effect of high fracture 

toughness (and correspondingly high Kia , the initial stress in­

tensity in a bolt-loaded DCB specimen) on crack growth behavior, 

a few stress-corrosion tests will also be run on a 3.5-in. thick 

plate having an SL KQ level of 48 MPaYii (43.4 ksiin.).* 

In addition to fracture toughness tests, fatigue crack growth
 


rate curves were determined for the 1.25-in. plates ("typical"



-T73 temper only) in the TL orientation. These tests were conduc­


ted on 1-in. wide compact specimens using a stress ratio of 0.1



and a cyclic frequency of 60 Hz. The relative humidity of the
 


laboratory air was 20-25%. Logarithmic plots of da/dN versus AK



are given in Figure 17. Although the high-purity materials had



higher fracture toughness than the 7075 plates, fatigue crack



growth rates for all the alloys were about equal over the AK range



evaluated. This finding agrees with the work of Van Orden and



Pettit (Ref 15) in which they concluded that high fracture tough­


ness does not necessarily improve resistance to fatigue crack



growth.



*Results will be given with first biannual report on long-term


marine atmosphere performance of stress corrosion specimens


exposed at Daytona Beach.
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V. STRESS CORROSION TEST PROCEDURES



A. SMOOTH SPECIMENS



Tensile-round stress-corrosion specimens from the short- and



long-transverse directions of each plate were tested by alternate



immersion in the laboratory for 6 months (details are given in



Appendix B) and in the coastal marine atmosphereat Daytona Beash,



Florida, for an indefinite time period. A3:%t sea salt



(ASTM D1141, without heavy metal salts) was used rathe'rEta NaCl



for the laboratory test in order to inhibit the amount of general



corrosion (Refs 16 and 17), and thus reduce the frequency of



tensile overload failures common to the conventional 3-1/2% NaCl



test. The specimens used were 3.175 mm (0.125-in.) diameter ten­


sile rounds, which were stressed in window frame jigs (Fig. 18).



In the laboratory test, the minimum and typical -T73 temper



materials were exposed at four stress levels between 172 and 379



MPa (25, 35, 45 and 55 ksi). The 7075-T651 and 7075-T7651 materials
 


were stressed at 34 to 172 MPa (5, 15 and 25 ksi) and 172 to 310



MPa (25, 35 and 45 ksi), respectively. Only the typical -T73



temper conditions were evaluated in the marine atmosphere; stress



levels were the same as those used in the laboratory tests. The



specimens were examined for failures on a daily basis in the lab­


oratory, and weekly in the marine atmosphere.



B. PRECRACKED SPECIMENS
 


The crack-line loaded double cantilever beam (DCB) specimen



was used for these tests. The details of this specimen are given
 


in Appendix C together with relationships for the stress intensity



factor as a function of loading and specimen geometry.
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Two methods of loading were used in this study. Most of the



specimens were bolt-loaded (decreasing stress intensity), but a



few were tested under constant load conditions (increasing stress



intensity). Details of each type of test follow.



1. 	 CONSTANT DEFLECTION (DECREASING K) TESTS



Bolt loaded SL and TL specimens machined from the midplane



of the plates were exposed to three environments:



1. 	 Marine atmosphere (Daytona Beach)--typical -T73 temper



only.



2. 	 Synthetic seawater, alternate immersion--typical -T73



temper only.



3. 	 Salt-chromate solution (0.6M NaCl + 0.02M Na 2Cr
2O 7 +



0.07M NaC 2H 30 2 + HC 2H302 to pH4), constant immersion-­


minimum and typical -T73 tempers.



Specimens from the 7075-T651 and 7075-T7651 control materials



were also tested in each environment. The salt-chromate environ­


ment was included because it inhibits general corrosion and pro­


vides faster crack growth than standard salt solutions (Ref 7).



Synthetic seawater was again chosen because it promotes less



general corrosion than NaCI; we have also encountered considerable



difficulty in measuring crack lengths during alternate immersion



in NaCl solutions.
 


Most of the DCB specimens were 25 mm (1-in.) wide by 25 mm



(1-in.) high by 125 mm (5-in.) long, and were precracked by mech­


anical pop-in. In addition a few 75-mm (3.0-in.) high SL speci­


mens were tested in each environment, and a number of fatigue­


precracked SL specimens were also included. All the specimens



had chevron notches, and were sidegrooved to help provide a



straight crack front, suppress formation of shear lips, and keep
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the crack growing in the proper plane (Refs 18 & 20). Drawings



of the specimens used are given in Figures 19 and 20. Tables VII



and VIII show a schedule of all the -bolt-oaded specimens that



were tested. A, ' 

Prior to precracking and t I- , the specimens were etch­

cleaned in 5% NaOH solution at 180 0C, desmutted in cold 50% HN0s,
_e: 

and rinsed in hot deionized wate .- The specimens were precracked 

by turning a pair of stainless steel bolts into the machined slot 

at the end of the specimen. The cracks were propagated about 

2-3 mm (0.1-in.) beyond the end of the chevron; total crack lengths 

were about 28 mm (1.1-in.) as measured from the load point. 

Deflections were measured with a clip-in strain gage at the integral 

knife edges, and crack lengths were measured optically at the 

specimen edges with the help of a binocular microscope. 

Stress intensities for crack arrest (Kia) were then calculated
 


from the relation given by Mostovoy et al. (Ref 18):



2
6E= [3(a + + h 2] /6E .6h)

4[(a + .6h)3 
 + h2a] 
 (i)



where a is the crack length; h is the specimen beam height; 8 is



the deflection at the load point (determined by applying an em­


pirical correction factor to the end measurements); E is the



modulus of elasticity; and , a correction factor for side grooves,



was assumed to be equal to (b/bn)05 , where b and bn are the full



and reduced sections, respectively. The Kia values for the mater­


ials are given in Appendix D.



Specimens that were fatigue precracked were bolt loaded to



two stress intensities, one to about 90% of K1i, 
 and the other
 

to 75% of Kia. All the specimens that were precracked by pop-in



were tested at an initial stress intensity of Kia. Fatigue
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precracks have some possible advantages since the zone of plastic



deformation at the crack front is smaller than that of a mechanical



pop-in crack. However, the latter type of crack, being much less



time-consuming to produce is considerably more economical.



For the laboratory tests, the bolts were coated in paraffin



wax, and the specimens were placed bolt-end up in the solutions.



Specimens exposed at Daytona Beach were suspended from racks­


with the bold end down (Fig. 21). Measurements of crack length
 


were made optically, with the help of a binocular microscop'&, on



a logarithmic time basis of approximately 1 day, 2 d&ys, 4 days,



1 week, 2 weeks, 1 month, 2 months, etc. The average of the crack



lengths measured at each edge was then used in the calculation



of stress intensity (using Eq. 1) and crack growth rate.



We recognize that crack front locations estimated from edge



measurements are likely to be short due to crack-front bowing of



both the precrack (see Appendix D, Figure D2) and the subsequent



stress corrosion crack (side grooves minimize this problem, how­


ever). Since crack-front bowing causes an underestimation of



crack length, stress intensity is overestimated (cf. Eq. 1). To



circumvent this problem, other methods of crack length measure­


ment have been proposed, such as ultrasonic techniques (Ref 24).



However, the ultrasonic method is apparently accurate to only



about ±1.5 mm (±0.06 in.), so although it may be quite adequate



for alloys that undergo fast crack growth (e.g., 7075-T6) it is



not sufficiently accurate for resistant materials that may grow



a crack less than 1.5 mm (0.06 in.) long in one month of testing


-
i.e., a crack velocity of 6x10- 9 m/sec (=10 4 in./hr).



Total exposure periods for the laboratory tests were 6 months.



The specimens were then broken open for visual and metallographic



examination. At the end of 6 months, one specimen was also re­


moved from the marine atmosphere for detailed examination. The
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other specimens will be left at the test site for prolonged expos­


ure (results will be reported biannually).



2. CONSTANT LOAD (INCREASING K) TESTS



As a check on the constant deflection method of loading, a



number of DCB specimens from the 3.0 in. plates were also subjec­


ted to constant load tests in both laboratory environments (syn­


thetic seawater and salt-chromate solution). The specimens were



loaded as shown in Figure 22 after fatigue precracking. Specimen



deflection was monitored with a linear voltage differential trans­


ducer (LVDT); these readings were then converted to crack length ­


stress intensity data. The test solutions were automatically



metered to the crack--previously used methods of manually intro­


ducing solution at certain intervals (Ref 6) gave erratic results
 


due to excessive drying overnight and on weekends.
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VI. RESULTS AND DISCUSSION



A. SMOOTH SPECIMEN TESTS
 


1. LABORATORY ENVIRONMENT
 


The results for the 6-month exposure of tensile-type short­


transverse specimens to alternate immersion in synthetic seawkter



are summarized in Tables IX and X for the 1.25-in. and the 3.0-in.



plates, respectively. As expected, early failures occurred in



all the susceptible control materials. 7075-T651 plates of both



thicknesses failed in short times at 103 MPa (15 ksi) and 172 MPa



(25 ksi) stress levels. Specimens stressed at 34 MPa (5 ksi) did



not fail in the 6-month exposure period. The 1.25-in. 7075-T7651



plate failed at stresses as low as 172 MPa (25 ksi)--over 100



days; the corresponding 3.0-in. material survived at 172 MPa (25



ksi), but failed at 241 MPa (35 ksi). It is noteworthy that tests



at stress levels of 172 and 310 MPa (25 and 45 ksi) clearly dis­


tinguished the three 7075 tempers within 2 weeks of exposure time.
 


All the -T73 temper plates survived 30 days at stress levels
 


of 310 MPa (45 ksi) and below. The only materials failing in



less than 30 days at 379 MPa (55 ksi) were 1.25-in. 7075 and 3.0-in.



7049 in the minimum-aged condition.



Among the minimum-aged 1.25-in. thick -T73 temper materials,



only 7049 survived the total 6-month exposure at 310 and 379 MPa



(45 and 55 ksi) stress levels. Of the typical -T73 temper plates,



only 7050 did not survive the total exposure at these stress



levels (it was the strongest material, however).



Metallographic examination of the specimens showed little



general pitting corrosion, and only a few secondary intergranular



stress corrosion cracks. Cases where intergranular attack was



noted are indicated in the summary tables.
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The stress-corrosion results for the 1.25-in. thick plates



are represented graphically in Figure -23 on the basis of a pass/



fail (100 days at 310 MPa) criterion.* At approximately equal



strength levels, both 705-0-T73651 and 7049-T7351 appear to have



somewhat better stress corrosion resistance (SCR) than the



7X75-T7351 materials. We also note that these alloys had yield
 


strengths above the minimum value for 7075-T651 (426 MPa).



In the 3.0-in. thickness, minimum-aged 7475 and 7049 did not



survive the 6-month exposure (Table X). However, at equal strength



levels both 7050-T73651 and 7049-T7351 again appear superior to



7075. The minimum-aged materials, for example, were stronger



than 7075-T7651, yet had better SCR. These plates also had higher



yield strengths in the typical condition than the 420 MPa minimum



for 7075-T651.



These points are emphasized further in the survival rate



(100 days at 310 MPa) curves shown in Figure 24. Data for the



7075 and 7475 plates fit the same pattern, showing well-defined


"critical" yield strength levels at which SCR dropped sharply:



about 480 and 450 MPa (70 and 65 ksi) for the 1.25 and 3.0-in.



thick materials, respectively. For these particular test condi­


tions, critical strengths for the corresponding 7050 and 7049



plates were obviously higher than these values, but the data were



insufficient to estimate absolute levels.



There were no long-transverse failures in any of the -T73



temper materials at 310 and 379 MPa (45 and 55 ksi) stress levels



(Table XI). The only failures in this orientation occurred in the



3.0-in. thick 7075-T651 plate stressed to 379 MPa (75% of the LT



yield strength).



*Graphical representation is for the particular arbitrary test


conditions indicated; different criteria could give different


rankings.
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2. MARINE ATMOSPHERE



As Tables XII and XIII show, short transverse failures in



specimens exposed at Daytona Beach, Florida occurred in the rela­


tively susceptible 7075-T651 and 7075-T7651 control materials and



in the highly stressed (310-379 MPa) 1.25-in. 7050-T73651 and



7049-T7351 plates. At stress levels of 172 MPa (25 ksi) and



higher, failure times for the control materials were <2.3 months



and <6.9 months for the 1.25-in. and 3.0-in. plates, respectively.



Y The 7049 and 7050 specimens-failed in 8.9 months at 310 MPa (45 

S ksi). 6Fjr,.7050 these results confirm the long-term laboratory 

rle5' Aa ilures (>125 days) for the same material; there were no labora­

oryfailures in e 7049 plate in 180 days of testin 

The results to date are not in agreement with a previous



comparison of web-flange-type die forgings in which the calculated'



critical strength of 7049 was reported by Staley to be about 40 MPa



(6 ksi) lower than that of 7050 (Refs 13 and 25). Although it is



possible that marine and industrial atmospheres could give dif­


ferent rankings, misleading conclusions can be drawn if such



comparisons are not made at the same time and at equal strength



levels.*



As in the laboratory tests, failures in the long-transverse



direction occurred only in the 3.0-in. 7075-T651 plate stressed



at 379 MPa (55 ksi).



All the marine atmosphere tests will continue for an indef­

inite time period, and results will be reported on a biannual



basis.



*The same program showed that in the 30-day alternate immersion


test (3-1/2% NaCl) 7049 equaled or exceeded the performance


of similar 7050 forgings.
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B. PRECRACKED SPECIMEN TESTS: CONSTANT DEFLECTION SPECIMENS



1. CRACK LENGTH MEASUREMENTS
 


Crack extensions as determined on bolt-loaded specimens for



the total test period in each environment (marine atmosphere,



synthetic seawater, salt-chromate solution) are listed in Tables XV



(SL orientation) and XVI (TL orientation).* Estimates based on



edge measurements and lengths measured at the 1/4w location on the



fracture surface are given. The fracture surface lengths were



related back to the original (precracked) edge measurements for



specimens tested at Daytona Beach and in synthetic seawater, be­


cause general corrosion occurring over the 6-month exposure period



made it impossible in most cases to tell where the precrack ended



and stress corrosion began. Since the cracks were bowed (see



Section VI.B.4), the lengths based on these fracture surface meas­


urements tend to overestimate actual crack extension. Neverthe­


less, agreement between the two measurements was quite good.
 


In a few instances, the actual presence of stress corrosion



cracking was questionable according to visual examination of the



surface morphology (see Appendix E for fracture surface examina­


tion and metallographic cross sections). Specimens from the



3.0-in. 7075 and 7475-T7351 plates tested at Daytona Beach and



in synthetic seawater, for example, did not appear to have any



significant stress corrosion crack growth (edge measurements



indicated only 0.5 to 1 mm of crack extension--probably due to



pitting attack).



*Crack extensions by themselves are representative only for the


particular specimen used. They are also dependent on the initial


stress intensity. A more rigorous assessment of crack growth
 

behavior is given in a subsequent section on crack velocity ­

stress intensity relationships.
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A feature of interest in the TL-oriented specimens was the
 


presence of numerous small cracks in the short-transverse plane



(normal to the precrack surface) on all specimens from the 1.25-in.



plates and on specimens from the 3.0-in. 7050 and 7049 plates.



These cracks extended 0.5-1.0 mm beyond the measured crack tip,



and were slightly longer in 7075rT651 than in the -T73 tamper



materials. If they are in fact stress-corrosion cracks ',and their



intergranular nature suggests that they are), the usefulness of



crack growth measurements and subsequent stress intensity values



for the TL specimens is questionable.



The crack length measurements reveal a number of qualitative



factors:



1. 	 the typical -T73 temper materials were much more resis­


tant than the 7075-T651 and 7075-T7651 control materials;



2. 	 the 3.0-in. thick plates were more resistant than the



corresponding 1.25-in. materials;



3. 	 the "typical" -T73 temper condition was considerably
 


more resistant than the minimum-aged condition;



4. 	 at comparable yield strengths of 475 to 500 MPa, all



1.25-in. thick plates underwent about the same amount



of crack extension;



5. 	 crack extensions (SL orientation) in the 1.25-in. plates'



were considerably greater for the salt-chromate exposure



than for the atmospheric and synthetic seawater environ­


ments;



6. 	 crack extensions in the 3.0-in. materials were about the
 


same in all three environments; and



7. 	 as expected, the TL orientation was much more resistant
 


than the SL orientation.
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The foregoing results are for specimens containing mechanical


pop-in precracks; SL specimens from the 1.25-in. plates (typical
 


-T73 temper only) were also tested after fatigue precracking,.



A comparison of edge and fracture surface measurements for these



specimens is shown in Table XVII. In cases where little crack



growth was observed, as in the synthetic seawater environment,



negative values are reported. This is because the fatigue pre­


cracks lead at the specimen edges (probably due to a notch effect



at the side grooves). Consequently, the crack front in the center



of the specimen has to "catch-up" to the initial reference location



at the specimen edge. Once this occurs, the stress corrosion



crack then usually assumes a bowed shape, leading in the center.



Crack extensions in the fatigue precracked specimens were



generally somewhat less than those observed in the specimens



having pop-in precracks. This is not unexpected, however, because



the initial stress intensities were lower in the former specimens,



i.e., 80-90% of K i. As with the pop-in precrack, crack growth



in these 1.25-in. thick plates was much more extensive in the



salt-chromate solution than in synthetic seawater or at Daytona



Beach.



Crack lengths for the total exposure time can alternatively



be expressed in terms of a change in stress intensity (difference

Rbetween initial and residual values) or an average crack velocity.


/ These values are listed in Tables XVII to XX for the three environ­

tents. Combining these values (crack velocity over a certain



1 stress intensity range) allows a more realistic comparison of



!\stress corrosion resistance than crack length alone. These rela­
tionships will be discussed further in a subsequent section. 

V -ethe! mad an effort to compare the alloys on a 

stres intensitye:Le anVg ttesp ibasis by dividing by KIa. This was an



Sattvemp erat
normalization to allow for the dependence of AK on Kia.
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(Since crack velocity is normally a function of stress intensity,



AK increases with increasing Kia, all other factors being equal.)



