General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

NASA TECHNICAL MEMORANDUM

```
(NASA-TH-X-73253) THE GENERAL SOLOTION TO N77-26533
THE CLASSICAL PROBLEH OF FINITE EULER
BERNOULLI BEAM (NASA) 13 p HC AO2/AF AO1
\begin{tabular}{ccc} 
CSCL 20K & & Unclas \\
& G3/39 & 31796
\end{tabular}
```

8
8
8
NASA TM

THE GENERAL SOLUTIUN TO THE CLASSICAL
PROBLEM OF FINITE EULER BERNOULLI BEAM
M. Y. Hussaini and C. L. Amba-Rao

Ames Research Center
Moffett Field, California 94035

June 1977

1. Report No. NASA TM 73,253	2. Government Acceasion No.	3. Recipient's Catalos No.
4. Title and Subitite THE GENERAL SOLUTION TO THE CLASSICAL PROBLEM OF FINLTE EULER BERNOULLI BEAM		5. Report Date
7. Author(a) M. Y. Hussaini and C. L. Amba-Rao		8. Peforming Orgenization Raport No. A-7076
```9. Porforming Organization Name and Addras Ames Research Center Vikram Sarabhai Space Moffett Field, Calif. and Center 94035 Trivandrum, India```		10. Work Unit No. $505-06-12-07$
		11. Contract or Grent No.
12. Spomoring Agency Name and Address   National Aeronautics and Space Administration Washington, D.C. 20546		Technical Memorandum
		14. Sponsoring Agency Code
16. Supplemmentary Notes		
16. Alstract   An analytical solution is obtained for the problem of free and forced vibrations of a finite Euler Bernoulli beam with arbitrary (partially fixed) boundary conditions. The effects of linear viscous damping, Winkler foundation, constant axial tension, a concentrated mass, and an arbitrary forcing function are included in the analysis. No restriction is placed on the values of the parameters involved, and the solution presented here contains all cited previous solutions as special cases.		
17. Key Words (Suggested by Author(s))   Euler Bernoulli beam   Free and forced vibrations   18. Distribution Statement   Unlimited		
19. Security Classif. (of this report) Unclassified	20. Security Clasuif. (of this pepp) Unclassified	21. No. of Pxops 22. Prict   12 $\$ 3.25$

# the general solution to the classical problem of finite <br> EULER BERNOULLI BEAM 

M. Y. Hussaini and C. L. AmbamRao*<br>NASA Ames Research Center, Moffett Field, California

SUMMARY
An analytical solution is obtained for the problem of free and forced vibrations of a finite Euler Bernoulli beam with arbitrary (partially fixed) boundary conditions. The effects of linear viscous damping, Winkler foundation, constant axial tension, a concentrated mass, and an arbitrary forcing function are included in the analysis. No restriction is placed on the values of the parameters involved, and the solution presented here contains all cited previous solutions as special cases.

## 1. INTRODUCTION

Since the classical theory of beam was evolved by Euler and Bernoulli, a large literature has accumulated on the subject, the major part of which deals with either infinite beams or finite beams with standard boundary conditions. The general solution for the dynamic response of the infinite Euler-Bernoulli beam with arbitrary initial conditions, subjected to an arbitrary load including the effects of damping, an elastic foundation and constant axial load, was obtained comparatively recently by Stadier and Shreeves (1). The analogous

[^0]problem for a finite beam does not seem to have been solved in all generality. The first atudy allowing an elastically restrained edge condition, which is of particular interest in the aerospace field, appears to be that of Carmichael (2). Among subsequent investigations, those of Maltbaek (3); Hess (4), Amba-Rao (5), Sharp and Cobble (6) and Amba-Rao and Hussaini (7) are perhaps worth mentioning.

Maltbaek (3) solved the problem of a uniform beam with a rigid mass attached at its center and with elastic supports. Hess (4) gave a more complete solution. Amba-Rao (5) considered the free vibrations of an elastically restrained beam carrying an arbitrazy number of diacrete masses. He used the transform method, treating the added masses as impulses (represented by Dirac delta functions) in the mass density function. Sharp and Cobble (6) solved the problem of the arbitrarily loaded damped beam elastically restrained against rotation. Amba-Rao and Hussaini (7) presented a closed form solution to the problem of free vibrations of a partially fixed, linearly damped; beam on a Winkler foundation, carrying arbitrary masses. The present note extends the latter solution to include the case of forced vibrations under arbitrary initial conditions, and unifies all earlier investigations into a general theory.

