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ABSTRACT
 

Magnetic elements, inductors and/or transformers are among the most
 

important elements found in electronic power processing and filter circuits.
 

In filter circuits, the inductor is used to smooth the current flowing to
 

the load and its output voltage. In energy-storage dc-to-dc converters
 

used in power processing applications, the inductor or transformer is used
 

to store and transfer energy in some controlled manner between source and
 

load. The magnetic element is nearly always a custom designed and con­

structed element as opposed to other elements used in these circuits. There­

fore, the design of the magnetic element is a crucial step in the design of
 

power processing and filter circuits as a whole. In high-power applica­

tions, usually it is desirable to design these inductors using air-gapped
 

magnetic-core structures. This dissertation presents methodical approaches
 

to the design of inductors for use in LC-filters and dc-to-dc converters
 

using air-gapped magnetic structures.
 

In addition to the design procedures for the inductors, methods for
 

the analysis and design of full-wave rectifier LC-filter circuits operating
 

with the inductor current in both the continuous-conduction and the discon­

tinuous-conduction modes are presented. In the continuous-conductionmode,
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linear circuit analysis techniques are employed, while in the case of the
 

discontinuous mode, the method of analysis requires computer solutions of
 

the piecewise-linear differential equations which describe the filter in
 

the time domain. Using these methods of analysis, a family of design curves
 

is obtained relating filter parameter values of inductance, capacitance, and
 

load resistance to the performance factors of percentage output ripple
 

voltage, average output voltage level, rms and peak transformer-winding
 

currents, and input power factor.
 

Three procedures for designing filter inductors using air-gapped cores
 

are presented. The first procedure requires digital computation to yield a
 

design which is optimized in the sense of minimum core volume and minimum
 

number of turns. The second procedure does not yield an optimized design
 

as defined above, but the design can be done by hand calculations or with
 

a small calculator. The third procedure is based on the use of specially
 

prepared magnetic core data and provides an easy way to quickly reach a
 

workable design.
 

The procedure for designing air-gapped energy-storage reactors for
 

dc-to-dc converters is based on an earlier study of the storage and transfer
 

of energy in the magnetic reactors. The continuation of a study in this di­

rection leads to a simple relationship for the required minimum volume of
 

the air gap. Determination of this minimum air-gap volume then permits the
 

selection of either an air-gap length or a cross-sectional core area, thus
 

identifying a workable magnetic structure.
 

It is believed that the analytical guidance in conjunction with the
 

design procedures presented in this dissertation can significantly reduce
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the time, and hence the cost, of designing full-wave rectifier LC-filter c.ir­

cuits, air-gapped magnetic-core inductors for use in filters, and energy­

storage reactors in dc-to-dc converters using air-gapped magnetic structures.
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AIR-GAPPED STRUCTURES AS MAGNETIC ELEMENTS
 
FOR USE IN POWER PROCESSING SYSTEMS
 



CHAPTER I
 

INTRODUCTION
 

One of the most important elements found in electronic power processing
 

and filter circuits is the magnetic element which may be an inductor and/or a
 

transformer. While other components in these circuits, such as semiconductor
 

elements and capacitors, are chosen from populations of standard sizes and
 

ratings, the magnetic element is nearly always a custom designed and constructed
 

element. As power processing circuits and systems have become more complex, the
 

design of the magnetic element has necessarily become a more difficult and subtle
 

art. Few elements available to the power processing engineer can be designed
 

so closely to the desired parameters as the magnetic element, even though there
 

are standard size and permeability groupings available for the magnetic cores
 

on which windings are placed. While giving the designer a greater range of
 

choice in circuit planning, this extra degree of freedom is not without its
 

disadvantages. The complexity of the designer's problem is only partially in­

dicated by the multiplicity of nonlinearities in the large range of magnetic
 

materials available. The variety of structures and shapes is extensive as
 

well, with shapes ranging from presized toroidal cores with known effective
 

permeabilities to cut and pot cores for which the designer must determine the
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air gap and, therefore the effective permeability. In every case, the primary
 

goal of the designer is to determine the proper number of turns and wire size
 

required, given that a particular magnetic structure has been selected, so that
 

some set of design parameters will be achieved. While the design parameters
 

frequently are a specified inductance value for a given dc current, there are
 

other important criteria in power processing circuits which lead to different
 

specified design parameters. By approaching the inductor design problem from
 

a broader point of view, it is possible to take into account other factors of
 

great importance in overall system design, such as size and weight.
 

In an inductor-capacitor (LC) filter circuit which follows a full-wave
 

rectifier, the inductor is used to smooth the current flowing to the load and
 

capacitor due to the rectifier and its output voltage which consists of uni­

directional half sinusoids, thus producing across the load a dc output voltage
 

with a small ac ripple superimposed. The filter can operate in one of two
 

steady-state modes, usually referred to as the continuous-conduction and the
 

discontinuous-conduction modes. In the continuous mode, current through the
 

filter inductor L is always greater than zero. In the discontinuous mode,
 

current through the inductor is equal to zero during a portion of each steady­

state cycle. Various procedures have been reported in the literature for the
 

analysis of rectifier-filter circuits; however, most of the design techniques
 

employed today are based on procedures developed in the 1930's and 40's and are
 

limited to considering RC filters, or LC filters restricted to the continuous­

conduction mode [1-5]. Recently, an analysis of a rectifier with LC-filter
 

circuit operating in the discontinuous mode was presented under the assumption
 

that the value of the capacitance C was so large that the output ripple voltage
 

was negligibly small [6].
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Inenergy-storage dc-to-dc converter circuits, the inductor serves as
 

a medium of exchange or transfer of energy between source and load. Inthe
 

past, design procedures for the energy-storage reactor have been developed
 

particularly with powdered permalloy and ferrite toroidal cores inmind [7-12].
 

These procedures make use of a collection of data for a finite population of
 

core sizes and discrete effective permeabilities. In high-power applications,
 

itmay be advantageous to design and fabricate these inductors using air-gapped
 

magnetic cores. The use of air-gapped cores permits the selection to be made
 

from an innumerable population of core structure-size-permeability combinations
 

and makes available a wider range of magnetic core sizes, particularly in the
 

larger volume sizes.
 

An important characteristic of inductors for these applications is the
 

ability to carry direct current without significant change in inductance over
 

a specified range of circuit operating conditions. To avoid saturation of the
 

magnetic material due to the dc component of winding current, it is necessary
 

to introduce an air gap in the magnetic material. Inthe powder cores, the
 

powdered magnetic material is insulated with a ceramic material which effectivelj
 

provides a uniformly distributed air gap. In high power applications,it may
 

be desirable to design these inductors using air-gapped magnetic-core structures.
 

However, there are some disadvantages associated with the use of air-gapped
 

structures. Introduction of an air gap inthe magnetic circuit produces couplinc
 

to the fields due to other components as well as its own external fields. The
 

air-gapped structures also tend to be more noisy acoustically than those without
 

an air gap.
 

The purpose of this dissertation is three-fold:
 

(1) to present the analysis of an LC-filter driven by a full-wave rectifier
 

circuit which leads to a design procedure for the inductance value for the
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general case in which the effective load resistance RL and filter capaci­

tance C are constraint parameters and in which both discontinuous- and
 

continuous-conduction modes are considered.
 

(2) to develop design procedures for air-gapped magnetic-core inductors for
 

use in LC-filters for full-wave rectifier supplies.
 

(3) to develop procedures for designing the energy-storage reactor for
 

dc-to-dc converters using air-gapped magnetic structures.
 

This dissertation is based in part on material presented in a series of publi­

cations [13, 14, and 15] of which the writer is the principal author.
 

Chapter II presents the analysis of LC-filter circuits with zero source
 

impedance which leads to a set of curves and approximate relationships which
 

are useful for designing these filters. A similar approach is followed in
 

Chapter III to generate design curves for filters with a non-zero source im­

pedance. This impedance is always present in an actual physical system, and
 

its inclusion in the analysis and in the design algorithm yields a more accu­

rate and complete design.
 

In Chapter IV, two procedures for designing filter inductors using air­

gapped cores are presented. The first procedure requires a digital computation
 

to yield a design which is optimized in the sense of minimum core volume and
 

minimum number of turns. The second procedure does not yield an optimized de­

sign as defined above, but the necessary computations may readily be carried
 

out on an electronic pocket calculator. Using the results of the analysis
 

developed in Chapter IV, and following the procedure presented by Hanna [163,
 

special magnetic core curves are generated. Using these design curves, a new
 

procedure for designing air-gapped inductors is presented in Chapter V.
 

In Chapter VI, a procedure for designing energy-storage reactors for
 

dc-to-dc converters using air-gapped cores is presented. This procedure is
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based on the design relationships developed inReferences [9-12] for gapless
 

powdered permalloy and ferrite toroidal cores.
 

Conclusions which can be drawn from this work are presented in Chapter
 

VII with suggestions for future research. The derivation of some of the more
 

important analytical expressions presented inthe text are outlined in the
 

Appendices. The International System of Units (SI) is used throughout, and a
 

glossary of symbols and their associated units is placed at the end of this
 

dissertation.
 



CHAPTER II
 

ANALYSIS AND DESIGN OF FULL-WAVE RECTIFIER LC FILTERS
 

WITH CONTINUOUS OR DISCONTINUOUS INDUCTOR CURRENT
 

2.1 Introduction
 

Conversion of ac sinusoidal voltage to dc voltage for power applications
 

by rectification often is accomplished using the familiar center-tapped trans­

former rectifier or the full-wave bridge rectifier followed by an inductor­

input low-pass LC filter which supplies the load RL as shown in Figure 2.1.
 

The sinusoidal source voltage is converted to a train of unidirectional half­

sinusoids by the rectifier and is then smoothed by the LC-filter, producing
 

across the load RL a dc output voltage with a small ac ripple superimposed.
 

The design of the filter for a full-wave rectifier power supply involves the
 

determination of values for the inductor L and the capacitor C, the selection
 

of suitable diodes, and the sizing of the transformer windings to meet the
 

various application requirements. The requirements often include accomodation
 

of the network to conditions of varying input source voltage and output load.
 

Possible design specifications include the dc output voltage level, maximum
 

allowable peak-to-peak output ripple voltage as a percentage of the dc output
 

voltage, maximum allowable peak or rms currents in the diodes and transformer
 

(7)
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Figure 2.1. LC-filter Circuit Supplied by (A) Center-Tapped 
Transformer Rectifier and (B) Full-Wave Bridge Rectifier. 
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windings, and minimum permissible power factor at the input terminals to the
 

network.
 

This chapter presents an analysis and a design procedure for the
 

LC-filter circuit operating either in the continuous and/or in the discontinuous
 

mode. In this chapter it is assumed in the analysis that the impedance of the
 

sinusoidal source is negligibly small and is not included in the development
 

of design and performance relationships. However, an analysis of the LC­

filter circuit with non-zero sinusoidal source impedance is presented in the
 

next chapter.
 

A critical condition is established as the boundary between the two
 

modes of operation. For each value of the dimensionless angular frequency param­

eter wN' defined as r/w0, where w is the angular frequency of the sinusoidal 

input voltage source in radians per second and w0 = IN'CC-is the undamped 

natural frequency of the low-pass filter, there exists another dimensionless 

parameter K, defined as wL/RL' for which a critical value Kc exists. For 

K > Kcr' the filter operates in the continuous-conduction mode; for K < Kcr'
 

it operates in the discontinuous mode. For values of K > Kcr, the filter
 

circuit is analyzed using Fourier series and linear circuit analysis techniques.
 

For values of K : Kcr' the filter circuit, described analytically by piecewise­

linear differential equations, is analyzed with the help of the digital compu­

ter. An algorithm for rapid determination of the periodic steady-state condi­

tions is used to reduce the computation time for calculations involving the
 

discontinuous mode of operation. From the analyses, a'set of curves useful for
 

design purposes is generated. The derivations of useful expressions are pre­

sented in Appendices A and B.
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2.2 Circuit Analysis
 

In this section, the rectifier-filter circuit is analyzed to obtain re­

lationships useful for design purposes. In the continuous-conduction mode,
 

linear circuit analysis techniques are employed, while in the case of the
 

discontinuous mode, the method of analysis requires computer solutions of
 

the piecewise-linear differential equations. In both cases, all of the elements
 

of the circuit are assumed to be ideal with the equivalent load RL as the only
 

dissipative element.
 

2.2.1 Continuous-Conduction Mode
 

As mentioned earlier, in the continuous-conduction mode, current iX
 

in the filter inductor L is always greater than zero so that the source of
 

voltage always is connected through forward conducting diodes to the filter
 

input terminals. Assuming ideal diodes, the equivalent circuit for both of the
 

configurations in Figure 2.1 is given in Figure 2.2 along with typical waveforms
 

of inductor current iX and output voltage vO. Although the effect of diode
 

forward voltage drop can be important in rectifier-filter circuits, particu­

larly in those providing low output voltages, it is not included in the analysis
 

since this factor would add an additional parameter to the family of curves
 

presented later for design and performance evaluation. In one of the examples
 

presented in a later section however, it is shown how diode voltage drops may
 

be taken into account. The effectual value of the voltage source in the equiva­

lent circuit, designated as vj, is the full-wave rectified value of the sinusoi­

dal input voltage v1. This linear equivalent circuit can be analyzed for
 

steady-state solutions using Fourier-series techniques. The effectual source
 

voltage vi i-s represented by its Fourier-series expansion consisting of a dc
 



ix L i0 +
 

V1! :VImIsinwtI + C RL 

(A) 
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Figure 2.2. (A) Equivalent Diagram for the Rectifier-Filter
 
Circuits Operating in the Continuous-

Conduction Mode.
 

(B) Associated Voltage and Current Waveforms from
 
Computer Solutions of Circuit Equations.
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component followed by a series of ac sinusoidal terms with amplitudes and
 

frequencies given by the expression:
 

v1 = VImSinei = 4Vim i - cos2e cos4e cos6e _cos2ne (2.1)
7 2 3 15 35 " 4n 2_1 

where = wt = 2rft, where f is the ac supply frequency, and n is a positive 

integer. 

All current and voltage components in the circuit-are computed separate­

ly by sinusoidal steady-state methods. The total current or voltage in any
 

branch of the circuit may be found by summing the separate harmonic components
 

from the individual terms of (2.1) using the superposition principle. Analysis
 

of the filter circuit shows that its transfer function falls off at the rate
 

of 40 dB-per decade (12 dB per octave) as an asymptotic slope limit. In addi­

tion to the increasing attenuation of the filter with increasing frequency, the
 

magnitudes of the sinusoidal components of the input voltage vj also fall off
 

rapidly with harmonic number. Assuming that all harmonic terms, beginning
 

with the second term inthe expression for v given by (2.1), lie in the range
 

of the 40 dB per decade slope of the filter transfer function, the combination
 

of attenuation and harmonic-term magnitudes yield values of 0.05 and 0.0053
 

for the ratios of the fourth-harmonic and sixth-harmonic terms of v0 to the
 

second harmonic term of the output voltage. Thus, the second harmonic of the
 

input ac supply is seen to be the only component of significance indetermining
 

the output ripple voltage when the circuit isoperatedin the continuous-conduc­

tion mode, and the equivalent input voltage vj may be approximated by the ex­

pression:
 

' 4V rm (12 3 (2.2)1 cos2e 
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The transfer function of the filter circuit operating in the continuous mode
 

is given by the following
 

vO(S) 1 (2.3)
 

vI(s = [s2LC + s(L/RL) + 1]
 

Using the expression in (2.2) and the transfer function of the filter
 

given by (2.3), a number of useful relations for various voltage and current
 

components may be derived:
 

2Vl
 

DC output voltage: V0 - im (2.4)
 

(83+)Peak-to-peak ripple voltage: V / # l16w4+4K2) (2.5) 

4Vl 1 l+(4w4/ 2) 

Rms inductor current: I Im 1 + N ) )
L 18(1-8wN+16wN+4K ) 

21 .7)2c
2V44 

-4V
 8Peak inductor current: 2IXm TLrR1 m( '1 _ + _ l(4i/2+1N+2 4 K2 

2.2.2 Discontinuous-Conduction Mode
 

In the discontinuous mode the action of the diodes is such that the
 

current iX is equal to zero during a portion of each steady-state cycle. The
 

equivalent circuit when diodes are conducting is the same as for the continuous
 

mode and is shown in Figure 2.3(A) where the second subscript 1 is added to
 

signify the voltages and currents associated with this-portion of the cycle.
 

The output voltage v01 is obtained from solution of the following equation:,
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1Il L 10i + 0?p + 
7 i02 + 

V 	 C RL Vo,1L C0 V0 2 

(A) 	 (B) 

Vrm
 

V~m --

Ixm 

0 	 211 =wtO 	 e, o+ TJ 

(C) 

Figure 2.3. 	 Equivalent Diagrams for the Rectifier-Filter Circuits
 
Operating in the Discontinuous-Conduction Mode During
 
Interval (A)When Diodes are Conducting and (B)When
 
Diodes are not Conducting. (C) Associated Voltage
 
and Current Waveforms from Computer Solutions of
 
Circuit Equations.
 



2 d2 01 + K dv01  = Vlmsin(e-eO) (2.8) 
W 2N do V01  Irn' 

The value of inductor current iX is given by 

CVold +Vol (2.9) 

iXl do + RL 

The range of applicability of 0 is from e0 to el, corresponding to the beginning
 

and the end of the conduction interval, so that
 

ix1 (eO) = iXl(61) = 0 (2.10)
 

The solutions to (2.8) and (2.9), subject to the consttaints given by
 

(2.10), yield the following expressions for v01 and iXl:
 

vol(e) = Avsine + Bvcose + exp(e)[Cvsin(ae) + Dvcos(e)] (2.11) 

iXl(e) -L {Aisine + B.cose + exp(WE)[Cisin(ae) + D.cos(ce)]}(2.12) 
X1RL 1 1 1 

for e0 < 0 < 01. The values for the various coefficients depend on K, wN, and 

00, and expressions for them are given in the glossary of symbols.
 

When the diodes are not conducting, the equivalent circuit is that shown
 

in Figure 2.3(B), where the second subscript 2 denotes this operating condition.
 

The output voltage v02 and current iX2 for this part of the cycle are described
 

by the following equations:
 

dv2 + v02 0 (2.13)mCde +RL
 

ix2(e)= 0 (2.14)
 

where the range of 0 is from e1 to (00+7), corresponding to the interval during
 

which the inductor current is zero. Solving (2.13) yields the expression:
 

http:D.cos(ce)]}(2.12
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v02 (0) = V02(el)exp[-(6-el)/wCRL] (2.15) 

From the requirements for a steady state in the discontinuous mode, and from
 

the requirement of continuity of the output voltage across capacitor C, the
 

following conditions must be satisfied:
 

v02(60+7) = v01(00) (2.16)
 

v02(e1 ) = v01 ( 1) (2.17)
 

iXl( 0 ) = ixl(y 1) = 0 (2.18) 

In order to obtain the steady-state solutions for v0 and ix the two
 

transcendental equations given by (2.11) and (2.15) must be solved simul­

taneously subject to the conditions imposed by (2.16), (2.17), and (2.18).
 

The implicit relationships in this type of simultaneous equation pair suggest
 

that digital computation be employed to obtain numerical answers for the
 

solutions. An algorithm, described in the section which follows, was de­

vised to rapidly determine the steady-state voltages and currents.
 

2.2.3 Algorithm to Determine Steady-State Values of v0 and ix
 

A simple algorithm for quickly determining the periodic steady-state
 

is illustrated in the flow chart in Figure 2.4. Two first-trial initial
 

values of output voltage v0 (1)and v0(2) are entered as starting values
 
and the corresponding initial trial values of 0 , o0(1) and 00(2), are
 

calculated using the relationship
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CHOOSE TWO INITIAL TRIAL VALUES: 

Vo(1) AND V(2) 

COMPUTE G(o )
0 


AND eo(2) (Vo( 2)) 

( 1 ) INCREMENT e FROM e (I) TO GO() + 

AND a(2) FROMG(') TO 0(2) + r TO 

OBTAIN vo(1)(eO (1)- T)AND vo(2)(eo(2)+ )
 

USING (2.11) AND (2.15)
 

SET: = O(1)l)0 (eo1)+ v(') 

(2)= Vo(2)(eo(2)+ 7) -

SET'IN=3

(N).
CALCULATE NEW TRIAL 

S (N-)vo(N-2) - (1-2)Vo (N-I 

V0 

C 1P~- (N C)+ USING
(NYo )C O (e 

(2.11) AND (2.15)
 

N= +1
 

Figure 2.4 Flow-Chart of algorithm for rapid determination of the
 
periodic steady-state of the rectifier-filter circuit
operating in the discontinuous-conduction mode. 
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E0 (N)= arc sin (vo(N)/VIm)
 

The values of 00 ) and 0(2) are then incremented by a prescribed small
 

amount from the starting values of O (1)and O0(2), respectively, and
 

the corresponding values vo(l)(O) and vo(2)() and iXl(1)(O) and iX2(2)(0)
 

If the values of ix(1) or ix(2)
are computed using (2.11) and (2.12). 

are computed to be equal to or less than zero, the values of 0 ) and 

0(2) are identified tentatively as 01(1) and 01(2), which mark the 

end of the inductor conduction interval. As 00 ) and 0(2) are incremented 

over the interval from 01(1) to e0(1) + 7t and 01(2) to E0(2) + 7, 

respectively, v0(1) and v0 (2)are computed using (2.15). The inductor 

currents, ix(1) and ix(2)remain zero during this interval. The error 

C(I) is computed as the difference between the computed value of v(1) 

at E(1) = 0(1) + 7t and the initial guess for v0 (1)at e(l) = E0(1) 

Similarly, the error e(2) is computed for the second trial. Using c(I)
 

and () (1)(2) 
and E(2), and initial values v0(1) and v0(, a new trial value for
 

v0(3) at E(3) = 00(3) is computed by linear interpolation or extrapolation
 

as shown in flow chart. The above process is repeated until the solution
 

for va(0 0 ) converges, thus yielding the values of E0 and I Results
 

obtained from a number of computer runs show that usually only three 

or four iterations are required to obtain solutions which converge to with­

in a prescribed error bound of 0.0001VIm . By incorporating this algorithm 

in the computer program, considerable reduction in the computation time
 

involved in the steady-state analysis of rectifier-filter circuits when
 

they are operated in the discontinuous-conduction modes, is obtained.
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With these data the steady-state time waveforms of v0 and iX can be
 

calculated. The peak-to-peak output ripple voltage and the peak inductor
 

current are recorded, and computer calculations are made for the average
 

output voltage and the rms inductor current. Computer calculations are also
 

made for the input power factor of the transformer-filter circuit.
 