Figures 25 to 27 show AK/KIa vs. yield strength plots for each of



the environments. For the Daytona Beach and synthetic seawater



exposures, all the data fell on one general curve, with no obvious



indication of an alloy or plate thickness effect, i.e., the factor



AK/KIa seems to be dependent only otstrength level. Data for the



salt-chromate test fell on two curves, one for each plate thick­


ness, the thinner material appearing much more susceptible for a



given strength level. Again, no significant alloy effect was



evident.



2. CRACK LENGTH VS. TIME



Crack lengths were measured at the edges of the bolt-loaded



specimen on an approximate logarithmic basis of 1 day, 2 days,



4 days, 1 week, etc. Representative data for each environment



are expressed as the form of length vs. exposure time plots.



However, as mentioned previously, crack lengths for a given ex­


posure time are dependent on specimen geometry and Kia levels.



A more rigorous treatment of the time dependency of crack length



is given in Section VI.B.3.



a. Marine Atmosphere
 


Figure 28 shows crack length vs time curves (SL orientation)



for the 1.25 and 3.0-in. 7075 plates. The 1.25-in. -T651 material,



in particular, shows the characteristic:rapid crack growth at



early exposure times (high stress intensity)- followed by decreasing
 


crack growth rate (decreasing stress intensity). There was an



indication of abnormally fast crack growth in both -T6 plates



over the last examination period. This could be due to the be­


ginning of exfoliation and/or corrosion product wedging, common



effects found in DCB specimens from alloys such as 7075-T6. It
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could also reflect seasonal changes in temperature and humidity-­


-longer exposure times are necessary to determine if "breakaway"



is occurring.



Crack length-time curves for the -T73 temper materials



(Fig. 29) showed a considerable amount of scatter between the


triplicate specimens, especially for early exposure times. Agree­


ment for the 6.5-month examination period, however, was fairly



good. It is apparent that 7050 was influenced by an incubation


factor. Crack growth for the first month was very slow, but from



then on it seemed to accelerate.



b. Synthetic Seawater



Crack growth curves for the 7075 materials (Fig. 30) were


similar to those obtained at Daytona Beach, except crack extension



appeared to be more rapid in the early stages of exposure. As in


theDaytona Beach exposure, crack growth was more extensive in the



thinner plates. Crack growth in the -T73 temper was very slow;



no crack growth occurred in the 3.0-in. material over the 6-month



exposure period (in excellent agreement with the Daytona Beach



results).



Figure 31 shows crack length vs time curves for all the


1.25-in. thick typical -T73 temper materials. There appeared to



be less scatter between replicate samples than at Daytona Beach



(cf. Fig. 29). There again was evidence of an incubation period,



especially notable for 7475, after which the crack growth rate



increased with time, and then finally began to level off.,



Reasons for an incubation period in the resistant materials



are not obvious. It could be due to the zone of plastic deforma­


tion ahead of the crack tip, or it may be related to a slow tran­


sition process by which the stress corrosion crack develops from
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the mechanical precrack. The latter type of crack is at least



partly transgranular, whereas the former is intergranular. For a



stress corrosion crack to initiate, therefore, it first must "find"



an intergranular crack plane. This requires either transgranular



stress corrosion (an extremely slow process) or a mixed mode of



intergranular stress corrosion and mechanical rupturing of remaining



ligaments (see Appendices E and F). Either mechanism would account



for abnormally slow crack growth in the initial stages of testing.



c. Salt-Chromate Solution



Figure 32 shows crack extension curves for the 7075 plates



tested in the salt-chromate solution (continuous immersion). Curves



for the -T6 and -T76 tempers were similar to those obtained in the



other environments. Also, as in the Daytona Beach and synthetic



seawater tests, there was no crack growth in the 3.0-in. thick



typical -T73 temper plate. Crack growth in the 1.25-in. thick



-T73 temper materials, however, was much more extensive than in



the other environments, approaching that obtained in 7075-T7651.



Six replicate specimens were tested for the 1.25-in. thick



typical 7075-T7351 temper plate. As Figure 33 shows, agreement



between the replicates was quite good. These curves also show



an incubation effect; crack growth was very slow during the first



2 weeks of testing, and then it increased. Crack growth curves



for the other alloys were similar to those of 7075 (Fig. 34).



Figure 35 shows crack growth curves for fatigue-precracked



specimens tested in salt-chromate solution. Incubation times



were even more evident for these specimens than those with pop-in



precracks. It is unlikely therefore that incubation effects are



related to the zone of plastic deformation ahead of the crack tip.



The concept of a transition barrier for the propagation of a stress



corrosion crack from a mechanical crack is more probable. Since
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fatigue precracks are predominantly transgranular (more so than



a pop-in precrack), stress corrosion is initially retarded until



an intergranular path is established. The lower initial stress



intensity could a-so affect the incubation time of a fatigue pre­


crack compared to a pop-in precrack, i.e., a lower driving force



for overcoming the transition barrier.



3. CRACK VELOCITY - STRESS INTENSITY RELATIONSHIPS



The data presented in the previous sections are not general­


ized--crack length vs. time relations are dependent on the geom­


etry of the specimen, particularly the beam height. The length



of the precrack and the magnitude of Kia also have an effect.



A more rigorous evaluation involves analyzing the crack-front



velocity in terms of the stress intensity at the crack tip.
 


Appendix A gives a general description of crack velocity vs. stress



intensity (V-K) plots.
 


Curve fitting methods have been proposed for determining



crack velocities (derivative of crack length vs time plots), but



this procedure does not work well for materials that are resis­


tant to stress corrosion. Reference to Figures 28 and 29, for



example, shows that curve fitting would be relatively straight­


forward for 7075-T651, but rather difficult for the -T73 temper



materials. Although some of the crack length-time data (Figs. 29,



31 and 34) could perhaps be construed as having linear relation­


ships (velocity independent of stress intensity), we have plotted



crack growth rates as obtained from crack length changes over



definite time increments versus the average calculated stress



intensity for that time period.
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a. Marine Atmosphere
 


V-K plots for the 1.25-in. thick 7075 plates shown in Figure 36



reveal the expected behavior: much higher crack growth rates at a



given stress intensity for the -T6 material than for the -T73



temper, with the -T76 temper having an intermediate velocity. The



V-K relationships for all four 1.25-in. -T73 temper alloys are



compared in Figure 37 (data are based on three specimens per alloy).



Alloys 7075, 7475, and 7049 show similar behavior; a good data fit



for these alloys is also evident. The 7050 data were more scat­


tered, and exhibited a somewhat higher average velocity for a



given stress intensity (7050 was also stronger than the other



materials, however--477 MPa yield strength vs 462 MPa for 7049



and. 420-430 MPa for 7075 and 7475). The reason for scattered be­


havior in the 7050 plot is evident in the crack length vs. time



curve for the alloy (Fig. 29). There appears to be an incubation



time involved for appreciable crack growth; this leads to an in­


verse type of V-K relationship.
 


The V-K data for the 3.0-in. 7075 materials are shown in



Figure 38. Crack growth rates were slower than in the corresponding



1.25-in. plates. In fact, 3.0-in. 7075-T7351 did not appear to



undergo any stress corrosion (nor did 7475-T7351). Figure 39



gives V-K information for the 3.0-in 7050-T73651 and 7049-T7351



materials. Data for 7049 are limited, but the two alloys seem to



be quite comparable. The larger specimen size (75 mm high vs 25 mm)



appeared to give a lower velocity for a given stress intensity,



but this was probably due to a slightly lower apparent initial Kia



in the 75 mm specimens (see Table D2 in Appendix D).



Crack growth in specimens having fatigue precracks seemed to



be occurring at lower stress intensities than in those with pop-in



precracks. This may be related to the greater amount of plastic



deformation associated with a pop-in crack. Pop-in cracks are
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also more ragged, leading to stress corrosion cracks that are not



well confined to a single short-transverse plane (see Appendixes E



and F); this leads to an effective stress intensity, lower than



the apparent (measured) value. This finding is in direct contrast



to that of Sprowls et al. (Ref 7) in which pop-in precracks showed



more crack extension. The DCB specimens used in that study were



not side grooved, however; consequently, stress intensities were



considerably greater in the samples containing pop-in precracks.



V-K data for the TL orientation are given in Figures 40 and



41. Although these data are limited due to the lack of extensive



crack growth, it is apparent that the -T6 temper is less resistant



than the -T73 temper. In fact, the resistance of the -T6 temper



in the TL orientation is approximately the same as that of the



-T73 temper in the SL orientation. For the 1.25-in. thickness,



the 7050 plate seemed somewhat more susceptible thah the 7475 and



7049 alloys. As mentioned previously, the significance of V-K



data for the TL orientation is uncertain in view of the secondary



(and leading) SL cracking in these specimens.
 


b. Synthetic Seawater



V-K plots (SL orientation) for the 1.25-in. 7075 plates



(Fig. 42) show the same general behavior as noted in the atmos­


pheric testsi. As the alloy-comparison in Figure 43 shows, all



four 1.25-in. -T73 temper plate materials had fairly similar V-K



behavior. However, in view of their higher strength levels, 7050



and 7049 may have an advantage over the 7X75 materials. Is is



again apparent that the fatigue precracked specimens undergo crack



extension at somewhat lower apparent stress intensities than



those with pop-in precracks.



V-K plots for the 3.0-in. thick plates are shown in Figure 44.



For 7075, all the 3.0-in. plates had greater resistance to crack
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propagation than the corresponding 1.25-in. thick plates. Of the



3.0-in. thick -T73 materials, only 7050 and 7049 showed crack



growth in the SL orientation. There did not appear to be any



significant difference between the two alloys.



V-K data for the TL orientation* are given in Figure 45. The



data for the -T6 and -T76 tempers seem to fall within a general



band lying between the SL curves for 7075-T7651 and 7075-T7351.



The 3.0-in. thick -T6 material appeared to be somewhat more sus­


ceptible than the others, however. All the 1.25-in. -T73 materials



showed some crack growth in the'TL orientation, but were more



resistant than in the SL orientation. It is interesting that the



7075-T7351 plate appears to have a similar crack growth rate t6



7475-T7351, but at a much lower stress intensity. As in the SL



orientation, 7050 and 7049 were the only 3.0-in. thick materials



showing significant crack growth.



C. Salt-Chromate Solution
 


V-K plots for the 1.25-in. thick -T6, -T76 and -T73 7075



plates are shown in Figure 46. The curves for the -T6 and -T76



materials are similar to those tested at Daytona Beach and in



synthetic seawater, but the -T73 temper had faster crack growth
 


rates at much lower stress intensities than in the other two



environments. There was also an inverse relationship evident at



high stress intensities (initial stages of test) which is prob­


ably an incubation effect. As Figure 47 shows, the other 1.25-in.
 


materials also had relatively fast crack growth rates over a fairly



wide stress intensity range. The minimum-aged materials naturally



had faster crack growth rates than the typical -T73 temper con­


ditions, their curves approaching that of 7075-T76 in most cases.



It is also noteworthy that tendencies toward plateau velocities
 


*Results refer to in-plane crack growth only, not the perpendicular



SL oriented cracking.
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were more evident in the salt-chromate solution that in the other



environments.



V-K curves for the fatigue-precracked specimens (Fig. 48)



show definite inverse relationships due to the marked incubation



times for these specimens. Different curves were also obtained



from one specimen to another, depending on the initial stress



intensity. In specimens loaded to about 90% of Kic , crack growth



was intially slower for a given stress intensity than for those



containing a pop-in precrack (due to stronger incubation effect).



At longer exposure times crack growth rates appeared to reach a



maximum at velocities above those obtained with pop-in precracks.



It appears, therefore, that initial crack growth rates in speci­


mens containing fatigue precrack are relatively slow (difficult



transition from transgranular crack to intergranular stress



corrosion crack), but once the incubation period is over, crack



growth rates are faster than in specimens containing pop-in pre­


cracks. As postulated previously, this latter phenomenon could



be related to the morphology of the stress corrosion cracks.



Since fatigue precracks are smoother and more planar than pop-in



precracks, this surface characteristic can be extended to the
 


propagating stress corrosion crack as well--at least during the



initial few millimeters of crack extension (see Appendix F).



This would allow stress corrosion to proceed at a lower apparent



stress intensity. Another possible factor is the extent of micro­


branching, which is expected to be less for lower initial stress



intensities (Ref 26). This would result in crack growth at lower



apparent stress intensities for fatigue-precracked specimens



(Ref 27).



Contrary to the results for the 1.25-in. plates, crack growth



rates for the 3.0-in. thick plates in the salt-chromate solution



were comparable to those obtained in the other environments



(Figs. 49 and 50). Crack growth rates in the minimum-aged alloys
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were considerably faster than in the typical -T73 temper condition.



We note, however, that the crack velocities in minimum-aged 7050



and 7049 were lower than those in 7075-T7651--and at higher strength



levels (yield strengths of 475 and 481 MPa, respectively, vs.



460 MPa).



d. Comparison of Environments



A comparison of V-K plots for the 1.25-in. 7075 plates in the



three environments is shown in Figure 51. For the -T6 temper,



crack growth at Daytona Beach was considerably slower than in the



laboratory tests; however, the relative difference for the -T76



temper appears dependent on the stress intensity. At low K levels,



for example, the salt-chromate solution seems to give relatively



high crack velocities, but at high stress intensities artificial



seawater appears more aggressive.



For the -T73 temper, synthetic seawater and the marine atmos­


phere gave similar results, but crack growth in the salt-chromate



solution was much more rapid than in the other environments.



This difference was not nearly as great in the 3.0-in. materials,



however.



4. KISCC ESTIMATES



The stress intensity at which crack velocities decrease to


-
1 x 10 5 in./hr (7 x 10-1' m/sec) or less is often taken to be



the "threshold" stress intensity value (KIscc). Depending on the



patience of the investigator, it becomes difficult to demonstrate



that a crack is moving at velocities much less than this rate.



Table XXI gives estimated values of Kiscc for all the alloys in



each of the environments as determined with specimens having



pop-in precracks.< In many cases we were able to establish only



a minimum or maximum value, and in some instances bracket Kiscc



between two values.
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The data are presented in graphical form as Kiscc vs. yield


strength plots in Figures 52 to 56. There appeared to be an in­


verse linear relationship between yield strength and Kiscc as 

established in all environments (analogous to Kic - strength rela­

tions). In general, the SL data points for 7075 and 7475 tended 

to fall on the same trend line. Kiscc values for 7050 and 7049,



however, were about 3.5-6 MPaAE (3-5.5 ksiV-n.) higher than those



for 7X75 at a given yield strength. There did not appear to be



any significant difference between 7050 and 7049 at equal strength



levels. In the TL orientation, there were no apparent alloy ef­


fects on K scc. All materials fell into the same general data band.



Although it has been stated that general relationships between



yield strength and Kiscc do not exist for aluminum alloys (Ref 9),



such relationships do apparently exist for the family of alloys



evaluated in this study. Such a relationship is to be expected



for 7075-type alloys in which overaging leads to a strength de­


crease in combination with an improvement in SCR. However, for



alloys such as 2024, in which normal aging increases both strength



and SCR, Kiscc would be expected to increase with yield strength



(as in aging from the -T3 to the -T8 temper).



For the Daytona Beach and synthetic seawater test, Kiscc
 


appeared to be independent of plate thickness (except as thick­


ness affects strength). The 3.0-in. thick plates, however, had



much higher Kiscc values than the thinner plates according to the



salt-chromate test. A "threshold" stress intensity was never



attained for most of the 1.25-in. materials in the 6-month expos­


ure period in this environment. With the exception of the 1.25­


in. materials tested in salt-chromate solution, agreement between



Kiscc values as determined in each of the environments was quite



good.
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KIscc values estimated from fatigue-precracked specimen data



were generally somewhat lower than those determined from specimens



having pop-in precracks (see Table XXII). As discussed previously,



the type of stress corrosion crack generated from a fatigue pre­


crack seems to grow at lower stress intensities, at least during



the first few millimeters of crack extension.



C. PRECRACKED SPECIMEN TESTS: CONSTANT LOAD SPECIMENS



Fatigue-precracked DCB specimens from the 3.0-in. plates of



each alloy (typical -T73 temper only) were exposed under constant



load conditions at stress intensities near KIa to both artificial



seawater and salt-chromate environments for 60 to 90 days.



In the first series of tests, the samples were initially
 


loaded to about 95% of Kic (the 7075 specimen tested with synthetic



seawater corrodent was accidentally "popped" during loading-­


consequently the stress corrosion crack grew from a mechanical



precrack, not a fatigue precrack). Crack growth rates as monitored



with the linear voltage differential transducer (LVDT) system were


-
so slow (<10 10 m/sec) that the loads were increased until meas­


urable crack extensions were obtained. Generation of meaningful



V-K information was extremely difficult in these materials, how­


ever, because Kiscc is so close to Kic (according to constant­


deflection tests on pop-in precracks, K in some cases is
Iscc


greater than Kic ). A second set of specimens was then loaded to



slightly lower stress intensities for 70 to 90 days. The speci­

mens were broken open at test completion to confirm that little



crack growth had taken place, thereby allowing an estimate of



KIscc to be made.



Results of these tests are given in Table XXIII. One of the


most noteworthy results was the occurrence of stable crack growth



at apparent stress intensities above Kic--in one case 3 MPaiin.
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higher.* In view of the crack blunting and branching effects



discussed earlier, this is not really unexpected.



Crack growth rates determined from crack opening displacement



changes varied somewhat but did not appear to increase with in­


creasing stress intensity over the ranges covered. Crack extension



and stress intensity ranges calculated from crack measurements on



the fracture surfaces compared reasonably well with those estimated



from the LVDT measurements.



Crack velocities in the salt-chromate environment were about



twice those in synthetic seawater for a given stress intensity.



Unlike the synthetic seawater tests, all crack extension obtained



in the salt-chromate environment was easily identified as stress



corrosion by examination of the fracture surfaces.
 


The V-K data generated from this loading method are compared



in Figures 57 and 58 to that obtained from the bolt-loaded (con­


stant deflection) specimens containing pop-in precracks. In most



cases the agreement was good. The 7075 and 7475 plates, however,



appeared somewhat more susceptible in the constant load test.