## 2. STATEMENT OF THE PROBLEM

In addition to the usual assumptions of the Euler-Bernoulli theory, the beam is assumed to have constant axial tensile load, with viscous damping proportional :o velocity, and to be resting on a Winkler foundation whose resistance is proportional to the transverse displacement. The relevant differential equation in operator form is

$$
\begin{equation*}
\mathcal{L} y(x, t)=q(x, t) \tag{2.1}
\end{equation*}
$$

where

$$
\mathcal{L}=E J \frac{\partial^{4}}{\partial x^{4}}-p \frac{\partial^{2}}{\partial x^{2}}+f+d \frac{\partial}{\partial t}+\rho \frac{\partial^{2}}{\partial t^{2}}
$$

Here $y(x, t)$ is the lateral deflection, BJ the flexural rigidity of the beam, $\rho$ the mass density of the beam and concentrated masses, $x$ the space coordinate measured along the length of the beam,
$P$ the tensile axial force on the beam, $f$ the Winkle foundation constant, $d$ the damping constant, $t$ the time, and $q$ the forcing function. The initial and boundary conditions are, respectively:

$$
\begin{equation*}
y=u(x), \frac{\partial y}{\partial t}=v(x) \text { at } t=0 \tag{2.2}
\end{equation*}
$$

$$
\left.\begin{array}{rl}
\frac{1}{T_{1}} \frac{\partial^{3} y}{\partial x^{3}} & =y  \tag{2.3}\\
\frac{\partial^{2} y}{\partial x^{2}} & =-R_{1} \frac{\partial y}{\partial x}
\end{array}\right\} \text { at } x=0 \text { for all } t
$$

$$
\begin{equation*}
\frac{1}{T_{2}} \frac{\partial^{3} y}{\partial x^{3}}=y \quad \text { at } x=L \text { for all } t \tag{2.4}
\end{equation*}
$$

$$
\frac{\partial^{2} y}{\partial x^{2}}=R_{2} \frac{\partial y}{\partial x} \int
$$

where $L$ is the length of the beard and $T_{1} L_{2}, R_{1}$, and $R_{2}$ are spring constants (partial fixity factors". These boundary conditions are unmixed. In method of solution given here is applicable even if the conditions are mixed.
3. SOLUTION $1 \cdot$

The general theory of 1 inear 'operators suggests two fundamental methods of solving equation (2.1). One method is to find the inverse
of the operator $\mathcal{L}$, that is, in effect to obtain the Green's function. The operator $\mathcal{L}$ is not self-adjoint with respect to either $x$ or $t$. However, if the Green's function $G$ is evaluated satisfying the homogeneous initial and boundary conditions, then the problem can be solved in principle by an extended definition of $\mathcal{L}$ as given in equation (3.1) below:

$$
\begin{align*}
\mathcal{L}_{y}= & q+\left[\rho u(x) \delta^{\prime}(t)+\rho v(x) \delta(t)+d \delta(t)\right] \\
& + \text { terms due to inhomogeneous boundary conditions } \\
= & Q \text { (say) } \tag{3.1}
\end{align*}
$$

where $\delta(t)$ is the delta function. The solution takes the form

$$
\begin{equation*}
y(x, t)=\int_{0}^{L} \int_{0}^{\infty} G(x, t ; \xi, \tau) Q(\xi, \tau) d \xi d \tau \tag{3.2}