In the next section, an expression for the critical condition is
 

derived.
 

2.2.4 Critical Condition
 

As mentioned in an earlier section, the critical condition establish­

es the boundary between the two modes of operation. Using (2.2), the in­

ductor current iX in the continuous mode is given by the expression:
 

ix - Im i (20- )](2.19)
 
where IZ(j2o)l and -pare the magnitude and phase of the filter impedance seen
 

from the source vj at the second harmonic of the sinusoidal ac supply vol­

tage and are defined in terms of K, RL' and wN as follows:
 

IZ(j2m)l = R 1- 8'N 6wN4 +4K 2 (2.20)

1 + (4wN4/K2)
 

1 = arc tan[2K/(l - 4mN)] - arc tan [2w N2/K] (2.21) 

From (2.19), the minimum instantaneous value of iX occurs when the
 

cosine term has a value of unity. For the critical-condition boundary be­

tween the continuous- and discontinuous-conduction modes of operation, the
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minimum value of iX just reaches zero or
 

4V1 (Im 12(12) 0 
 (2.22)
 

Rearranging (2.22) and substituting for IZ(j2)1 from (2.20) leads to the
 

relationship:
 
4 +1 2
- 8 2 N1

2 (2.23) 

1 + (4wN
4/K2)
 

Squaring (?.23) and simplifying yields the expression:
 

=
F(K,w) - 0 K + K(5 22 + 4wN4) N (2.24) 

For a given value of wN, the value of K satisfying the critical condition
 

F(K,'N) = 0, referred to as Kcr, can be found. Since both K and wN have a
 

physical interpretation only for positive values, for a given value of WnN
,
 
Kcr is single valued. A plot of Kcr for various values of LN is shown in
 

Figure 2.5. The abscissa, 1Nf='i'LT, depends only on filter parameters and
 

the frequency of the sinusoidal ac supply voltage. The value of K, pre­

viously defined as wL/RL' additionally depends on the filterload resistance
 

RL. For heavy loads, i.e., RL small, the value of K is greater than
 

Kcr' causing the filter circuit to operate in the continuous mode and the
 

circuit is analyzed using Fourier-series techniques. For light loads, the
 

value of K is less than Kcr' the rectifier-filter circuit operates in the
 

discontinuous mode, and the filter behavior is analyzed using piecewise­

linear differential equations. The value of Kcr is approximately equal to
 

it asymptotic value of 1/3 for values of wN greater than 5.0. The critical
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Figure 2.5. Plot of Kcr Versus wN and Identification Regions. 
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condition and the circuit-analysis methods for continuous and discontinuous
 

modes which have been described are used in a later section for generating
 

design curves.
 

2.2.5 Relationship Between K, wN, Q,E , and w 

The transfer function of the filter circuit operating in the contin­

uous mode, shown in Figure 2.2, is given by (2.3) and may be written in the
 

familiar form Vo(s)/V1(s)= I/E(s/no )2 + (l/Q)(s/mo) + I] where s is the com­

plex frequency variable, w = l/4T-Cis the familiar undamped resonant fre­

quency of oscillation in radians per second, and 0 = RL/c/woL is the quality 

factor at the resonant frequency. The damping factor g is related to Q by 

= 1/2Q. From the previously given definition of wN' the damping factor 

can be expressed as 

= K/2wN (2.25) 

The quality factor Q is related to K and wN by the expression:
 

(2.26)
Q = wN/K 

The relationships shown in (2.25) and (2.26) should be helpful in identifying
 

and attaching extended meanings to the design parameters K and UN"
 

2.2.6 Power Factor
 

The input power factor for a nonlinear ac load such as either of the
 

transformer-filter circuits of Figure 2.1 is defined by Schwarz [6], and by
 

Kornrumpf and Walden [17] as the ratio of the power dissipated in the network
 

to the product of the rms values of the ac input voltage and the ac input
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current. Because of symmetry considerations and because the rectifiers and 

filter elements have been assumed lossless, the product of the ac input rms 

values (Np/Ns)VIelpe equals the product of the rms values at the input to 

the LC filter VIelxe. Also, the output power to the load calculated as 

VOe2/RL is equal to the input power. Thus, the expression 
VOe2/RL 

Power Factor = V (2.27)
Vle IXe
 

has been used in calculating this performance measure of the network.
 

2.3 Design and Performance Curves and Approximate Relationships
 

2.3.1 Design and Performance Curves
 

Using the methods of analysis described in the previous sections, a
 

set of curves useful for both designing and analyzing rectifier LC-filter
 

circuits was generated by digital computation and is shown in Figure 2.6.
 

In the upper curves, the ratio of peak-to-peak output ripple voltage
 

V to dc output voltage V0 is plotted against K for values of N lying be-
Op0Ofw
 
tween 2.0 and 10.0. The dashed line in this plot represents the critical
 

condition obtained from a solution of (2.24) and separates the plot into
 

regions of continuous conduction and discontinuous conduction. In the second
 

graph, two families of plots are presented for the same range of values for
 

and K. They show the ratio of the dc output voltage V to the peak value
 

of input source Vim and the power factor P.F. of the ac input to the recti­

fier-filter combination. These curves, Vo/VIm and P.FC versus K, actually
 

consist of multiple plots of curves for the same values of w N as used in the
 

top graph but appear to approach two single curves because of their weak de­

pendency upon wN" As seen from the Vo/VIm curve, for rectifier-filter cir­

cuits operating in the discontinuous-conduction mode, a larger dc output volt­
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age is obtained than that in the continuous-conduction mode for a given value
 

of input supply voltage VIm. Other useful design curves, the ratio of the
 

rms value of current in the inductor IXe to the average dc load current I0
 

and the ratio of the peak value of inductor current Ixm to I0 are plotted
 

as the third and fourth graphs of the same figure. Again, although appearing
 

as single isolated curves these are actually the result of superimposed mul­

tiple plots over the range of wN previously stated.
 

Additional use may be made of the graphs in Figure 2.6 to calculate
 

the values of the rms currents in the transformer windings. In terms of the
 

rms inductor current IXe' useful relationships are:
 

Center-tapped secondary: ISe = IXe/- (2.28) 

Single'winding secondary: ISe = IXe (2.29) 

Either configuration: IPe = (Ns/NP) IXe (2.30) 

A study of the VOp/V 0 curves at the top of Figure 2.6 shows that various
 

combinations of K and wN may be chosen to meet a specified (Vop/VO ) ripple
 

requirement. Consequently, an additional specification must be provided to
 

complete the information required for the design procedure. While the addi­

tional constraint which usually is imposed is the desired output voltage, the
 

peak or the rms value of the current in an individual, diode, the maximum al­

lowable current in the transformer windings, or the minimum desired power
 

factor, may be used. Having chosen the additional constraint, the design
 

process can continue, leading to values for the remaining unconstrained recti­

fier-filter parameters which can be determined from the other plots in Figure
 

2.6. To illustrate the design procedure, several examples are worked out in
 

section 2.4.
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2.3.2 Approximate Analytical Design Relationships
 

The design curves for various performance parameters, shown in Figure
 

2.6, can be approximated by analytical design relationships given in Table
 

2.1. The values for the performance parameters computed from these approxi­

mate design relationships are reasonably close to the computed values or
 

those read from the design curves. The approximate design relationships can
 

be automated on a digital computer or electronic pocket calculator to yield
 

quickly designs for LC-filters. These relationships, therefore, provide an
 

alternate method to the reading of data from the design curves. InTable 2.1,
 

the analytical expressions are given for design relationships Vop/V0(K,WN),
 

V0/VIm(K), IXe/10(K), Ixm/10(K), and P.F.(K). For the continuous mode, these
 

approximate design relationships- are obtained from the exact relationships
 

given inAppendix A under the assumption that 4W2 ismuch larger than 1 and K.
 

For the discontinuous mode, a good approximation to the (V0p/V0) curve
 

shapes in Figure 2.6 is obtained if they are considered to-be straight lines
 

parallel to each other and starting at the continuous mode point for K= 1/3.
 

One such approximation for (V0p/V0) for the discontinuous mode is shown in
 

Table 2.1, and values computed from this approximate relationship lie within
 

ten percent of the values read from the curves. As mentioned earlier, the
 

other performance parameters, Vo/VIm, IXe/1 0' IXm/l 0' and P.F. are weakly de­

pendent on wN and hence are approximated by polynomials of second degree
 

passing through the points on the curves for these latter parameters and are
 

functions of K only. The values computed for these latter parameters from
 

the approximations given inTable 2.1 lie within five percent of values read
 

from the curves. In addition to the design relationships for the performance
 

parameters, expressions for inverse relationships N(Vop/Vor), K(VOp/VO1LPN),
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Table 2.1. 	 Approximate design and performance relationships
 
for LC-filter operating both in the continuous­
and discontinuous-conduction modes.
 

c<13 cL/13
 
DISCONTINUOUS MODE CONTINUOUS MODE
 

VN 	 2 
v0 (KUN) (0.766 K0. 758)/oi2 

W 0.466 - 0.398 logic 

- 0.086 (log K)2
 

Ie.0552 	 - 0.334 log K 2 

lo 	 + 0.044 (log K)2 - 2 

T ) 1.642 - 0.518 logK 2 	 I 
+ C.85 (log K) 	 1 + 3
 

P.. (c) 0.713 	- 0.111 log 2 2 _- _ 

0.064 (logc)
W -	 K){
 

______/0.76 758 


T 24 k i21 DON) 

(VOW/Voca) L _Ng. 00/V)O76 	 2(	 2' 
2
9(V /V2)+
10( 0.758 	 00


.(iV 1 . [0.38- f~o.158-o.345((Vo/VT,o.o.466))] 	 /V

Sj.0.9 0 it "Independent of V0 VIM 

o ([0.518- (O.28 .1*94((Ixr/!o).1 - I6-42))]

(IxdIo) o([.518" 0 . 1. )) j 

K(P.F.) ( .l- 44.0l2O.38((P.F.h-.713)5i) 	 1 
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K(V0/VIm), K(Ixe/I), K(Ixm/10), and K(P.F.) are also given. In the continu­

ous mode, V0/VIm is independent of K and hence there is no inverse relation­

ship K(V0/VIM) for the continuous mode inTable 2.1.
 

These approximate design relationships should be used carefully de­

pending on the desired accuracy of the design.
 

2.4 Design Examples
 

To illustrate the usefulness of the curves presented inthe preceding
 

section, examples of two different filter designs now are discussed. These
 

examples illustrate how two rather different application requirements can be
 

satisfied. The International System (SI) of Units is used in the examples.
 

Example 1.
 

The values of the inductor and capacitor elements inan LC-filter cir­

cuit with nominal output voltage V0 =5V, nominal load current 10 =10A, and
 

ripple ratio V0p/V0 0.05 are to be found. The supply voltage to the recti­

fiers isprovided by the secondary windings of a center-tapped transformer,
 

the primary of which isexcited by an ac supply of 117 vrms at 60 Hz. The.
 

inductor-capacitor filter circuit is to operate in the continuous-conduction
 

mode.
 

= 0 .
Given that the ripple ratio V0p/V0 05 and that the filter is in the
 

continuous-conduction mode, the design procedure begins with the VOp/V 0
 

curves in Figure 2.6. Choosing the curve for wN =2.5 as an example, the rip­

= 6.0
 ple constraint under nominal load ismet with a value of K . Using the
 

equivalent load resistance RL corresponding to nominal output voltage and
 

=
load current, RL 0.5 ohm, the values of L and C may be obtained using the
 

relationships c=mL/RL,and w N = wi/, to yield L=7.96 mH and C=5526pF. 
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Having established values for wN, K, L and C, the performance of the
 

filter network and the determination of important parameters useful in com­

pleting the design of the remainder of the complete power supply may be ob­

tained. For example, if the filter circuit always is to operate in the con­

tinuous-conduction mode, the minimum vlaue of K is approximately 1/3 corres­

ponding to a load resistance 18 times the nominal load resistance. Since
 

Vo/VIm is very nearly constant over this range, the minimum load current be­

fore the output voltage begins to rise is (Io,nominal/18) or 0.56A. Ifthe
 

maximum load current is,for example, 1.5 times the nominal 10 value of 10 A,
 

the corresponding maximum value K reaches is 6.0 (15/10)= 9.0.
 

= 2
Using wN .5 and the range of K from 1/3 to 9.0, the performance of
 

the filter circuit is obtained from the various curves in Figure 2.6 as fol­

lows:
 

Ratio Load Condition 

Minimum Nominal Maximum 

K=wL/RL 1/3 6.0 9.0 

Average output voltage, V0 5.02 V 5.02 V 5.02 V 

Peak-to-peak ripple voltage to output 

voltage, VOP/V0 , 0.055 0.05 0.043 

Output voltage to peak input voltage, Vo/VIm 0.64 0.64 0.64 

Average load current, 10 0.56A l0.OA 15.OA 

Peak reactor current to load current, IXm/l0 2.0 1.03 1.0 

Rms reactor current to load current, IXe/l0 1.2 1.0 1.0 

Rms transformer secondary current to load 

current, ISe/l0 0.85 0.71 0.71 

Power factor of filter circuit 0.73 0.90 0.90 



30 

Of particular interest is the performance curve for the ratio of output volt­

age to peak input voltage Va/VIm which approaches the asymptotic value
 

2/17=0.64 for values of K greater than cr.
 

From the knowledge of the ratio V /V Ixe/l 0 and Ixm/10 , it is now
 

possible to determine the characteristics required of the center-tapped trans­

former and the diodes in the power supply circuit. Using the nominal load
 

voltage and current values for this example, it is noted that the diode for­

ward voltage drop Vdiode (approximately 0.7 for silicon diodes) is a signifi­

cant fraction of the output voltage VO. Recognizing that in the continuous­

conduction mode the average output voltage must be the average input voltage
 

to the rectifier-filter less the constant diode drop, the required peak volt­

age on the transformer secondaries must be Vim = [V0 +Vdiode ]7/2 . For this 

example, Vm= 8.95 V. Using the specified primary supply voltage, the turns 

ratio Ns/NP is computed to be 1/18.5. 

Using the nominal value of 10 as the maximum value for sustained oper­

ation, the peak reactor current Ixm is approximately 10.3 A, while the rms
 

reactor current IXe= 10 .0 A. The rms secondary winding current ISe in a cen­

ter-tapped secondary is equal to the rms reactor current IXe divided by /T
 

and has a value of 7.07 A. The rms primary winding current, neglecting magne­

tizing current and using a turns ratio of 1/18.5, is 0.54 A. The power factor
 

P.F. is approximately 0.9, approaching closely the asymptotic value 21 /7.
 

The diodes because of their shorter thermal time constant should be selected
 

on the basis of the peak current to be encountered 10.3 A.
 

http:2/17=0.64
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Example 2.
 

In this example, an LC filter circuit driven by a full-wave bridge
 

rectifier connected directly to the ac supply is to operate in the discontin­

uous-conduction mode. The specifications are: nominal output voltage V = 

= 115 V, nominal load current 10 5 A, with a ripple ratio VOp/V 0 0.02. The
 

ac supply voltage is 117 V rms, 400 Hz.
 

Under nominal output voltage and load conditions, the ratio Vo/VIm
 

= 0 2
0.695 and from the curve for this parameter in Figure 2.6, K . . To meet
 

the ripple requirement VOp/V0 =0.02, the curve corresponding to wN = 3.5 is
 

selected. Using the value of RL =23 ohms for the nominal load, the values of
 

=
 the filter components are computed to be: L=1.83 mH; C 1060F.
 

If the filter circuit is to operate in the discontinuous-conduction
 

mode for all loads within the range of the curves in Figure 2.6, K can vary
 

from 0.01 to 1/3. Examining the characteristics of the combined transformer­

rectifier-filter circuit over this range in K yields the following results:
 

Ratio Load Condition 

Minimum Nominal Maximum 

K = wL/RL 0.01 0.2 1/3 

Average output voltage, V0 152.2 V 115.8 V 105.8 V 

Peak-to-peak ripple voltage to output 

voltage, VOp/V 0 0.0018 0.02 0.027 

Output voltage to peak input voltage, Vo/VIm 0.92 0.70 0.64 

Average load current, I0 0.33A 5.0A 7.6A 

Peak reactor current to load current, IXm/i 4.6 2.3 2.0 

Rms reactor current to load current, IXe/l0 1.9 1.3 1.2 

continued
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Ratio Load Condition 

Minimum Nominal Maximum 

Rms ac supply line-current to load 

current, Ile/l0 1.9 1.3 1.2 

Power factor of filter circuit, P.F. 0.68 0.74 0.73 

Using the nominal load voltage and current values as before, addition­

al, information on the characteristics of the remainder of the power supply
 

circuit may be obtained. Since the diode forward voltage drop issmall com­

pared with the output voltage in this example itwill be neglected. The peak
 

reactor current Ixm and the peak current through the rectifier diodes is
 

11.5 A (5.0x2.3). The rms reactor current is found to be 6.5 A (5.0xl.3)
 

which isalso the value of the rms ac supply line current for the full-wave
 

bridge combination. The power factor P.F. is 0.74.
 

Although the two examples which are provided to illustrate the use of
 

the design and performance curves in Figure 2.6 are specified for either all
 

continuous-conduction mode or all discontinuous-conduction mode operation
 

over the load range, there is no reason for restricting the operation to one
 

or the other modes. The designer has the choice of specifying the nominal
 

load conditions and ripple requirement to fall ineither mode and to enter
 

the other mode under changing load conditions, provided the Vo/VIm require­

ment can be met with appropriate turns ratio.
 

2.5 Conclusions
 

Methods for analyzing full-wave rectifier LC-filter circuits were pre­

sented and these methods were used to develop design procedures for the rec­

tifier-filter combination. The procedures cover the cases of operation in
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both the continuous-conduction mode and the discontinuous-conduction mode.
 

An algorithm was presented which permits rapid determination of the periodic
 

steady state in the discontinuous mode using digital computation. Using the
 

results for both modes of conduction, a set of design curves was generated,
 

providing a straightforward procedure for designing both the inductor and
 

the capacitor for a rectifier-filter circuit operating in the discontinuous
 

mode and continuous mode. The use of the parameter K=L/RL and the estab­

lishment of a boundary condition on K for separating the two modes of opera­

tion were shown to be useful in choosing operating conditions.
 

From the design curves, currents in the different windings of the
 

transformer and in each diode can be calculated. Using these curves, a de­

signer can select the inductor, the capacitor, the diodes, and the trans­

former to meet various applications requirements. Some of the requirements
 

are: varying ac input supply magnitude, maximum allowable ripple, maximum
 

rms and peak diode and transformer-winding currents, minimum power factor
 

and load conditions. Two examples were presented to illustrate the design
 

procedures using the design curves. Results of experimental and simulation
 

runs using the inductor and capacitor design values agree closely with the
 

results predicted from the design procedures.
 



CHAPTER III
 

ANALYSIS AND DESIGN OF LC-FILTERS
 

WITH NON-ZERO SOURCE IMPEDANCE
 

3.1 Introduction
 

In Chapter II, an analysis and design procedure for the LC-filter
 

circuit operating both in the continuous and discontinuous modes, with the
 

sinusoidal voltage source impedance assumed to be zero, is presented. In
 

this chapter, the basic concept used in Chapter II is extended to include
 

LC-filter circuits with non-zero source impedance. Figure 3.1 shows the
 

transformer-rectifier-filter networks of Figure 2.1 connected to a sinusoidal
 

voltage source through a primary-circuit impedance consisting of a series
 

resistance (Np and a series inductance \Np\Ns/ RI Ns LI This series resis­

tance-inductance combination represents the Thevenin equivalent impedance 

of the usually encountered source and line impedance as seen from the trans­

former primary-winding terminals. The transformers, shown in Figure 3.1, are 

assumed to be ideal. As mentioned earlier, the inclusion of source impedance 

in the design algorithm yields a more accurate and complete design. For 

each value of the dimensionless parameter p, defined as RI/RL where RI is 

the value of source resistance referred to the secondary side of the trans­

(34)
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Figure 3.1. LC-filter circuit with non-zero source impedance Np) RI
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and CS-) L, supplied by (A)center-tapped transformer
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rectifier and (B)full-wave bridge rectifier.
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former, a set of design curves, similar to one shown in Figure 2.6 for the
 

case with zero-source impedance, is obtained.
 

The format of the presentation here follows closely that of the pre­

ceding chapter. The derivations of the useful expressions are presented in
 

Appendices C and D.
 

3.2 	Analysis
 

As in Chapter II, in the continuous-conduction mode, linear circuit
 

analysis techniques are employed, while in the case of the discontinuous mode,
 

the method of analysis requires computer solutions of the piecewise-linear
 

differential equations.
 