Kiscc estimates from the constant-load tests are given in



Table XXV and compared to the values estimated from the constant­


deflection (pop-in precrack) tests. As would be expected from the



similarity between the V-K data for the two test methods, Kiscc



levels were quite comparable. There was a trend to lower values



for the fatigue precracks as there was in the bolt-loaded, fatigue­


precracked specimens from the 1.25-in. plates (cf. Table XXII).
 


Another feature of these results is the apparent advantage



of 7475 over 7075 (Kiscc difference of about 4 MPaVr). This



*In breaking these specimens open, apparent stress intensities up


to 6 MPavm higher than true KIc were observed (see Table XXIV).
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effect was not evident in specimens from the 1.25-in. plates when



tested under constant deflection conditions with both fatigue and



pop-in precracks. Both 3.0-in. thick materials also appeared



similar in the constant-deflection, salt-chromate test (no crack



growth was observed in either alloy when tested in synthetic sea­


water or at Daytona Beach).



D. COMPARISON WITH PREVIOUS WORK



V-K plots from previous investigations and summary reports



are given in Appendix A. As noted, comparisons are difficult,



especially for -T73 type temper materials due to the lack of data.



There is also the problem of SCR dependency on product form,



strength level, and test conditions. Moreover, in some cases data



are "averaged" and exact thermal treatment conditions and strength



levels are not known.
 


Nevertheless, the previous investigations indicate that Kiscc



values for 7075-T651 range from 3 to 7 MPa/mi in 3-1/2% NaCl, 6.5



MPa/m in salt-chromate solution, and 5.5 MPam in an industrial



atmosphere. On bolt-loaded specimens containing pop-in precracks,



we obtained values of 4 to 9 MPaiii for 1.25-in. plate (522 MPa



yield strength) and 8 to 12.5 MPaYm for 3.0-in. plate (500 MPa



yield strength). In similar environments, Kiscc values of 20.5



to 28 MPaA are indicated for 7075-T7351, compared to our values



of 22.5 MPaAW for 1.25-in. thick plate (429 MPa yield strength)
 


tested in synthetic seawater and at Daytona Beach.* For 3.0-in.
 


plate we obtained minimum values of 25 MPav'i for 7075-T7351 and



29.5 MPaVE for 7475-T7351 (382 and 384 MPa yield strengths,



respectively). %



*For the 3.0-in. thick plates our tests in salt-chromate solution


gave comparable KIscc values to those established in synthetic


seawater and at Daytona Beach. Salt-chromate gave much lower


values for the 1.25-in. materials, however.
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For 7050-T73651, a Kiscc value of 25.5 MPaYm has been reported


for an industrial atmosphere (Ref 9). This compares favorably



with values of 19.5 to 27 MPaVm as determined in synthetic sea­


wAter and at Daytona Beach. Another report (Ref 28) showed a



4.0-in. thick 7050-T73651 plate ( 440 MPa yield strength) to have



a Kiscc of about 22 MPa'm as determined on ring-loaded fatigue­


precracked specimens in a NaCl environment. We obtained a value



of 26.5 MPaviff on 3.0-in. thick plate (430 MPa yield strength);



the corresponding value for a fatigue precrack would probably be



slightly lower.



Kiscc values below 11 MPaAm have been reported (Ref 9) for



7049-T73 die forgings tested in NaCl solution and an industrial



atmosphere. It is unlikely that this particular sample was prop­


erly aged to the -T73 temper, however, because Kiscc values in



the present evaluation were about 24 MPa m for both synthetic



seawater and marine atmosphere environments.



In no cases were plateau velocities observed as idealized in



Appendix A, Figure Al, or as reported previously (Fig. A3). Trends



towards stress intensity independent velocities were evident,



however, in the more susceptible materials, especially when tested



in the salt-chromate solution. The salt-chromate environment



also produced relatively flat V-K curves for the 1.25-in. thick



-T73 temper materials. The reason for the presence or absence of



ideal Region II behavior (velocity independent of stress intensity)



may be in the method of data analysis. Most previous methods of



generating V-K plots have been based on curve fitting crack



length-time data; a straight line drawn through the initial points



naturally gives an ideal plateau velocity. We determined crack



velocities for each time interval between measurements of crack



length, and assigned to that velocity the average stress intensity



over the time interval.
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The fact that plateau velocities were not observed in the



-T73 temper materials is not really surprising. As pointed out



by Brown (Ref 29), alloys of relatively high resistance experience
 


crack growth only at stress intensity levels near Kic , and do not



demonstrate a clearly defined plateau value.



A particular area of interest from a mechanistic viewpoint is



the functional dependence of crack growth rate on stress intensity.



A number of stress corrosion theories, for example, predict a K
2



relationship; such a dependence has also been observed experimen­


tally (Ref 30). Plots of ln V vs. ln K for the 1.25-in. thick



7075-T651 plate, however, reveal exponents of 4 to 16 (Fig. 59).



A K2 relationship was observed only in the transition between



Regions I and II for the salt-chromate test. The exponent also



varied from one material to another for a given test environment.



As Figure 60 shows, the crack velocity of the 3.0-in. thick 7075­

-
T651 plate was proportional to K6 7 in synthetic seawater and the



salt-chromate solution. The exponent for the 1.25-in. thick 7075-


T7651 material varied from 5 in the salt-chromate environment to



7 in synthetic seawater. It is apparent that a theory involving



a unique functional dependence of crack velocity on apparent



stress intensity does not exist for all thicknesses, thermal treat­


ments and test conditions, even for the same alloy.



The previously established exponent of 2 (Ref 30) was deter­


mined by loading fatigue-precracked specimens to a series of incre­


mental stress intensities and measuring the crack extension over



a certain time period. Any incubation effects could therefore



have influenced the results, especially since the incubation time



is probably inversely dependent on the initial stress intensity.
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Speidel (Ref 31) suggests that V-K results can best be repre­


sented by an equation of the form



V = A exp (BK), 

but as the semilogarithmic plots for 7075-T651 in Figures 42 and



46 indicate, this formalism may not be correct either. Figures 59



and 60 suggest that an equation of the form



V = CK'



may be more appropriate (but where n is not restricted to the



value 2).



In any case, theoretical arguments based on measured stress


intensities are tenuous at best, because crack branching and



blunting can lead to apparent stress intensities that are higher



than the effective values (Ref 27). It is also possible that the



extent of crack branching and blunting.-depends on the type of test,



i.e., decreasing or increasing K. Another complicating factor is



the possibility of corrosion product wedging (probably minimal in


chromate-containing environments), the effects of which are impos­


sible to assess quantitatively. Stress intensities measured in



a stress corrosion test should therefore be considered as pheno­


menological parameters only, useful for comparing alloys and



tempers under a particular set of experimental conditions.
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VII. SUMMARY AND CONCLUSIONS



From 	 this evaluation of plate products in the thickness range



1.25 	 to 3.0-in. we conclude that:



1. 	 For a given strength level, alloys 7050 and 7049 have



short-transverse stress corrosion resistance (SCR)



superior to that of 7075 and 7475. 7050-T73651 and



7049-T7351, with typical strength levels above 7075-T7651



minimum, have significantly better SCR than 7075-T7651



although they are not in the "virtually immune" category



of 7075-T7351.



2. 	 At equal strength level-s, there are no significant dif­


ferences in short-transverse SCR between 7050 and 7049.



At along-transverse yield strength of 450 MPa (65.3



ksi), for example, both 7050 and 7049 have Kiscc (SL



orientation) values of about 24 MPam (22 ksiVi'n.) as



determined in synthetic seawater and in a marine atmos­


phere (vs. 18-19.5 MPayim for 7X75 at this strength



level).*



3. 	 Results from precracked specimen tests are in good qual­


itative agreement with those from smooth specimens. In



addition to providing useful information about crack



growth rates, however, precracked specimen tests have



the additional advantage of giving a rapid assessment



of a material's relative susceptibility. In test times



as short as 1 to 2 days, for example, susceptibility



associated with the -T6 temper can be easily identified;



potential also exists for clear separation of -T76 and



-T73 tempers in short test times (a week or less).



*As determined on bolt-loaded specimens containing pop-in precracks.
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4. 	 For synthetic seawater and marine atmosphere tests,



Kiscc values are a unique function of strength level



(inverse relationship) and are not significantly af­


fected by plate thickness, per se. Thickness effects



are obvious in the salt-chromate solution, however.



When tested in this media, the thicker plate showed



similar behavior to that obtained in the other environ­


ments, but the thinner material underwent quite rapid



crack growth, never approaching a "threshold"



value over the 6-month test period.
 


5. 	 Stable crack growth in stress corrosion environments



is possible at apparent stress intensity levels well



above Kic. Fatigue precracked specimens exposed to



synthetic seawater and salt-chromate solutions, for



example, were mechanically "popped" at stress intensi­


ties up to 6 MPa/m above KIc.



6. 	 Precracked specimens from fairly resistant materials



reveal incubation periods during which initial crack



growth is very slow. It is postulated that the incuba­


tion period is related to a transition barrier in which



an intergranular stress corrosion crack develops from



a predominantly transgranular mechanical precrack. The



more susceptible the material, the faster this process



is; and, in -T6 temper material incubation effects are



not observable.



7. 	 Incubation periods are more obvious in specimens con­


taining fatigue precracks than in those having pop-in



precracks. Two reasons for this behavior are: (1)



initial stress intensities (driving force for crack ex­


tension) in the former are lower, and (2) transition



barrier for a fatigue precrack involves the initiation
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of an intergranular stress corrosion crack from a trans­

granular crack, whereas a pop-in crack is at least



partially intergranular.



8. Once incubation periods are over, stress-corrosion cracks



grow at lower apparent (measured) stress intensities in



specimens containing fatigue precracks than in those



with pop-in precracks. This effect is related to the



difference in morphology of the stress corrosion crack



generated in each case. Fatigue precracks generate



relatively planar stress corrosion cracks, whereas those



grown from pop-in precracks are non-planar, containing



jogs and unfailed ligaments. The latter probably re­


quires a higher stress intensity for crack propagation.



Moreover, the average stress intensity acting at the
 


crack tip is probably closer to the apparent (measured)



value for the fatigue-precracked specimen; the ragged



nature of the stress-corrosion crack generated by the
 

jAA u1 (pop-in precrack causes the actual stress intensity to Ab&r;c



b.e overestimated.



9. In view of the crack morphologies noted above, apparent



(measured) stress intensities are likely to be higher


than the average values acting at the corroding crack



tip. Comparisons of theoretical crack velocity - stress



intensity behavior to measured relationships may there­


fore be somewhat tenuous, but this does not detract from



the usefulness of such information from a practical



viewpoint.



10. In the TL orientation, all alloys have approximately



equal Kiscc values for a given strength level. However,



stress corrosion crack growth in TL oriented DCB speci­

mens proceeds primarily in a plane normal to the precrack.
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Numerous SL-oriented cracks lead the TL stress corrosion



crack (if any) by about 1 mm (for a 6-month exposure).



These secondary cracks could be generated by a combina­


tion of residual stress and a transverse tensile stress



ahead of the crack tip. The length of these cracks ap­


pears to be limited to the approximate size of the plastic



zone. Cracks in the -T6 temper material, for example,



are not much longer than those in the resistant -T73



temper.



11. 	 A simple bolt-loaded DCB specimen has promise as a prac­


tical alternative to those now used for routine fracture



toughness testing of high-strength aluminum alloys.



Although machining costs may be no less, the specimens



do not have to be fatigue precracked--nor is a tensile



machine needed. All that is required is a clip-in ex­


tensometer with electronic display and a visual measure­


ment of crack length.
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VIII. RECOMMENDATIONS FOR FURTHER WORK



1. 	 All specimens presently on exposure at the Daytona Beach



atmosphere site will remain in test for at least 6 years.



At the same time, however, additional samples of the newer



7000 series alloys should be put on exposure as material



(plate and extrusions) of various section sizes becomes



available from routine production. Samples from the 2000



alloy series, such as 2124 and 2048, should also be included.



2. 	 Tests using bolt-loaded DCB specimens have potential for



rapid screening and quality control checks-of stress corrosion



resistance. A simple crack length measurement after 2 days



of exposure is capable of clearly separating the susceptible



-T6 temper from the resistant -T73 temper. Further work is



required, however, to optimize the test conditions (solution



chemistry, temperature, specimen geometry) in order to dis­


criminate between materials having intermediate to good SCR



in both the 2000 and 7000 alloy series. The results of a



study to develop a rapid test for smooth specimens (Ref 33)



indicate that elevated temperature salt-chromate solutions



hold promise.
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Table I. Chemical Composition of Melts,* % by Wt.



Alloy Si Fe Cu Mg Cr Zn Ti 
 Zr


7075 0.14 0.16 1.40 2.40 0.20 5.7 
 0.03 01.00 
(AA Limits) 0.40 0.50 1.2-2.0 2.1-2.9 0.18-0.35 5.0-6.1 0.25 Ti + Zr 

7475 0.06 0.10 1.45 2.15 0.20 6.0 0.02 0.00
M


(AA Limits) 0.10 0.12 1.2-1.9 1.9-2.6 0.18-0.'25 5.2-6.2 0.06 ,. 0.05 

7050 0.06 0.11 2.15 2.15 0.00 6.2 0.02 0,12


(AA Limits) 
 0.12 0.15 2.0-2.6 1.9-2.6 0.04 5.7-6.7 0.06 0.08-0.15



7049 0.06 0.10 1.55 2.50 0.14 7.7 0.02 0.00 
(AA Limits)** 0.15 0.20 1.2-1.9 2.0-2.9 0'.10-0.22 7.2-8.2 0.10 0.05 

-

IrJ'



H All other elements <0.005% each; <0.05% total



(D -

*Spectrographic analysis of melt buttons.



**Limits given are for 7149 (higher purity version of 7049).



http:0'.10-0.22
http:0.08-0.15
http:0.18-0.35


Table II. Desired Yield Strengths and Electrical Conductivities


for Minimum and Typical -T73X51 Temper Conditions



Plate Elec. 
Min. 

Yield 

Desired 
Yield 

tow 

A 
Thickness, -T73X51 Condy, Strength, Strength% 7 

Alloy in. Temper %' IACS ksi ksi (MPa) " ... 

7075 1.25 Minimum >38 57.6 67-69 (468) 
7075 1.25 Typical >40 61-63 (427) 
7075 3.0 Minimum >38 49.0 59-61 (413) 
7075 3.0 Typical >40 53-55 (372) 

7475 1.25 Minimum >38 57.0 67-69 (468) 
7475 1.25 Typical >40 61-63 (427) 
7475 3.0 Minimum >38 52.0 62-64 (434) 
7475 3.0 Typical >40 56-58 (393) 

7050 1.25 Minimum >38 63.0 70-72 (489) 
7050 1.25 Typical >40 66-68 (462) 
7050 3.0 Minimum >38 60.0 67-69 (469) 
7050 3.0 Typical >40 63-65 (441) 

7049 1.25 Minimum >38 63.0 70-72 (4,89) 
7049 1.25 Typical >40 66-68 (462) 
7049 3.0 Minimum, >38 60.0 67-69 (469) 
7049 3.0 Typical >40 63-65 (441) 



--

Aging Time, 
 
hr at 330 0F 
 

0 
 
9 
 

13 
 
27 
 

0 
 
15 
 
32-

48 
 

14 
 
26 
 

15 
 
32 
 

15.5 
 
23 
 

20 
 
30 
 

15.5 
 
23 
 

13.5 
 
21 
 

Materialb 
 
Materialb 
 

7075-T651 
 
7075-T7651 
 
7075-T7351(M) 
 
7075-T7351(T) 
 

7075-T651 
 
7075-T7651 
 
7075-T7351(M) 
 
7075-T7351(T) 
 

7475-T7351(M) 
 
3 7475-T7351(T) 
 
(D 
u 7475-T7351(M) 
 

I 7475-T73651(T) 
 

7050-T73651(M) 
 
7059-T73651(T) 
 

7050-T73651(M) 
 
7050-T73651(T) 
 

7049-T7351(M) 
 
7049-T7351(T) 
 

7049-T7351(M) 
 
7049-T7351(T) 
 

Table III. Long Transverse Yield Strengthsa and Electrical
Conductivities of the Plate Materials



Plate 
 
Thickness, 
 

in. 
 

1.25 
 

3.0 
 

1.25 
 

3.0 
 

1.25 
 

3.0 
 

1.25 
 

3.0 
 

Electrical 
 
Conductivity,c 
 

% IACS 
 

33.2 
 
38.4 
 
39.6 
 
41.6 
 

34.0 
 
39.5 
 
41.6 
 
42.1 
 

41.2 
 
43.4 
 

42.3 
 
44.8 
 

41.3 
 
41.9 
 

41.7 
 
43.2 
 

40.8 
 
42.5 
 

40.1 
 
41.7 
 

Actual Yield 
 
Strength, 
 
Mpa (ksi) 
 

522(75.7) 
 
489(71.0) 
 
480(69.6) 
 
429(62.2) 
 

500(72.6)


460(66.7) 
 
405(58.8) 
 
382(55.4) 
 

482(70.0) 
 
420(61.0) 
 

444(64.4) 
 
385(55.8) 
 

500(72.5) 
 
477(69.2) 
 

475(69.0) 
 
429(62.2) 
 

493(71.5) 
 
461(67.0) 
 

481(69.8) 
 
450(65.3) 
 

aAverage of three measurements: midplane for 1.25-in. plate, 1/4t for 3.0-in. plate.


b(M) indicates minimum-aged condition (high tensile properties); (T) indicates



typical condition. I ­

cMeasured on plate surface with Magnaflux eddy current tester.