\end{equation*}
$$

In the present paper, the solution ls obtained by the second method using spectral representation of $\mathcal{L}$ in terms of $x$-eigenfunctions. First, the solution is sought as a sum of two functions, one of which is the solution of a homogeneous problem with inhomogeneous boundary conditions, while the other is the solution of an inhomogeneous equation with homogeneous boundary conditions. Thus, let

$$
\begin{equation*}
y(x, t)=y_{1}(x, t)+y_{2}(x, t) \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta_{y_{1}}=0 \tag{3.4}
\end{equation*}
$$

with the boundary conditions

$$
\begin{align*}
y_{1}^{\prime \prime \prime}(0, t) & =-T_{1} y_{1}(0, t) \\
y_{1}^{\prime \prime}(\pi, t) & =T_{2} y_{1}(\pi, t) \\
y_{1}^{\prime \prime}(0, t) & =-R_{1} y_{1}^{\prime}(0, t)  \tag{3.5}\\
y_{1}^{\prime \prime}(\pi, t) & =R_{2} y_{1}^{\prime}(\pi, t)
\end{align*}
$$

and

$$
\begin{equation*}
\mathscr{L}_{y_{2}}=q \tag{3.6}
\end{equation*}
$$

with the boundary conditions

$$
\left.\begin{array}{l}
y_{2}(0, t)=y_{2}(\pi, t)=0  \tag{3.7}\\
y_{2}^{\prime \prime}(0, t)=y_{2}^{\prime \prime}(\pi, t)=0
\end{array}\right\}
$$

and the initial conditions

$$
\left.\begin{array}{c}
y_{2}(x, 0)=u(x)-y_{1}(x, 0)=u(x)  \tag{3.8}\\
\frac{\partial y_{2}}{\partial t}(x, 0)=v(x)-\frac{\partial y_{1}}{\partial t}(x, 0)=v(x)
\end{array}\right\}
$$

where, by a proper choice of the origin and unit of length, the end points of the beam are at $x=0$ and $x=\pi$, and primes denote differentiation with respect to $x$.
a) EVALUATION OF $y_{1}$

The solution $y_{1}$ of equation (3.4) is given in reference 7. A slightly different approach is presented here which yields results identical to those of reference 7. The approach is expected to be useful particularly if the series representing the inverse of the finite Fourier transfori is not sumable in closed form.

Write

$$
\begin{equation*}
y_{1}=\psi(x) \exp (-\alpha t) \cos (\omega t) \tag{3.9}
\end{equation*}
$$

Substituting this in equation (3.4), we find that $\psi(x)$ satisfies the ordinary differential equation

$$
\begin{equation*}
E J \frac{d^{4} \psi}{d x^{4}}-P \frac{d^{2} \psi}{\partial x^{2}}+f \psi-\rho\left(\alpha^{2}+\omega^{2}\right) \psi=0 \tag{3.10}
\end{equation*}
$$

where $2 a \rho=d$, and with concentrated masses being represented by delta function $p=m+M_{j} \delta\left(x-x_{j}\right)$. Thus, the concentrated mase is supposed to be situated at the point $x=r_{j}$; and $d$ is assumed proportional to $p$. The boundary conditions are

$$
\left.\begin{array}{l}
\psi^{(3)}(0)=-T_{1} \psi(0), \quad \psi^{(3)}(\pi)=T_{2} \psi(\pi)  \tag{3.11}\\
\psi^{(2)}(0)=-R_{1} \psi^{(1)}(0) \quad \text { and } \quad \psi^{(2)}(\pi)=R_{2} \psi^{(1)}(\pi)
\end{array}\right\}
$$

where $\psi^{(1)}$ denotes ith derivative of $\psi$ with respect to $x$. Define

