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TWO PHOTON EXCITATION OF ATOMIC OXYGEN

•	 Michael S. Pindzola*

Theoretical Studies Group
Goddard Space Flight Center

National Aeronautics and Space Administration
Greenbelt, Maryland 20771

ABSTRACT

A standard perturbation expansion in the atom-radiation field inter-

action is used to calculate the two photon excitation cross section for

the ls2 2s2 2p4 3p to ls2 2s2 2p 3 ( 4S) 3p 3p transition in atomic oxygen.

The summation over bound and continuum intermediate states is handled by

solving the equivalent inhomogeneous differential equation. We find

that our exact summation results differ by a factor of 2 from a rough

estimate obtained by limiting the intermediate state summation to one

bound state. Higher order electron correlation effects are also examined.

*National Research Council Research Associate
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Atmospheric remote sensing systems are currently being developed

which will take advantage of the remarkable properties of high-energy

lasers.' With detection and ranging systems based on optical frequencies

one may obtain information on atmospheric pressure, temperature, and

water vapor altitude profiles as well as particulate number densities.

For certain projected applications 2 the height distribution of trace

atomic and molecular gases in the stratosphere may be obtained by knowing

their various two-photon excitation cross sections.

Recent multiphoton work 3 has shown that the validity of standard

perturbation theory extends to quite strong photon Intensities. For

two photon absorption the sum over intermediate bound and continuum

states found in the second order expression for the cross section may

be handled by solving the equivalent inhomogeneous differential equation.4,5

This technique has been applied to two photonionization of hydrogen6,7

and the alkali atoms a- lo , as well as recent studies of double photo-

ionization" and the hyperfine interaction.12

In this paper we use perturbation theory to calculate the two

photon excitation cross section for the ls 2 2s 2 2p4 3p to ls 2 2s 2 2p3 (`+S)

3p 3p transition in atomic oxygen. We find that our exact summation

results using the differential equation technique differ by a factor of

2 from a rough estimate obtained by limiting the intermediate state

summation to one bound state. Certain higher order electron correlation

corrections to the second girder expression are also investigated. In

Sec. II we present the perturbation theory for tte two photon excitation

of an acom; Sec. III contains the results of tr,e oxygen calculation; and

Sec. IV i; a brief summary.
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II. THEORY

The photoexcitation cross section for an atom may be calculated using

time dependent perturbation theory. 13 The non-relativistic Hamiltonian for

an N electron atom is given by

Hst.,. -- Ho,,. + Hi ,	 (1)

where	
H	

7	 fig V _	 e^ } '
	

(2)
Ho. " 

P1( 7M J
	

^	 a / 1

and	 a `	 "	
a	

J	 (3)
H1, = Z	 - I v .

ilca-1	 ,	 ,_,	 t
The single particle potential V  is generally the Hartree -Fock potential,

while v ij is the Coulomb interaction between pairs of electrons. In Eq.

(2) m is the electron mass, a is the magnitude of the electronic charge,

and Z is the atomic number.

The unperturbed Hamiltonian H 0 for the atom-radiation field system is

obtained by combining HOa of Eq. (2) with the Hamiltonian for the quantized

electromagnetic field . 13 The eigenstates ( on> of H^ are products of an

electronic state Ij> and a radiation state with n, photons per mode a such

that n = En a . The eigenenergy E^ equals Ej + 
a 

n^f6, 	, where Ej is the un-

perturbed energy of the jth electronic state and w, is the angular frequency

of the ath mode.

The perturbation Hamiltonian H i is given by

Hi ' H t„t + N 1a 1	 (a)

where

N	 a

mCmCd

x	 ^

(5)

(6)

t
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and the annihilation and creation operators for the quantized vector

potential AM may be ,refined by13

Q^lnx) x 11T Ox tiN

W 1	 (7)

and	 ,X n^^ =	 2AG^(n >+t^ (na } 1 ^	 (8)
( .0N

The solution T(t) of the time-dependent Schrodinger equation with

Hamiltonian H = H O + H i is given by 14

	

N,t1,] Q t (-L) ^ o 	 (9)

where

U1 (-k)= 1 + 1 1-00
tdt H

M 	 (10 )

t dt t a,V H,,(T) H i t's') } ...
-a 1 00

	

H i W = ap ['LHot/l,3 Ni ex? [it - -L A. 	] ,	 (11)

and the parameter y allows T(t) to be adiabatically developed from the

initial state l,n >. By projecting T(t) of Eq. (9) onto the final state

1@f > and then carrying out the time integrationsin Eq. (10), the transition

rate R is found to be is

— .1ir S (E; ' ^M) I ^ f	 H, . r. ( EO. - N,) Hi	 ^ ^	 ^1 (12)f	 L
In a many-body diagrammatic expansion evaluation of Eq. (12), the summation