Desired


Yield Strength,



ksi



70


68


63



68


60


55



68


63



63


58



71


67



68


64



71


67



68


64





Table IV. Chemical Compositions of the Plate Materialsa



Plateb


% by Weightc

Thickness,
Alloy in. Si Fe Cu Mg Cr Zn Ti Zr



7075 1.25 0.14 0.16 1.45 2.49 0.20 5.78 0.03 0.00



7075 3.0 0.14 0.16 1.46 2.50 0.20 5.91 0.03 0.00



7475 1.25 0.06 0.10 1.57 2.23 0.20 5.96 0.02 0.00



7475 3.0 0.06 0.10 1.55 2.20 0.20 5.97 0.02 0.00



7050 1.25 0.06 0.10 2.10 2.08 0.00 6.00 0.02 0.12



7050 3.0 0.06 0.10 2.09 2.0-7 0.00 6.10 0.02 0.12



7049 1.25 0.06 0.10 1.53 2.48 0.14 7.60 0.02 0.00



7049 3.0 0.06 0.10 1.55 2.54 0.14 7.54 0.02 0.00­


aCu, Mg and Zn based on atomic absorption analysis of the plates;



Si, Fe, Cr, Ti, and Zr based on Quantometer analysis of the melts


and plates.
 

bBoth plates of each alloy were rolled from the same ingot.



CAll other elements <0.005% each; <0.05% total.
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Table V. Tensile Propertiesa of the Plate Materials



a d



Tensile Strength, MPa(ksi) Yield Strength MPa(ksi) Elongation, %


Materialb L LT ST L 
 LT ST L LT ST



1.25" 7075-T651 594(86.2) 584(84.8) 541(78.5) 548(79.6) 522(75.7) 480(69.6) 10.5 10.7 4.0
3" 7075-T651 557(80.8) 559(81.1) 525(76.2) 520(75.4) 500(72.6) 455(66.1) 10.5 7.7 4.0


1.25" 7075-T7651 553(80.3) 544(79.0) 491(71.3) 503(73.0) 489(73.0) 456(66.2) 10.5 10.2 3.3


3" 7075-T7651 526(76.3) 521(75.6) 486(70.5) 474(68.8) 460(66.7) 428(62.1) 10.5 7.7 3.0


1.25" 7075-T7351(M) 542(78.6) 536(77.8) 494(71.7) 487(70.7) 480(69,6) 446(64.8) 11.0 9.8 4.0


1.25h 7075-T7351(T) 502(72.8) 498(72.3) 456(66.2) 432(62.7) 429(62.2) 406(58.9) 11.3 10.5 4.0


3" 7075-T7351(M) 482(69.9) 481(69.8) 440(63.8) 413(59.9) 405(58.8) 380(55.1) 10.5 9.0 4.0


3" 7075-T7351(T) 469(68.1) 464(67.4) 446(64.7) 392(56.9) 382(55.4) 361(52.4) 11.7 9.0 6.3



1.25" 7475-T7351(M) 583(80.2) 540(78.4) 502(72.8) 499(72.4) 482(70.0) 456(66.2) 11.0 11.2 4.0


1.25" 7475AT7351(T) 502(72.9) 495(71.9) 453(65.7) 429(62.3) 420(61.0) 400(58.1) 13.0 11.7 4.0



3" 7475-T7351(M) 513(74.5) 514(74.6) 484(70.3) 455(66.0) 444(64.4) 415(60.2) 11.3 9.5 4.0


3" 7475-T7351(T) 467(68.0) 470(68.2) 449(65.2) 39i(56.8) 85 55.8) 364(52.9) 13.0 10.0 4.7



(D



l 1.25" 7050-T73651(M) 562(81.6) 533(80.2) 517(75.0) 509(73.9) 500(72.5) 466(67.7) 12.2 11.2 4.0
1.25" 7050-T73651(T) 537(78.0) 537(77.9) 500(72.5) 480(69.7) /477,69.2) 440(63.9) 12.7 li.8 4.0



3" 7050-T73651(M) 526(76.3) 536(77.8) 493(71.5) 481(69.8) 475(69.0) 440(63.9) 11.3 8.5 5.0


3" 7050-T73651(T) 503(73.0) 502(72.9) 477(69.3) 438(63.6) 429(62.2) 408(59.2) 12.7 8.8 5.0



1.25" 7049-T73651(M) 559(81.1) 553(80.3) 514(74.6) 500(72.6 493L71.5) 463(67.2) 11.7 10'.7 4.0


1.25" 7049-T73651(T) 534(77.5) 520(75.5) 495(71.9) 466(67. ) 4061(7.0) 436(63.3) 12.3 11.0 4.0


3" 7049-T73651(M) 541(78.5) 548(79.6) 515(74.8) 488(70.8) $481(69.8) 446(64.7) 11.2 9.0 4.0


3" 7049-T73651(T) 517(75.1) 525(76.2) 500(72.5) 452(65.5) I3 65.3) 416(60.4) 12,.0 9.8 5.0



aAverage of triplicate specimens



bM indicates minimum-aged condition; T indicates typical condition.


c02% offset 
 

I 
d% in 2-in. for L and LT directions; % in 1-in. and 0.5-in. fo ST dir tion


3-in. and 1.25-in. respectively. /





a


Fracture Toughness of/the Plate'Materials
Table VI. 
 

T ughness,
/-Lqture 	 )KO /aPlate Plate~( LT Yield 	 oTYed<~/rM (ksiVin. 

b Thickness, Strength, I)/ \ 
 
Material in. MPa T LT 	 /TL SL



7075-T651 1.25 522 30.6(27.d (22.8) 24.2(22.0) 

7075-T7651 1.25 489 31.5(28.6) 2 2(22.9) 23.1(21.0) 

7075-T7351(M) 1.25 480 31.8(8.9) 23.4(21.3) 
7075-T7351(T) 1.25 429 /33.3 0.3) .7(24.3) 24.3(22.1) 

7075-T651 3.0 500 27. (24.6) 22.4(20.4) 19.6(17.8) 

7075-T7651 3.0 460 /128/25.8) 22.0(20.0) 21.3(19.4) 

7075-T7351(M) 3.0 405 3-.9(29.0) 23.2(21.1) 
7075-T7351(T) 3.0 	 382 / 3 .0(29.1) 24.8(22.5) 23.5(21.4) 

7475-T7351(M) 1.25 482 8 34.7) 	 25.7(23.4)


7475-T7351(T) 1.25 	 420 / 41.8(38.0) 31.7(28.8) 26.7(24.3) 
7475-T7351(M) 3.0 	 444 35.0(31.8) -26.7(24.3)


(D 7475-T7351(T) 3.0 	 t3 4 40.4(36.7 30.5(27.7) 29.727.0)



OI 	 7050-T73651(M) 1.25 500 37.0(33. 31.2(28.4) 25.7(23.4) 
7050-T73651(T) 1.25 477 39*9(36 27.3(24.8) 
7050-T73651(M) 3.0 475 34.60 .5) 26.8(24.4) 
7050-T73651(T) 3.0 429 36.3 .8 29.2(26.5) 27.9(25.4) 

7049-T7351(M) 1.25 493 35. (32.3) - - 25.9(23.5) 
7049-T7351(T) 1.25 6 . 4(35.8) 31.2(28.4) 27.8(25.3) 
7049-T7351(M) 3.0 4,1 _ 28.4(25.8) - - 23.8(21.6) 
70'49-T7351(T) 3.0 4933.1(30.1) 27.2(24.7) 27.6(25.1) 

aAverage of triplicate compact tension specimens (best estimate of standard deviation:



0.8 MPaA?). Specimen thicknesses are given below



Specimen Thickness, B(in.)


Plate Thickness (in.) LT TL SL



1.25 	 1.0 1.0 .Pe


3.0 	 1.25 1.25 1.0



(LT values for minimum aged condition are from duplicate specimens.) 4 ( 
bM indicates minimuC-aged condition; T indicates typical condition. 

c2 .5 (KQ/oys )2 thickness criterion was satisfied for all measurements. 	 ACO L





Table VII. 	 Schedule of Bolt-Loaded DCB Tests:


SL Orientation



Number of Specimensa



Thickness, Daytona Synthetic Salt


in. Beach Seawater Chromate
Material 
 

1
7075-T651 1.25 1 	 1 
 
7075-T7651 1.25 1 1 1


7075-T7351(M) 1.25 b 1b1b


7075-T7351(T) 1.25 3 6 6



7075-T651 3.0 1 	 1 
 1
 
7075-T7651 3.0 1 1 1



7075-T7351(M) 3.0 - - 2


7075-T7351(T) 3.0 3c 2c 2c



7475-T7351(M) 1.25 bb 2b


7475-T7351(T) 1.25 3



7475-T7351(M) 3.0 -
 22


7475-T7351(T) 3.0 3c 2c 20



7050-T73651(M) 1.25 	 -b - b 2 
27050-T73651(T) 1.25 	 3 
 

7050-T73651(M) 3.0 	 2c
 
3c 	 2c
 2
3.0
7050-T73651(T) 
 

7049-T7351(M) 1.25 -b -b 2


7049-T7351(T) 1.25 3 22 b



7049-T7351(M) 3.0 c 22 
7049-T7351(T) 3.0 3c 20 20 

aAll specimens 25-mm (1.0-in.) high with pop-in precracks;



bIndicates four 25-mm (1.0-in.) high fatigue-precracked specimens



also tested (2 initial stress intensities);


CIndicates that two 75-mm (3.0-in.) high specimens also tested


(pop-in precrack).
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Table VIII. Schedule of Bolt-Loaded DCB Tests: TL Orientation



Number of Specimensa


Thickness, Daytona 


Material 
 

7075-T651 
 
7075-T7651 
 
7075-T7351(T) 
 

7075-T651 
 
7075-T7651 
 
7075-T7351(T) 
 

7475-T7351(T) 
 

7475-T7351(T) 
 

7050-T73651(T) 
 

7050-T73651(T) 
 

7049-T7351(T) 
 

7049-T7351(T) 
 

aAll specimens 25 mm 
 

in. Beach 


1.25 	 1 

1 

3 


3.0 	 1 

1 

3 


1.25 	 3 


3.0 	 3 


1.25 	 3 


3.0 	 3 


1.25 	 3 


3.0 	 3 


Synthetic Salt-

Seawater Chromate



1 1


1 1


2 2



1 1


1 1


2 2



2 	 2



2 	 2



2 	 2



2 	 2



2 	 2



2 	 2



(1.0-inch) high with pop-in precracks.
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Table IX. 	 Summary of Laboratory Short-Transverse SCR Resultsa



for 1.25-in. Plates--Smooth Specimens



Applied Alloy/Temper


Stress 7075 7475 7050 7049



MD
MPa(ksi) 	 -T651 -T7651 	 TO M T M T M T



c
[522] [489] [4801 [429) [482] [420] [500] [477. [493][462]



34 (5) 	 OK -	 - - - - - ­

103(15) 2/3* ­


(2,12 d)



172(25) 3/3 1/3* OK OK OK OK OK OK OK OK


(1,2,2 d) (103 d)



241(35) - 1/3 OK* OK OK OK 1/3 OK OK OK 
(3 d) (125 d) 

310(45) - 3/3 2/3* OK 1/3 OK 1/3* 1/3 OK* OK 

(all 2 d) (62,95 d) (60 d) (114 d) (125 d) 

M 379(55) - - 3/3 OK 3/3 OK 2/3 2/33_, OK OK 
U9 .0 (19,22,60 d) (47,53,53 d) (92,152 d)(125,133 d)) 

N3 aNumber specimens failed/Number tested; OK indicates 3 specimens survived 6-month exposure



Test environment: Synthetic seawater, alternate immersion


Specimen: 3:175 mm diam. tensile type



bM indicates minimum-aged -T73 temper condition; T indicates typical -T73 temper.


cNumbers in brackets are LT yield strengths (MPa). Minimum yield strengths for 1.25-in. thick



7075-T651 and 7075-T7351 are 462 and 393 MPa, respectively.


*Secondary intergranular attack noted in metallographic exam.





Table X. 	 Summary of Laboratory Short-Transverse SCR Resultsa



for 3.0-in. Plates--Smooth Specimens



Applied 	 Alloy/Temper

Stress, 7075 	 7475 7050 
 749 

Mb Tb
MPa(ksi) -T651 -T7651 	 M T M T M T



e
[500] [460) [405] [382] [444] [384) [475] [4291 [481] [449] 

34 (5) OK - - - - - ­

103(15) 3/3 

(all I d) 

172(25) 3/3 OK OK OK OK OK OK OK OK OK 
(all 1 d) 

241(35) - 3/3 OK OK OK OK OK OK OK* OK 
(6,7,107 d) 

310(45) - 3/3 OK OK 2/3 OK OK OK 1/3 OK 
(4,7,11 d) (160,168 d) (39 ) 

ko 379(55) OK OK OK OK OK OK -3/3 OK 

N) C(3,loq,152 6) 

aNumber specimens failed/Number tested;' OK indicates 3 specimens survived 6-months exposure.


Test environment: Synthetic seawater, alternate immersion.


Specimen: 3.175 mm diam. tensile type.



bM indicates minimum-aged -T73 temper condition; T indicates typical -T73 temper.


CNumbers in brackets are LT yield strengths (MPa). Minimum yield strengths for 2.5-3.0-in. 7075-T651


and 7075-T7351 are 420 and 338 MPa, respectively.



*Secondary intergranular attack noted in metallographic exam.





Table XI. Summary of Laboratory Long-Transverse SCR 
Resultsa--Smooth Specimens 

Applied 
Stress, 
MPa(ksi) -T651 

7075 
-T7651 

Alloy/Temper 

-T7351 7475-T7351 7050-T73651 7Q49-T7351 

1.25-in. Plate 

310(45) OK OK OK OK OK 

379(55) OK OK*- OK OK OK OK 

3.0-in Plate 

310(45) OK OK OK OK 

q 
( . 

M0) 

379(55) 2/3* OK* (50 ksi) OK OK OK OK 
(4,6 d) 

aNumber specimens failed/number tested; OK indicates 3 specimens survived 6 months. 

Test environment: synthetic seawater, alternate immersion 
Specimen: 3.175 mm diam. tensile type. 
*Secondary intergranular attack noted in metallographic exam. 



Table XII. 	 Summary of Marine Atmosphere Short-TransversetResultsa for


1.25-in. Plates--Smooth Specimens



Applied Alloy/Temper


Stress, 7075


MPa(ksi) -T651 -T7651 -T7351(T) 7475-T7351(T) 7050-T73651(T) 7049-T7351(T)


b 

[522] [489] [429] [4201 	 [477] [462] 

-34 (5) OK 	 ­

-103(15) 2/3 
 
(.2,8.9 mo.)



172(25) 3/3 3/3 OK OK OK OK


(.l-.2 mo.) (.9-2.3 mo.)



d 241(35) 3/3 OK OK OK OK 
(.4-1.2 mo.) 

a 310(45) 	 3/3 OK OK 3/3 2/3 
H (.l-.4 mo.) 	 (8.9 mo.) (8.9 mo.) 

379(55) OK OK 2/3 2/3


(3.4,4.8 mo.) (8.9 mo.)



aNumber specimens failed/Number tested; OK indicates 3 specimens survived 9 months exposure.



Specimen: 3.175 mm diam. tensile type.



bNumbers in brackets are LT yield strengths (MPa). Minimum yield strengths for 1.25-in.



7075-T651 and 7075-T7351 are 462 and 393 MPa, respectively.





Summary of Marine Atmosphere Short-Transverse SCR Results
a



Table XIII. 
 for 3.0-in. Plates--Smooth Specimens



Applied Alloy/Temper


Stress, 7075


ksi -T651 -T7651 -T7351(T) 7475-T7351(T) 7050-W73651(T) 7049-T7351(T)



[500] b [460] [382] [384] [429] [449]



-34 (5) OK ­

103 (15) 3/3 
(.1-.4 mo.) 

172(25) 2/3 OK OK OK OK OK 
(.05 mo.) 

241(35) 1/3 OK OK OK OK 
(6.2 mo.)



M 310(45) - 3/3 OK OK OK OK 
(.5-1.8 ma.) 

379(55) - OK OK OK OK 

aNumber specimens failed/Number tested; OK indicates 3 specimens survived 9-month exposure.



Specimen: 3.175 mm diam. tensile type.


bNumbers in brackets are LT yield strengths (MPa). Minimum yield strengths for 2.5-3.0-in.



7075-T651 and 7075-T7351 are 420 and 338 MPa, respectively.





Table XIV. Summary of Marine Atmosphere Long-Transverse SCR


Resultsa--Smooth Specimens
 


Applied Alloy/Temper 
Stress, 7075 
MPa(ksi) -T651 -T7651 -T7351(T) 7475-T7351(T) 7050-T73651(T) 7049-T7351(T) 

1.25-in. Plate 

310(45) - - OK OK OK OK 

379(55) OK OK OK OK OK OK 

3.0-in. Plate 

hz 310(45) - OK OK OK OK 

m 379(55) 2/3 OK(50 ksi) OK OK OK OK 
$ (3.4-4.6 mo.) 
M 0) 

IQaNumber specimens failed/Number tested; OK indicates 3 specimens survived 9-month exposure.



Test environment: synthetic seawater, alternate immersion


Specimen: 3.175 mm diam. tensile type.