$$
\varepsilon^{1} \bar{\psi}=\int_{0}^{\pi} \frac{\partial^{1} \psi}{\partial x^{1}} \cos n x d x
$$

Integrating by parts, we establish the recurrence relation

$$
\begin{align*}
& 8^{1} \bar{\psi}= \frac{1}{n^{2}}\left[(-1)^{n} \psi^{(1+1)}(\pi)-\psi^{(1+1)}(0)\right] \\
&-\frac{1}{n^{4}}\left[(-1)^{n} \psi^{(1+3)}(\pi)-\psi^{(1+3)}(0)\right]+\frac{1}{n^{4}} \&^{1+4} \bar{\psi}  \tag{3.12}\\
& \bar{\psi}(n)=8^{0} \psi=\frac{1}{n^{2}}\left[(-1)^{n^{(1)}}(\pi)-\psi^{(3)}(0)\right] \\
&-\frac{1}{n^{4}}\left[(-1)^{n^{(1)}}(3)-\psi^{(3)}(0)\right]+\frac{1}{n^{4}} 8^{4} \Psi \tag{3.13}
\end{align*}
$$

The expression for $8^{4} \bar{\psi}$ is obtained from the finite cosine transform of equation (3.4):

$$
\begin{align*}
8^{4} \bar{\psi}\left[1+\frac{P}{E J} \frac{1}{n^{2}}\right]= & \bar{\psi}(n)\left[\frac{m}{E J}\left(\alpha^{2}+\omega^{2}\right)-\frac{f}{E J}\right] \\
& +\frac{P}{E J} \frac{1}{n^{2}}\left[(-1)^{n^{(3)}}(\pi)-\psi^{(3)}(0)\right]+s_{j} \tag{3.14}
\end{align*}
$$

where

$$
S_{j}=\frac{\alpha^{2}+w^{2}}{E J} M_{j} \psi\left(x_{j}\right) \cos n x_{j}
$$

Finally,

$$
\begin{align*}
\bar{\psi}(n) & =\frac{1}{\left(n^{2}+\ell^{2}\right)^{2}-k^{4}}\left[\left(n^{2}+2 \ell^{2}\right)\left\{(-1)^{n^{\prime}}(1)(\pi)-\psi^{(1)}(0)\right\}\right. \\
& -\left\{(-1)^{\left.\left.n^{( } \psi^{(3)}(\pi)-\psi^{(3)}(0)\right\}+s_{j}\right]}\right. \tag{3.15}
\end{align*}
$$

where

$$
\ell^{2}=\frac{P}{E J},-k^{4}=-\left(\frac{P}{2 E J}\right)^{2}+\frac{f}{E J}-m \frac{\left(\alpha^{2}+\omega^{2}\right)}{E J}
$$

Then

$$
\psi(x)=\bar{\psi}(0)+\frac{2}{\bar{\pi}} \sum_{m=1}^{\infty} \bar{\psi}(n) \cos n x
$$

or

$$
\begin{align*}
\psi(x)= & \frac{1}{\pi} \frac{1}{\ell^{4}-k^{4}}\left[\frac{\alpha^{2}+\omega^{2}}{E J} M_{j} \psi\left(x_{j}\right)-\left\{\psi^{(3)}(\pi)-\psi^{(3)}(0)\right\}\right. \\
& \left.+2 \ell^{2}\left\{\psi^{(1)}(\pi)-\psi^{(1)}(0)\right\}\right]+\frac{\alpha^{2}+\omega^{2}}{\pi E J} M_{j} \psi\left(x_{j}\right)\left[I_{3}\left(x+x_{j}\right)\right. \\
& \left.+I_{3}\left(\left|x-x_{j}\right|\right)\right]-\frac{2}{\pi}\left[\psi^{(1)}(0)\left\{I_{1}(x)+\left(\ell^{2}+k^{2}\right) I_{3}(x)\right\}\right. \\
& \left.+\psi^{(1)}(\lambda)\left\{I_{2}(x)+\left(\ell^{2}+k^{2}\right) I_{4}(x)\right\}+\left\{\psi^{(3)}(0) I_{3}(x)-\psi^{(3)}(\pi) I_{4}(x)\right\}\right] \tag{3.16}
\end{align*}
$$

where

$$
\left.\begin{array}{rl}
I_{1}(x)= & -\frac{1}{2\left(l^{2}+k^{2}\right)}+\frac{\pi}{2 \sqrt{l^{2}+k^{2}}} \frac{\cosh (\pi-x) \sqrt{\ell^{2}+k^{2}}}{\sinh \pi \sqrt{l^{2}+k^{2}}} \\
I_{3}(x)= & \frac{1}{2\left(l^{4}-k^{4}\right)}-\frac{\pi}{4 k^{2}}\left[\frac{\cosh (\pi-x) \sqrt{\ell^{2}+k^{2}}}{\sqrt{l^{2}+k^{2}} \sinh \pi \sqrt{l^{2}+k^{2}}}\right. \\
& -\frac{\cosh (\pi-x) \sqrt{l^{2}-k^{2}}}{\sqrt{l^{2}-k^{2}}} \sinh \pi \sqrt{l^{2}-k^{2}}