3.2.1 Continuous-Conduction Mode
 

Assuming ideal diodes, the equivalent circuit for both of the confi­

gurations in Figure 3.1 is given in Figure 3.2 along with typical waveforms
 

of inductor current and output voltage. The two dimensionless parameters
 

and K defined in Chapter II are redefined as w LeqC and wLeq/RL' where 

Leq = LI + L is the sum of the source inductance referred to the secondary 

side of the transformer and the filter inductance. As described in Chapter 

II, the equivalent input voltage vj may be approximated by the following 

expression when the circuit is operated in the continuous-conduction mode: 

v ­ 4V ( - 1 cos2e) 
 ('3.1)
 

Using the expression in (3.1) and the transfer function of the filter,
 

which includes RI and LI, the useful relations for various voltage and cur­



----.__>_r~m-wm. >37
 

R! LI iv L -0Ao + 

VViVmISifl +. CRL VO 

(A) 

0 IT 2F7 (O 

(B) 

Figure 3.2. (A) Equivalent diagram for the rectifier-filter circuits 
with non-zero source impedance operating in the 
continuous-conduction mode. 

(B) Associated voltage and current waveforms from com­
puter solutions of c-ircuit equations. 
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rent components can be derived as in Chapter IIwith the results:
 

DC output voltage:
 

(3.2)
o =FP~v 2VIm 


Peak-to-peak ripple voltage:
 

8Vm 	 2 2
V 8Im/ 1(p+l-4 2K2 wCt.LONK))) 	 (3.3)
op 31 IN 	 +t 

Rms inductor current:
 

i2
_~ fR 1 2~+l4NKV 2 N-2'
 
xe 	 L 4(p+l)2 182(p+-4) + (2K+(2pN 1k)) (3.4)
2}j 


Peak inductor current:
 

41, 1+(4w4N/ ) 
Ixm - L 2 1 (P+l-4 )2 + (2K+(2pmN/K))2 (3.5) 

3.2.2 	Discontinuous-Conduction Mode
 

The equivalent circuit when diodes are conducting is the same as for
 

the continuous mode and is repeated in Figure 3.3(A). The output voltage
 

Vol isobtained from the solution of the following equation:
 

2 d2v01  FK+(pf/K)j dv01
 
N N-de 2 L N' oo (p+l)v 01 = VmIsin(eo-e0) (3.6)
P l v l I
 

The value of inductor current iXl is given by
 
dv01 	 v01(37 

iXl =WmC de + RL 	 (3.7) 
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Figure 3.3. 	Equivalent diagrams for the rectifier-filter circuits with
 
non-zero source impedance operating in the discontinuous
 
-conduction mode during interval (A)when diodes are con­
ducting and (B)when diodes are not conducting. (C)
 
Associated voltage and current waveforms from computer
 
solutions of circuit equations.
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2
 

The solutions to (3.6) and (3.7) for the values of (K+(pN/K))
 

<4w2(p+l), yield the following expressions for v01 and ii:
 

vol(e) = Avrsine+Bvrcose+exp(re)[C vrsin(are)+Dvrcos(are)] (3.8)
 

ixi(e) = -L [ Airsine+Bircose+exp(sre){Cirsin(are)+Dicos(re)}] (3.9) 

For the values of [K+(p02/K)]>4d2(p+l), the expressions for v0l and
 

ixi are given by the following:
 

vol(e) = Avrsino+Bvrcose+Crexp(ale)+Drexp(a2o) (3.10)
 

ixl() = A sine+BrCOS+Crexp(ale)+Direxp(a2e)] (3.11) 

The values for the various coefficients depend on K, wN, p, and 80, 

and expressions for them are derived inAppendices C and D. 

When the diodes are not conducting, the equivalent circuit is that
 

shown in Figure 3.3(B). The output voltage v02 and current iX2 for this part
 

of the cycle are described by the equations (2.13) and (2.14) given in
 

Chapter II. The expression for v02 is obtained, as given in Chapter II,
 

V02(e) = V02(el)exp[-(e-el)/mCRL] (3.12)
 

The steady-state solutions for v0 and iX are obtained by solving
 

the transcendental equations given by (3.8), (3.9), (3.10), (3.11), (3.12),
 

and (2.14), as described in Chapter II.
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3.2.3 	Critical Condition
 

The critical condition, K = Kcr' corresponds to the boundary between
 

the two modes of operation. Using (3.1), the inductor current iX in the
 

continuous mode is given by the expression:
 

ix [ 2RL-I T cos(2e--;	 (3.13)
 

where IZ(j2w)L and i are given by the following
 

(P+1-4w2K) +(2p/2 K)]2 1 
IZ(j2m)I = RLj l N +2(4w4 (3.14)/K2) 
 1 

= arc tan [2K+(2pw /K)]/(p+l-4o) - arc tan (2W2/K) (3.15) 

For the critical condition, the minimum value of iX just reaches
 

zero or
 

4V f 	 12 RL( ) - :)0 	 (3.16) 

Rearranging (3.16) and substituting for IZ(j2w)l from (3.14) leads to the
 

relationship:
 

N4 _ + (3.17) 
1+l(4wN/K2)
 

Squaring (3.17) and simplifying yields the expression
 

4 

F( ) = 	 -w 2w24+4w4]N (4+8p-5p2)0 K4+K2[(P+1)2 - N " 	 (3.18) 
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For a given value of wN. the value of K = Kcr which satisfies the critical
 

condition F(K,wN) = 0 given by (3.18), can be found. A plot of Kcr versus
 

wN for various values of p is shown in Figure 3.4. For a given p, the value
 

of Kcr approaches asymptotically (; 1+2p-I.25p2 )/3 for values of wN greater
 

than 5.0.
 

3.3. Design and Performance Curves and Approximate Relationships
 

3.3.1 Design and Performance Curves
 

Using the methods of analysis described in the previous sections, sets
 

of curves, similar to the one shown in Figure 2.6, for various assigned
 

values of p = RI/RL weregenerated and are shown in Figure 3.5 through Figure
 

3.12. Following the method in Chapter II, these curves may be used to cal­

culate various performance factors for LC-filters with non-zero source im­

pedance. As seen from the design curves shown in Figure 3.5 through Figure
 

3.12, for a particular value of K and wN' the value of the ratio of peak-to­

peak ripple voltage to average output voltage Vop/V0 slowly increases with an in
 

crease in the value for the parameter p = RI/RL. The values for the other
 

performance parameters Vo/VIm, P.F., IXe/ 105 and Ixm/ol' decrease with in­

creasing p. The dependence of the parameters Vd/VIm, Ixe/ol' and Ixm/lb
 

on p is greater in the discontinuous mode than in the continuous mode. The
 

dependence of the other two parameters Vop/Vo, and P.F. on p is greater in
 

the continuous mode than in the discontinuous mode. In the continuous mode,
 

the parameter Va/VIm is most sensitive to variations in p and IXe/l0 is
 

least sensitive. In the discontinuous mode, the parameter Vo/VIm is again
 

most sensitive to variations in p and P.F. is least sensitive. Thus, for
 

particular values of the filter components L, C, and RL' the ripple ratio
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Figure 3.6 Design and performance curves for LC-filters with
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Vop/V0 calculated from the design curves for the zero source impedance case
 

shown in Figure 2.6 is smaller than that obtained from the design curves
 

presented in this chapter. The values for V0/VIm and P.F. read from the
 

curves in Figure 2.6 are greater than those obtained from the design curves
 

which take source impedance into account. Thus, the design curves pre­

sented in Chapter II give optimistic values for the ripple ratio Vop/Vol
 

output voltage to peak input voltage ratio Vo/VIm, and power factor P.F.
 

For the filters with values of p other than those given in Figure 3.5
 

through Figure 3.12, the design should be accomplished using one of the de­

sign curves shown in Figure 3..5 through Figure 3.12 corresponding to the
 

value of p greater than and closest to the specified p. To illustrate the
 

design procedure, an example is worked out in Section 3.4.
 

3.3.2 Approximate Analytical Design Relationships
 

For filters operating in the continuous-conduction mode, the design
 

curves for various performance parameters, shown in Figure 3.5 through Figure
 

3.12, can be approximated by analytical design relationships given in Table
 

3.1. These approximate design relationships are obtained from the exact
 

relationships given in Appendix C under the assumption that 4W2 is much

N
 

larger than 1 and K. In Table 3.1, analytical expressions are given for the
 

design relationships Vop/V0(KwN P), Vo/Vim(P), IXe/Io(,P), IXm/10(KP),
 

and P.F.(K,p). In addition to the design relationships for various perfor­

mance parameters, expressions for the inverse relationships WN(Vop/V0,K,P),
 

K(Vop/VoOJN'P), K(Txe/TOP), and (IXm/Io,P) are also given. In the con­

tinuous mode, V0/VIm is independent of K and hence there is no inverse
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Table 3.1. Approximate design and performance relationships
 
for LC-filters with non-zero source impedance
 
operating in the continuous-conduction mode.
 

Vo 
 A(o+) 

3(+1-4.)2 + (2,+(222K))2
0 


V
 o
 

2
0 


Th
 

e 1 + 

f+ 24(o-,.-I)


(o+'.)r183 [(0±1> /+(+ )1 

A]

[(V0 /)

2 


4N,
K(VO IVI 

LJN(xo/V,<.) 3 c'ei a]2-


D ) 4"-
(Ixlo,P) 


I 3[(IxIo)-1) 
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relationship c(V0/VImp) given in Table 3.1. The expression for another in­

verse relationship K(P.F.,p) is also omitted because of the complexity of
 

the expression.
 

For the discontinuous case, the performance curves for each value of
 

p can be approximated by the design relationships given in Table 3.2. The
 

dependency of the various expressions on p is by means of coefficients a, b,
 

al, a2, a3, bI, b2, b3, cI, c2, c3, dI, d2, and d3. The values for these
 

coefficients for various values of p are given in Table 3.3.
 

A good approximation to the (V0p/V0) curve shapes in Figure 3.5
 

through Figure 3.12 is obtained if they are considered to be straight lines
 

parallel to each other and starting at the continuous mode point for
 

K ( l+2p-l.25p2 )/3. As seen from Figure 3.5 through Figure 3.12, the
 

1
other performance parameters, V0/VIm , P.F., Ixe/1 0, and IXm/ 0 are weakly
 

dependent on EON and hence are approximated by polynomials of second degree
 

passing through the points on the curves for these latter parameters as
 

functions of K only. The values computed from the approximate relationship
 

for (VOp/V0) lie within ten percent of the values read from the curves while
 

the values computed from the approximate relationship for the other perfor­

mance parameters, Vo/Vlm , P.F., Xe/l 0, and Ixm/1O, lie within five percent
 

of the values read from the curves.
 

3.4 Design Example
 

To illustrate the usefulness of the performance curves presented in
 

the preceding sectionfan example of a filter design isdiscussed.
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Table 3.2 	 Approximate design and performance relationships
 
for LC-filters with non-zero source impedance
 
operating in the discontinuous-conduction mode.
 

-o ,,, (a0 b~il
 
V0 P N
 

IM
 
-Im 	 1 a2ogQK+ a3(logc)2 

Ix 
IXT (,p) - b2loqK+ b3(log K)

2 

Ix~m (,)
 

To0 c- c2log K+ c3(log K1­

P.F(c,p) d2 d2logK d3(logK)2
 

WN(VOp/V0 ,< ,p ) 	 /a 0 

(YOp/V°'('P) (0(o/) 

10 b a3 

10 (a az+4a3E(Vo/Vim)-ai-

K(Ixe/Io,P) (b2 - 2 2+4b 3 (IxeIo)cbl)I0 	 2b3'
 

10 2c 3 

(d2 _- d224d31(PF,)-dll
 

10 
 2d3
 

Pararetersa0 0 a1 ,a2 a3 bI bb 3,c I ,c2 1,c3,d I 2 and d­

are constants which depend on P = RI/RL. See Table 3.3. 



Table 3.3. Values for the various coefficients which introduce the dependency on p in the
 
approximate analytical relationships given in Table 3.2.
 

L 
Coeffi- = 

cients 
0.0006 0.01 0.05 0.1 0.2 0.3 0.4 0.5 

a0 0.768 0.773 0.796 0:821 0.866 0.902 0.913 0.927 

bo 0.761 0.763 0.783 0.806 0.848 0.885 0.894 0.911 

a1 0.465 0.463 0.449 0.441 0.432 0.421 0.402 0.385 

a2 0.402 0.395 0.389 0.357 0.271 0.199 0.156 -0.123 

.0.086 -0.088 0.099 -0.1 -0.08 -0.06 -0.049 -0.03
 

b 1.108 1.057 1.071 1.073 1.095 1.07 1.128 1.151
 

b 0.266 0.263 0.379 0.407 0.352 0.423 0.289 0.23
 

b3 0.067 0.078 -0.023 -0.066 -0.062 -0.138 -0.086 -0.06
 

a3 


c 1 1.553 1.518 1.538 1.45B 1.532 1.603 1.759 1.836 

C2 0.729 0.872 1.056 1.336 1.234 1.095 0.723 0.506 

c3 0.398 0.309 0.043 -0.21 -0.3 -0.336 -0.217 -0.155 

di 0.658 0.605 0.642 0.653 0.645 0:648 0.621 0.633 

d2 0.198 0.275 0.211 0.183 0.181 0:147 0.179 0.141 

d3 -0.093 -0.116 -0.085 -0.068 -0.061 -0.042 -0.059 -0.045 

0.060)
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3.4.1 Example
 

The values of the inductor and capacitor elements in an LC-filter 

circuit with nominal output voltage V0 = 30 V, nominal load current 

10 = 10 A, and a peak-to-peak ripple voltage to average output voltage 

of 4% are to be found. The supply voltage to the rectifiers is provided
 

by the secondary windings of a center-tapped transformer, the primary of 

which is excited by an ac supply of 117 V rms at 400 Hz. The secondary 

ac supply voltage is 30 V rms. The source resistance ( R is given 

as approximately 4.5 ohm and source inductanceNp L is approximately
 

80 1H.
 

Using the specified primary and secondary supply voltages, the turns
 

ratio Ns/N is computed to be 1/3.9. The value of the source resistance
 

referred to the load side RI, is approximately 0.3 ohm. The value of source
 

inductance referred to the load side LI is 5.26 pH. Under nominal output
 

voltage and load conditions, the ratio Va/VIm = 0.707 and from the set of
 

performance curves for p = RI/RL = 0.1 in Figure 3.8, K = 0.09 from the
 

Va/VIm curve and the filter circuit operates in the discontinuous mode.
 

To meet the nominal ripple requirement of VOp/V 0 = 0.04, the curve cor­

responding to wN = 2.0 is selected which provides a somewhat smaller value
 

of ripple. Using the definitions of K = Leq/RL and wN = w LeC, and the
 

value of RL = 3 ohms for the nominal load, the values for the Leq and C
 

are computed to be: Leq = 0.1074 mH, C = 5896 iF. The values of the filter
 

= =
components are computed to be: L = Leq-L I 0.1022 mH; C 5896 1.
 

If the filter circuit is to operate in the discontinuous-conduction
 

mode for all loads within the range of the curves in Figure 3.8, K can vary
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from 0.01 to 0.363. Examining the characteristics of the combined trans­

former-rectifier-filter circuit over this range in K yields the following
 

results: 

Load Condition
 

Ratio (Using Non-Zero Source Impedance Curves) Minimum Nominal Maximum 

K= Leq/RL 0.01 0.09 0.363 

Average output voltage, V0 31.8 V 30.1 V 24.6 V 

Peak-to-peak ripple voltage to output voltage, 

VOp/V0 0.0046 0.032 0.096 

Output voltage to peak input voltage, Vo/VIm 0.75 0.71 0.58 

Average load current, I0 1.2 A 10.0 A 33.1 A 

Peak reactor current to load current, Ixm/10 3.3 2.6 2.0 

Rms reactor current to load current, Ixe/1 0 1.6 1.42 1.26 

Rms transformer secondary current to 

load current, ISe/10 1.13 1.01 0.89 

Power factor of filter circuit, P.F. 0.74 0.77 0.72 

Using the nominal load voltage and current values as before, addi­

tional information on the characteristics of the remainder of the power
 

supply circuit may be obtained. Using the values (Ixm/Io) = 2.6 and
 

(IXe/o) = 1.42 read from the performance curves for K = 0.09, the peak
 

reactor current IXm and the peak current through the rectifier diodes is
 

26 A and the rms reactor current is found to be 14.2 A. The rms secondary
 

winding current ISe in a center-tapped secondary is equal to the rms
 

reactor current IXe divided by ,Fandhas a value of 10.0 A. The rms
 

primary winding current, neglecting magnetizing current and using a turns
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ratio of 1/3.9is 3.64 A. The power factor P.F. is approximately 0.77.
 

Since the diode forward voltage drop is small compared with the output
 

voltage in this example it will be neglected. When the output voltage is
 

small, however, the diode forward voltage drop can be a significant fraction
 

of the output voltage VO. As mentioned earlier, the diode forward voltage
 

drop was neglected in the analysis since this factor would have added an
 

additional parameter to the family of performance curves presented earlier.
 

There seems to be no easy way to take diode forward voltage drop into account 

for the case when the filter is operating in the discontinuous-conduction ­

mode without adding an additional normalized parameter to the design curves. 

The above example is now repeated for comparison purposes, using
 

the design curves which assume zero-source resistance which were presented
 

in Chapter II.
 

Starting again with the ratio Va/VIm = 0.707, from the curve for this 

parameter in Figure 2.6, K is approximately 0.2. To meet the minimum ripple 

requirements VOp/V 0 = 0.04, the curve corresponding to wN = 3.0 is selected. 

Using the value of RL = 3 ohms for the nominal load, the values of the
 

filter components are computed to be: L = 0.238 mH; C = 5986 pF.
 

Examining the characteristic of the combined transformer-rectifier­

filter circuit over the range of K in the discontinuous mode yields the
 

following results
 

Load Condition 

Ratio (Using Zero-Source Impedance Curves) Minimum Nominal Maximum 

K = wL/RL 0.01 0.2 1/3 

Average output voltage, V0 39.1 V 30.1 V 27.2 V 

Peak-to-peak ripple voltage to output 

voltage, Vop/V0 0.0024 0.028 0.038
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Load Condition
 

Ratio (Using Zero-Source Impedance Curves) Minimum Nominal Maximum
 

Output voltage to peak input voltage,
 

Vo/VIm 0.92 0.71 0.64
 

Average load current, 10 0.65 A 10.0 A 15.1 A
 

Peak reactor current to load current, IXm/l0 4.6 2.3 2.0
 

Rms reactor current to load current, IXe/lO 1.9 1.34 1.23
 

Rms transformer secondary current to load
 

current, Ise/1 0 1.34 0.95 0.87
 

Power factor of filter circuit 0.68 0.74 0.73
 

The peak reactor current IXm and peak reactor current through the
 

diodes is 23 A. The rms reactor current is found to be 13.4 A. The rms
 

secondary winding current is9.47 A. The rms primary winding current is
 

similarly given as 3.44 A. The value of inductor L calculated using the
 

design curves inChapter II is greater than that needed in the design
 

which takes source impedance into account, although the required value of
 

capacitance C essentially remains the same. Thus the peak and rms values
 

of reactor current, and the ripple ratio VOp/V 0 are smaller for the filter
 

designed using zero-source impedance curves than that designed using the 

curves presented in this chapter. For further comparison using the values 

for the filter components L and C as computed using the zero-source impedance 

curves, i.e., K = 0.2 and wN = 3.0, the value for Vo/Vim from the curves 

for p = 0.1 in Figure 3.8 is found to be 0.64. Thus the actual dc output 

voltage V0 obtained using the filter designed with the curves presented in 

Chapter II instead of the curves for p = 0.1 is 27.1 V instead of the 
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desired 	30 V.
 

An example using the approximate analytical design relationships
 

is presented next.
 

3.4.2 	 Example Using Approximate Design Relationships
 

The same filter design example is repeated here using the approximate
 

analytical design relationships given in Tables 3.1, 3.2, and 3.3.
 

Starting again with the ratio V0/VIM = 0.707, from the relationship 

for K(Vo/VImP) in Table 3.2, and using the values for a1 , a2, and a3 

corresponding to p = 0.1 from Table 3.3, K is computed to be 0.087. Using 

=
the specified value of VOp/V 0 0.04 in the relationship for wN(Vop/Vo,K,P)
 

in Table 3.2, the value for wN is found to be 1.7. Using the value of
 

RL = 3 ohms for the nominal load, the values for the Leq and C are computed
 

= 
to be: Leq 0.1039 mH; C = 4404 pF. The values of the filter components
 

are computed to be: L = 0.0983 mH; C = 4404 vF.
 

Calculating the characteristic of the combined transformer-rectifier­

filter circuit over the range of K in the discontinuous mode yields the 

following results: 

Load Condition
 

Ratio (Using Approximate Analytical 
Design Relationships) 

Minimum Nominal Maximum 

IK= Leq/RL 0.01 0.087 0.363 

Average output voltage, V0 32.1 V 29.9 V 24.5 V 

Peak-to-peak ripple voltage to output 

voltage, VOp/V 0 0.0069 0.039 0.125 

Output voltage to peak input voltage, 

Vo/VIm 0.755 0.706 0.578 
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Load Condition
 

Ratio (Using Approximate Analytical Minimum Nominal Maximum 
Design Relationships) 

Average load current, 10 1.22 A 9.98 A 34.1 A 

Peak reactor current to load current, 

Ixm/l0 3.29 2.64 2.01 

Rms reactor current to load current, 

Ixe/10 1.62 1.43 1.25 

Rms transformer secondary current to 

load current, ISe/1 0 1.14 1.01 0.88 

Power factor of filter circuit, P.F. 0.74 0.76 0.72 

The results obtained for the three examples for the nominal load
 

conditions are summarized below.
 