Table XV. Total Crack Growth Observed in DCB Specimens
a



with Pop-in Precracks: SL Orientation



Plate LT Yield SL Kia, Average Crack Extensionb (mm)

Thickness, Strength, Synthetic Salt-Chromate



Material in. MPa 
 MPamm- Daytona Beach Seawater Solution



7075-T651 1.25 522 21.3 20.8 30.5 (33.5) 22.4 (27.4)

7075-T7651 1.25 489 21.7 9.1 
 6.8 (6.1) 10.2 (13.0)

7075-T7351(M) 1.25 480 21.7 	 - 11.3 
 (12.6)

7075-T7351(T) 1.25 429 23.8 1.3 
(2.0). 1.4 (1.1) 8.4 (8.5)



7075-T651 
 3.0 500 19.8 16.3 15.5 (16.0) 9.9 (11.7)


7075-T7651 3.0 460 
 21.2 1.8 3.8 (4.6) 2.8 
 (3.0)

7075-T7351(M) 3.0 405 24.2 
 - '0.6 (0.8)

7075-T7351(T) 3.0 382 24.8 
 0.5 (0.5)* 0.6 (0.5)* 0.0 (0.4)*

7075-T7351(T) 3.0 382 24.4 0.8 (0.8)* 1.3 (0.0)* 0.1 (0.3)



3 7475-T7351(M) 1.25 482 24.0( 7475-T7351(T) 	 12.6 (13.0)1.25 420 27.1 2.5 (2.8) 3.7 (3.7) 9.5 (10.2)



7475-T7351(M) 3.0 444 25.4 
 2.5 (3.3)

7475-T7351(T) 3.0 384 30.0 1.3 (1.0)* 1.1 (0.8)* 0.1 (1.0)

7475-T7351(T) 3.0 384 29.0 0.3 (0.3)* 1.1 (-0.3)* 0.3 (0.5)



7050-T73651(M) 1.25 500 24.2 	 ­
 9.8 (12.5)

7050-T73651(T) 1.25 477 25.2 
 5.3 (5.8) 2.8 (2.9) 8.3 (9.3)


7050-T73651(M) 3.0 475 24.7 
 -	 2.2 (3.4)

7050-T73651(T) 
 3.0 429 28.3 2.0 (2.8) 1.8 (1.8) 1.3 (2.5)

7050-T73651(T) 3.0 429 27.8 2.8 (1.5) 3.4 
 (1.9) 1.5 (2.3)



7049-T7351(M) 1.25 493 
 23.0 	 - 12.4 (14.6)

7049-T7351(T) 1.25 462 27.5 3.3 
 (3.6)" 2.8 (2.8) 9.5 (10.2)


7049-T7351(M) 3.0 
 481 24.2 	 - 3.4 (5.1)

7049-T7351(T) 3.0 449 26.3 2.5 (4.1) 
 1.9 (2.3) 2.8 (3.7)

7049-T7351(T) 3.0 449 25.9 3.3 (2.5) 4.3 (2.2) 1.5 
 (2.7)



a	All specimens 25 mm (U in.) 
high, except second set of data for 3-in. thick typical -T73 plates,



which were 75 mm ( 3 in.) high.



bEstimate based on average of measurements at specimen edges at end of 6-month exposure


period (numbers in parentheses based on fracture surface measurements).


*Presence of actual stress corrosion questionable according to visual examination of fracture


surface.





Table XVI. Total Crack Growth Observed in DCB Specimena



with Pop-in Precracks: TL Orientation



Plate LT Yield Kia Average Crack Extension, mm


Thickness, Strength, Synthetic Salt-Chromate



Material in. MPa MPaii 
 Daytona Beach Seawater Solution



7075-T651 1.25 522 23.6 2.0 
 1.8 (3.0)t 0.8 (1.8)t

7075-T7651 
 1.25 489 23.8 0.3 2.3 (1.0)t 0.5 (0.8)t

7075-T7351 1.25 429 26.1 0.5 (0.8)- 0.4 (0.9)t 0.0 (0.9)t



7075-T651 3.0 
 500 22.6 0.5 
 3.8 (2.3)t 0.0 (0.5)t

7075-T7651 
 3.0 460 23.8 0.0 0.8 (0.3)t 0.0 (0.0)*

7075-T7351 3.0 382 26.7 0.3 (0.8)* 0.3 (0.6)* 
 0.5 (0.0)*



z 7475-T7351 1.25 420 32.8 0.5 (1.3)t 0.3 (1.0)t 0.3 (0.4)
L 7475-T7351 3.0 384 33.9 0.0 (0.8)* 0.3 (0.3)* 0.0 (0.5)*
(D 

M ) 7050-T73651 1.25 477 28.3 1.5 (1.8)t 1.4 (0.9)t 0.1 (0.6)tUIl 7050-T73651 3.0 429 30.5 0.8 1.8 (1.3) 0.0 (0.1)
W 

7049-T7351 1.25 462 30.9 1.3 (0.8)- 1.7 (0.9)t 0.0 (1.3)t

7049-T7351 3.0 449 29.6 0.8 (-0.3)t 0.6 (0.8) 0.0 (0.0)



aAll specimens 25 mm high.



bEstimate based on measurements at specimen edges at end of 6-month exposure period (numbers


in parentheses based on fracture surface measurements).



*Presence of 
actual stress corrosion cracking is questionable according to visual examination.



tFine cracks normal to, and leading crack tip were present.





Table XVII. Crack Growth in Fatigue-Precracked


Specimens from 1.25-in. Plates:


6-Month Exposure



ILT Yield bc
LTreld K. K 
 C Crack Extension, mm .ld



Ave. Velocity
-
Material a Strength, Ii Ir' m/sec x 10 1
1 Material a MPa MPaVm MPaViW Edge 
 Surface 


Daytona Beach



7075-T7351 429 21.8 20.3 0.5 1.3 0.76


7475-T7351 420 22.5 20.1 1.0 2.3 1.36


7050-T73651 477 22.0 16.8 3.0 5.1 3.01


7049-T7351 462 23.5 19.5 2.0 3.6 2.13



Synthetic Seawater



7075-T7351 
 429 20.0 20.1 
 0.8 -0.3* 0.00


7475-T7351 420 21.8 21.7 0.3 0.3 0.19



(D 7050-T73651 477 21.5 19.5 2.0 2.0 1.24 
M 0) 7049-T7351 462 21.4 21.1 0.3 0.3 0.19 

MSalt-Chromate Solution



7075-T7351 429 19.7 14.2 5.8 6.6 4.20


7475-T7351 420 22.3 17.2 4.3 4.8 3.05


7050-T73651 477 21.8 14.2 7.4 8.6 5.47


7049-T7351 462 21.7 13.1 8.6 10.4 6.61



aAll typical -T73 temper.


bi 

bInitial stress intensity based on edge measurement of precrack length.



CResidual stress intensity based on fracture surface measurement.



dBased on fracture surface crack length measurement (0.7 x 10-10 m/sec = 1 x 10-5 in./hr) 

*Presence of stress-corrosion cracking questionable according to visual examination.





- -

- - -

Table XVIII Residual Stress Intensity (Kir) and Average Crack


Velocity for DCB Specimensa Exposed for 6.5 Months



at Daytona Beach, Florida



SL Orientation TL Orientation


Plate Plate 
 K R



Thickness, Strength, Ia ir' Ave. Velocity a' Ir'Ave. Veocit


-
Material in. MPa Mpaiii MPali m/sec x 10- 10 MPa-i? Npa ra/sec x l0 

7075-T651 1.25 522 21.3 9.0 12 23.6 21.2 1.2


7075-T7651 1.25 489 21.7 16.2 5.4 23.8 23.5 0.18


7075-T7351(T) 1.25 429 23.8 22.3 0.77 26.1 25.5 0.30



7075-T651 3.0 500 19.8 9.6 9.6 22.6 22.0 0.30 
7075-T7651 3.0 460 21.2 19.1 1.1 23.8 23.8 0 
7075-T7351(T) 3.0 382 24.8 24.3 030* 26.7 26.5 0.18* 
7075-T7351(T) 3.0 382 24.4 23.6 0.47* - - ­

( 7475-T7351(T) 1.25 420 27.1 23.7 1.5 32.8 31.6 0.30


aa 7475-T7351(T) 3.0 384 30.0 27.8 0.77* 33.9 33.8 0*



7475-T7351(T) 3.0 384 29.0 28.9 0.18* - - ­
to 

7050-T73651(T) 1.25 477 25.2 19.2 3.1 28.3 26.0 0.89


7050-T73651(T) 3.'0 429 28.3 26.3 1.2 30.5 29.4 0.48


7050-T73651(T) 3.0 429 27.8 24.3 1.7 
 

7049-T7351(T) 1.25 462 27.5 23.2 1.9 30.9 28.9 0.77


7049-T7351(T) 3.0 449 26.3 23.7 1.5 29,6 28.2 0.47


7049-T7351(T) 3.0 449 25.9 23.1 1.9 
 

a	All specimens 25 mm high, except second set of data for 3.0-in. thick -T73 temper plates,



which were 75 mm high. Pop-in precracks.


*Presence of stress corrosion cracking questionable according to visual examination of


fracture surfaces.
 




Table XIX. Residual Stress Intensity (Kir) andAverage Crack Velocity
 

for DCB Specimensa Exposed for 6 Months to Synthetic


Seawater, Alternate Immersion



Plate Plate 
 SL Orientation
 TL Orientation
 
Thickness, Strength, KIa' KIr' Ave. Velocity, Kla' Kir'
 Ave. Velocity
-
Material in. MPa MPaYh MPavii m/sec x 10 " MPavm MPavS m/sec x l0- '0



7075-T651 1.25 522 21.3 5.7 19 23.6 20.2 1.9


7075-T7651 1.25 489 21.7 15.7 3.9 23.8 22.6 0 64


7075-T7351(T) 1.25 429 23.8 22.5 0.70 26.1 25.0 0.57



7075-T651 3,0 500 19.8 9.6 10 22.6 20.I 1.5


7075-T7651 3.0 460 21.2 16.8 2.9 23.8 23.5 0.19


7075-T7351(T) 3.0 382 24.8 24.2 0.32* 26.7 26.0 0.38*


7075-T7351(T) 3.0 382 24.4 24.4 0* - ­


o 7475-T7351(T) 1.25 420 27.1 22.5 2.4 32.8 31.5 0.64


11 7475-T7351(T) 3.0 384 30.0 28.8 0.51* 33.9 33.5 0.19*



7475-T7351(T) 3.0 384 29.0 29.3 0* - - ­

to7050-T73651(T) 1.25 477 
 25.2 21.5 1.8 28.3 27.1 0,57
7050-T73651(T) 
 3.0 429 28.3 25.9 
 1.1 30.5 28.6 0.83
M 7050-T73651(T) 3.0 429 27.8 25.9 1.2 - ­


7049-T7351(T) 1.25 462 27.5 23.7 1.8 30.9 29.4 0.5'7


7049-T7351(T) 3.0 449 26.3 24.1 1.5 29.6 28.3 0.51


7049-T7351(T) 3.0 449 25.9 23.8 1.4 - ­


aAll specimens 25 mm high, except second set of data for 3.0-in. thick -T73 temper plates,


which were 75 mm high. Pop-in precracks.


*Presence of stress corrosion cracking questionable according to visual examinaton of fracture


surfaces.





I 

Table XX. Residual Stress Intensity (KIr) and Average Crack Velocity for



w 
 

N) 

DCB Specimensa Exposed for 6 Months to Salt-Chromate Solution



Plate LT Yield KKKK SL Orientation TL Orientation 

Material 
Thickness, 

in. 
Strength, 
MPa 

KIa' 
MPa/ii 

Kir' 
MPaVE 

Ave. Velocity, Kia' 
m/sec x l07Iu MPaE 

KIr 
Mamm 

Ave. Velocit 
rn/sec x 10 -I 

7075-T651 1.25 522 21.3 7.4 17.4 23.6 21.3 1.1 
7075-T7651 1.25 489 21.7 11.9 8.3 23.8 22.6 0.51 
7075-T7351(M) 
7075-T7351(T) 

1.25 
1.25 

480 
429 

21.7 
23.8 

12.1 
15.7 

8.0 
5.4 

-

26.1 
-

24.9 
-

0.57 

7075-T651 
7075-T7651 

3.0 
3.0 

500 
460 

19.8 
21.2 

11.4 
18.0 

7.4 
1.9 

22.6 
23.8 

22.3 
23;8 

0.32 
0* 

7075-T7351(M) 
7075-T7351(T) 
7075-T7351(T) 

3.0 
3.0 
3.0 

405 
382 
382 

24.2 
24.8 
24.4 

23.2 
24.3 
24.2 

0.51 
0.25* 
0.19 

-
26.7 

-

-­
26.7 

-
0* 

-

74757T7351(M)7475-T7351(T) 
1.25 
1.25 

482 
420 

24.0 
27.1 

13.1 
16.6 

8.3 
6.5 

-
32.8 

-
32.3 

-
0.25 

7475-T7351(M) 
7475-T7351(T) 
7475-T7351(T) 

3.0 
3.0 
3.0 

444 
384 
384 

25.4 
30.0 
29.0 

21.3 
28.6 
28.6 

2.1 
0.64 
0.32 

-
33.9 

-

-
33.9 

-

-
0* 

-

7050-T73651(M) 1.25 500 24.2 13.7 8.0 - - -

7050-T73651(T) 
7050-T73651(M) 
7050-T73651(T) 
7050-T73651(T) 

1.25 
3.0 
3.0 
3.0 

477 
475 
429 
429 

25.2 
24.7 
28.3 
27.8 

16.1 
21.5 
24.8 
25.8 

5.9 
2.2 
1.6 
1.5 

28.3 
-

30.5 
-

27.3 
-

30.3 
-

0.38 
-

0.06 
-

7049-T7351(M) 
7049-T7351(T) 
7049-T7351(M) 
7049-T7351(T) 
7049-T7351(T) 

1.25 
1.25 
3.0 
3.0 
3.0 

493 
462 
481 
449 
449 

23.0 
27.5 
24.2 
26.3 
25.9 

11.9 
16.7 
18.91 
22.6 
23.7 

9.3 
6.5 
3.2 
2.4 
1.7 

-

30.9 
-

29.6 
-

-

28.7 
-

29.6 
-

-

0.83 
-

0# 

aAll specimens 25 mm high, except second set of data for 3.0-in. thick -T73 temper plates, which



were 75 mm high. Pop-in precracks.



*Presence of actual stress corrosion cracking questionable according to visual examination of



fracture surfaces.



#Slight stress corrosion noted.,





Table XXI. Kiscc Estimates for Bolt-Loaded DCB Specimens Having Pop-in


Precracks: Constant Deflection Tests



St Kiscc,MPa/m 	 TL K1 0a MPa i



Plate LT Yield 
 Salt- Salt-

Thickness, Strength, Daytona Synthetic Chromate Daytona Synthetic Chromate



Material in. 
 MPa Beach Seawater Solution Beach Seawater Solution



7075-T651 1.25 522 <9 4-6 9 
 22.5 21 22


7075-T7651 1.25 489 10.5-15.5 13.5-17 12 >22.5 21 23 
7075-T7351(M) 1.25 480 - - <13.5 - ­
7075-T7351(T) 1.25 429 22.5 22.5 <15.5 >26.0 25.5 25.5 

7075-T651 3.0 500 <10.5 8-10.5 12.5 >22 19 >22.5


7075-T7651 3.0 460 15.5-20 
 18 18 >23.5 23.5 >24 
7075-T7351(M) 3.0 405 - - 24 - -

F 7075-T7351(T) 3.0 382 >25 >25 >25 >26.5 >26.5 >26.5



7475-T7351(M) 1.25 482 	 - <13.5 - ­(D 7475qT7351(T) 1.25 420 25 20.5-23 <15.5 
 31.5 32 32.5


- 7475-T7351(M) 3.0 444 --	 23 - -C Wl7475-T7351(T) 3.0 
 384 >30 30 29 >34 >34 >34


N) 
7050-T73651(M) 1.25 500 - <15.5 -	 ­
7050-T73651(T) 1.25 477 18-21 22 <17.5 26.5 27 28.5


7050-T73651(M) 3.0 475 -	 22.5 - ­
7050-T73651(T) 3.0 429 27 
 26 26 29 28.5 
 >30.5



7049-T7351(M) 1.25 493 - <13.5 - ­
7049-T7351(T) 1.25 462 25 23.5 <17.5 29.5 29 29


7049-T7351(M) 3.0 481 - 20.5 - ­
7049-T7351(T) 3.0 449 25 25 24 29 28.5 >29.5



a	Kiscc values refer to in-plane crack growth only and do not reflect perpendicular SL cracking


observed in TL specimens.





Table XXII. K I a Estimates for Fatigue Precracked
 
Table IKsca
XX 
 

Specimens froml.25-in. Plates: Constant


Deflection Tests



SL K scc,MPavim



LT Yield Salt-

Strength, S i, Daytona Synthetic Chromate



Material MPa MPafii Beach Seawater Solution



7075-T7351(T) 429 24.3 21 b >20 <15


(22.5) (22.5) (<15.5)



7475-T7351(T) 420 26.7 22 22 <15.5


(25) (22) (<15.5)



7050-T73651(T) 477 27.3 19 20 <13.5


(19.5) (22) (<17.5)



7049-T7351(T) 462 27.8 21 22 <14.5


(25) (23.5') (<17.5)



astress intensity at which crack growth rate decreases to



0.7 x 10- m/sec (1 x 10­
i1 5 in./hr).
 

bNumbers in parentheses are Kiscc estimates based on specimens



containing pop-in precracks.
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Table XxIII. Crack Growth in DCB Specimens from 3.0-in. Thick Plates:


SL Orientation,Constant Load, Fatigue Precrack



Measured Cracks



LT Yield Exposure Stress Crack Ave. Crack Crack visually


Strength, Ic, Time, Intensity,, Extension, Velocity, Velocity,b Identified



-
Material MPa MPaAii Days MPaV 	 F mm m/sec x 1e' M/c xl0 as SCC 

Synthetic Seawater (Al)


7075-T7351(T) 382 23.5 61 24.9-25.3 0.50 1.0 0.8-1.3 Yes



90 23.9--24.1 0.5 0.6 _e No



7474-T7351(T) 384 29.7 	
 61 30.6-31.2 0.8 1.5 1.1-1.6 
 No


90 28.5-28.9 0.5 0.6 	 -e No



7050-T73651(T) 429 27.9 	 61 28.9-29.5 0.5 1.0 0.9-1.1 
 No


90 27:9-28.5 0.8 1.0 0.5-1.6 Yes



7049-T7351(T) 449 27.6 	 61 27.1-27.6 
 0.8 1.5 1.3-1.4 Yes 
P 90 25.6-26.1 0.5 0.6 0.4-1.5 Yes 

(Salt-Chromate 
 Solution



M 7075-T7351(T) 382 23.5 	 90 25.3-26.1 1.3 1.7 0.7-2.8 Yes 
67 23.1-23.4 0.3 0.5 -e Yes 

7475-T7351(T) 384 29.7 	 90 30.0-32.9 3.3 4.2 
 2.3-4.9 Yes


67 28.3-29.2 1.0 1.7 0.8-2.7 Yes



0d
 Nof
7050-T73651(T) 429 27.9 	 90 27.6 0 0 

67 24.4-25.1 1.0 1.7 0.6-1.1 Yes



7049-r7351(T) 449 27.6 90 26.9-29.8 3.8 4.9 2.5-4.2 Yes


67 24.6-26.6 2.5 4.3 1.7-4.6 Yes



aStress intensity covered this range during the test period. The values were calculated from


load and fracture surface crack length measurements.



bRange of crack growth rates determined over weekly intervals from deflection measurements and


compliance relationship. There were no obvious trends toward increasing rates as stress intensity


-
increased over the range indicated. (0.7 x l-rOm/sec = 1 x 10 6 in./hr).