\end{array}\right] \begin{aligned}
& I_{2}(x)=I_{1}(\pi-x) \text { and } I_{4}(x)=I_{3}(\pi-x)
\end{aligned}
$$

b) SOLUTION OF $\mathcal{L y}_{2}=q(n, t)$

The operator $\mathcal{L}_{2}$ is a sum of two commutative operators $L_{x}$ and $L_{t}$ defined as

$$
\begin{align*}
& L_{x}=E J \frac{\partial^{4}}{\partial x^{4}}-P \frac{\partial^{2}}{\partial x^{2}}+f  \tag{3.17}\\
& L_{t}=\rho \frac{\partial^{2}}{\partial t^{2}}+d \frac{\partial}{\partial t} . \tag{3.18}
\end{align*}
$$

The inverse of $\mathcal{L}_{2}$ may be obtained by considering $L_{x}$ as a constant. The results will be a function of the operator $L_{x}$ and should be interpreted by using the spectral representation of $L_{x}$. Consider $L_{x}$ : Its domain $D_{x}$ is the set of all functions in $S$ (which is a linear vector'space of real-valued square integrable functions over ( $0, \pi$ ) ) and they have piecewise continuous fourth derivatives for $0 \leq x<x_{j}$ and for $x_{j}<x \leq \pi$, whic'1 satisfy the conditions

$$
\begin{equation*}
\psi(0)=\psi(\Lambda)=\psi^{\prime \prime}(0)=\psi^{\prime \prime}(\Lambda)=0 \tag{3.19}
\end{equation*}
$$

and are such that $L_{x} \psi$ belongs to $S$.
If $\psi_{i}, \psi_{j}$ are in $D_{x}$, it can be easily shown following standard procedur.

$$
\begin{equation*}
\left\langle\psi_{1}, L_{x} \psi_{1}\right\rangle=\left\langle L_{x} \psi_{j}, \psi_{1}\right\rangle \tag{3.20}
\end{equation*}
$$

where the inner product is defined as

$$
\begin{equation*}
\left\langle\psi_{1} \cdot \psi_{1}\right\rangle=\int_{0}^{\pi} \psi_{1} \psi_{j} d n \tag{3.21}
\end{equation*}
$$

In other words, $L_{x}$ is self-adjoint and ita eigenfunctions are $\boldsymbol{\psi}_{1}$. These $\psi_{1}$ can be obtained from the analyais of section (a) by letting $T_{1}, T_{2} \rightarrow \infty$ and $R_{1}, R_{2} \rightarrow 0$. The $\emptyset_{1}$ defined by the relation

$$
\begin{equation*}
\phi_{i}=\frac{\psi_{1}}{\left[\left\langle\psi_{2}^{2}\right\rangle\right]^{T / 2}} \tag{3.22}
\end{equation*}
$$

form the orthonormal basis for $S$. Hence $q, U, V$ can be represented 28

$$
\begin{align*}
q / o & =\sum_{i}^{\infty} q_{1}(t) \phi_{1}(x) \\
v & =\sum_{1}^{\infty} v_{1} \phi_{1}(x)  \tag{3.23}\\
v & =\sum_{1}^{\infty} v_{1} \phi_{1}(x)
\end{align*}
$$

where

$$
\begin{align*}
& q_{1}=\int_{0}^{\pi} \frac{g(\xi, t)}{\rho} \phi_{1}(\xi) d \xi \\
& U_{i}=\int_{0}^{\pi} U(\xi) \phi_{1}(\xi) d \xi  \tag{3.24}\\
& v_{i}=\int_{0}^{K} v(\xi) \phi_{1}(\xi) d \xi
\end{align*}
$$

The equation (3.6) is written as

$$
\begin{equation*}
\left(\rho \frac{\partial^{2}}{\partial t^{2}}+d \frac{\partial}{\partial t}+L_{x}\right) y_{2}=q(x, t), \quad y_{2}(x, 0)=\|(x), \quad \frac{\partial y_{2}}{\partial t}(x, 0)=V(x) \tag{3.25}
\end{equation*}
$$