Example A: Using Zero Source Impedance Curves
 

Example B: Using Non-Zero Source Impedance Curves
 

Example C: Using Approximate Analytical Design Relationships
 

Example
 
Ratio A B C
 

=wLeq/R 0.2 0.09 0.087
 

Average output voltage, V0 30.1 V 30.1 V 29.9 V
 

Peak-to-peak ripple voltage to output voltage,
 

VOp/V0 0.028 0.032 0.039
 

Output voltage to peak input voltage, Vo/VIm 0.71 0.71 0.706
 

Average load current, I0 10.0 A 10.0 A 9.98 A
 

Peak reactor current to load current, IXm/10 2.3 216 2.64
 

Rms reactor current to load current, IXe/10 1.34 1.42 1.43
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Example
 

Ratio A B C
 

Rms transformer secondary current to load
 

current, Ise/1o 0.95 1.01 1.01
 

Power factor of filter circuit, P.F. 0.74 0.77 0.76
 

It is seen from the above summary that the results obtained from
 

the approximate analytical design relationships given in Table 3.2 are in
 

good agreement with the results obtained using design curves presented in
 

this chapter.
 

3.5 	 Conclusions
 

Methods for analyzing full-wave rectifier LC-filter circuits operating
 

in the continuous and discontinuous modes with non-zero source impedance were
 

presented in this chapter. The inclusion of source impedance adds an addi­

tional normalized parameter p = RI/RL to the set of design curves which were
 

developed in Chapter II. Using the results of the analysis for both modes
 

of conduction, a set of design curves for various assigned values of p was
 

generated.
 
4 

From the design curves, various performance factors of the filters
 

can be calculated. The source impedance is always present in an actual
 

physical system and its inclusion-as a parameter yields a more complete
 

design. An example was presented to illustrate the design procedures using
 

the design curves. To illustrate the effect and importance of source im­

pedance on the design and performance of LC-filters, the same example was
 

repeated using the zero-source impedance design curves presented in Chapter
 

II. Using the values of K and wN obtained from the design procedure using
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the curves for zero-source impedance, and working backward' through the
 

design curves which take source impedance into account, shows that with
 

the values of K and wN obtained from the design curves in Chapter II, the
 

dc output voltage ratio Va/VIm will be smaller than the required value,
 

although the ripple ratio VOP/V0 will be smaller than that for the filter
 

designed using source impedance curves because of the larger inductance
 

value used. In general, as seen from the design and performance curves for
 

the LC-filter circuits with non-zero source impedance, for specified values
 

for the filter components L, C, and RL, i.e., K and wN' the ripple ratio
 

VOP/V 0 is greater than that obtained from the design curves which do not
 

take source impedance into account. The actual value of the parameter
 

Va/VIm is also smaller than that obtained from the design curves presented
 

in Chapter II. Thus, a filter design obtained by use of the zero source
 

impedance curves yields a set of parameters leading to an optimistic design
 

in terms of ripple ratio and output voltage to input voltage ratio. In
 

other words, higher values for the filter components L and C, and supply
 

voltage are needed than those calculated from the zero-source impedance
 

design curves to meet the specified requirements of ripple ratio VOp/V 0
 

and desired output voltage VO.
 



CHAPTER IV
 

DESIGN OF AIR-GAPPED MAGNETIC-CORE INDUCTORS FOR
 

SUPERIMPOSED DIRECT AND ALTERNATING CURRENTS
 

4.1 Introduction
 

Various procedures have been reported in the literature for the de­

sign of air-gapped inductors carrying direct current. In most cases, a
 

particular core with known size and shape is first selected for evaluation.
 

The procedure then involves calculating a trial value for the number of
 

turns and the length of the air-gap for the selected core and then analyzing
 

the combination to determine if all the requirements, electrical and mechani­

cal, for the inductor are met. If not met, then either the number of turns
 

or the length of the air-gap is changed from its previous value and the
 

calculations are repeated. The results again are checked against the require­

ments, thus giving rise in most cases to an iterative trial-and-error proce­

dure applied to the selected core.
 

All design methods require the use of a considerable amount of mag­

netic core data which usually can be obtained from core manufacturers. One
 

of the earliest design methods is that presented by Hanna [16] which removes
 

(65)
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the trial-and-error process applied to the selected core by using specially
 

prepared magnetic core data. This procedure, however, is limited to induc­

tors with small ac flux excursions and also requires the use of special
 

magnetic core curves which are not readily available for some modern core
 

materials. Two recently developed design procedures by Ray and Sartori [183
 

and by Mitchell [19] make use of the computer to eliminate the tedium usually
 

associated with the normal trial-and-error process. An important and dis­

tinguishing feature among the various methods is the way in which the core
 

incremental permeability data are employed. The methods of [16] and [18]
 

make use of a single incremental permeability curve which corresponds to the
 

condition of very small ac flux excursion. The starting point in these pro­

cedures is the specification of the desired inductance L and the direct cur­

rent IDC in the winding. The method given in [19] and the one presented in
 

this chapter make use of a family of incremental permeability curves and thus
 

allow for large ac flux excursions. These procedures also start with a speci­

fied value of inductance operating at a given value of direct current in the
 

winding. However, additional design constraints consisting of the frequency
 

and rms value of the fundamental component of ac voltage across the winding,
 

f and VAC' respectively, are imposed on the design procedure. By making use
 

of the known geometry of the selected air-gap type core, and the specified
 

dc resistance and current-density specifications of the winding, the number
 

of turns N are calculated in [18] and [19]. An optimum air gap corresponding
 

to maximum inductance of the core with winding of turns N is computed by
 

the design procedure in [19]. The value of air gap found in [18] is
 

not optimum in the sense defined above. The procedure by Hanna [16] is pre­

sented in detail in the next chapter.
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In this chapter two procedures for designing inductors are presented.
 

The first, working from a stored bank of magnetic-material data and core­

geometry data, uses a computer to produce a design which is optimized in
 

the sense of minimum core volume and minimum number of winding turns to meet
 

a required minimum inductance over a specified range of circuit operating
 

conditions. The second procedure is somewhat simpler; it does not yield a
 

design which is optimized as defined above, but it has the advantage that
 

the computations may readily be carried out on an electronic pocket calcula­

tor. Both design procedures are applicable to most modern magnetic core
 

materials including, for example, grain-oriented silicon steel, supermendur
 

and permalloy. While type C cores are used in the examples presented in this
 

paper, the basic procedures can be extended rather easily to other shapes
 

such as type E cores, ring cores, and certain lamination structures.
 

4.2 Design Requirements
 

An inductor for filtering the ripple voltage in dc power supplies
 

usually carries a direct current with an alternating current superimposed.
 

In most cases, the requirements are that the value of the inductance over
 

the anticipated range of circuit operating conditions be no smaller than
 

some specified value which will provide for adequate filtering of the fun­

damental component of a waveform of frequency f. For such a filter reactor,
 

the ac flux excursion usually is large and is determined by the magnitude
 

and frequency of the fundamental component of voltage-across the reactor.
 

In the procedures developed in this paper, the following specifications are
 

used for the design of filter reactors:
 



(1) L, the desired minimum value of inductance in henries.
 

(2) IDC' the maximum value of direct current in the winding in amperes.
 

(3) VAC' the minimum value of the effective or rms value of ac voltage
 

at the fundamental frequency f across the winding in volts.
 

(4) f, the frequency of the fundamental component of voltage appearing
 

across the reactor in hertz.
 

It can be shown that a filter reactor designed to provide an induc­

tance L at a direct current IDC and a fundamental ac voltage VAC increases
 

in inductance if either the direct current in the winding decreases or the
 

ac voltage across the winding increases. Therefore, a design procedure for
 

minimum specified inductance at a specified maximum direct current and mini­

mum ac voltage will yield a reactor design that satisfies the specification
 

requirements.
 

4.3 Analysis
 

In any design problem, a necessary first step toward finding a design
 

procedure is an analytical study of the system to be designed. In the develop­

ment that follows, the subscript m stands for quantities related to the
 

magnetic-core material and the subscript g stands for quantities related to
 

the air-gap.
 

The magnetic circuit of the type C core shown in Figure 4.1 is 

analyzed under the following assumptions. First, the length of the air-gap 

Pg is quite small compared to the mean magnetic path length zm of the selected 

core; therefore, the total mean magnetic path length made up of zm and zg is 

taken to be equal to zm" Second, since t g also is small compared to the 

core build-up and the width of the magnetic tape, fringing flux is very small 
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compared to the total flux in the core; therefore, the effective cross­

sectional area of the gap portion of the magnetic path A is taken to be
 

equal to the effective cross-sectional area of the magneticmaterial Am for
 

the selected core.
 

Having established the nature of the magnetic circuit, attention now
 

is directed to the curves of Figure 4.2. Plotted in the figure are a nega­

tive air-gap line relationship between B and H, shown as Curve 1, and a
 

normal magnetization curve relating Bm and Hm for a typical magnetic core
 

material which is shown as Curve 2. The inductance of the reactor winding
 

of N turns at a particular operating or quiescent point (HmQ,BmQ) is given by
 

LL
= 0 1+,,A (ZAgl/m )N2Am (4.1)
tm
 

where p0 is the permeability of free space and VA is the relative incremental
 

permeability of the magnetic material at the operating point [20]. An ex­

pression for VAC, the minimum value of fundamental-component rms voltage
 

across the reactor, is given by (4.2) in terms of the frequency of the fun­

damental component f, the peak value of the fundamental component of the ac
 

flux density BmAC the number of turns N, and the cross-sectional area of
 

the magnetic core AM ,
 

VAC = N4INfAmBmAC (4.2) 

These three relationships--the curves of Figure 4.2, Equation (4.1),
 

and Equation (4.2)--can be manipulated, as shown in Appendik E, into an
 

expression of the form
 

FI(BmACA HmL,IDCVA, f, m,A ) = 0 (4.3a) 
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The resulting expression derived as (ElO) is
 

K5 2 K3 K4
K6 K, + K 4(K2 1 =(4.3b) 

mAC 

where the constants are defined as follows: 

K,1 PO(2mAmHmQBmQ - IcL)/AMB2q (4.4)
 

K2 A (pomHmQ/BmQ)2 (4.5)
 

K3 A vPOmI2CL/AmB2Q (4.6)
 

K4 A (VAC/N 2 7rfAm)2 (4.7)
 

K5 A 2-' (4.8)
m 


K6 A L/2pOAm (4.9)
 

In (4.3), which is the first of two basic relationships, all but the two param­

eters BmAC and P. are obtained in a rather direct manner from the perform­

ance specifications, from the quiescent operating point on the normal mag­
4 

netization curve, and from the geometry of the selected core.
 

The second basic relationship required for the design is obtained
 

from the experimentally determined incremental permeability curves provided
 

by the core manufacturer and is of the form F2(BmACUAHmQ) 0. The
 

F2(')= 0 relationship is graphically portrayed in Figure 4.3 where the re­

lative incremental permeability PA is plotted versus the peak ac flux density
 

excursion BmAC for various values of the quiescent or bias-point values of
 

HmQ from the normal magnetization curve. Figure 4.3 is a plot of data taken
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from [21] and [22].
 

Using the analytical base just discussed, the framework for the design
 

procedures is now developed. Assuming that a quiescent point (Hm,Bm) for
 
I mQ mQ
 

a chosen core material and core geometry is assigned, solution of the two
 

relationships F(,) = 0 and F2(.)= 0 is obtained simultaneously for BmAC
 

and 1A by iteration on a combination of curve reading and computation. Using
 

these solution values, the number of turns N and the air-gap length kg are
 

determined, respectively, using (4.10), which is a rearrangement of (4.2),
 

and using (4.11), which is derived in Appendix E as (E7).
 

N VAC/(V/-1-fAmBmAC) (4.10)
 

0 (4.11)
0.5K 7 


where
 

K7 .-K + -/K - 4[K 2 - (K3/PAT)] (4.12) 

The values of N and kg obtained for an arbitrary assignment of HmQ cor­

respond to a design matching all of the imposed constraints except the mini­

mum turns requirements and a check for windability. To proceed toward an
 

optimized design for minimum turns for a given set of operating specifica­

tions, magnetic material and core geometry, an additional iterative operation
 

is performed inwhich the quiescent operating point is varied until the solu­

tion for N converges to a minimum value-. In a later section, two procedures
 

for designing an inductor--one for an assigned quiescent point (HmQ,BmQ)
 

and the other for minimum inductor turns--are illustrated using a common set
 

of specification requirements for the two designs.
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4.4 Design Procedures
 

The objective of both of the design procedures to be discussed is to
 

determine the turns N, the air-gap length tg, and the wire size which meets
 

the designer's current-density specification for a selected magnetic core
 

material and geometry. The algorithms used in these procedures are ex­

plained in this section by reference to Flow Charts 1, 2, and 3 presented in
 

Figures 4.4, 4.5 and 4.7. Individual parts of Flow Charts 1 and 3 will be
 

identified by letters enclosed in brackets, e.g., [A], to which reference
 

will be made in the section illustrating the design procedures by means of
 

an example.
 

In Flow Chart 1, Figure 4.4, starting with the assumption that a
 

suitable core has been chosen and that a suitable quiescent point (HmQ,BmQ
 

has been obtained in some manner, the algorithm for computing the number of
 

turns N and the air-gap length zg is demonstrated. An integral part of this
 

procedure is the simultaneous solution of the two relationships FI(.) = 0
 

and F2() = 0 to obtain values of mC and 1A which are used in computing
 

N and zg. The algorithm used to compute N and tg developed in this chart
 

is used as a sub-algorithm in the two remaining charts.
 

The second chart, Figure 4.5, illustrates a procedure adaptable to
 

computer-aided design techniques, in which a stored library of magnetic
 

and geometric data on commercially avail'able cores is used as the primary
 

data source. This procedure begins by using data for the smallest core in
 

the library and an initial quiescent point (HmQ,BmQ) to calculate N and kg 1
 

using the algorithm in the first chart. The procedure continues by itera­

tively selecting additional quiescent points and re-computing N and ,
 

until a minimum value for the number of turns N is found, along with a
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physically-realizable air-gap length. If the core under examination is in­

capable of functioning to provide the specified requirements, it is discarded
 

and the next larger core is examined.
 

The third flow chart, Figure 4.7, is used to explain a design pro­

cedure which does not produce a minimum-turns design, but incorporates a core
 

screening function which enables a designer to choose suitable cores and to
 

design an inductor for a specified quiescent point, using the computational
 

capability of an electronic pocket calculator. The screening operation in­

volves a relatively simple computation which indicates cores for which a
 

physically-realizable air-gap is possible.
 

4.4.1 Flow Chart 1.
 

Returning to the first flow chart in Figure 4.4, a closer study of 

the algorithm for determining N and Pg is made. The operations in this chart 

begin with the assignment of the specification requirements of L, IDC VAC 

and f and the choosing of a magnetic core material and geometry and a 

quiescent operating point (HmQ ,BmQ). These steps carry the procedure to an 

entry point designated by the number 1 enclosed by a circle. This entry 

point, Node 1, is used by the design procedures illustrated by the two re­

maining flow charts, where the algorithm which follows Node I returns to 

these procedures values of N and t . Since the values of HmQ and BmQ are 

assigned before entering Node 1, parameters K, through K6 are calculated in 

Step [A] and treated as constants until another core and/or quiescent point 

is selected. The algorithm for finding N and 2. depends on obtaining a solu­g
 

tion set for v and BmAC by an iterative evaluation of Fl(.) to produce a
 
c euA


computed error c by using trial values of B mAC and the corresponding values
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of P., which are read from the incremental permeability curve for the se­

lected value of HmQ.
 

To provide guidance on the magnitude of e representing a good engineer­

ing solution, a range factor AE is calculated as the magnitude of the dif­

ference between extreme values, emax and emin in Step [B]. The defining
 

relationships for Emax and emin are shown in the flow chart. Using the range
 

factor Ac and the precision factor of 0.001, the computation of the error
 

factor s proceeds in a closed loop using Steps [C], [D], and [E] until the
 

solutions for BmAc and 1,A converge to within the permitted error bound.
 

Once the solution set is found, the values of N and t are computed in Step
 

[F] and the design for the specified requirements of chosen core material
 

and geometry and the selected quiescent operating point is completed.
 

4.4.2 Flow Chart 2.
 

In the procedure illustrated in the flow chart in Figure 4.5, an
 

optimization algorithm searches for the combination of quiescent point and
 

air-gap length which yields a minimum value for the number of turns N on
 

the reactor. Because no general mathematical model is available which will
 

fit the wide variety of magnetic materials in use, purely analytical opti­

mization techniques cannot be applied. However, by the use of an iterative
 

procedure which employs multiply-dimensioned polynomial fits to experi­

mentally obtained data, an optimized quiescent operating point and air-gap
 

length can be determined.
 

The algorithm in this flow chart operates on a base of data for com­

mercially available air-gap cores such as the type C geometry. The data
 

base includes core dimensions and sample points taken from the normal mag­

netization curve and from a family of relative incremental permeability
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curves for the designated core material. For each sample point [Hm(I),Bm(1)]
 

selected as a data-base point on the normal magnetization curve, there is a
 

corresponding member of the family of relative incremental permeability
 

curves which also is stored as a set of sample points [Hm(I),BmAC(IJ),
 

Starting with the smallest core in the data library and the first
 

sample point [Hm(1),Bm(1)] on the normal magnetization curve, polynomial
 

interpolation is used to approximate intermediate values of pA on the corre­

sponding incremental permeability curve [Hm(1),BmAc(,J),PA(,J)] when
 

seeking the solution value BmAC in steps [C]-[D]-[E] of Flow Chart 1 the
 

first time that this sub-program, marked by the circled number 1, is en­

countered near the top of Flow Chart 2 in Figure 4.5. The value of turns
 

N and air-gap lengtht are thus determined for this first sample point.
g
 

This procedure is repeated for each of the M sample points on the-normal
 

magnetization curve.
 

The particular sample-value quiescent point [Hm(K),Bm(K)] corres­

ponding to the sma-lest calculated value for turns-N is used as the starting
 

point for another interpolation routine. This interpolation procedure is
 

used in a search for that particular intermediate value of quiescent point
 

on the normal magnetization curve which produces the minimum number of
 

turns N. The interval searched spans the range covered by this starting
 

sample point and the two adjacent sample points. For each intermediate
 

trial value of quiescent point HmO, polynomial interp6lation is used to
 

approximate the corresponding value of BmQ on the normal magnetization curve
 

when preparing to compute the design constants K1 to K6 in Step [A] of Flow
 

Chart 1 when the sub-algorithm marked Node 1 is encountered near the center
 

of the flow chart in Figure 4.5. The interpolating scheme for obtaining
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the values of pA,max and VA,min and the value of vA corresponding to the
 

trial BmAC , which are used inSteps [BJ-[C]-[D]-[E] in Flow Chart 1, is
 

described with reference to Figure 4.5. The interpolation routine makes use
 

of Lagrange's interpolating polynomial of sixth degree [233. The data points
 

used in establishing the required polynomials correspond in all cases to the
 

six points closest to the most recently established trial point. Points
 

marked by crosses on the relative incremental permeability curves shown in
 

Figure 4.6 represent the sample points stored as a part of the data base.
 

The six relative incremental permeability curves corresponding to the six
 

sample points on the normal magnetization curve which are closest to the
 

trial quiescent point magnetizing force HmQ are used for interpolation. The
 

values of 1 ,Amaxand pA,min for intermediate trial values of HmQ are approxi­

mated by interpolation using, respectively, the six data points, illustrated
 

inFigure 4.6 by circles surrounding the crosses, which correspond to the
 

sample point values of VA for Bm and BCm on the six closest re-

A mAC,max mAC,min
 

lative incremental permeability curves. To obtain a value of p1A correspond­
ing to the trial value of BmAC , indicated in Figure 4.6 as BmAC,tria and
 

needed in Step [D] of Flow Chart 1, two interpolations are used. The first
 

interpolation provides values of VA corresponding to BmAC,trial for each of
 

these six closest incremental permeability curves. The location of the
 

points corresponding to these six values of pA are shown as circles in
 

Figure 4.6. These pA values are then used as six data points in a second
 

interpolation to find an approximate value of pA corresponding to the trial
 

quiescent point HmQ and BmAC,tria I. This procedure of two interpolations
 

is repeated until a solution value of BmAC is obtained in Steps [CJ-[DJ-[E]
 

in Flow Chart 1. The values N and xg corresponding to this trial quiescent
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point are computed and N is compared with the lowest previously calculated
 
number of turns. This trial quiescent value HmQ is then incremented by a
 

prescribed amount AHm and the procedure described above is repeated.
 

After the minimum value for N and its associated air-gap are found for
 

a selected core, the maximum rms winding current is computed, a wire size
 

is chosen, and the winding factor is computed. If the core is windable,
 

the pertinent information on core size number, minimum turns Nmin , air-gap
 

for the optimum design Yg,opt' quiescent operating point (HmooptBmQopt),
 

wire size and winding factor F are printed. If the core is not windable,
w 

or if it is desired to obtain a design for a larger core, the next larger
 

core size is selected and the procedure performs another set of computations
 

to obtain a possible design.
 

4.4.3 Flow Chart 3.
 

The third flow chart, presented in Figure 4.7, shows-a-procedure
 

which may be employed to design an air-gapped magnetic-core inductor, using
 

the computational capability of an electronic pocket calculator. This pro­

cedure does not produce an optimized design with minimum turns for a given
 

core and set of specifications. However, by means of a relatively simple
 

screening process, the procedure does permit a designer to determine which
 

cores among those available to him are capable of yielding designs with phys­

ically realizable air-gaps. Cores which pass this screening process then
 

may be considered further by using the algorithm for determining N and 9g
 
g
 

flow charted in Figure 4.4.
 