Crack grew from pop-in precrack.
dspecimen was misoriented (TL orientation).



eRates were too slow to measure with sufficient accuracy.



fSL cracks perpendicular to the precrack were present.





Table XXIV. Stress Intensities Required to Generate Unstable


Crack Growth in DCB Specimens Containing Stress


Corrosion Cracks



Kb MPav'm 
LT Yield KSLif' 

Strength, SL c, Synthetic Salt-Chromate 


Materiala MPa MPav H Seawater 
 Solution



7075-T7351(T) 382 23.5 27.4 27.2



7475-T7351(T) 384 29.7 32.1 35.5



7050-T73651(T) 429 27.9 30.8 30.0



7049-T7351(T) 449 27.6 30.9 31.1



aAll 3.0-in. thick plate.



bstress intensity required to initiate mechanical pop-in from



stress corrosion crack.
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Table XXV. Kiscca Estimates for Fatigue-Precracked Specimens


from 3.0-in. Plates: Constant Load Tests



LT Yield SL KisccMPa



Strength, St Kic , Synthetic Salt-Chromate


Material MPa MPaii Seawater Solution



7075-T7351(T) 382 23.5 24 23.5



(>25)b (>25)



7475-T7351(T) 384 29.7 28.5 <28.5



(>30) (29)



7050-T73651(T) 429 27.9 27.5 <24.5



(26) (26)



7049-T7351(T) 449 27.6 25.5 <25.5



(25) (24)



aStress intensity at which crack growth rate decreases to 0.7 x



10- 10 m/sec (1 x 10-5 in./hr).



bNumbers in parentheses are Kiscc estimates based on specimens



containing pop-in precracks and tested under constant deflection



conditions.
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Figure 1. 	 Cumulative deformation energy for hot rolling


high-strength aluminum alloys from 12-in.


ingot to 6-in. slab
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Figure 4. 	 Overaging curves at !65Ctfor
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Figure 5. 	 Correlation of yield strength and electrical


conductivity for overaged alloys
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Figure 6. Grain structures of 3-in. thick plates



(Barker's etch, polarized light, 25X)
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Figure 8. Recrystallization at the center of the 1.25-in. thick plates I


(Chromic acid etch, 10OX)



Recrystallized grains are unattacked (light in color). Amount of re­

crystallization in each material was:



Alloy 1.25-in. 3.0 in.



7075 20% trace j

7475 trace trace


7050 20% 20%


7049 5% 5%
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Figure 9. Subgrain structure in 7049 and 7050 
plates (HaPO etch, 50OX) 

I 
Subgrains were visible in all the plates, but 
were most evident in 7049 and 7050. 
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Figure 10. 	 Coarse constituent dispersion in the center of the
 

3.0-in. thick plates (dilute Keller's etch, 10OX)



Lower iron and silicon contents, and a more thorough homogeniza-

tion treatment reduced the amount of "insoluble" phases in 7475,


7050 and 7049 compared to 7075.
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Figure 11. 	 Coarse constituent dispersion in the center of the
 

1.25-in. thick plates (dilute Keller's etch, 10OX)



As in the 3-in. thick material 7475, 7050 and 7049 contained


fewer constituents than 7075. These phases were more strung­

out in the thinner plates.
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Figure 12. Constituents in 3-in. thick 7475 plate


(dilute Keller's etch, 50OX)



Most of the coarse "insoluble" phases in all four


alloys were A17Cu2Fe, A12CuMg and Mg2Si.
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Relationship between longitudinal yield


strength and LT fracture toughness



Solid symbols -- 1.25-in. plate 
Open symbols -- 3.0-in. plate 

Error bar shows best estimate of standard


deviation.
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Figure 16. 	 Relationship between short-transverse yield strength


and SL fracture toughness.



Solid symbols -- 1.25-in.plate 
open symbols -- 3.0-in.plate 

Error bar shows best estimate of standard deviation.
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Figure 17. 	 Fatigue crack growth rate curves for


1.25-in. thick plates, TL orientation.


All plates in "typical" -T73 temper con­

dition.



Test conditions: 0.1 load ratio, 63 cps frequency,


laboratory air environment (20-25% relative humidity).
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HIWI 

Figure 18. 	 Tensile round stress-corrosion


specimen and stressing frame



Left: 	 i/8-in, diameter tensile specimen and


components of the stressing frame.



Upper Right: 	 Assembled fr ame with specimen as


it appears before stressing.



Lower Right: 	 Stressed specimen and frame coated


with 5% polyethylene-paraffin wax.
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Figure 19. 
 

The constant load specimens contained 0.25-in. diam.



pin-loading holes rather than threaded bolt holes.



Bolt-loaded fatigue-precracked specimens contained


(All dimensions
both bolt holes and pin-loading holes. 
 

in inches. )
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Figure 20. 75-mm constant deflection DCB specimen



(All dimensions in inches)
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Figure 21. 	 Bolt-loaded DCB specimens on exposure at


the oceanfront site near Daytona Beach,


Florida
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Figure 22. Direct load tests of DCB specimens 

0 

SLeft: 

,sit 

Creep rupture stands used to apply a constant load 

to DCB specimens. Power supply and digital voltmeter 
for excitation and recording of output (respectively) 

from LVDT's. 

SRight: DCB specimen and the LVDT used to monitor deflection 
of the specimen are shown in greater detail. 
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Figure 24. 	 Effect of strength level on survival rate of


smooth tensile specimens: synthetic seawater,


alternate immersion, 45 ksi stress level, 100 days



Critical yield strength for 7075 was about 450 MPa (3.0-in.


plate) and 480 MPa (1.25-in. plate).
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Figure 25. Dependence of AK/KIa on strength: 6.5-mo exposure



at Daytona Beach



All materials fell on same general curve (solid symbols,


1.25-in.plate; open symbols, 3.0-in. plate).
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Figure 26. 	Dependence of AK/Kla on strength: 6-mo. synthetic



seawater immersion (alternate immersion)
 


Relationship was quite similar to that for Daytona Beach


exposure, with no alloy or thickness effects evident (solid


symbols, 1.25-in. plate; open symbols, 3.0-in. plate).
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Figure 27. 	 Dependence of AK/KIa on strength: 6-month exposure


to salt-chromate solution



Unlike the other two environments, the two plate thicknesses


fell on separate curves (solid symbols, 1.25-in. plate; open

symbols, 3.0-in. plate).
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Figure 28. 	 Crack growth in 7075 DCB specimens exposed


to marine agmosphere (Daytona Beach): SL


orientation, pop-in precrack



-T6 and -T76 tempers: single specimens


-T73 temper: average of 3 replicates



All data are for 1-in. high specimens. No crack growth


occurred in the 3-in. thick -T7351 temper plate
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Figure 29. 	 Crack growth in 1.25-in. -T73 temper plates


at Daytona Beach: SL orientation, pop-in


precrack



There was considerable scatter between replicate samples.


Note also apparent incubation period for 7050.
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Figure 30. 	 Crack growth in 7075 DCB specimens exposed


to immersion in synthetic seawater: SL


orientation, pop-in precrack
 


-T6 and -T76 temper: single specimens


-T73 temper: average of 2 replicates for



3.0-in. plate, 6 replicates for 1.25-in.


plate



Crack growth was much more extensive in thinner plates


(no crack extension was observed in 3.0-in. -T73 material).
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Figure 31. 	 Crack growth in 1.25-in. -T73 temper


plates for synthetic seawater exposure:
 

SL orientation, pop-in precrack



An incubation period was evident for all materials.



CFT RR 76-32


Page 105





15
0.6 3.0-in. Plate 
 

10
0.4 -- _ 
 

5
0.2 ­

.0 1.0 251.25-in. Plate



× 0.8 
e-T651 

-20 

C 0.6 i-T7351(M) 
n-T7351(T) 

15 

0.4 . -­

0.2 5



- IdMr I I I I I J 
0 25 50 75 100 125 150 175 200 

Exposure Time (days) 

Crack growth in 7075 DCB specimens
Figure 32. 
 
exposed to continuous immersion in



SL orienta­
salt-chromate solution: 
 
tion, pop-in precrack



This environment produced a great deal of crack


growth in the 1.25-in. -T73 materials.
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Figure 33. 	 Crack growth in .7075-T7351 DCB specimens
 

exposed to salt-chromate solution: SL


orientation, pop-in precrack, 1.25-in. plate



Agreement between replicate specimens was quite good
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Figure 34. 	 Crack growth in 1.25-in.. -T73 temper plates


exposed to salt-chromate solution: SL


orientation, pop-in precrack



7075-T7351(T): Average of 6 replicates

Solid symbols--Minimum condition


Open symbols--typical condition



In spite of 	extensive crack growth in these materials,


an incubation period was still evident.
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Figure 35. Crack growth in 1.25-in. -T73 temper plates


exposed to salt-chromate solution: SL

-orientation, fatigue precrack



Incubation effects were more apparent in these specimens


than in those containing pop-in precracks
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Figure 36. 	 V-K plots for 1.25-in. thick 7075 plates


at Daytona Beach: SL orientation, pop-in


precracks



Crack velocity for a given stress intensity in­

creased in the order -T7351, -T7651, -T651. Note
 

trend towards a plateau region (V independent of K)


for the,-T651 temper.
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Figure 37. 	 V-K plots for 1.25-in. thick -T73(T) temper


plates at Daytona Beach: SL orientation



Solid symbols: pop-in precracks


Open symbols: fatigue precracks



Numbers in brackets ate LT yield strengths (MPa). Dashed


line represents 7075-T7651 in all cases (489 MPa yield


strength). Specimens with fatigue precracks appeared more


susceptible than those with pop-in precracks.



CFT RR 76-32


Page 111





MPavii 
10 15 20 25 30 

-

100		 1



/" 

o-	 / 0 /° 

-	 / 
4J4 

o 	 tS 
0­

/ -E!0-10 

-
t lO * -T651 

I~o iU -T7651 	 J 
0 -T7351 (T) 	 I 

10­
 1I I I I 
5 10 15 20 25 

Stress Intensity (ksifit.)



Figure 38. 	 V-K data for 3.0-in. thick 7075 plates at


Daytona Beach: SL orientation, pop-in


precracks.



Dashed lines are corresponding plots for 1.25-in.


plate. The 3.0-in. plates were more resistant than


the thinner materials (no crack growth was evident


in the 3.0-in. -T7351 temper plate).
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Figure 39. 	 V-K plots for 3-in. thick 7050-T73651(T) and


7049-T7351(T) plates at Daytona Beach: SL


orientation, pop-in precracks



Solid symbols: 25-mm high specimens


Open symbols: 75-mm high specimens



Larger specimens seem to give lower velocity for a given K;


this may be due to slightly lower apparent initial stress


intensity in the 75 mm specimens.
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Figure 40. V-K data for 1.25-in. thick plates at



Daytona Beach: TL orientation, pop-in precracks
 


Of the -T73 temper materials, only 7050 and 7049 showed 
significant crack growth, with 7050 somewhat more suscep­
tible than 7049. 
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Figure 41. V-K data for 3.0-in. thick plates at


Daytona Beach: pop-in precracks,TL


orientation



As in the 1.25-in plates, only 7050 and 7049 showed


significant crack growth.
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Figure 42. 	 V-K plots for 1.25-in. thick 7075 plates


in synthetic seawater (AI): SL orienta­

tion, pop-in precracks



Crack growth behavior was similar to that in the


marine atmosphere (cf. Fig. 36).
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Figure 43. 	 V-K plots for 1.25-in. thick -T73(T) temper


plates in synthetic seawater (Al): SL


orientation



Solid symbols: pop-in precracks



Open symbols: fatigue precracks


Numbers in brackets are LT yield strengths (MPa). Dashed


line in upper l.h. corner represents 7075-T7651 in all


cases (489 MPa yield strength).
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Figure 44. 	 V-K plots for 3.0-in. thick plates in


synthetic seawater (AI): S1 orientation, pop-in


precracks



The dashed lines are for corresponding 1.25-in. 7075


plates. Of the -T73 temper materials, only 7050 and 7049


showed crack growth.
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Figure 45. V-K data for TL orientation, in synthetic seawater


(AI): pop-in precrack.



Symbols in first column: 1.25-in. plate; second column: 3.0-in.


plate.
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Figure 46. 	 V-K plots for 1.25-in. thick 7075 plates


in salt chromate solution: SL orientation,


pop-in precracks.



Data for -T7351 temper is based on average crack 
growth rates for 6 replicates. Initial inverse V-K


relationship may be due to incubation factor.
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Figure 47. V-K plots for 1.25-in, thick -T73 temper plates in


salt-chromate solution: SL orientation, pop-in


precracks



Solid symbols: minimum temper condition


Open symbols: typical temper condition



Upper dashed curve represents 7075-T7651 in all cases. The


1.25-in. -T73 temper appeared much more susceptible in the
 

salt-chromate solution than in the other environments. V-K


plots were also flatter, trending towards a plateau.
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Figure 48. 	 V-K plots for 1.25-in. thick -T73(T)


temper plates in salt-chromate solution:


SL orientation, fatigue precracks



Different symbols represent data from different


specimens. Dashed line is for corresponding test


using pop-in precracks. Pronounced inverse



behavior due to incubation periods were evident.
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Figure 49. 	 V-K data for 3.0-in. thick 7075


plates in salt-chromate solution:


SL orientation, pop-in precracks.



Solid circles: Minimum -T73 temper


Open circles: Typical -T73 temper



All data points are for 25-mm high DCB specimens


except that identified by which is for 75-mm


high specimen. Crack growth rates were much


slower than in corresponding 1.25-in. plates.
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Figure 50. 	 V-K data for 3.0-in, thick -T73 temper plates in


salt-chromate solution: SL orientation, pop-in


precracks.



Solid symbols: Minimum temper condition


Open symbols: Typical temper condition



Upper dashed curve represents 7075-T7651 in all cases (460

MPa yield strength). Numbers in brackets are LT yield

strengths of minimum -T73 temper conditions. Slashed symbols:


75-mm specimens.
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Figure 51. 	 Effect of environment on crack growth


behavior in 1.25-in. thick 7075 plate



In the -T6 	 temper, crack growth at Daytona Beach


was slower than in the laboratory environments.


Differences for the -T76 temper depended greatly


on the stress intensity level, and in the -T73


temper, the salt-chromate solution was much more


aggressive than the other environments.
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Figure 52. 	 Dependence of SL threshold stress intensity (Daytona


Beach) on strength



Solid symbols -- 1.25-in. plate 
Open symbols 3.0-in. plate



For a given strength level, Kiscc of 7050 and 7049 is about 4 MPam


greater than that of 7X75.
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Figure 53. Dependence of SL threshold stress intensity

(synthetic seawater) on strength



Solid symbols: 1.25-in. plate


Open symbols: 3.0-in. plate



Kiscc of 7050 and 7049 is 3-5 MPaVm greater than that of


7X75 for a given strength level.
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Figure 54. Dependence of-SL threshold stress intensity


(salt-chromate solution) on strength



Solid symbols: 1.25-in. plate


Open symbols: 3.0-in. plate



For 3.0-in materials, K of 7050 and 7049 was higher than


that of 7X75. Kiscc values for 1.25-in. -T73 temper plates


were not attained in this environment.
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Figure 55. Dependence of TL threshold stress intensity


(synthetic seawater) on strength



Solid symbols: 1.25-in. plate

Open symbols: 3.0-in. plate



All materials fell into the same general data band.
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Figure 56. Dependence of TL threshold stress intensity


(Daytona Beach) on strength



Solid symbols: 1.25-in. plate


Open symbols: 3.0-in. plate



There were no obvious alloy effects in the TL orientation.
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Figure 57. 	 Comparison of V-K data in synthetic


seawater for 3.0-in. -T73 temper plates:


constant deflection (pop-in precrack)
 

vs constant load (fatigue precrack)


Solid symbols: Constant load


Open symbols: Constant deflection



Numbers in 	 brackets are LT yield strengths (MPa).
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Figure 58. 	 Comparison of V-K data in salt-chromate


solution for 3.0-in. -T73 temper plates:


constant deflection (pop-in precrack)


vs constant load (fatigue precrack)



Solid symbols: Constant load


Open symbols: Constant deflection



All data points are for 25 mm-high specimens, except


those identified by I which are for 75-mm specimens.


Numbers in brackets are LT yield strengths (MPa)..
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Figure 59. 	 Crack velocity - stress intensity relationships


for 1.25-in. 7075-T6 in various environments



Crack velocity in Region I was proportional to Kk in synthetic


seawater and at Daytona Beach. Exponent for salt-chromate test


varied from 16 in Region I to 2 at beginning of Region II.
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Figure 60. 	 Comparison of crack velocity - stress intensity


relationships for 7075-T6 and 7075-T76 in synthetic


seawater and salt-chromate solution



Crack velocity in Region I was proportional to I 4-K7 in synthetic


seawater and Ks-K' 6 in salt-chromate solution.
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APPENDIX A



FRACTURE MECHANICS CONCEPTS AND THEIR RELATIONSHIP



TO STRESS-CORROSION



1. Fracture Mechanics Principles



Fracture mechanics forms the basis for most of the currently



accepted methods of failure analysis. It is-primarily concerned



with the problem of evaluating the strength of materials in the



presence of an existing crack and the conditions under which the



crack propagates to failure. While metals usually fail in a



ductile (plastic) manner, failure can still be described in



terms of the elastic stresses or so-called "stress fields" sur­

rounding the crack tip.. All the stress field equations which



describe the distribution of elastic stress near the crack tip



contain the same proportionality factor, K, which is formally



called the crack tip stress field intensity factor, or simply



stress intensity factor. This factor reflects the magnitude of



the crack tip stress field and, therefore, gives a measure of



the intensification of stress at the crack tip caused by the



applied load. For example, the stress intensity factor for an



infinite plate containing a transverse crack of length 2a and
 


subject to a uniform tensile stress, a, is described by (Ref 3):



KI = a7/r 

This equation shows that the stress intensity will increase with



an increase in either the applied stress or crack length. Note



also that the stress intensity factor has the dimensions of stress



multiplied by the square root of the crack length, eg., MPaVm



(ksi ii.). 
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The determination of K factors for an infinite plate specimen



requires only two dimensions, stress and crack length. Real .speci­


mens,on the other hand, have-finite dimensions. Therefore, in



addition to the magnitude of the loading forces and the crack size,



KI for finite specimens must be corrected for specimen size and



shape,i.e.,



K =0 

a '

KI - B
or 
 I BW
 


where P is the applied load, B is the specimen thickness, and W



is the specimen width. The correction factor, I, is dependent on



the geometry of the specimen and the method of loading. It also



varies in a complex way with the specimen width and crack length.