Treating $L_{x}$ as a constant, we find the solution of (3.25) (by the method of Laplace transforms or by variation of parameters) as

$$
\begin{align*}
y_{2}= & \int_{0}^{t} \exp [-\alpha(t-\tau)] \frac{\sinh \beta(t-\tau)}{\beta} \frac{g(\tau, x) d \tau}{\rho} \\
& +\exp (-\alpha t) \frac{\sinh \beta t+\cosh B t}{\beta} U(x) \\
& +\exp (\cdot \alpha t) \frac{\sinh \beta t}{\beta} V(x) \tag{3.26}
\end{align*}
$$

where $\beta=\sqrt{\alpha^{2}-L_{x} / \rho}$ and $2 \alpha \rho=d$. It is to be noted that the function of the operator is written before the function on which it acts and it is interpreted accordingly. For inatance,

$$
f\left(L_{x}\right) U(x)=\sum_{1}^{\infty} f\left(\lambda_{n}\right) U_{n} \phi_{n}(x)
$$

where $\lambda_{n}$ are the eigenvalues of $L_{x}$ end $\phi_{n}(x)$ the associated noraalized eigenfunctions. Thus,

$$
\begin{align*}
y_{2}= & \sum_{n=1}^{\infty}\left[F_{n}(t){ }_{n} q_{n}(t)+F_{n}(t)\left(x U_{n}+v_{n}\right)\right. \\
& \left.\quad \exp (-a t) \cosh \beta_{n}^{t} U_{n}\right] \phi_{n}(x) \tag{3.27}
\end{align*}
$$

where $F_{n}(t){ }_{A} q_{n}(t)=\int_{0}^{t} F_{n}(t-\tau) q_{n}(\tau) d \tau$

$$
F_{n}(t)=\exp (-\alpha t) \frac{\sinh \beta_{n}^{t}}{\beta_{n}} \text {, and } \beta_{n}=\sqrt{\alpha^{2}-\lambda_{n} / 0}
$$

DISCUSSION
Substitution of (3.16) in (3.11) yields four equations for five unknowns $\psi^{(1)}(0), \psi^{(1)}(\pi), \psi^{(3)}(0), \psi^{(3)}(\pi)$ and $\psi\left(x_{j}\right)$. Evaluation of $\psi$ at $x=x_{j}$ from (3.16) provides the necessary fifth equation. The determinant of this system set equal to zero is the equation for natural frequencies. In the above frocedure, if equation (3.19) is used instead of (3.11), we finally obtain the equation for the eigenvalues $\lambda_{n}$ of the operator $L_{x}$. From equation (2.10) it is obvious that $\lambda_{n}$ have the form

$$
\lambda_{n}=\rho\left(\alpha^{2}+\omega_{n}^{2}\right)
$$

and then

$$
B_{n}=\sqrt{-\omega_{n}^{2}}
$$

where $\omega_{n}$ are the natural frequencies of the team aimply supported at both ends. The corresponding eigenfunctions are obtained from equation (3.16). In summary, a general solution has been presented for the free and forced vibrations of a finite Euler-Bernoulli beam.

## REFERENCES

1. W. Stadler and R. W. Shreeves, Quart. J. Mech. Appl. Math. 23 (1970), 197-208.
2. T. E. Carmichael, Quart. J. Mech. Appl. Math. 12 (1959) 29-42.
3. J. C. Maltbaek, J. Mech. Sci. 3 (1961) 197-218.
4. M. S. Hess, J. App1. Mech. 31 (1964) 556-558.
5. C. L. Amba-Rao, J. Acous. Soc. America 40 (1966) 267-371.
6. G. R. Sharp and M. H. Cobble, J. Acous. Soc. America 45 (1969) 654-660.
7. C. L. Amba-Rao and M. Y. Huseaini, J. Appl. Mech. 42 (1975) 735-36.
8. B. Friedman, Principles and Techniques of Applied Mathematics, Wiley, New Yurk, 19'st.

[^0]:    * Vikram Sarabhai Space Center, Trivandrum, India