The design procedure begins with the specification of the design
 

requirements in Steo [G]and the selection of a candidate magnetic core
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[G) SPECIFY: L, DcVAc"f wM 

CHI CHOOSE MAGNETIC MATZRIAL: 
Ncrmal Magnetization Curve 
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Calculate (H(r2 -a)Q IQ)in 

SELECT CORE: "mAin,A 

SELECT A BIAS POINT: HQB 

[III SELECT LARGERFORE: 4,,A.A., I Ks = 12cL/^4 AO r 
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03 ICALCULATE: 

Xe =,/ c + {(AC/2L)2 

CHOOSE WIRE SIZE BASED ON I 

[P]4ALCULATE: 

Fw,= Ar/lwn 

" YES 

Figure 4.7. Flow Chart 3: Algorithm for Screening Cores 
for Physically Realizable Air-Gap. 
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material, calculation of a parameter (H2QPA )min , the selection of a core
 

geometry and choice of quiescent operating point (HmQ BmQ) as indicated in
 

Step [H]. The screening rule, which is developed in Appendix F, depends
 

on decisions made on inequality expressions involving a constant K8 which
 

is a function of certain of the design specifications and of the core geo­

metry. In Step EJ], if K8 is greater than HmQBmQ, the design equations
 

will yield a workable core and N and zg are computed as indicated by the
 

branching to Node 1, which represents the entry point to the N and kg
 

algorithm of Flow Chart 1. If this K8 inequality relation proves to be
 

false, then K8 is tested in Step [K] to determine if it is greater than
 

Po(H Q A)/2, where V is the maximum value of pA on the relative incre­

mental permeability curve corresponding to the selected quiescent point.
 

A true condition of this inequality again leads to the computation of N
 

and tg. The false condition leads to a final check on the value of K8
 

in Step EL] where it is compared to the parameter po(H 2 p )m/2. The

OMQPAQ min
 

latter parameter is unique to the particular magnetic material chosen and
 

is the minimum value of po(H2QpAQ)/2 over the range of HmQ and p for
 

which data are available. If the value of K8 is greater than the value of
 

2 2
parameter 1o(H /AQmin,the core will permit a design with a physically
, 


realizable air-gap if a new quiescent or bias point is chosen in Step [N]
 

which satisfies the inequality in Step [K]. If the inequality in the third
 

decision inequality is not satisfied, then a larger core must be selected
 

in Step EM] and the process repeated.
 

When a combination of core geometry and quiescent operating point is
 

found which leads to values of N and tg, the rms winding current is deter­

mined in Step [0] and a wire size is chosen according to the current density
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constraint imposed by the designer. The winding factor then is computed in
 

Step [P] and if the winding factor is acceptable, Step [Q], the design is
 

completed. If the core is not windable, a larger core is selected and the
 

screening process is re-entered.
 

4.5 	 Example to Illustrate Design Procedures
 

To illustrate the design procedures previously described, a sample
 

design for a filter inductor is presented in outline form. The procedure
 

which is illustrated in some detail is that shown in Flow Charts 1 and 3,
 

Figures 4.4 and 4.7, and is suited to the use of an electronic pocket cal­

culator 	on which the computations shown were made.
 

Flow Chart 3.
 

[G] 	 Specifications: L = 0.5 H; IDC = 0.15 A; VAC 1.0 V; f = 60 Hz; 

Fw,max = 0.4 

[HJ(i) Choose magnetic material:
 

Grain-oriented 3 percent silicon steel
 

Normal magnetization curve (Figure 4.2, Curve 2)
 

Relative incremental permeability curves (Figure 4.3)
 

Calculate (H2Q :) From extreme left end of upper curve 

in Figure 4.3, (0.1 x 79.577)2(2800) = 1.77 x 105 (A/m) 

(ii) Select Core:
 

2
 
= 0.120015 m; A. = 1.613 x 10- 4m2 ; Awn 4.838 x 10-4m

(iii) 	 Select a bias point:
 

A bias point is arbitrarily assigned by the designer. Choice
 

of a bias point in the knee region of the normal magnetization
 

curve usually has been found to lead to workable designs. Choose
 

HmQ = 31.83 A/m (0.4 oersted); BmQ = 1.2 T (12.0 kilogausses)
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HmQBmQ = 	38.196.
 

[I] 	 Calculate K8 : K8 = 2.9072 x 102 

[3] 	 K8 > HmQBmQ; go to Node 1, the entry point for the algorithm for
 

calculating N and kg. Since K8 > HmQBm, steps [K] and EL] are not
 

used.
 

Flow Chart 1
 

[A] 	 Calculate Kl, K2; K3, K4, Ks, K6:
 

K, = -5.2863 x 10 5 = 1.6003 x 10 11 

-K3 = 7.3047 x 106 K4 = 5.409 x 102 

K5 = 0.24003 K6 = 1.2334 x 109 

[B] 	 Read from relative incremental permeability curve. 

For H = 31.83 A/m (0.4 oersteds)rnQ
 

Imax = 6200 at BmACmax =1.4 T 

11A,min 700 at BmACmin =-0.02 T-

Calculate: ma ,minE As 

max minn 
5 min -6.039 x 10'max =2.1908 x 10miE 


As = 8.2305 x 105
 

[C] 	 Choose trial value of BmAC:
 

Trial BmAC in T Next Step
 

No.
 

1 	 0.04 Go to [D], trial no. 1
 

2 0.03 Go to [D], trial no. 2
 

3 0.0279 Go to [D], trial no. 3
 

4 0.02807 Go to [D], trial no. 4
 



[D] 	 Read value of vA from relative incremental permeability curve cor­

responding to H = 31.83 A/m and value of BmAC from [C]; calculate 

K7 and E:
 

Trial A K7 Next Step
No. 	 K
 

-4
1 	 880 2.4242 x 10 2.9737 x 105 Go to [E], trial no. 1
 

- 4
2 800 2.5098 x 10 7.8649 x 104 Go to [E], trial no. 2
 

3 785 2.5275 x 10- -5.9982 x 103 Go to [E], trial no. 3
 

- 4
4 	 790 2.5215 x 10 -7.3500 x 102 Go to [E], trial no. 4
 

[E] 	 Test value of IEi against precision range-factor
 

0.O01As = 8.2305 x 102:
 

Trial Next Step
 
No.
 

1 	 lII = 2.9737 x 105 > 8.2305 x 102 Go to [C], trial no. 2
 

=
2 II- 7.8649 x 104 > 8.2305 x 102 Go to [C], trial no. 3
 

3 I = 5.9982 x 103 > 8.2305 x 102 Go to [C], trial no. 4
 

4 lI = 7.3500 x 102 < 8.2305 x 102 Go to [F]
 

[F] 	 Calculate N and Zg
 

N = 828 turns
 

Z = 1.261 x 10- m
g
 

Return to Flow Chart 3, step [0]
 

Flow Chart 3 

[01 Calculate IXe and choose wire size: 

IXe = 0.150211 A 

-
Using a 	current density of 5.0671 x 10 m2/A (1000 circular mils/A),
 

wire size AWG 28 is satisfactory.
 



[P] 	 Calculate windability:
 

For AWG 28 with heavy Formvar insulation, the total area of the wire
 

-7
and insulation Awr = 1.051 x 10 m2 (207 circular mils); Fw = 0.18.
 

Selected core iswindable and design is completed.
 

The design example illustrated is not an optimized design, in the sense
 

of minimization of turns. Using the same magnetic core material data and
 

core dimensions, the following results were obtained from a computer program
 

which implements the optimization algorithm described earlier in Flow Chart
 

2 of Figure 4.5. The results of the nonoptimized design results are recapit­

ulated for comparison.
 

Optimized Design Nonoptimized Design
 

N 738 828
 

1.156 x I0-4 m 1.261 x 10-4 m
 

HmQ 30.24 A/m (0.38 oersted) 31.83 A/m (0.4 oersted)
 

4.6 Conclusions
 

The design procedures presented in this chapter are particularly useful
 

in the case of filter inductors for electronic power supplies where the wind­

ing usually must carry a large direct current in addition to presenting a
 

high reactance to the fundamental component of the alternating current. By
 

incorporating into the procedures experimentally determined relative incre­

mental permeability curves, the large ac flux excursions normally encountered
 

in such applications can be taken into account. In the computer-aided de­

sign procedure, an important feature is the optimization algorithm for deter­

mining the quiescent operating point and air-gap length yielding the minimum
 

number of turns. An easily used screening process which permits a designer
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to identify candidate cores for which a physically realizable air-gap is
 

possible and a relatively simple procedure for solving for the incremental
 

permeability and ac flux density excursion using an electronic pocket cal­

culator are provided in the second procedure.
 



CHAPTER V
 

DESIGN OF AIR-GAPPED INDUCTORS USING SPECIALLY
 

PREPARED MAGNETIC CORE DATA
 

5.1 Introduction
 

In Chapter IV it was mentioned that Hanna's method provides a direct
 

and easily used procedure for the design of air-gapped inductors by using
 

specially prepared magnetic core data [16]. Hanna's method, however, is
 

limited to the design of inductors with small ac flux excursions. The meth­

od uses specially prepared magnetic core curves which unfortunately are not
 

available for some of the modern core materials.
 

This chapter presents a direct calculation procedure for the design
 

of air-gapped inductors with large ac flux excursions. The heart of the
 

new design procedure depends on the development of specially prepared mag­

netic core data calculated from core material data which are available
 

from core manufacturers. Using the results of the analysis in Chapter IV,
 

and following the pattern of Hanna's development, a set of design curves
 

is generated. These curves make use of a family of relative incremental
 

permeability curves and thus allow large ac flux excursions to be taken in­

to account. For a selected core, by using these curves a designer can find
 

the length of the air gap 9g and the number of turns N for the winding to
 

meet the design requirements given in Chapter IV.
 

(91)
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Using the results of the analysis of a magnetic circuit with an air
 

gap presented in Chapter IV,the design relationships are developed. Fol­

lowing a discussion of the generation of design curves with the help of a
 

digital computer, an example is given to illustrate the design procedure.
 

The procedure for generating the design curves is presented in detail in
 

flow chart form in Appendix H. Toward the end of the chapter a comparison
 

is made between Hanna's curves and the design curves presented in,this
 

chapter for corresponding cases of small values of ac flux excursions.
 

5.2 Design Relationships Used in Generating Hanna's Curves
 

The design relationships used in Hanna's method, given by (5)and
 

(6)in Ref. [16], are repeated here as (5.1) and (5.2)
 

2 B2 [li aY2 10-8LI

DC. fQi DC m (5.1)
V 0.47(- + PAm) 

.
"IA 9m
 

N I D c B m - ._ P,
=bBD + - (5.2) 

m 0.47r DC Zm 

where -x= Am is defined as the magnetic core volume. When these equations 

are written in SI units, using BmQ = OPDCHmQ, they take on the form: 

BmQ2

2 [OHmQ +
LI
DC O 'm (5.3)
 
v 
 +'
 

NIDC 9
[1oHmqD+m mQ (5.4)

m 110 
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Rearranging (5.3) and (5.4) leads to
 

2
LI c p k B 2
 
110 A (, Q + Hm ) (5.5)
 

m + m 0m 1 m Q

NIcDC k.In§ + H (5.6)
 

The values for the relative incremental permeability p. used in (5.5) by 

Hanna are for very small values of ac flux excursions and thus depend only 

on the dc operating point HmQ on the normal magnetization curve. A typical 

curve of pA versus HmQ for 3-percent grain-oriented silicon steel for very 

small ac flux excursions, obtained from References [21] and [22], is shown in 

Figure 5.1. Using data from such a curve and from the associated normal 

magnetization curve, such as shown in Figure 4.2, Chapter IV, for an assigned 

value of air-gap ratio Yg/km , equations (5.5) and (5.6) are treated as para­

metric equations with HmQ as the parameter, to obtain a curve of LIc/
 

versus NIDc/9Am . For a given value of air-gap ratio, several values of HmQ
 

are assigned and the corresponding values of uA and BmQ are used in (5.5)
 

and (5.6) to determine the associated values of LI2c/v and NIDC/Pm . A plot
 

of these two quantities for various values of air-gap ratio is known as a
 

set of Hanna's curves, and is illustrated for 3-percent grain-oriented steel,
 

Permalloy 80, and Supermendur in Figures 5.2, 5.3, and 5.4, respectively.
 

Using Hanna's curves, an inductor can be designed to meet the re­

quirements of specified inductance L, and dc current IDC in the winding. For
 

the selected core, the value of LIDc/v is determined using the specified
 

values of L and IDC, and the known volume v of the chosen core. The corres­

ponding value of air-gap ratio Pg/km and NIDc/Im are determined from the
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Figure 5.1. 	 Relative incremental permeability versus dc operating point
Hnon normal magnetization curve for small values of ac
Mlx excursions for 3-percent grain-oriented silicon steel. 
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set of Hanna's curves. The required value of air-gap Zg and turns N are thus
 

determined from the known path length km of the selected core, and the
 

specified value of IDC*
 

In the next section, Hanna's method is extended and design relation­

ships which take large finite ac flux excursions into account are developed.
 

5.3 Design Relationships when AC Flux Excursions'are Large
 

In this section, a set of design relationships for use in generating*
 

design curves is developed. From the analysis of a magnetic circuit with
 

an air gap presented in Chapter IV, the expression for N is given by (E-2)
 

in Appendix E and is repeated here for convenience.
 

N = gBmQ + PmPOHmQ (5.7)
POI DC 

Substituting the value of N given by (5.7) into the expression for L given
 

by (4.1) in Chapter IV,the resulting expression becomes
 

L = 1 T ZBm + 1OH (5.8)p 9A A-­

1+1 APSm9 1D m 

Rearranging (5.8) leads to
 

PA g('g mQ+ H)2m Am (59)
 

+ PA -mm o DC
 
Im 

Recalling the definition of the magnetic core volume% = ZmAm in (5.9) and 

rearranging leads to the first basic relationship given by (5.10). 

LI 2 P B2 2DC PA (E B +H) (5.10)
= qO P, m 1O 

1p m 
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The second basic relationship is obtained from the expression for 

the alternating voltage across the inductor given by (4.2) in Chapter IV, 

VAC = 2NfAmBmAC (5.11) 

Rearranging (5.11) leads to
 

^ VAC
BmAC ­
(5.12)
 

The other basic relationships required for the design are obtained from the
 

experimentally determined normal magnetization curve and incremental permea­

bility curves as illustrated, for example, for 3-percent grain-oriented
 

silicon steel in Figure 4.2 and Figure 4.3, respectively. These four rela­

tionships, which include equations (5.10) and (5.12) and curves typified by
 

Figures 4.2 and 4.3, contain seven variables ,DC, BmQ, H
' V AC m
 

BmAC , and p," These can be manipulated into a single relationship in
 
LI6c 
 ^
 

terms of the four variables C- B and H which can be symbolical-

V %' mAC' an hc anbQyblcl 

ly represented by the functional notation 

'LIc k ^ 
V = g(9- BmAC ' HmQ) (5.13) 

More particularly, using symbolic functional notation, the value of 1IA used
 

in (5.10) is obtained from the family of relative incremental permeability
 

curves where the dependence of PA upon both the dc operating point HmQ on
 

the normal magnetization curve and upon the peak ac flux excursion BmAC can
 

be indicated by use of the symbol pA(HmQ, BmAC). Similarly, the value of
 

BMQ obtained from the normal magnetization curve as a function of HmQ only
 

can be expressed functionally as B (H Thus, the expression for LI 2/V

mQ mQ iDC/
 

given by (5.10) can be written in a form useful as a design relationship
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similar to the one given by (5.13) as
 

LIDc "A(HmQ BmAC) P B

L2 ) 2 (5.14) 

=0 l ( B m POmQ
 
1 + A(HmQBmACPIm-


LI2C k
 
which relates the four parameters -9 B and Hmq


Z m BmAC mQ"
 

A second relationship used in the design procedure to be discussed
 

in the next section is obtained by rearranging (5.7) in the form
 

Pc P 0 H(5.15)
 

This relationship given by (5.15) is used in computing a design parameter
 
NI DC
 
(---)opt for the design curves.
 

m 
For very small values of peak ac flux excursions BmAc the design re­, 


lationship (5.14) used in the present development reduces to (5.5) used in
 

Hanna's method and the second relationship given by (5.15) is identical to
 

the corresponding (5.6). The design curves which make use of design rela­

tionships (5.14) and (5.15) and which take large finite ac flux excursions
 

into account are presented next.
 

5.4 Design Curves
 

Families of curves for three different materials, 3-percent grain­

oriented silicon steel, Permalloy 80, and Supermendur, which relate design
2 
 A 
parameters LI C/v and B for various values of air-gap ratio Zg/%m' were
 

generated with the help of a digital computer and are shown in Figures 5.5,
 

5.6, and 5.7. These families of curves were obtained using magnetic mater­

ial data in the form of the normal magnetization curve and the family of
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relative incremental permeability curves in conjunction with the design re­

lationships (5.14) and (5.15). The algorithms used in generating these 

design curves are explained in detail in Appendix H. For any assigned value 

of air-gap ratio 9/m , the right-hand side of (5.14) can be considered to gm
A
 

be a function of HmQ and BmAC only, and a curve of LI
2 /v versus BmAc for
 

some value of HmQ can be produced. To do this, for a specified HmQ, a value
 
AA
 

of BmAC = BmACmin is assigned, and the values of BmQ and pA corresponding 

to HmQ and BmAC,min are obtained from curves such as those of Figure 4.2 and
 

Figure 4,.3, respectively. These values are substituted in equation (5.14)
 

to determine the corresponding value of LI~c/v. Similarly, the values for
 

LID /v corresponding to BmAC,min for various values of HmQ are obtained in
 

this manner. The optimum value of H = HmQ'opt for a specified value of 

9./Pm which yields the maximum value of LI2 /v is used in generating the de­
g m DC
 

sign curve for a given P,/Am* The value of NIDC/m = (NIDc/9m)opt corres­

ponding to Hmopt is calculated from (5.15). Using HmQopi for HmQ in 
A A 

(5.14) and varying BmAC from the specified minimum BmACmin to the maximum
 
2
A 


BmAC,max' a curve of LIDC/v versus BmAC is obtained as illustrated in Figure
 

5.5 for silicon steel. In a similar manner, design curves for other a-ir­

gap ratios are obtained.
 

Using these design curves, an inductor can be designed to meet the
 

requirements of specified inductance L, dc winding current IDC, rms value
 

of the sinusoidal inductor voltage VAC' and frequency f of the ac voltage.
 

Both the ordinate LI2/1v and the parameter (NI /m opt increase as the
 

air-gap ratio is increased, as seen from the design curves. For a selected
 

air-gap ratio, the value for parameter LIDc/v also increases with increase
 

in value of peak ac flux excursion BmAC* For a selected core, the value of
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LI2c/v is determined using the specified values of L and IDC, and the known
 

volume v of the chosen core. The corresponding values of Zg/1m' (NI Dc/m)opt'

A 

and BmAC are determined from the curves in Figures 5.5, 5.6 or 5.7. The
 

required values of air gap Zg and turns N are thus determined from the
 

specified values of IDC and the known mean path length % of the selected
 
A 

core. 	 The actual value for the BmAc is calculated from (5.12). To meet the
 

design requirements under all operating conditions, the value of BmAC cal­

culated from (5.12) should be greater than the value obtained from the de­

sign curves; in other words, the designer should insure operation on the
 

selected P /. curve at a point corresponding to a value always higher than
 

the calculated LI2 /v.

DC
 

In the following section, the complete procedure for designing an
 

air-gapped inductor using these design curves is developed and an example
 

is presented.
 

5.5 	 Design Procedure
 

Using the design curves developed in the preceeding section, a
 

step-by-step procedure for designing air-gapped inductors is now presented.
 

[A] 	 The specifications for the inductor are: desired minimum inductance
 

L; maximum dc winding current IDC; minimum rms value of ac inductor
 

voltage VAC; frequency f of ac voltage; maximum winding factor
 

Fw,max"
 

[B] 	 1) Choose magnetic material
 
2) Select core: 2m' Am, v,window area Awn'
 

[C] 	 Calculate CI2/v: Using the specified value of L and IDC in [A] and
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known v of the selected core in [B], the value of LIC/v is calcu­

1ated. 

ED] 	 Choose a design curve corresponding to the smallest air-gap ratio
 

that intersects the line parallel to the abscissa and passing
 

through the ordinate point corresponding to LIoc/v calculated in [C].
 

[E] 	 Read from the design curve: Read the values of corresponding
 

(NIDc/m)opt' and BmAC at the intersection.
 

[F] 	 Calculate Yg, N,and BmAC: From the known specifications and core
 

dimensions in [A] and [B] and from [E], the air-gap length 9g, turns
 

N, and BmAC are calculated using the equations
 

9g = ( /Zm)Pm 

(NIDc/m)opt
 
IDC
 

VAC
 
BmAC 	 -42rNfAm 

[G] 	 If BmAc calculated in step [F] is greater than that obtained in step
 

[EL continue to step [H]. If not, choose a curve corresponding to a
 

larger air-gap ratio and return to step [E].
 

[H] 	 Determine wire size and check windability: Calculate the rms wind­

ing current IXe using step [0] in flow chart 3, Figure 4.7 in Chapter 

IVand select wire size based on this from a wire table. Compute the 

winding factor Fw. If F < F , the design is complete. Ifnot,
w w = w,max
 

select a larger core and return to step [B].
 

To illustrate the design procedure, an example is now presented
 

using these design curves. To provide a comprehensive comparison of all
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three methods, the same example is repeated using Hanna's curves, and using
 

the computer program for optimum design presented in Chapter IV.
 