Various mathematical and experimental stress analyses are used to



determine correction factors, and numerical solutions of KI have



been derived for a number of practical test specimens (Refs 3,4).



If the growth of a crack is controlled solely by the value



of K, then the higher the stress intensity required to produce



crack propagation, the greater is the resistance of the material



to fracture. At the onset of fracture



K = Kc,



which is called the critical stress intensity for fracture or



simply "fracture toughness". Provided that, among other things,



certain requirements of crack length and specimen dimensions



are satisfied, the fracture test can be conducted under a pre­


scribed state of stress. Usually, the specimen dimensions are



large enough to promote a plane-strain state of stress, in
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which case the critical stress intensity for fracture is specially



labeled Kic or plane-strain fracture toughness. Unstable fracture



is more easily promoted under plane-strain conditions and, therefore,



KIC is regarded as the minimum value required for crack growth by



mechanical fracture.



2. Application to Stress Corrosion



A natural extension of the fracture mechanics approach to



normal fracture is to view stress-corrosion cracking (SCC) as



simply a form of subcritical crack growth. Accordingly, we retain



the concept that the crack tip stress intensity provides the



driving force for crack extension. The characterization of SCC



in terms of a crack tip stress intensity factor is quite direct,



but not without limitations. Fracture mechanics deals principally



with the events which lead up to the point of crack instability,



i.e., before the crack actually begins to grow. In SCC, however,



we are concerned with moving cracks and, in particular, how fast



they move. One of the unanswered questions is whether K can be



used as the local load parameter which controls the rate of crack



growth. As yet, there is no proof that it would if crack growth



occurred solely by anodic dissolution, as it may in aluminum



alloys. Nevertheless, the stress intensity does characterize



the "mechanical environment" which exists in the region of the



crack tip. Establishing a functional relationship between K and



crack growth behavior may, therefore, add considerably to our



understanding of how stress and mechanical fracture processes



contribute to SCC.



Crack velocity as a function of stress intensity is usually



expressed as a "V-K" curve. This curve is often divided into



three parts or regions (Figure Al). At low stress intensities



(Region I), crack velocity is strongly dependent on K. In
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aluminum alloys, the velocity of stress-corrosion cracks can vary



by several orders of magnitude: from 10- 5 in./hr or less to 1 in./



hr or more. At intermediate levels of stress intensity (Region II),



the crack velocity may reach a limiting and constant value, indepen­


dent of the level of stress intensity. Finally, at stress inten­


sities approaching the critical stress intensity (Kic) for mechan­


ical fracture, the velocity of crack growth may again become



strongly dependent upon stress intensity. This is called Region



III crack growth.



Regions I and II are of greatest practical interest, since



most of the time spent in the growth of stress-corrosion cracks



in aluminum occurs at stress intensities well below that for



mechanical fracture. Region I holds special interest since it



may be possible to develop Kiscc data based on a minimum accep­


table rate of crack growth. For example, some workers define



Kiscc as that level of stress intensity which produces a crack



velocity of 10- 5 in./hr (7 x 10- 11m/sec) or less. It should be



recognized, however, that long periods of exposure are required



to obtain crack growth data when the velocity approaches 10-sin./hr.



There are several reasons for being interested in the kinetics



of stress-corrosion cracking. Knowledge of crack growth rates



should prove useful in alloy development and studies of the funda­


mentals of stress-corrosion cracking. In addition, the maximum



rates at which cracks can grow should be of particular interest



to design engineers since they may provide a means for estimating



the (minimum) lifetime of real structures. And finally, we may



be able to design a rapid test to measure stress corrosion per­


formance in terms of how fast (or how far) cracks grow.



Fracture toughness and stress-corrosion susceptibility of



wrought aluminum alloys depend on the orientation of the test



specimen with respect to the direction grain flow produced by
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the fabrication operation. Figure A2 shows the various specimen



orientations possible; the short-transverse directions (SL and ST)


generally have the lowest toughness and highest susceptibility to



stress corrosion.



3. Previous Work



Although a considerable amount of V-K data has been determined


for aluminum alloys that are susceptible to SCC (7079-T6, 7075-T6,


2024-T3, etc.), relatively little information exists for resistant



materials such as 7075-T73. The results reported for previous



investigations on a number of alloys are reproduced in Figure A3.


As expected, materials such as 7075-T73, 6061-T6, 7049-T73, and



2024-T8 exhibit much lower crack velocities for a given stress



intensity than the susceptible alloy/temper combinations.



These data also indicate that in general, alloys 7050 and


7049 in -T7X temper conditions are much superior to 7075-T6, but



do not have quite the resistance of 7075-T73. It has also been



claimed that although 7049 and 7050 are comparable in laboratory


tests (3-1/2% NaCl environment), 7050 has a clear advantage in



an industrial atmosphere. In fact, the data in Figures A3 f and g


suggest that the crack growth rate of 7049-T73 in the industrial


atmosphere is almost as fast as in 3-1/2% NaCI, alterate immersion.



Care must be exercised in the interpretation of such data, however,


because a valid comparison requires that certain conditions be met:



(1) 	 samples should be from the same product form and 
section size



(2) 	 specimens should be tested at the same time in


the same environment, and



(3) 	 strength levels should be comparable.



It is not clear to what extent the above criteria were



satisfied in these evaluations.
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Figure Al. The general dependency of stress corrosion crack


velocity on stress intensity
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Figure A2. Fracture specimen orientations
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APPENDIX B



SYNTHETIC SEA WATER ALTERNATE IMMERSION STRESS CORROSION



TEST METHOD



1. 	 Solution make-up. 3.6% by weight commercial synthetic sea



salt (Lake Products, Inc.) conforming to ASTM D1141.


Fresh solution is prepared weekly. It shall have a pH of



8.2 when prepared, and be maintained to a range of 7.8 to



8.6 by the addition of NaOH or HCl.



2. 	 Immersion cycle. The immersion cycle shall be such that the



specimens are covered by the salt solution for 10 minutes



of each hour and uncovered for 50 minutes.



3. 	 Methods of cycling. Alternate immersion of the specimens is



accomplished by moving the solution with a polyethylene



pump from a tank to cover specimens which are stationary in



a tray:



a. 	 To prevent galvanic corrosion, specimens do not touch



one another nor any other bare metal during the alternate­


immersion test period.



b. 	 Specimens of alloy containing deliberate additions



of copper are not exposed to the same solution used for



copper-free aluminum alloys.



4. 	 Replacement of water lost by evaporation. The necessary amount



of distilled water is added to maintain the proper salt con­


centration.
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5. 	 Temperature and relative humidity. Air temperature and 

relative humidity of the laboratory are controlled at 800 + 

20F and 45 ± 6 percent, respectively. The solution tempera­

ture is thermostatically controlled at 750 ± 20F. 

6. 	 Test duration. The test runs continuously for the time in­


dicated or until failure occurs, with interrruptions only



for changing solutions or examining specimens.
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APPENDIX C



STRESS INTENSITY FACTORS FOR THE DCB SPECIMEN



The DCB specimen (Figure Cl) can be loaded with pins and



clevises in a conventional tensile testing machine or it can be



self-stressed with bolts. In either case, use of the specimen



depends upon knowledge of the relationship between the crack-tip



stress intensity and crack length.



Two methods are used to obtain expressions for the stress



intensity factor; one method is based on stress analysis and the



other on specimen compliance (ratio of specimen deflection to



load).



Experimental measurements of compliance show that in addi­


tion to the deflections due to bending and shear, some deflection



also occurs because of rotations at the assumed "built-in" end



of the beam (Ref 18). This contribution can be treated as an



increase in crack length, and has been found to be approximately



equal to 0.6h. This leads to the relations (Ref 18):



2 + h2 1/2


3(a + 0.6h)
I bI2P hh 3 ­
-

i/a


[6Eh/213(a + 0.6h)2 + h2 ] 

or K = 4[(a + 0.6h)3 + hZa] 

where E is Young's Modulus, 6 is the specimen deflection at the



load point, and all other symbols are as shown in Figure Cl. For



a side-grooved specimen, KI is multiplied by (b/bn)1/2; the use



of 10% side-grooves increases KI by about 5% (Ref 19).
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The relationship between stress intensity, crack length, 

load and displacement is illustrated in Figure C2 for a DCB speci­

men with 2h = 25mm, b 25 mm, b.n = 22.5 mm and E = 7.2 x 104 MPa. 

It is apparent that the stress intensity increases with crack 

length under constant load, but decreases with crack length at 

constant displacement, i.e., bolt loading. It is also apparent 

from Figure C2 that unique values of load and displacement are 

associated with a given crack length. In other words, crack 

length can be computed from measurements of load and displacement 

(compliance) or, at constant load, from measurements of displace­


ment alone.



Figure C3 shows how stress intensity depends on crack length



for bolt-loaded specimens having heights of 25 and 75 mm. For



material having a given susceptibility to stress corrosion, the



larger specimen would grow a longer crack in a given exposure



time because K changes less rapidly with crack extension) Initial



precrack length is also a factor; as Figure C4 shows, the shorter



the precrack, the more dependent stress intensity becomes on crack



length.
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Figure Cl. Double cantilever beam (DCB) specimen



P = Load


a = Crack length (measured from load point)


h = Specimen half height


b = Specimen thickness


bn = Net thickness at crackline


L = Specimen length


c = Distance from load point to location of displacement



measurement
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Figure C2. Compliance relationship for uniform DCB specimen



Relationships shown are for a specimen of height, 2h = 25 mm,


thickness, b = 25 mm and bn = 22.5 mm; and E = 7.2 x 1 0 4 MPa.


Crack length, a in mm; and stress intensity, K, in MPaViii.
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Figure CP. Stress intensity dependence on crack


growth for different specimen heights



Precrack is assumed to be 25 mm from load point.
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Figure C4. Stress intensity dependence on crack extension 
'for different precrack lengths (ao) 

Specimen height is 25 mm. 
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APPENDIX D



STRESS INTENSITIES FOR CRACK ARREST (K i) IN 

PRECRACKED DCB SPECIMENS 

Stress intensity for crack arrest values as determined on



the 25-mm high bolt-loaded DCB specimens are listed in Table Dl



together with the fracture toughness (Kic) results. The data are



also compared in a correlation plot in Figure Dl (data for the



3.0-in. plate, TL orientation, are not included because measure­


ments were not conducted at the same location by each procedure).
 


As Figure Dl shows, both measurements gave quite comparable
 


numbers, Kia on the average being slightly less than Kic. The



agreement is much better than that reported by Sprowls et al


(Ref 21) for 7075-TX51 plate materials,.in which Kia was found



to be up to 50% higher than KIc for specimens having similar



dimensions. However, specimens in that study were not side



grooved; high K values would therefore be expected (Ref 18) because



deformation is not restricted to the plane of the crack, i.e.,



a shear-lip effect.



Although Kia might be expected to be lower than Kic* there



are a number of reasons why Kia as measured in this study could



be relatively high. First, crack lengths were estimated from



measurements at the specimen edges. An over-estimation of stress



intensity would be expected since the crack fronts are often



curved, leading slightly at the center of the specimen. Figure D2,



for example, shows the fracture surface of a DCB specimen that



was marked with dye during the precracking operation. For this



particular specimen crackfront curvature caused the crack length



*For 7075-T6 Hoagland (Ref 22) showed K to be about 1.5 MPam
Ia


lower than Kic, both values determined on pop-in cracks.
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to be underestimated by 1.5 mm; this would result in an 8% error



in Kia for a 25-mm high specimen having a 25 mm crack length.



Another reason for high Kia values relative to Kic involves



the different nature of the mechanical crack in each case. Kic



measurements are made on a crack induced by fatigue at low stress



intensity. Kia' on the other hand, is a measure of the stress



intensity at which a crack induced by mechanical pop-in will



arrest. This is a high stress intensity situation, and the



plastic deformation involved could give a relatively high Kia



value. In addition, a mechanical pop-in crack is probably blunter



and more irregular than a fatigue precrack; this would also tend



to increase Kia.



High apparent stress intensities in a DCB specimen can also



be caused by an invalidation of the compliance relationship



(from which the stress intensity formula was derived) due to



plastic deformation of the specimen arms. Although simple stress



analysis indicated that no such gross plastic yielding occurred



at the strength and toughness levels involved in this study, we



do not rule out the possibility that larger plastic zone sizes



(relative to the beam height) than those encountered in establishing



the compliance relation may have been-achieved. A comparison of



Kia values obtained on 25 and 75-mm high DCB specimens (Table D2),



for example, shows slightly lower values for the larger specimen



size. However, this difference could also be due to a smaller



effect of underestimating crack length in the larger specimen



(K changes less rapidly with crack length as the beam height



increases).



The amount of scatter was somewhat greater with the DCB



specimens than with the compact specimens (standard deviation



of l.i MPa'ii vs. 0.8 MPavii). This is quite likely due to lack



CFT RR 76-32


Page D-2





of precision in crack length determination; as discussed above



this uncertainty could easily be eliminated by actual measurements



on marked fracture surfaces. Marking the fracture surface would



also allow measurements of both crack arrest and crack initiation



toughness.



In spite of these limitations, a good correlation appears to



exist between the Kia values and fracture toughness as measured



by conventional methods. As expected, there were also the usual



inverse relationships between Kia and yield strength as are



commonly observed for Kic (Figure D3). We note, however, that



good agreement between Kia (pop-in precrack, DCB specimen) and



Kic (fatigue precrack, compact specimen) is specific to the



family of alloys evaluated. Such a correlation for steels, for



example, would be less likely, because they typically exhibit



large differences between Kia and Kic. They are also more crack



rate sensitive than aluminum alloys, and Kia appears quite



dependent on the whole crack propagation history prior to arrest.



Although this may also be true to some extent for aluminum alloys,



a TKIa test conducted under reproducible conditions should



nevertheless correlate with true KiC values.



These results indicate that a simple bolt-loaded DCB specimen
 


has promise as a practical alternative to those now used for



routine fracture toughness testing of high-strength aluminum



alloys* (Ref 23). However, additional work should be conducted



on materials having higher toughness levels, and on other alloys
 


such as 2124, 5086 and 6061. If the procedure proves out, it



could greatly facilitate quality control testing at producing



plants. Although machining costs may be no less than at present,



*This specimen was proposed for such purposes about 10 years ago


(Refs 18 & 22).
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the specimens do not have to be precracked; a tensile machine is



not even necessary. All that is required is a clip-in strain gauge



with electronic display (sufficiently accurate visual and/or



mechanical methods of measuring deflection are also probably



feasible), and a visual measurement of crack length, preferably



on a dye-marked fracture surface.
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Table Dl. Comparison of K (Compact Specimen)


and K (DCB Specimen) Values



Stress Intensity (MPaviii)
SL Orientation TL Orientation-
 

Thickness Kb Kc b c



Materiala in. Ic Ia Ic Ia



7075-T651 1.25 24.2 21.3(3) 25.1 23.6(3)

7075-T7651 1.25 23.1 21.7(3) 25.2 23.8(3) 
7075-T7351(M) 1.25 23.4 21.7(2) - ­

7075-T7351(T) 1.25 24.3 23.8(15) 26.7 26.1(7)
7075-T651 3.0 19.6 19.8(3) 22.4 22.6(3)
7075-T7651 3.0 21.3 21.2(3) 22.0 23.8(3) 
7075-T7351(M) 3.0 23.2 24.2(2) - ­

7075-T7351(T) 3.0 23.5 24.8(7) 24.8 26.7(7) 

7475-T7351(M) 1.25 25.7 24.0(2) - ­

'7475-T7351(T) 1.25 26.7 27.1(7) 31.7 32.8(7)
7475-T7351(M) 3.0 26.7 25.4(2) - ­
7475-T7351(T) 3.0 29.7 30.0(7) 30.5 33.9(7) 

7050-T73651(M) 1.25 25.7 24.2(2) - ­

7050-T73651(T) 1.25 27.3 25.2(7) 31.2 28.3(7)


7050-T73651(M) 3.0 26.8 24.7(2) - ­

7050-T73651(T) 3.0 27.9 28.3(6) 29.2 30.5(7)



7049-T7351(M) 1.25 25.9 23.0(2) - ­

7049-T7351(T) 1.25 27.8 27.5(7) 31.2 30.9(7)

7049-T7351(M) 3.0 23.8 24.2(2) - ­

7049-T7351(T) 3.0 27.6 26.3(7) 27.2 29.6(7)



aM indicates minimum-aged condition; T indicates typical condition.



bTriplicate specimens (best estimate of standard deviation,


s = 0.8 MPaiEM). 


CDCB specimens were 25 mm high. Numbers in brackets give number of



replicates (best estimate of standard deviation, s = 1.1 MPaf)



K--c and K values in 3-in. plate were not measured at the same 

location ({?4t for Kic;1/2t for Kia).
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Table D2. Comparison Kic (Compact Specimen) and Kia Values
 


Determined on 25 mm and 75 mm High DCB Specimens:


SL Orientation



Stress Intensity e4PavAm)


b c 
 d
 

Materiala Thickness, in. KIc KIa(l") KIa(3 ")



7075-T7351(T) 3.0 23.5 24.8 24.1



7475-T7351(T) 3.0 29.7 30.0 29.0



7050-T73651(T) 3.0 27.9 28.3 27.8



7049-T7351(T) 3.0 27.6 26.3 25.9



aT indicates typical condition.
 


bcompact Specimen: average of 3 replicates (s = 08 MPai).



c25-mm high DCB specimen: average of 7 replicates (s = 1.1 MPav'm).



d75-mm high DCB specimen: average of 6 replicates (s = 1.1 MPa)
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Figure DI. 	 Correlation of SL and TL KI (compact


tension specimens) and K 125 mm DCB


specimens) values for 1.i5- and 3.0-in.


thick plates; solid symbols: SL


orientation, open symbols: TL orienta­

tion.
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Figure D2. Mechanical pop-in crack in DCB specimen


marked with dye before fracturing (IX).


This particular specimen had a square


starter notch, rather than a chevron


notch as used in the present comparison


study.
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APPENDIX E



SURFACE AND CROSS SECTION EXAMINATIONS OF



STRESS CORROSION CRACKS



Terminated DCB specimens tested in each environment were



broken open for measurements of crack length and to examine crack



morphology. The specimens were split lengthwise (normal to the



fracture), and half of each specimen was broken open for examina­


tion of the fracture surface; the other half was polished for



metallographic examination of the fracture cross section. Frac­


ture surfaces of specimens tested in the salt-chromate solution



are shown as tested (no cleaning was required). The right half



of the fracture surface of specimens tested in marine atmosphere



was cleaned in concentrated nitric acid to remove corrosion



product. Study was centered on specimens tested in the marine


atmosphere at Daytona Beach (Figure El series), since this



represents a practical situation, and on specimens tested in the



salt-chromate environment (Figure E2 series), since this test



gave the clearest distinction between the precrack and subsequent



stress corrosion.



As noted previously, general corrosion made it difficult



to tell where the precrack ended and stress corrosion began in



specimens tested in the marine atmosphere. (This transition



was clearly defined in specimens tested in the salt-chromate



environment.) In cross section, the cracks were non-planar



with many unfailed ligaments remaining. Because of mixed



mechanical/stress corrosion fracture at the start of the stress


corrosion crack, it was not easy to tell exactly where the pre­


crack ended in any given cross sectional view. General corrosion



in the marine atmosphere specimens further obliterated this



transition zone. The stress-corrosion cracks generated from
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the fatigue precracks were much straighter than those associated



with the pop-in precracks.



Stress corrosion cracks in the TL orientation were blunted


by general corrosion. It appears that these cracks usually


propagate transgranularly by following subgrain paths. In addi­


tion to the short TL cracks in these specimens, there were longer


secondary cracks propagating normal to the plane of the precrack,


i.e., SL oriented. These cracks are shown in greater detail


in Figure El (f). These secondary cracks may have been generated


by a combination of residual tensile stress in the plate interior



(they were generally longer at the center of the specimen than



at the edges), and the transverse tensile stress acting in the


direction of the leading edge of the crack (az). It is noteworthy



that the length of these secondary cracks was approximately equal


to the size of the plastic zone associated with the precrack tip



2
(rp Ki2/3ca - 0.6 mm). We also note that the cracks assumed 
a shape similar to that calculated for the plastic zone (Ref 32)-­

see Figure E3. It is apparent that these secondary cracks are 

self-limiting in length; the -T6 temper material, for example,



grew cracks only slightly longer than those found in the resis­

tant -T73 temper samples.



SL cracks in the 3.0-in. thick plates were also quite blunt,


and in many locations were running out of plane, with a greater


tendency towards branching than in the thinner plate.



Aside from the cleaner appearance of the fracture surfaces


and better definition of stress corrosion at crack tips, the


most noteworthy feature of specimens tested in the salt-chromate



solution was the thin crack line shown in the 5X cross sections.



Thicker cracks in specimens tested in marine atmosphere may have


been caused by general corrosion on the fracture surfaces. This
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may also indicate some wedging from corrosion product buildup



occurred. (Specimens tested in 3.6% artificial seawater were



similar to those tested in marine atmosphere in this respect.)



In view of the crack features noted (blunting, branching,



jogs, unfailed ligaments, etc.), it becomes apparent that stress



intensities measured in a precracked specimen probably bear



little relationship to those actually present at the crack tip.



In most cases, apparent (measured) stress intensities are higher



than the actual average values. Differences between the actual



and apparent values are probably smaller in fatigue-precracked



specimens than in those containing a pop-in precrack. This



difference would also tend to be smaller in the thinner materials;



similarly, stress intensities would be overestimated to a greater



extent in the TL orientation than in the SL orientation.
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Figure El. 	 Fracture surfaces and cross sections of DCB specimens


exposed for 6.5 months at Daytona Beach, Fla.
 


(a) 1.25 in. plate, pop-in precrack (SL)



(b) 1.25 in. plate, fatigue precrack (SL)



(c) 1.25 in. plate,pop-in precrack (TL)



(d) 3.0 in. plate, pop-in precrack (SL)



(e) 3.0 in. plate, pop-in precrack (TL)



(f) 1.25 in. 7049-T7351(T) specimen (TL)
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7075-T7351 7475-T7351 7050-T73651 7049-T7351



Material: 1.25 in. plate DCB Specimen: SL orientation 25 mm


Typical temper high, bolt loaded,


condition pop-in precrack



Test: 	 6.5 months marine


atmosphere,


Daytona Beach, Fla.



Figure El. (a)
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Crack Tips- 200X


Etch: 10% H 3P04 at 1200F (3 min)
 


a



7075-T7351 	 7475-T7351



7050-T73651 	 7049-T7351



Stress corrosion cracks in pop-in precrack DCB's were ragged


with many jogs and unfailed ligaments remaining.



Figure El. (a) Cont'd.
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7075-T7351 7475-T7351 7050-T73651 7049-T7351



Material: 1.25-in. plate DCB Specimen: SL orientation 25 mm


Typical temper condition high, bolt loaded,



fatigue precrack


Test: 	 6.5 months marine



atmosphere,


Daytona Beach, Fla.
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Crack Tips - 200X



Etch: 10% H3PO 4 at 1200 F (3 min)



Ut 

7075-T7351 7475-T7351



Ii 

7050-T73651 7049-T7351



Stress corrosion cracks in fatigue precracked DCB's were more


planar than those generated from pop-in precracks.



Figure El. (b) Cont'd.
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7075-T7351 7475-T7351 7050-T73651 7049-T7351



Material: 1.25-in. plate DCB Specimen: TL orientation 25 mm


Typlc--aT temper condition high, bolt loaded,



pop-in precrack


Test: 6.5 months marine



atmosphere,

Daytona Beach, Fla.
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Crack Tips - 200X


Etch: 10% H 3PO4 at 1200 F (3 min)



7075-T7351 747 5-T7351



M., 

7050-T73651 7049-T7351



Note cracks normal to and leading major crack plane in photo of


fracture surfaces (opposite page). TL cracks were blunt and


appeared to be progressing through subgrains.



Figure El. (c) Cont'd. 
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Surfaces


ix



I
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Crack


Extension 
 3 

Cross


Sections


5x I 

Material: 3.0-in. plate DCB Specimen: SL orientation, 25 mm


Typical temper condition high, bolt-loaded,



pop-in precrack
Test: 	 6.5 months marine 
 

atmosphere,

Daytona Beach, Fla. 
 3 

*No detectable stress corrrosion on fracture surface of 7075-T7351



Figure El. (d) 
 3 
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Crack Tips - 200X


Etch: 10% H3PO 4 at 120*F (3 min)



7075-T7351 7475-T7351



7050-T73651 7049-T7351



Cracks were quite blunt with a tendency towards branching. Note 
transgranular nature of crack in 7050 material.



Figure El. (d) Cont'd
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5X 

7075-T7351 7475-T7351 7050-T73651 7049-T7351



Daytona Beach, Fla.



Material: 3.0-in. plate DCB Specimen: TL orientation, 25 mm 
Typical temper condition high, bolt loaded,

pop-in precrack 
Test: 6.5 months marine 

atmosphere, 

*No detectable stress corrosion on fracture surface.
 


Figure El. (e) 3 
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Crack Tips - 200X



Etch: 10% H3PO4 at 1200 F (3 min)



7075-T7351 7475-T7351



Mis-oriented '



sample 

7050-T73651 7049-T7351



Although fracture surfaces did not show typical stress corrosion,


there were small cracks normal to the fracture surface. The


photomicrographs show short segments of apparent subgrain


boundary attack.



Figure El. (e) Cont'd 
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Figure El. (f) 	 Fracture surface of TL DCB from 1.25-in. 7049-T7351(T)


plate exposed 6.5 mo. at Daytona Beach



Note numerous short transverse cracks normal to the fracture plane


and extending in both directions, out of the apparent stress


corrosion fracture area.
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Figure E2. 	 Fracture surfaces and cross sections of DCB


specimens exposed for 6 months to salt­

chromate solution, constant immersion



(a) 	 7075-T651 and -T7651 plate, pop-in precrack (SL)



(b) 	 7075-T651 and -T7651 plate, pop-in precrack (TL)



(c) 	 1.25-in. -T7351(M) plate, pop-in precrack (SL)



(d) 	 1.25-in. -T7351(T) plate, pop-in precrack (SL)



(e) 	 1.25-in. -T7351(T) plate, fatigue precrack (SL)



(e) 	 1.25-in. -T7351(T) plate, pop-in precrack (TL)



(g) 	 3.0-in. -T7351(M) plate, pop-in precrack (SL)



(h) 	 3.0-in. -T7351(T) plate, pop-in precrack (SL)



(h) 	 3.0-in. -T7351(T) plate, pop-in precrack (TL) 

(j) 	 3.0-in. -T7351(T) plate, pop-in precrack (SL), 

75 mm high 	 specimen



(k) 	 pop-in and fatigue precracks in 1.25-in. 7075-T7351(T)


plate
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7075-T651 7075-T7651 7075-T651 7075-T7651



1.25-in. plate 	 3.0-in. plate



Test: 6 months salt-chromate DCB specimen:SL orientation,


constant immersion 25 mm high, bolt­


loaded, pop-in

precrack



Figure E2.(a) 
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Crack Tips - 200X


Etch: 10% H 3P04 at 120*F (3 min)



7075-T651 1.25-in. plate 7075-T7651 

Iu 

IA 

7075-T651 3.0-in. plate 7075-T7651 

Figure E2. (a) Cont'd. 
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7075-T651 7075-T7651 7075-T651 7075-T7651



1.25-in. plate 3.0-in. plate



Test: 6 months salt-chromate DCB specimen: TLorientation,


constant immersion 25 mm high, bolt­


loaded, pop-in

precrack



Figure E2. (b)
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crack Tips - 200X


Etch: 10% H 3P0 at 1200 F (3 min)



* -M 

1'A 

4> 

7075-T651 i.25-in. plate 7075-T7651


A­

*T7 

7075-T651 3.0-in. plate 7075-T7651



Unlike the overaged materials, most -T651 and -T7651 TL specimens


show definite stress corrosions cracks in the fracture plane as


well as the small cracks normal to the fracture plane.



Figure E2. (b) Cont'd.
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7075-T7351 7475-T7351 7050-T73651 7049-T7351



Material: 1.25 in. plate 
 DCB Specimen: SL orientation,


Minimum temper condition 25 mm high, bolt­


loaded, pop-in
 

Test: 	 6 months salt chromate precrack



constant immersion
 


Figure E2. (c)
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Crack Tips - 200X


at 120F (3 min)
Etch: 10% H 3PO 
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7075-T7351 7475-T7351



7050-T73651 
 7049-T7351



Figure E2. (c) Cont'd.
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7075-T7351 7475-T7351 7050-T73651 7049-T7351



Material: 1.25-in. plate DCB Specimen: SL orientation,


Typical temper condition 25 mm high, bolt­


loaded, pop-in

Test: 	 6 months salt chromate precrack



constant immersion
 


Figure E2. (d)
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Crack Tips- 200x


Etch: 10% H3PO4 at 1200 F (3 min)



7075-T7351 7475-T7351



IM



7050-T73651 7049-T7351



The transition from precrack to stress corrosion crack is not
 

well defined on the fracture surface of the 7050-T73651 specimen.


This suggests a high percentage of mechanical fracture in the


early stages of crack growth.



Figure E2. (d) Cont'd.
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Crack Tips - 200X


Etch: 10% H3POk at 1200 F (3 min)



IV



7075-T7351 7475-T7351



U/ 

7050-T73651 7049-T7351



Both precrack and stress corrosion cracks are straighter and


have fewer delaminations than in specimens with pop-in pre­

cracks. The appearance of the 7050 fracture surface is


notably different from the other three alloys.
 


Figure E2. (e) Cont'd.
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Typical -temper~~~~ 25 mm high, bolt-3s condition . . ~ ~....... OIIA AGHLi"M 
 

loaded, pop-in


Test: 6 months salt chromate precrack



constant immersion


Figure E2. (f)
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Crack Tips - 200X


Etch: 10% H3PO at 1200 F (3 min)



} 

7475-T7351
37075-T7351 
 

7049-T7351
37050-T73651 
 
Some stress corrosion cracking can be seen above, but cracks
I are typically blunt. Note cracks normal to fracture surface



5 
 in photo at top of opposite page.

Figure E2. (f) Cont'd.
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Crack Tips - 200X



Etch: 10% H 3P04 at 120
0 F (3 min)



7475-T7351
7075-T7351 
 

7049-T7351
7050-T73651 
 

While significant stress corrosion crack growth can be observed


it's hard to identify
on the fracture surfaces (opposite page), 
 

as such in the cross sections of the crack tips. High stress


intensities produce more mechanical fracture.
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Figure E2. (h)
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Crack Tips - 200X


Etch: 10% H3P04 at 120OF (3 min)
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7050-T73651 7049-T7351



The 7050 specimen chosen for cross sectioning was misoriented.


The 7050 fracture surface shown is from the duplicate specimen.
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CFT RR 76-32 ORIGINAL PAGE i
Page E-32 OP POOR QUALM~ 



Fracture



Surfaces


IX



Crack

Extension



1.0 	 0.0 0.3 0.0 mm



II



Cross
~Sections 
~5X 

7075-T7351 7475-T7351 7050-T73651 7049-T7351



Material: 3.0-in. plate DCB Specimen: TL orientation,


Typical temper condition 25 mm high, bolt­


loaded, pop-in

Test: 	 6 months salt chromate precrack



constant immersion
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Crack Tips - 200X



Etch: 10% H3POk at 1200F (3min)



7075-T7351 7475-T7351



7050-T73651 7049-T7351



Short cracks normal to the fracture plane are smaller than in


1.25-in. plate.



Figure E2. (i) Cont'd.
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7050-T73651 7049-T7351
7075-T7351 7475-T7351 


Material: 3.0-in. plate DCB Specimen: 	SL orientation,


Typical temper condition 	 75 mm high, bolt­


loaded, pop-in


Test: 6 months salt chromate 	 precrack



constant immersion


Figure E2. (j)I 
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Crack Tips - 200X


Etch: 10% H3 PO4 at 120 0F (3 min)



7075-T7351 7475-T7351



7050-T73651 7049-T7351



Performance of 75-am high specimen was similar to 25-nun high 
specimens except that stress corrosion was more apparent on


fracture surface of 75-mm high 7075 specimen.



Figure E2. (j) Cont'd.
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Figure E3. Cracks growing normal to precrack plane

3 in TL specimen 

Cracks have shape

3 shown, which is 
similar to that of 
plastic zone. 
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APPENDIX F



SCANNING ELECTRON MICROSCOPE VIEWS


OF STRESS CORROSION CRACKS



The absence of significant general corrosion on the specimens


tested in the salt-chromate environment allowed a clear examination


of the precrack and stress-corrosion crack surfaces. 
 Of particular


interest was the interface region between the precrack and the



stress corrosion crack.



Figure Fl shows the interface region in 7075-T7351(T) for


a pop-in precrack. The interface was extremely uneven, with a


great deal of mechanical rupture both ahead of and behind what


was probably the original precrack front. There was also a con­

siderable amount of overlapping, probably due to the non-planar


nature of the pop-in precrack. This was then manifested as a


fairly rough, uneven stress-corrosion surface.



In contrast, the transition to stress corrosion from a


fatigue precrack was more uniform, with less mechanical rupturing


(Fig. F2). 
 Since the initial stress intensity was lower, mechan­

ical fracture would be less likely. 
 The stress-corrosion crack


generated from the fatigue precrack appeared to be smoother with


fewer delaminations than that associated with a pop-in precrack.


Higher magnification of the transition zone between the trans­
3 granular fatigue precrack and the intergranular stress 
 corrosion


crack (Fig. F3) showed characteristics of both ductile tearing


and stress corrosion in a plane normal to the precrack. It is


probable that this could be a time-consuming process, and would


quite likely lead to a pronounced incubation period as observed.



Examination of the stress corrosion surface ahead of the
I interface region continued to reveal a considerable amount of
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mechanical rupturing (Fig. F4). It is quite clear therefore



that any theories of stress corrosion cracking and V-K relation­


ships must account for this feature of the process (Ref 30).
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A4 

'4 

00 450 
Figure Fl. Pop-in precrack/stress corrosion interface on SL 

DCB from 1.25-in. 7075-T7351 plate: salt-chromate 
environment (100X) 

The precrack and stress corrosion crack overlap on different


planes. The original precrack front was probably straighter


but fingers of stress corrosion grew back behind the precrack


after stress corrosion was initiated. This may relate to


the relatively slow initial crack growth rates observed at


the specimen edge (incubation effect).
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Figure F2. Fatigue precrack/stress corrosion interface on SL



DCB from 1.25-in. 7075-T7351 plate: salt-chromate


environment (10OX)



Transition from precrack to stress corrosion was more uniform


than with pop-in precrack. There was also less mechanical


rupturing (as would be expected since the stress intensity


was lower). Stress corrosion crack appeared to be flatter


than that generated by pop-in precrack.
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Figure F3. 	 Fatigue precrack/stress


corrosion interface of


sample shown in Fig. F2.


(450) 

In the transition region, areas of


what could be both ductile tearing


(b) and stress corrosion (c) were


present.
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Figure F4. 	 Stress corrosion fracture surface on SL-DCB specimen


from 1.25-in. 7075-T7351 plate: salt-chromate


environment (450)



Areas of ductile rupture were commonly found in the stress


corrosion crack.
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Figure F5. Stress corrosion fracture



surface on SL-DCB specimen


from 1.25-in. 7075-T7351


plate: salt-chromate


environment (450)



Secondary texture of fracture surface


is apparent at higher magnifications.
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