5.5.1 Example Using New Design Curves
 

[A] 	 Specifications: desired minimum inductance L = 0.55 H; maximum dc 

winding current IDC = 0.2 A; minimum rms value of ac inductor volt­

age VAC = 5.0 V; frequency of ac voltage f = 120 Hz; maximum winding 

factor F = 0.4. w,max
 

[B] 	 1) Choose magnetic material: 3-percent grain-oriented silicon
 

steel
 

-4 
 -5
2 ; v 	= 1.936 x 10
2) Select core: zm = 0.12 m; Am = 1.613 x 10 m


3 -4 2
 
m3; Awn =4.838 x 10 m
 

[C] 	 Calculate LI2 /v: LI2 /v = 1137

DC DC
 

[D] 	 The design curve corresponding to kg/2m = 0.0014 is chosen in Figure
 

5.5.
 

[E] 	 Read from design curves for the chosen magnetic material: read the 

values for (NIDc/2Am)opt' and BmAC from Figure 5.5 corresponding to 

the value of LIgc/v = 1137 calculated in step [C]. 
D.
 

- -= 	0.0014
 

Ic
 

)op 	= 1489 ampere-turns/meter
 

zm opt
 

BmAC 	 = 0.058 T 

[F] 	 Calculate Zg, N, and BmAC:
 

From the known specifications and core dimensions in [A] and [B] and
 

from [E]
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= 1.68 x 10-4 m 
g 
N = 894 

BmAC 	= 0.065 T
 

[G] 	 BmAC calculated in step [F] is greater than that obtained in step
 

[E], continue to step [H].
 

[H] 	 Calculate IXe and choose wire size: From step [0] in flow chart 3
 

in Chapter IV
 

Ixe = 0.2007 A
 

-7
Using a current density of 5.0671 x 10 m2/A (1000 circular mils/A),
 

wire size AWG 27 is satisfactory. For AWG 27, the totalarea of the
 

-7 
wire and insulation Awr = 1.312 x 10 m2 (259 circular mils);
 

Fw = 0.24; selected core is windable and design is completed.
 

5.5.2 	Example Using Hanna's Curves
 

The example inSection 5.5.1 using the same core size and magnetic
 

material is now repeated using Hanna's Curves. Corresponding to the value
 

of LI0cv2 1137 calculated in step [C], the values for Pg/m and NIc/tm are
 

read from Hanna's curves in Figure 5.2.
 

= 0.0016 
m
 

NIDC 	= 1550 ampere-turns/meter 

m
 
The values for the air gap 9 and N are calculated from the known
 

core 	dimensions and specified IDC*
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N = 930 

P, = 1.92 x l0-4 m 
9
 

Based on the dc current in the winding IDC = 0.2 A and from step [F]
 

and [G], the wire size AWG 27 chosen and winding factor Fw is calculated as
 

0.25.
 

Thus it is seen that designs obtained using Hanna's curves require
 

a larger air gap and larger number of turns N for the winding to meet the
 

same design requirements.
 

The above example was repeated using the computer program presented
 

in Chapter IV. Using the same magnetic core material data and core dimen­

sions, the following results were obtained from a computer program which
 

implements the optimization algorithm described earlier in Flow Chart 2 of
 

Figure 4.5. The results of the designs using Hanna's curves and the design
 

curves presented in this chapter are recapitulated for comparison
 

N g
 

-4 m
Hanna's Curves 930 1.92 x 10


New Design Curves 894 1.68 x 10-4 m
 

Optimized Design, Chapter-IV 861 1.60 x 10-4 m
 

From the above table it isseen that the design obtained using
 

Hanna's curves yields the largest number of turns N and air gap . and the
 

design obtained using the computer-implemented optimization algorithm yields
 

the smallest number of turns N and air gap 9 to meet the same design re­

quirements. The design obtained using curves presented in this chapter re­

quires a larger air gap and larger number of turns N than the optimized
 

design but smaller than the design using Hanna's curves.
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5.6 Comparison with Hanna's Method
 

The design relationships used in generating Hanna's curves and the
 

design curves presented in this chapter, are given by (5.5) and (5.6), and
 

(5.14) and (5.15), respectively. As mentioned earlier, the value of rela­

tive incremental permeability pA in (5.5) is for very small values of peak
 

ac flux excursion BmAC and depends only on the dc operating point HmQ on
 

the normal magnetization curve. The values of iAused in (5.14) are taken
 

from a family of relative incremental permeability curves shown in Figure
 

4.3, and depend on both the BmAC and HmQ. Thus for a selected air-gap
 

ratio, a curve of c/ versus NIoc/2m is obtained when the dc operating
 

point HmQ on the normal magnetization curve is varied from some minimum 

value to some maximum value. As seen from Hanna's curves in Figure 5.2, for 

a given air-gap ratio the curve of LIDC/ approaches a maximum value for 

some HmQ. In the case of the design relationship given by (5.14), as ex­

plained inAppendix H, for a given air-gap ratio a curve of L12c/v versus 

BmAC can be
AA 

obtained for each dc operating point H. on the normal magneti­

zation curve as the peak ac flux excursion BmAC is varied from some minimum
 

to maximum value. For a given HmQ, the minimum value of LI2c/v occurs at
D
A 


the point where BmAC is minimum. Hanna's curves are for very small values
 

of ac flux excursions, and thus for a given air-gap ratio, Hanna's curves
 

2
 can be considered as loci of these minimum values of LIDC/v. As discussed
 

in Appendix H, only the curve corresponding to the maximum value of L120/v
 

is used as one of the design curves presented in Fig. 5.5 in this chapter.
 

For a given air-gap ratio, the minimum value of LIDC/v that
 

from the design curves in this chapter corresponds to the maximum value of
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LIoc/v obtained from Hanna's curves. Thus, for very small values of ac flux
 

excursions, the design curves presented here approach the maximum values of
 

Hanna's curves. By taking larger ac flux excursions into account, advantage
 

is taken of higher values of relative incremental permeabiiity in calculat­

ing the design parameter LIgc/. Therefore, for the same value of desired
 

inductance, a smaller number of turns is always required when using the de­

sign curves presented in this chapter than that determined using Hanna's
 

curves.
 

5.7 Experimental Verification
 

A number of type "C" cores made of grain-oriented 3-percent sili­

con steel, have been designed and assembled according to the results from
 

the design procedure. The measured values of inductance and ac flux­

density excursion agreed with values obtained from the design procedure
 

within five percent. Because it is impractical to adjust the air-gap
 

length to the exact design value specified by the design results, a part
 

of the difference between, the measured and predicted performance can be
 

attributed to this effect.
 

5.8 Conclusions
 

Specially prepared magnetic core data in the form of curves useful for
 

designing air-gapped inductors were presented. These curves make use of
 

core data available from manufacturers of air-gapped cores. Making use of
 

these curves, a straightforward method of determining the length of the
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air gap and the number of turns for the winding is presented. As opposed to
 

Hanna's curves, by incorporating into the design curves relative incremental
 

permeability data, the large ac flux excursions encountered in filter induc­

tors are taken into account. Advantage is taken of the larger values of
 

relative incremental permeability for finite ac flux excursions. For a
 

specified air-gap ratio, these design curves yield the maximum value for
 

LI2c/v. The design obtained from Hanna's curves is more conservative as it
 

yields a larger number of turns N for the winding than needed to operate
 

under finite ac flux excursions. The design obtained from the design
 

curves presented in this chapter is not optimized in the sense defined in
 

Chapter IV but always yields a smaller number of turns than that obtained
 

from Hanna's curves.
 



CHAPTER VI
 

DESIGN OF ENERGY-STORAGE REACTORS FOR DC-TO-DC CONVERTERS
 

USING AIR-GAPPED MAGNETIC-CORE STRUCTURES
 

6.1 Introduction
 

This chapter develops the procedure for designing the energy-storage
 

reactor for dc-to-dc converters using an air-gapped core. The development
 

here follows closely the material presented in Ref. [15].
 

Methods for designing the energy-storage reactor for dc-to-dc con­

verters using computer-aided and table-aided techniques have been developed
 

I 	 which use energy balance relationships and a designer-selected maximum flux 

density in the magnetic core as the major design constraints [9, 12]. These 

procedures cover the reactor design for the twelve converter configurations 

which result from the combination of the three single-winding power stages 

(voltage stepup, current stepup, voltage stepup/current stepup), and'the 

two-winding voltage stepup/current stepup power stage, and the three con­

trollers (constant frequency, constant on-time and constant off-time). Sim­

plified circuit diagrams of the four power stages are illustrated in Figure
 

6.1. Developed particularly with gapless powdered permalloy and ferrite
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Figure 6.1. Four Energy-Storage DC-to-DC Converters. (A) Single-Winding Voltage Stepup.
 
(B)Single-Winding Current Stepup. (C) Single-Winding Voltage Stepup/Current
 
Stepup. (D)Two-Winding Voltage Stepup/Current Stepup.
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toroidal cores inmind, past procedures make use of a collection of data
 

from a finite population of core sizes and permeabilities. This paper
 

builds upon the analytically derived design equations presented in these
 

references and develops new procedures which permit the design of the
 

energy-storage reactor using a magnetic core with an air gap. The use of
 

such cores permits the selection to be made from an innumerable population
 

of core size-permeability combinations and makes available a wider range
 

of magnetic core sizes, particularly in the larger volume sizes.
 

6.2 	 Analysis of the Magnetic Circuit
 

The introduction of an air gap of length t g into a magnetic circuit
 

with mean magnetic path length zm causes the permeability parameters usually
 

associated only with the non-air-gapped circuit to change rather considerably.
 

The composite-circuit permeability parameters, usually referred to as ef­

fective permeabilities, may be obtained from approximations given below,
 

provided that the length of the air gap is small enough so that the total 

path length of the air-gapped circuit, pm + , may be approximated by the 

quantity zm' and that the,cross-sectional areas of the magnetic material 

Am and the air gap A are taken to be equal, thus implying negligible fring­

ing in the gap region. Under these circumstances, the air gap modifies the
 

effect of the relative normal permeability of the magnetic material, desig­

nated by the symbol PDC' to produce an effective relative normal permeability
 

for the composite magnetic circuit defined by
 

PDC,eff = PDC/[1 + ( KDCPg/Zm)] (6.1)
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and the effective relative incremental permeability defined by
 

PA,eff : p/I + (1 /tm)] (6.2)
 

where pA is the relative incremental permeability of the magnetic material
 

alone at the dc bias point of the core. If the quantities (PDCg/Zm ) and
 

(PA x / m ) are both large with respect to unity, then these two effective.
 

relative permeabilities are equal and can be represented by the single sym­

bol 1eff' where
 

=
=eff PA,eff (6.3)
DC,eff = /Zg 

Since at any bias point the incremental permeability of the magnetic material
 

is less than the permeability obtained from its normal magnetization curve
 

at the same point, the condition necessary for (6.3) to hold is that
 

(z1g/ ) be large with respect to unity, or
 

A g m
 

>> km/Zg (6.4)
 

This condition is one that normally is met without difficulty for
 

most air-gapped magnetic circuits when the magnetic material operates below
 

the knee of its saturation curve and the air-gap ratio ( In) is moderately
 

large. An important implication of this condition is that essentially all
 

of the energy stored in the magnetic core is concentrated in the air gap
 

and very little in the magnetic material. The air-gapped reactor appears
 

as a linear element and thus permits use of the analytic relationships of
 

Ref. [12], which are based on an energy-balance analysis of dc-to-dc con­

verters, to be applied directly to the design of air-gapped reactors.
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In Ref. [123, Eq. (19), a fundamental relationship between the re­

quired minimum volume of a homogeneous powdered permalloy or ferrite magnet­

ic core is established. This relationship, rewritten as
 

Vmin = lOleff6 (6.5) 

is in terms of w0 , the permeability of free space, the effective relative 

permeability, and a factor s which is defined as 

= 2AWmmax/ (Bmax - BR) 2 (6.6) 

The quantity AWm,max is the amount of energy in joules which must be trans­

ferred by the reactor over one switching cycle under the operating condition
 

corresponding to maximum power flow through the converter. This quantity
 

is a function of the power stage specifications and a time parameter which
 

depends on the type of controller. Parameter Bmax is a designer-specified
 

maximum value of flux density which is reached but is never exceeded. The
 

choice of a value for Bmax depends on the type of magnetic material selected
 

for the reactor. BR is the residual flux density of the magnetic material.
 

Using the expression given in (6.3) for effective relative permeabi­

lity in an air-gapped core subject to the restriction set by (6.4), the
 

minimum volume for meeting the energy transfer requirement for a converter
 

is
 

vmin = O6m/pg (6.7) 

Since the volume of an air-gapped core is equal to the actual cross-sectional
 

area Am of the magnetic material (gross core area times stacking factor) times
 

the mean magnetic path length, i.e., vm = Amzm, in order to meet the require­
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ments of (6.7), the inequality
 

Amzg : 11 (6.8)
 

must be satisfied. This relationship is of fundamental importance in the pres­

ent development. The left hand side, under the assumption Am = Ag, rep­

resents the volume of the air gap portion of the composite magnetic struc­

tute. Thus, (6.8) establishes a minimum value for the volume of the air gap
 

in terms of the permeability of free space and the parameter a which is a
 

function only of the power stage and controller specifications and the maxi­

mum allowable flux density in the core.
 

From the air-gap volume inequality of (6.8), it is seen that the de­

signer has the choice either of picking a value for Am, using magnetic core
 

z
catalog data, then computing the required minimum value of air gap g, or
 

picking a value for tg, then obtaining an appropriate core with Am greater
 

than the minimum value for core cross-sectional area Am,min . These two
 

choices are expressed in (6.9) and (6.10), where the use of minimum values
 

allows an equality relationship.
 

kg,min oT/Am (6.9)
-

Am,min = p0 /t g (6.10) 

In summary, in this section the conditions required of an air-gapped
 

core to function as the energy-storage reactor in a dc-to-dc converter have
 

been established which provide a simple relationship between the effective
 

relative permeability of the composite structure and the mean magnetic path
 

length and the air gap length. Using the results of previous procedures
 

based on maximum energy transfer requirements, a relationship between the
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volume of the air gap portion of the core and converter specifications and
 

maximum allowable flux density was developed. This relationship may be
 

interpreted to yield minimum values for either the core cross-sectional
 

area or the air gap length. In the following section, the complete pro­

cedure for designing an energy-storage reactor for this application is de­

veloped and an example is presented.
 

6.3 Design Procedure
 

Given the specifications of the power stage and controller, the
 

essential elements of the design procedure involve the selection of the
 

geometrical form for the magnetic circuit, the type of magnetic material,
 

and the. determination of the core size, the air gap length, and the number
 

of turns. In this section, the detailed steps are outlined and an example
 

is presented to illustrate the design procedure. The power stages included
 

in the design procedures are the three frequently encountered single­

winding configurations for voltage stepup (VU), for current stepup (CU),
 

and for voltage stepup/current stepup (UD), and the two-winding configura­

tion for voltage stepup/current stepup (2UD). For each power stage, three
 

controllers--constant-frequency (FQ), constant on-time (TN), and constant
 

off-time (TF)--are considered. In Ref. [12], equations are identified,
 

where appropriate, by equation numbers with suffix letters which identify
 

the power stage type. The same form of identification is used when needed
 

in the step-by-step procedure which follows.
 

A. The specifications for the converters considered in this paper are:
 

desired output voltage V0 ; expected minimum and maximum input voltages
 

Vl,min and Vlmax; transistor saturation voltage VQ; diode voltage drop VD;
 

expected maximum value of output power Pomax;
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and a time parameter which depends on the type of controller employed--the
 

switching period T = 1/f for (FQ), transistor on-time ton for (TN), or
 

transistor off-time toff for (TF). In the two-winding configuration, the
 

presence of the additional winding, as pointed out in [10],provides an addi­

tional degree of freedom in the design procedure. By utilizing the extra
 

degree of freedom, any one of various design constraint options can be in­

corporated into the procedure. These design constraints are: A, duty cycle
 

centered at a specified value; B, specified minimum duty cycle; C, specified
 

range of duty-cycle variation; D, specified maximum transistor collector­

to-emitter voltage; E, specified maximum diode reverse voltage; H, specified 

maximum duty cycle; and J, specified turns ratio. Table II in Ref. [12] pre­

sents the option constraint equations for the turns ratio y = y = Np/NS, 

where the subscript y represents one of the constraints A, B, C, D, E, H 

or J.
 

B. Choices that are to be made which are associated with the magnetic cir­

cuit are: type of magnetic structure and material, 
and maximum allowable
 

flux density B max . Compute the values of and 6, which are functions of
 

the converter specifications and Bmax using from Ref. [12], Eq. (1), (3), or
 

(5), depending on the controller type (VU), (CU), (UD), or (2UD).
 

C. Specify either the air gap length zg or the cross-sectional area Am of
 

a selected magnetic core. If the air gap is specified, continue to step D.
 

If Am is chosen, then additionally selecting the core with the smallest value
 

of t results in the smallest core volume and gives the greatest assurance
 

that the inequality in (6.4) is satisfied. Proceed to step E.
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D. Compute the value of Am,min using the value of zg chosen, select a core
 

with Am greater than or equal to Ammin and a value of £m as discussed in
 

step C, and compute the value of K9 using the equations
 

Am,min = o /1g9 

K9 = 1 + [ - (c/6)(Am,min/Am)]
 

E. Compute the value of tg,min using the value of Am chosen, select an
 

air gap k which is greater than or equal to £g,min' and compute the value
 

of K using the equations
 

£g,min = P0o6/Am 

= 1 + [I - ( /S)( g,min/, l)]/2
K9 


Continue to step F.
 

F. Using the value of zg obtained in step C or E, and the value of tm for
 

the core selected in step C or D, compute the effective relative permeability,
 

using 	the approximation given by (6.3)
 

eff = Im/
 

As a caution, at this point the designer should be aware that too large a
 

value for peff might indicate that the inequality in (6.4) is not satisfied.
 

In such a case, choice of a larger value for z or a smaller value for Am
 

in step C will result in a smaller 1eff* Continue to step G.
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G. Compute K10using the appropriate expression, according to type of power
 

stage.
 

(Vo/2Pomax)(VI,min-VQ)(Bmax- BR)/(Vo+VD-VQ) (VU)
 

K1O (Vo/2Pomax)(Bmax-BR) (CU)
 

(V0/2Po,max)(VI,min-VQ)(Bmax -BR)/(VI,min+V0+VD-VQ (UD)
 

(Vo/2Po,max)(V,min-VQ)(Bmax-BR)/(Y(V-,minVQ)+Vo+VD) (2UD)
 

Using the value of zg obtained in step C or E, and the values of K10 and
 

K9 just obtained, compute the turns N (for single-winding reactors) or Np and
 

Ns (for a two-winding reactor) and inductance L or Lp and Ls.
 

N or Np = K 9 g/h
 
9910g-


Ns = yN 

L = loN2Am/Zg
 

Lp= 1oN2Am/9
 

p pM g
 

Ls = Lp(Ns/Np) 2
 

Compute the maximum rms winding current IXe,max using Ref. [12],
 

Eq. (2), (4), (6), depending on controller type, for (VU), (CU), (UD), or
 

(2U). Select the wire size and compute the windability of the reactor.
 

If the winding factor is too large, return to step C and choose a smaller
 

air gap or choose another core of same Am with larger value of zM"
 



123 

To illustrate the design procedure outlined above, an example design
 

is now presented using the International System of Units (SI). The power
 

stage is a single-winding voltage stepup configuration and is controlled by
 

a constant-frequency controller.
 

A. The specifications are:
 

VImin = 18 V VQ = 0.5 V
 

Vl,max = 24 V VD = 0.8 V
 

V0 = 28 V f = 2 kHz 

Po,max = 400 W T = 500 ps 

B. Choose a C-core structure with magnetic material of grain-oriented 3%
 

silicon steel with tape thickness of 1.016 x 10-4 m (4 mils). Choose
 

Bmax = 1.0 T. Using Eq. (I,VU), Ref. [12], assuming the residual flux
 

density BR = 0,
 

(2TPOmax/Vo)(Vo+VD-VI mi)/(Bmax -BR)2
 

= 0.1543 

C. Choose the air gap length t to be 6.096 x 10-4 m (24 mils).

g
 

D. Compute Am,min , select core, and compute K2.
 

-4 m2
 = 3.181 x 10
Am,min = 1O&/Qg 


-4 m2
Choose a core with gross core area of 3.632 x 10 . Using a stacking
 

-4 m2
factor of 0.9, Am = 3.269 x 10 . Choose the smallest available value
 

of Zm = 0.1832 m and window area Awn = 1.116 x 10-3 m2 .
 

K9 = 1 + [I - ( /6)(Am,min/Am)11/2 = 1.164
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F. 	Compute peff
 

1eff = 9m/zg = 300
 

G. 	Compute K 0,N, L, and IXe,max* For the voltage stepup configuration,
 

=
KI (Vo/2Pomax)(Vimin - VQ)(Bmax - BR)/CVO + V0 - VQ) 

= 2.164 x 10- 2
 

N = KgKjYZg/1O= 13 turns
 

L = PON2Am/Pg = 114 PH
 

Using Eq. (2,VU), Ref. [2],
 

IXe,max =
 
(V+-V 	 -ToV~i-Q2V+DV~i)211/2
 

POmax(VoD+VQ 1 + 1 [TV 	(Vmin-VQ)(V0+ 
 24.6 A
 
Vo(VImin-VQ) [ 	 LPomax (V0+VD-VQ2 J 
Using a current carrying capacity of-5.067 x 10-7 m2/A (1000 circular mils/A),
 

a wire size of AWG 6 is selected. For double-coated insulation, the winding
 

factor is 0.167, which is satisfactory, and the design is complete.
 

6.4 Conclusions
 

The procedure for designing the energy-storage reactor for dc-to-dc
 

converters which is reported in this chapter is applicable to a variety of
 

types of magnetic structures inwhich an air gap is inserted. The analysis
 

which leadsto the fundamental relationship for the required minimum volume
 

of the air gap region depends upon the principal assumption that the product
 

of the incremental permeability at the core operating point and the air gap
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ratio be large with respect to unity. This condition usually can be met
 

with most common structures and materials. Since the required minimum air
 

gap volume is the product of the gap length and cross-sectional area, the
 

designer has the choice of specifying either one and computing the minimum
 

value of the other. The quantity determining the minimum required volume
 

is a function of the power stage and controller specifications and the
 

specified maximum flux density in the core.
 

Previously reported research results provide the basic expressions
 

which permit calculation of the minimum air gap volume for twelve combina­

tions of power stages and controllers. Once the air gap volume is determined,
 

either by initially specifying the air gap and choosing a core with given
 

cross-sectional area or by specifying a core at the outset with a given
 

cross-sectional area and then determining the air gap, the remaining important
 

design parameters can be obtained. Using the values for the physical dimen­

sions of the chosen core, including air gap, the effective relative permeabil­

ity , turns, inductance, and maximum rms winding current can be determined,
 

a wire size selected, and windability checked. If the chosen core is not
 

windable, the design procedure leads back to a point where another choice
 

may be made which will lead to a windable design.
 

Since the procedure is independent of the type of air-gapped structure
 

and magnetic material and depends only on the physical dimensions of the
 

chosen core and air gap, it should be useful in many applications where
 

powdered permalloy or ferrite cores may not be applicable or available be­

cause of costs or size requirements.
 



CHAPTER VII
 

CONCLUSIONS AND SUGGESTIONS
 

FOR FUTURE RESEARCH
 

7.1 Conclusions
 

The research reported in this dissertation provides the power elec­

tronics system designer with useful analytical guidance and practical usable
 

procedures for designing LC-filters for use with full-wave rectifiers, and
 

air-gapped inductors for filters and for a group of widely used dc-to-dc
 

converters. The design procedures presented in this dissertation eliminate
 

most of the conventional trial-and-error procedures which are frequently
 

followed in designing these power subsystems. Methods for analysis of
 

full-wave rectifier LC-filter circuits operating both in the continuous­

conduction mode and discontinuous-conduction mode are also presented. The
 

design procedures presented here are well suited to computer-aided design
 

techniques, but calculations required in most of the procedures are easily
 

made on an electronic pocket calculator.
 

Chapters II and III present the steady-state analyses of rectifier
 

LC-filters operating both in the continuous- and discontinuous-conduction
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modes. In Chapter IIanalyses are presented for the case when the impedance
 

of the sinusoidal supply source is assumed to be zero. -InChapter III
 

a finite value for the source impedance is assumed. In thecontinuous­

conduction mode, linear circuit analysis techniques are employed, while
 

inthe case of the discontinuous mode, the method of analysis requires
 

computer solution of the piecewise-linear differential equations. An
 

algorithm is presented which permits rapid determination of the periodic
 

steady-state in the discontinuous mode using digital computation. From
 

these methods of analysis sets of curves and approximate relationships
 

useful for designing filters are generated. Using these curves or relation­

ships, a designer can select the inductor, the capacitor, the diodes, and
 

the transformer to'meet a set of specified requirements.
 

InChapter IV,two design procedures are presented for the design of
 

inductors using air-gapped magnetic cores. The first uses a computer to
 

produce a design which is optimized in the sense of minimum core volume and
 

minimum number of turns to meet a required minimum inductance over a speci­

fied range of circuit operating conditions. The second procedure does not
 

yield a design which is optimized in the above sense, but it has the advan­

tage that itmay readily be followed by hand calculations or with a calcula­

tor. An easily used screening process which permits a designer to identify
 

candidate cores for which a physically realizable air gap is possible, is
 

also provided in the second procedure.
 

Using the analysis of a magnetic circuit with Sir gap which was pre­

sented inChapter IV,specially prepared magnetic core data inform of design
 

curves are generated and presented in Chapter V. The most important feature
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of this 	approach is the straight-forward method for computing the number of
 

turns and the length of the air'gap for the selected core for meeting a set
 

of design requirements. This approach does not yield as much information
 

as the methods in Chapter IV do, but it does provide the designer with an
 

easy method to quickly reach a workable design.
 

In Chapter VI, a procedure for designing energy-storage reactors for
 

dc-to-dc converters using air-gapped cores is presented. The analysis, based
 

on the energy-transfer requirement of the reactor, leads to a simple rela­

tionship for the required minimum volume of the air gap. Determination of
 

this minimum air gap volume then permits the selection of either an air gap
 

or a cross-sectional area. Having picked one parameter, the minimum value
 

of the other immediately leads to selection of the physical magnetic struc­

ture . Although the magnetic cores used in the examples throughout the
 

dissertation are type C cores, the design equations and procedures presented
 

are independent of core geometry and magnetic material used and can be ex­

tended rather easily to other shapes such as type E cores, ring cores, and
 

certain lamination structures. It is believed that the design procedures
 

presented in this dissertation-can significantly reduce the time and the
 

effort 	required to design LC-filters for full-wave rectifier supplies, filter
 

inductors, and energy-storage reactors in dc-to-dc converters.
 

7.2 	Suggestions for Future Research
 

Three particular areas for future research havesuggested themselves
 

during the course of this research effort. The first area is concerned
 

with the analysis of the LC-filter when it is a part of the regulator system
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in which the source waveform is a square wave with a certain duty ratio. It
 

is suggested that the analysis methods presented here be investigated for
 

applicability to the complete filter-regulator system.
 

Secondly, in the dissertation, in the design procedure for inductors
 

with air-gapped cores a uniform air-gap was assumed. It is suggested that
 

analysis of the magnetic circuit with non-uniform air-gap be attempted and
 

advantages and disadvantages of inductors with non-uniform air-gap be in­

vestigated. Thirdly, in the design procedure for air-gapped inductors,
 

fringing flux was assumed to be negligibly small. It is suggested that
 

design of air-gapped inductors be attempted for the case when fringing flux
 

is a significant portion of total flux in the core.
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Appendix A
 

DERIVATION OF EXPRESSIONS FOR THE LC FILTER OPERATING
 

IN THE CONTINUOUS-CONDUCTION MODE, CHAPTER II
 

The principle of superposition is used to compute steady-state voltages
 

and currents in an LC-filter operating in the continuous-conduction mode. The
 

equivalent circuit of the filter operating in the continuous-conduction mode
 

is shown in Figure 2.2. First, reducing the sinusoidal component of the voltage
 

source v1 to zero, the dc currents and voltages in the filter due to the
 

application of a dc voltage source of value 2Vlm/r are given as below:
 

2Vm
 
I= 2V (Al)
 
X -ERL
 

2Vl
 

(A2)
V0 -


The response of the filter to the second harmonic component of the
 

voltage source vi is computed by the sinusoidal steady-state method. The
 

filter impedance Z(j2m) as seen by the sinusoidal source of frequency 2L
 

in radians/sec is given by
 

RL
 

Z(j2w) j2tL + a2 C (A3) 
RL + j2wC 

,i (131) 
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Eq. (A3) is simplified to
 

(

j2AL
(RL-4w2LCRL)
=
Z(j2w) 


I+j2mCRL
 

The magnitude IZ(J2w)l and phase ipof filter-impedance Z(j2w) may
 

be obtained from (A4) in terms of N, K, and RL
 

Iz('J2w)l =~RL 	 1-8m+l6w4+4K2 
(A5) 

jl+C44I/K2) 

= arc tan [2K/(1-4z)] - arc tan (22/') (A6) 

From Figure 2.2, the value of i due to second harmonic component
 

is given by
 

4V

4Vlm cos2wt (A7) 

X 3w Z(J (A7 

Substituting IZ(J2w)l and o from (A5) and (A6) for Z(j2) in (A7) leads to 

4V 1V+ (4w,/4 2 

i = V 1 +- cos(2wt-,p) (A8) 
3 rRL 8+l N 

Defining Zl(j2w) as the parallel combination of RL and 1/j2wC
 

RL

JZl(j2w)I -	 (A9)
 

: -arc tan (2C2/K) 	 (AIO) 
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i 

Thus, the output voltage v0 is given by
 

v= ix Z1 (j2) (All)
 

Substituting for i,and Z1(j2o) from (A8), (A9), and (AlO) in (All)

A 

and simplifying leads to
 

v 4V cos(2wt- +) (A12)
 

3 1-8w2+l 6 +4K2 

The total inductor current iXis obtained by summing the dc and ac
 

components given by (Al) and (A8), respectively
 
2Vm 4Vlm1+(4w4m 2
 

I 34V=RL e+C +4K
2 cos(2wt-p) (AI3)
 

X = 2RL 3iR l8 l-t~4c 
L N N 

Using the same approach, the total output voltage v0 isobtained by summing
 

components given by (A2) and (A12),
 

2VM 4Vlm 
V0 = cos(2mt-+¢) (A14) 

37 1-8w2+l 6w4+4K2 

From the alternating component in (A14), the peak-to-peak ripple 

voltage VOp is 
8V 

Vop = (A15) 

3nr 1-8w2+l6w4+4Kc 
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and the average output voltage V0 from (A14) is
 

V0 - m (A16)
 

from (A13), the peak and rms values of inductor current, IXm and IXe, are
 

Ixm -r L 2+ 3 l-8&2+16W4 + 4 K2 (A7 
4Vm 1 + (4 /K) 
 1
 

L ~ ~ N6m+K'X RL 7 (A17)"
 

=4V1 (l+4w/K2) 

Xe~~~~ ~~ 7RL4118wl6w4 +4K2 ) (1) 

In the case of a center-tapped transformer, current in the two
 

secondary windings flows during alternate half cycles and is equal to iX.
 

Thus, the rms value of current in each secondary winding ISe is
 

1 r 1 

Ise =f ' i~de (Al9) 

or
 

I Xe (A20)

Se­



Appendix B
 

DERIVATION OF EXPRESSIONS FOR THE LC FILTER OPERATING
 

IN THE DISCONTINUOUS-CONDUCTION MODE, CHAPTER II
 

In this Appendix, the expression for v0 and iX given by (2.11) and
 

(2.12), respectively, are derived. The derivations of the expressions for
 

.v0 and ix when the diodes are conducting in the discontinuous-conduction
 

mode are given in Section B.I. The expressions for the case when the diodes
 

stop conducting are derived in Section B.2.
 

B.1 	 Diodes Conducting
 

The equivalent circuit when a diode is conducting is shown in Figure
 

2.3A. 	The state equations for the circuit are
 

di

L X1
 

Ldx=v'-V 1 (81)
dt I 01
 

dv01 =
C dt iX1 vlR 	 (B2)
01
 

Differentiating (B2) and multiplying by L leads to
 

d2V didV 
LC 01_ - L Xl L d 01 (3 

dt2 	
(B3)
L dt RL dt 


(135)
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Substituting for Ldixi in (B3) from (BI) and rearranging
 

dt
 

d2L dv0
 
v +
LC ++ VB4 

14)
dt2 RRL dt 


Let e =t
 

dv01 dv0 0 (B5)
do dvol 


dt de dt do
 

d2
v0 1 2d
2v C6)
 

6j2_ 01 

dt2 
 d82
 

Substituting for dvol and d2V0 l in (B4) from (B5) and (B6) leads to
 
dt dt2
 

m2Cd2Vol 
 m dVol
2
2LC 01 + !2RLd v~l Vmsin(=-e) (B7) 

d6~2 RL dio 01 1~inm 

Writing this last equation in terms of wN and K
 

d2 V dvol
 

W2 01 + K 01+ V =V si5, o)(8 

N do mdo2 01 Vs(o-o) (88)
 

B.1.1 Solution for v0
 

The particular solution of v01 due to the forcing function
 

VImsin(e-oo) is obtained first. Assuming the particular solution for v l
 

to be of the form
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vp = Av sine + B vcose (B9) 

and substituting the value of vp and its derivative from (B9) in (B8) and
 

equating the co-efficients for sine and cose from both sides of the resulting
 

expression leads to the following set of simultaneous equations for unknowns
 

A and B
 

V Nv I 

A (1-W2) - B K V oo(BOAvl- N) Bv = VlCOSeo (810) 

AvK + B (l-W2) =eo (B) 

v N vImsie 81 

Simultaneous solution of (B10) and (BI1) yields the following values for -

A and B 
v V 

AV 
Vl[Coe(l-d)

= 
-K sineo] 

(B12) 

(l-W2)2 + K2 

Vl[-Sineo(-w) -K coseo]
 
B coeN (B13)

V (l-W2)2 + K2
 

N
 

The homogeneous part of solution is obtained next. The homogeneous part of
 

the equation (B8) is
 

2
 
2 N -e +K- -- + v01 = 0 (814)
mmd82 do
r d2v01  dvo1 O 

Let the solution be of the form
 

vh = DeAe (B15)
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Substituting vh in (B14), the corresponding characteristic equation is
 

2
N2X+ KA + 1 = 0 (BI6) 

For the discontinuous-conduction case 

4w2 > K2 (B17) 

Thus, the roots of (Bi6) are given below 

1 2 + j± (B18)
 

where
 

6 : -K/2w 2 (B19)
 
N
 

a = C.T4~4-K2)/(2w2) (B20) 

The homogeneous part of the solution for v0l can be written as 

vh = exp(6e){Cvsinae + Dvcosae} (B21) 

The complete solution for v01 is obtained by adding the particular 

solution vp and the homogeneous solution vh given by,(B9) and (B21), respec­

tively 

vol (e)= Avsine+BvCOSa+exp( e){Cvsinae+DvoSae} (B22) 
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From (B21),
 

o C o v ol (B23)
iXl) =C dt +RL
 

or
 

dWCol Vo~l (B24)

iXle = dCo 
 RL
 

Substituting the expressions for v01 , and its derivative from (B22) into
 

(B24) leads to
 

_L Aisine+Bicose+exp(ae){Cisinae+Dicosae (B25)
 

where
 

A= Av - (BvW)/K (B26)
 

Bi = B + (Avo')/K (B27)
1 v v N 

C C + (m2 (C -aD ))/K (B28)
 

Di = Dv + (W2(D +aC ))/K (B29.) 
1 N v v
 

B.2 Diodes Not Conducting
 

The equivalent circuit when diodes are not conducting is shown in
 

Figure 2.3B. -The state equations are
 

C dv02 + = 0 (B30)
 

dt RL.
 

iX2 =0 (B31)
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(B30) can be written as
 

Cdv02 + - 0 (B32)
de 
 RL
 

Let the solution for (B32) be
 

v02 = a e A(6-e1) (B33) 

Substituting for v02 in (832) from (B33), the root of the characteristic 

equation is found to be 

1 _ K (B34) 

wCRL mN 

Thus 

v02 (e) = a [exp{-(e-e 1)K/w}]. (B35) 

at e = o1, 

v02 =v 02(e1 ) (B36)
 

From (B35) and (B36)
 

a = V02(e,) (B37) 

Thus, 

v0 2(e) = V02(e1 )[exp{-(e-e1 )K/wN (B38) 



Appendix C
 

DERIVATION OF EXPRESSIONS FOR THE LC FILTER WITH NON-ZERO
 
SOURCE IMPEDANCE OPERATING IN THE CONTINUOUS-CONDUCTION
 

MODE, CHAPTER III
 

In this appendix, the expressions for voltages and currents in the
 

filter circuit with source impedance included, are derived for the case when
 

the filter operates in the continuous-conduction mode.
 

From the equivalent circuit in Figure 3.2A and following the method
 

in Aopendix A, the dc output voltage V0 and inductor current IX are given
 

by
 

2Vl 
I - RL(-l (Cl) 

2VlIM
V 2V (C2) 

V0 5 -

For computing response to the second harmonic, the filter impedance
 

Z(j2w) seen by the harmonic is
 
RL
 

Z(j2w) = RI + j2wLeq + j2wCI (C3)
 

L j2wC
 

(141)
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From (Cs), the magnitude IZ(j2w)I and phase * of the impedance
 

Z(j2) in terms of r,,N'p, and RL is
 

(p+1-4w2)2 +(2K+(2pw2)/K) 2 

IZ(j2)I = RL 1+(4w/K2) 

p= arc tan. (2K+(2p2)/K)/(P+l-4w)
 

(C5)
 
arc tan [(2.2)/K]
-


Following the method in Appendi-x A, iX and v0 are given by
 

4Vi +(N )/K2
 

iX = 4 +4)/ cos(2bt-) (C6)
 
3TrRL (P+1-4wN)2+(2K+(2PwN)IK)2
 

4Vl
 

v 4VIM cos(2wt-+o) (C7)
 

2

3r (-+l-4w2 )2+(2K+2pw2/K)

Adding the two responses, the total inductor current and output voltage is
 

obtained as
 

t-_c
4Vcos 
ix W L 4) cos(2cot-P)] (C8)TRL 1201+0-l 

34 (p+l-4w2)2+(2K+2puwj/K)2 
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-4VI[2p11 	 cos(2wt-lP+4) (C9)

0 7 2(~ l) 3 ( p + l - 4 w) 2+( 2 i+2 p w/ )2N N 

From (C8), the dc output voltage V0 and peak-to-peak ripple VOp are given by
 

2V im 
V0 = 2V (Clo) 

Vop V (Cil) 

3m, (0+1-4w,2)2+(2c+(2po2)/c)2 

From (C7), the rms and peak values of inductor current IXe and IXm are ob­

tained from the expressions
 

4V ____ + 	 NlC4/2 (C12) 
1 Xe = WRL 4 4(p+1)2 18((p+l-4o )2+C+(2PW2)/K)2)j 

4V 	 [(+(4 (2) 
I	mTr 2il17 + N)1 C3 
T1rRL (p+1-4m02)-~m 	 3 Nf 2+(2K+(2pw2)/K) 2 (C, 



Appendix D
 

DERIVATION OF EXPRESSIONS FOR THE LC FILTER WITH NON-ZERO
 
SOURCE IMPEDANCE OPERATING IN THE
 
DISCONTINUOUS-CONDUCTION MODE,
 

CHAPTER III
 

In this appendix, the derivations of the expressions for v and
 

iX when the diodes are conducting in the discontinuous-conduction mode are
 

presented. The derivations for the case when the diodes are not conducting
 

is the same as given in Section B.2 of Append{x B, and will not be repeated
 

here.
 

For the equivalent circuit shown in Figure 3.2A, the differential
 

equation for v01 can be written following the procedure in Appendix B,
 

Section B.l
 

dv R
 
2Vo + (CL+ + (- + v Vlsin(e-eo) DId2vC RE RI (=LL (Dl)

do L L 

Writing (DI) in terms of wN' K, and p 

d2Vo dVo1
 
2 1+ K dl+ (p+1)v = Vsin(e-e) (D2)


N dde22 r do 01 


(144)
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where 

K = K + (pw)/K (03) 

rN
 

Solution for vOl
 

As described inAppendix B, Section B.1, the particular solution
 

for v01 can be obtained as
 

vp = A sine + B cose (4)
 

where
 

Vim [coseo(P+l-W) - K sineo0 
Avr = 2 N)K C
+ 
 (06)
 

Vi [sine°(P+l-m2) - KrC°Se°](6
N Kr 

2 + Kr
2 (6
Bvr =(p+l-w2)
 

For the homogeneous part of the solution, the roots of the char­

acteristic equation of (D2) are for the case 4w2(p+l) > K2
 

X = r ± j3 r (07) 

where
 

r =( -/(2W2) (D8) 

r =(N 4wm2 (p+l - m2l/(2w2) (D9) 
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As i'n Appendix B-2, the solution for v and i is found to be
 

v01()= Avrsine + BvrcOSO + exp( re) ECvrsinare + DovrS
cor] (D1O)
 

ixl(e) = R-Airsine + BirCOSe + exp( re){Cirsinre + DirCOStrel (DII)
 

For the case K2 > 4W2(P+l), the roots of the characteristic equation 

are 

(DI2)=0r+a'a1 

(D13)
a2 = r-j' 

where 

2 

IC - 4 Pl 

a N (D14) 

The solution for vOl and i is obta-ined as 

v01 (e) = Avrsine + BvrCoSe + C'rexp(ale) + D'rex(a2e) (D15) 

iXle) _ [Ai sine + Bircose + Cirexp(le)± Direxp(a2e)] (D16)-

where
 

A. =A 2 (D17)
Nvr 

ir vr K 

2 AmW
Bir = K (DI8)Bvr + r 
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C! = C' 2)/K2) 	 (D9)

ir yr(1N9)
 

D! = D' )/K() (D20)
ir vr(l+(W2)/ 2) 


Where Cvr, Dvr, C and D' are given as follows:
 

Cvr = [(-KVmsineo/ ) - Avr r(Vlmsineo-Bvr)]/ar 	 (D21) 

Dvr = Vmsine0 -Bvr 	 (D22) 

(23r 2(V sine Br + (KVl sineO/W ) + A ]/(a2-l) (D23) 

D = [(KVlmsineo/u2)+A r+a (V1 sineo-Bv)]/(a2 -1 ) (024) 



Appendix E
 

DERIVATION OF FI(6mAC "A' HmQ' L, IDC, VAC, f, m, Am) = 0, CHAPTER IV
, 


Referring to Figure 4.2, it can be seen that the negative air-gap
 

line passes through the point (NIDc/ZmO) with a slope equal to -VO /Z
 

and intersects the normal magnetization curve at the point (HmQ,B ). The
 

negative air-gap line equation can be written:
 

Bg= I0(NIDc - 9 -mH)/g 	 (El) 

where N is the number of winding turns and V is the permeability of free
 

space. Substituting HmQ and BmQ for H and B and rearranging (El) leads
 

to an expression for N.
 

N =(gB + PHM)/omQ)O/DC 	 (E2)
 

Inductance L for the winding,	is given by the expression
 

LA N2Am
N 
L = i( 1 + l(tg/Zm))(Tm) (E3) 

where U is the relative incremental permeability for the core material at 

a given operating point [20]. Substituting (E2) into (E3) and multiplying 

the result by k.m[vi + PA(P / m)] yields 

(148)
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LmEl+A(g/mZ = 1IAAm(zgBmQ + zmlIOHmQ)2/OIP C (E4) 

which can be rearranged and simplified 	to 

- LA (ES)z2 + [2z POH QBmQA m 


2 2H2 /B2
+ [(z , (p Q Lz/A B2 v')] = 0 
mOmQ mQQ 0 CLm mBmQ A 

Equation (E5) can be written in terms of kg pA and constants as
 

Z + Kz9 + K2 - K3/PA = 0 	 (E6)
 

where K1 , K2, and K3 are defined in (4.4), (4.5), and (4.6) respectively.
 

Roots of k for the quadratic equation (E6) in z are given by (E7) in which
 
g g
 

only the positive sign for the square root term can lead to a meaningful
 

physical value for zg and therefore is shown in the expression. This is
 

shown in Appendix G.
 

zg = O.5[-K1 + 4K7 - 4[K - (K3/VA)]] 	 (E)2 


To determine the remaining unknown quantity vA in (E7), the peak ac
 

flux density BmAC must be found. BmAC is related to the rms.ac voltage
 

across the winding for the assumed sinusoidal fundamental frequency component
 

as follows:
 

VAC = [2 NfAm mAC 	 (E8)
 

Rearranging (E8) to obtain an expression for N and then squaring leads to
 

N2 = K4/B2AC 	 (E9)
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where K4 is given by (4.7).
 

Substituting the expression for N2 in (E9) and the expression for
 

k g from (E7) into the equation for L given by (E3) leads to the relationship
 

(ElO) which is the desired form Fl(.) = 0.
 

K5 2 3 K4 

FI(') = K6 - K, + K1 - 4(K2 - ) - 7C 0 (EIO) 

where K5 and K6 are defined by (4.8) and (4.9).
 



Appendix F
 

DERIVATION OF THE SCREENING RULE FOR A PHYSICALLY
 

REALIZABLE AIR GAP, CHAPTER IV
 

The screening process included in Flow Chart 3, Figure 4.7, is based
 

on the consideration that, for the air gap to be physically realizable, the
 

expression for z given by (E7) in Appendix E and in the text as (4.11) must
 

yield a real positive quantity. Two sets of conditions will be considered
 

by examining the value of the expression for K, given by (4.4) and repeated
 

here as (Fl)
 

2
K, = HHB L)/A B2 (FI)
AO(2 ­
m m Q mQ DC m ml 

The parameter K, can also be expressed in terms of K2 and K3, which are de­

fined by (4.5) and (4.6), and is given by (F2)
 

K, = 2 F2 - (K3/km ) (F2)
 

Case I: K1 0
 

Using the definition of K1 in (FI), the inequality K1 <0 is equiva­

lent to the inequality (F3)
 

IDcL/ 2z A > H B (F3) 

(151)
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and using (F2), it is equivalent to the inequality 

Km3/ Zm) 2VK-2 (F4) 

The specification-dependent parameter K8 used in the screening pro­

cess and calculated in Step [I] of Flow Chart 3 is defined as
 

K8 L IcL/
2zmAm (F5) 

Thus, for K, to be equal to or less than zero, (F6) must be satisfied 

K8 L HmQBRQ (F6) 

Under this condition, z will be a real number if the discriminant in (E7) 

is equal to or greater than zero or if 

K2 + (4K3/VA) > 4K2 (F7) 

Using the value of K, from (F2)-, the inequality in (F7) reduces to 

(K3/%) + (4%m/PA) L 4 -T (F8) 

Since (F4) holds for the case under consideration, the smallest value for 

the left side of (F8) occurs with the equality sign in (F4). From (F8), for 

Yg always to be a real number with any combination of tm' PA, K2, and K3, 

then 

(49,m/1A > 2 (F9)
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Using the value for K2 from (4.5) in this expression leads to the inequality
 

(FlO) 

2BmQ/popHmQ > 1 (FIO)
 

For essentially all quiescent or bias points and all magnetic materials (FIO)
 

is satisfied. Therefore, when the inequality expressed by (F6) and shown in
 

Step [J] in Flow Chart 3 is satisfied, the selected core and quiescent point
 

are satisfactory for continuation of the design procedure.
 

Case II: K1 > 0
 

For this condition, which corresponds to K8 < HmQBmQ in order for
 

zg to be a real positive number,
 

K3/P > K2 (Fl 1)
 

Using the expressions for K2 and K3 from (4.5) and (4.6) and rearranging
 

terms leads to inequality (F12) which must be satisfied for a core to be
 

considered further.
 

K8 > po(H2Q Q)/2 (F12)
 

When the inequality expressed in (Fl2) and shown in Step [K] in Flow Chart
 

3 is satisfied, the selected core and quiescent point are satisfactory and
 

the design procedure may be continued.
 

If (F12) is not satisfied, a final test is made which compares K8 

with the value of po(H 2 p )m/2. The parameter p (H2 ) /2 is the
OMQAQ min AQ min
. .0mQ 
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minimum value that the product wo(H Q Q)/2 can take on over the range of
 

the magnetic core material data available. If inequality (F13), shown as
 

Step [LI in Flow Chart 3, is satisfied,
 

K8 > po(H2Q/Q)min/2 (Fl3) 

Then choosing a new value of H in Step [N], which will satisfy the in­
mQ
 

equality (F12) in Step [K], will allow the continuation of the design pro­

cedure. If (F13) is not satisfied, a larger core must be selected and the
 

screening procedure re-entered.
 



Appendix G
 

DISCUSSION ON THE QUADRATIC ROOTS FOR g, CHAPTER IV
 

As mentioned in Appendix E, only the positive sign in front of the
 

square root term is considered in the expression for X given by (E7). With
g
 

the negative sign, the expression for k becomes
 
g 

£g = 0.5[-K, - IKr- 4[K2 - (K3/'A)] I (G) 

Case I: K, < 0 

Using the definition of K, in (FI), the inequality K1 0 is equiva­

lent to the inequality (G2) 

I2cL > 2 mAmHmQBmQ (G2) 

Inequality (FIO) given in Appendix F, which is easily satisfied for essen­

tially all magnetic materials and bias points, is rearranged as follows 

IAo1AHmQ/BmQ < 2 (G3) 

Substituting for 2 in (G2) from (G3) leads to inequality (G4)
 

IDcL > v AmAmH2 e (G4)
 

(155)
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Let
 

KI,= K2 - (K3/PA) (G5) 

From (4.5) and (4.6)
 

11(p2 )-(pokM12 L/A B2 A )
 
2H2 /B2 


0 m mQ mQ 0mDC Q A
 

pot [iO'-E p-iA H 2 - L] (G6) 
AB2QU 0 AMInmQ DCJ 66 

From (G4) and (G5)
 

K11 < 0 (G7) 

Expression for z in terms of K, and K11is 

= 0.5[K1 - (G8) 

From (G7) and (G8) it is seen that gap t is a negative quantity which is
 

not physically realizable.
 

Case II: KI > 0
 

From (GI), tg is either a negative real number or a complex number
 

neither of which is physically realizable.
 



APPENDIX H
 

ALGORITHMS FOR GENERATING DESIGN CURVES FOR AIR-


GAPPED INDUCTORS, CHAPTER V
 

The algorithms used in generating design curves are explained in
 

this appendix by reference to the flow chart presented in Figure H.l. In
 

the flow chart, starting with an assigned value of air gap ratio Pg/m and
 

an initial quiescent point (HmQ,BmQ) on the normal magnetization curve, a
 

value for design parameter LI c/v is computed for an initial value of
 

BmACmin using relationship (5.14). The procedure continues by iteratively
 

selecting additional quiescent points until values for LI2 / corresponding

DC
 

to BmACmin for all the quiescent points are obtained. The value of 
HmQ = HmQ'opt at the quiescent point (HmQ,BmQ) which corresponds to the 

maximum value of LI c/,, is used to generate design curves of LI c/v versus
 

BmAC for various values of air-gap ratios using the corresponding HmQ opt
 

for HmQ in (5.14).
 

H.1 Flow Chart
 

In the procedure illustrated in the flow chart in Figure H.1, a
 

search is made for the optimum quiescent point HmQ opt for a specified
 

air-gap ratio which yields the maximum value of LIDc/v. The value for the
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corresponding HmQopt(g//%) is used for the dc operating point HmQ in
 

2

(5.14) to generate design curves of LIDc/v versus BmAC , shown in Figures
 

5.5, 5.6, and 5.7. The operation begins with the assignment of minimum and
 

maximum values for the air-gap ratio and the choosing of the magnetic mater­

ial. The data base for the designated core material includes sample points
 

taken from the normal magnetization curve and from a family of relative
 

incremental permeability curves for the chosen material, as described in
 

Flow Chart 2, Figure 4.5, in Chapter IV.
 

Starting with the first sample point [H (1), Bm(1)] on the normal
 

magnetization curve, and using an interpolating polynomial method to ap­

proximate the values of BmQ, and p A for BmACmin , as described in Chapter
 

IV,the value for LIDC/v is calculated from (5.14) and stored. This quies­

cent value H is then incremented by a prescribed amount AHm and the above
 
mQ
 

procedure is repeated until the specified maximum value for the quiescent
 

point HmQ,max is exceeded. The value of HmQ = HmQ'opt corresponding to the
 

maximum value of LIc/v is used now in generating design curve for the
 

specified air-gap ratio.
 

Using the method of an interpolating polynomial to approximate val-

A 

ues ofmQ and corresponding to HmQ'opt and various values of B
 
ofB and mQotmAC'
 

LI c/\Yis computed from (5.14). A curve of LI C/v versus BmAC is obtained
 

for the specified air-gap ratio. The value for (NIDC/km)opt corresponding
 

to HmQ'opt for the specified air-gap ratio is calculated from (5.15). The
 

air-gap ratio is then incremented by a prescribed amount A(k /9 ) and the
 

above procedure is repeated. A family of design curves for grain-oriented
 

3-percent silicon steel, obtained in this manner are shown in Figure 5.3.
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a0 to a3 	 numerical coefficients used in approximate relationships
 

given in Table 3.2 and in Table 3.3, numeric
 

area of air gap, m2
 cross-sectional
A 	 = 

A. = 	 (-Bv2/K)+A v, V 

A. 	 = (-BvrN/,),A V 
2 

area of magnetic core material, m
= cross-sectionalAm 


Ammin = minimum value of cross-sectional area of magnetic core as 
2 

determined from minimum air-gap volume requirement, m


Av = [Vlm(coseO(l-W2)-sine0)]/[(l-2)2 + K2],V 
2 + 22 2 ], 

Avr = EVlm(Cose0(P+-wN )-Ksilne0)]/[(P+ 2IN)+ KJV 
2 

area of magnetic core window, m
Awn 

2
 

area of wire, including insulation, m
A = 	 cross-sectional 

b0 to b3 = 	 numerical coefficients used in approximate relationships 

given in Table 3.2 and in Table 3.3, numeric 

B = flux density in a magnetic circuit, T 

B = flux density in air gap, T 

B. 	 = (Avw /K) + Bv , V 

(A 2B.
ir (AvrwN/K) + Bvr, V 

Bm = flux density in magnetic material, T; corresponds to 

values on the normal magnetization curve 

Bmax maximum allowable core flux density, T 

(165)
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BmAC - peak value of the fundamental component of the ac flux 

density in magnetic material, T 

BmAC,max maximum value of BmAC for a particular value of HmQ as de­

termined from incremental permeability data, T 

BmAC,min minimum value of BmAC for a particular value of HmQ as de­

termined from incremental permeability data, T 

BmDc average or direct component of Bm ' T 

B = selected quiescent or bias-point value of Bm, T 

B mQopt = value of BmQ corresponding to optimum (minimum) turns for 

a specified value of inductance, T 

B = residual core flux density, T 

BB =2 ++2 K2 V_[~~VI(sine Ol-mN2) +KCOSeO)]/[(l-i2N)2+K21V 

Bvr = [Vlm(Sine 0(P+l-wN) - Krcoseo)]/[(P+l-WN) + Kr], V 

cI to c3 = numerical coefficients used in approximate relationships 

given in Table 3.2 and in Table 3.3, numeric 

C - capacitance value of the output capacitor, F 

Cj = (n - aDv/1K) + Cv, V 

Ci - (ON(BrC -a D )/K) + C VyrNr r vr yr 

yr al)/K) + 1], V 

CU - symbol used to identify current stepup power stage 

Cv [(-KV msne - Av -A (Vimsine0-Bv)]/a, V 

Cvr - [(-KVlmsine0/W2) - A -Br(Vmsine0-Bvr )]/ar V 

Cv yr - [a2(V sine-B ) + (KV sine0/W) + A ]/(a -a), V21Im 0 yr m O/N) yr 2 1 

d to d3 = numerical coefficients used in approximate relationships 

given in Table 3.2 and in Table 3.3, numeric 

D= 2 W +cC )/K + Dv, V 

ir = oN(srDvr+YrCvr)/K + D, V 
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D!ir Dyr aCwl)/K) +r(w1 1], V 

Dv vImsine0-Bv , V 

Dvr = VImsineo-Bvr, V 

' 
yr -Im 

-(KV sine / 2)+Av+al(Vmsineo-Bv)]/(a2-
O0 N)+vr 1c Irnsn0 vr)J2(-% 

), VV 

f = frequency of the fundamental component of voltage across 

the reactor, Hz 

FQ = symbol used to identify constant frequency controller 

Fw = winding factor, numeric 

Fw,max = maximum permissible winding factor, numeric 

H = magnetizing force, A/m 

H = magnetizing force in air gap, A/m 

H = magnetizing force in magnetic material, A/m; corresponds to 

values on normal magnetization curve 

HmD C = average or direct component of Hm, A/m 

H = selected quiescent or bias-point value of Hm, A/m 

HmQopt = value of HmQ corresponding to optimum (minimum) turns for 

a specified value of inductance, A/m 

IDC maximum of the average or direct component of inductor 

current, A 

le= effective or rms value of input current, A 

i = instantaneous value of output current, A 

il = instantaneous value of output current when diodes are 

conducting, A 

i02 instantaneous value of output current when diodes stop 

conducting, A 

0 average output current, A 
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ip instantaneous value of current in the primary winding of 

transformer, A 

IPe effective or rms value of current in the primary winding 

of transformer, A 

IPm = peak value of primary current, A 

isl~i=S2 instantaneous value of currents in one of the secondary 

winding of the transformer, A 

ISe effective or rms value of current in each secondary wind­

ing of the transformer, A 

ISm peak value of secondary current, A 

i-X instantaneous value of inductor current, A 

iXl - instantaneous value of inductor current when diodes are 

conducting, A 

iX2 instantaneous value of inductor current when diodes stop 

conducting, A 

IXe = effective or rms value of inductor current, A 

Ixemax = maximum value of effective, inductor current, A 

Ix = peak value of inductor current, A 

K(2 
K1(12 m 
: CIPo~mHmQ/BmQ) 2 2 

L)/A B2 Dc mmQ' m 

K(3 = Wo9 mlDcLIAmrQm 

K(4 : CVAc/4-rfAm)2 , T2 

K(5 = 22tm , m 

K6 = L/2.oAm, m-I 

K7 : -K1 +1K# - K- K ,m 

K8 8DC 
c2L/2 mA 

m 
, HA2/m3 



169
 

K 9 	 1 + [I - (C/6)(Am,min/Am)]I/ 1 + [1 - (/6)(zg I I/2 

numeric 

(Vo/2POmax)(VImin-VQ )(Bmax-BR)/CVo+VD-VQ),VU,(AT)-' 

(go/2Po0max)(Bmax-B R),CU,(AT)-1 
Klo 	 (Vo/2Pomax)(VI,min-VQ )(B max-BR)/(VI,min++VD-VQ),UD,(AT) 1
 

(Vo/2Pomax)(VImin-VQ)(Bmax-BR)/( (Vlmin-VQ)+Vo+VD),2UD
 
I
 

(AT) 


2
K 	 Potm r m/A H2 - I2 L, m
A m
1I AB 2 QoA m mQ DC
 

m mQ A
 

k = 	 length of air gap, mg
 

Sg,min= minimum value of air-gap as determined from minimum air­

gap volume requirements, m
 

Pg£opt length of air gap corresponding to optimum (minimum) turns
 

for a specified value of inductance, m
 

£m = mean magnetic path length in the magnetic core material, m 

L = inductance value of inductor, H 

L= effective inductance associated with input voltage source I 


as referred to the secondary side of the transformer, H 

L = inductance of primary winding, H 

Ls = inductance of secondary winding, H 

n= harmonic number in the fourier series expansion of input 

voltage, numeric
 

N number of turns on inductor winding, numeric
-

Nmin 	 minimum number of turns on inductor winding for a specified
-

value of inductance, using a given core material, geometry
 

and air gap-, numeric
 

N p number of turns on the primary winding, numeric
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NS = number of turns on each secondary winding, numeric 

P.. = power factor of the rectifier-filter circuit, numeric 

PO,max maximum value of average output power, W 
Q = quality factor of the filter at resonant frequency, numeric 

RI effective resistance associated with input source as re­

ferred to the secondary side of the transformer, S2 

RL = output load resistance, E 

t = time, s 

toff = transistor cut-off interval, s 

ton = transistor conduction interval, s 

T : period of one conversion cycle, s 

TF - symbol used to identify constant off-time controller 

TN = symbol used to identify constant on-time controller 

U - option constraint quantity, y = A, B, C, D, E, H, or J; 

units depend on option 

UD symbol used to identify single winding voltage stepup/ 

current stepup power stage 

2UD symbol used to identify two winding voltage stepup/current 

stepup power stage 

VAC minimum of the rms or effective value of the fundamental 

alternating component of voltage across the inductor, V 

VD = diode forward voltage drop, V 

VI = converter DC input voltage, V 

Vie = effective or rms value of ac input voltage to the rectifier­

filter circuit, V 

Vim peak value of the sinusoidal input voltage, V 
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Vl,max = maximum converter input voltage, V 

V,min = minimum converter input voltage, V 

vh = instantaneous output voltage due to homogeneous part of 

the differential equation, V 

v = instantaneous value of output voltage, V 

vl = instantaneous value of output voltage when diodes are con­

ducting, V 

v02 instantaneous value of output voltage when diodes stop 

conducting, V 

V0 = dc output voltage, V 

Voe = effective or rms value of output voltage, V 

VOp = peak-to-peak output ripple voltage, V 

V p = instantaneous output voltage due to forcing function of 

differential equation only, V 

V = transistor saturation voltage drop, V 

VU symbol used to identify voltage stepup power stage 

IZ(j2w)I = magnitude of the filter impedance seen from the source at 

the second harmonic of the sinusoidal ac supply, Q 

1Zl(j2w)j magnitude of the parallel combination of filter load and 

capacitance at the second harmonic of the sinusoidal ac 

supply, a 

w=m2 K2 /(2w ), numericN N 
a' = (K-4w2(p+l)/(2w2), numeric 

a - + a', numeric 

a2 - r - a 5' numeric 

Nr2(p+l) - Kr/(2wN), numeric 
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= - l(2/2), numeric 

r K(2w2), numeric 

Y - Ns/NP = turns ratio, numeric 

-y turns ratio Ns/NP for option y where y =A,B,C,D,E,H, or J, 

numeric 

6 - computed quantity used in calculating minimum air-gap 

volume (Reference 12), m4/H 

=I error term computed in solution for discontinuous mode, 

numeric 

error term computed in solution for iA and BmAC , numeric 

Emax = value of c corresponding to A,max and BmAC,max , numeric 

Smin = value of E corresponding to IA,min and BmAC,min , numeric 

= computed quantity used in calculating 6, N, and Np (Refer­

ence 12), m4/H 

8 = wt, radians 

60 = delay angle between beginning of sine pulse and resumption 

of inductor current in the discontinuous mode, radians 

61 end of the conduction interval in the discontinuous mode, 

radians 

K - L/RL, numeric 

Kr = K+(PWN/K), numeric 

Kcr critical value of the parameter K, numeric 

= coefficient of the exponent in the solution for the dis­

continuous mode, numeric 

VDC relative normal permeability of the magnetic material, 

numeric 
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PDC,eff effective relative normal permeability of the air-gapped 

structure, numeric 

Peff effective permeability of the air-gapped structure, 

numeric 

]= 

A 

permeability of free space, 4n x 10-7 H/m 

relative incremental permeability, numeric 

"A,eff = effective relative incremental permeability of the air­

gapped structure, numeric 

WA,max maximum relative incremental permeability corresponding 

to BmAC,max , numeric 

PA,min 

WAQ -

minimum relative incremental permeability corresponding to 

BmAC,min' numeric 
A(HmQ ,BmAc,ma) = maximum value of p. on relative incre­

mental permeability curve corresponding to the selected 

S= 

quiescent or bias point HmQ, numeric 

mAm = volume of magnetic core, m
3 

'min : minimum volume of the powder permalloy or ferrite toroidal 

3 
cores, m 

= damping ratio, numeric 

p - RI/RL = ratio of source resistance RI to output load re­

sistance RL, numeric 

phase of the equivalent impedance resulting from parallel 

combination of filter load and capacitance at the second 

harmonic of the sinusoidal ac supply, Q 

= phase of the filter impedance seen from the source at the 

second harmonic of the sinusoidal ac supply, radians 
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= 2ff, angular frequency of the input sinusoidal source, 

radians/sec 

0 l/ LC, the natural angular frequency of the filter with 

zero damping, radians/sec 

WN w/mOnormalized angular frequency of the sinusoidal input 

source, numeric 

As = range factor for comparison of error term s, numeric 

AHm = incremental change inH used in optimization algorithm to 

determine minimum turns for a specified value of induct­

ance, A/m 

A( / m) incremental change in (g /. ) inthe algorithm for gener­

ating design curves, numeric 

AWmmax maximum amount of energy transferred by core over a 

switching cycle, J 
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