Lmeans only linked diagrams are to be included.16

For a single beam of light the two photon transition rate for

excitation may be evaluated from Eq. (12) by considering a radiation

4



Y	 2
R = VIT 3 e4 '^t,4 F"	 «^ ,E•d^^m)CM,^,E•O,lo^	

S (dw-oW^ 1 (13)	
.

m^al
L, - L r, ^- ' i w	 1	 a

where F is the photon flux (in photons/cm 2 sec) at frequency w, aw = (Ef-Eo/1i,

and j represents a sum over bound states and an integration over the

continuum. If we assume that the final state has some finite lifetime

Tf , we may replace the delta function in Eq. ( 13) by"

i

^11f14 Claw-,bw)' F

	

	 (14)
4 f

We may now define a generalized cross section s (in cm' ► sec) for two

photon absorption as

^1
	 (15)

At the peak frequency of the Lorentz distribution, w = nw, the generalized
2

cross section in the velocity form of the dipole operator is:

^^ = 161T	 '^ ^{	 <^1 , ti •pdImXM I ^E •DdIo^ y '	 (16)
m+ Ca, w	 m

while the length form yields:

161TYCO" 
'rf I ^ ^ t^_	 1 2' -	 (17)

ca.	 m	 E -	 w

The peak cross sections of Eqs. (16) and (17) will not depend on

the actual laser bandwidth. A total two photon cross section, how-

ever, must be integrated over the frequency distribution of the

particular light source. We should also point out that our cross

section equations have been derived assuming that the laser pro-

duces photons in a purely coherent state. Any photon statistics effects

5
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or bunching of the photons will increase the probability for absorption

by as much as a factor of 2.3

Higher order electron correlation and radiation field corrections

will add to the terms inside the absolute squares of Eqs. (16) and (17).

For exact atomic wave functions the velocity and length forms of the

dipole operator are of course equivalent, but since we use a perturbation

expansion for 
Hatom 

they may differ by significant amounts in lowest

order.
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In this section we apply the perturbation theory of Sec. II to the

calculation of the two photon excitation cross section for the ls 2 2s2

2p4 3p to ls 2 2s2 2p 3 (4S) 3p 3p transition in atomic oxygen. The experi-

mental term separation (weighted average . over J levels) is 10.98 eV19,

thus a laser energy of 5.49 eV (or 2258 R) is needed for two photon excita-

tion. Unless otherwise indicated we will assume that the incident radiation

is linearly polarized.

To obtain the lowest order generalized cross section a, we must

evaluate Eqs. (16) and (17). In the case of the 2p 4 3P ground state of

oxygen, we calculate s for M L = 0 and also for ML , t. 1  and then average

over these v:.Iues. The single particle core orbitals for the 3P ground

state were calculated numerically in the Hartree -Fock approximation.20

In lowest order the intermediate virtual states allowed by the dipole

selection rules are ls 2 2s 2 2p 3 ( 4S) ns 3 So , ls 2 2s 2 2p 3 ( 4S) nd 3D09

and Is e 2s 2p4 ( 4P) 3p 300 9 3 P0 , 3So . We used the Silverstone21 -Huzinaga22

frozen core potential to construct the orthogonal excited state spectrum.

This potential has the property of preserving the Hartree-Fock operator

for the core orbitals while at the same time providing a realistic VN-1

type operator for the excited states. We assume all single particle states

have the product form P ne(r) Ytm(e,f) x s (ms )/r, where Ytm(e,0 is a

spherical harmonic and xs (ms ) is the spin function. The potential for

the radial Pns (r) orbitals (both bound and continuum) of the 2p 3 ( 4S) ns 3So

intermediate state is then given by:

5A 0 .- 0)	 a 1is - Kt i	 Kas	
(18)

+ 3 ?gyp t 3 KIP t ITo ( 1•P - K+p

7

1
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i^ ^PWhere	 ^Jn^^ n,^(r) = (^^r: Pa ,I	 pol l (r ) ^	 (i9)

dr, ?w it (rs 1 Pht (rj) eLr'^ Pa t^ (r) i	 (20 )
K11

o	 h^

(21)

TTt =	 Sit, In'0< 111# 1 i
`	 C4ri a.+9

and rs = min (r i , r) and r ^" = max (r r). The potential for the radial
Pnd ( r ) orbitals of the 2p 3 ( 4S) nd 3Do intermediate state is given by

Vsj4

	

	 = d J,s - K s + ^J kc. - " K'L	 (22)

+- 31ip t , K P35 K .

As a first approximation the P 3p ( r) orbital of the 2p3 (4S) 3p 3p final
state of oxygen, with single particle energy E 3p , is obtained by solving

T! - VsI	 a Csp) PtP (r) - 4	 1	 (23)

where	 Tt	 t^ d" — W 41 W } 2 ga' l (24)

m dry'	
_mom	

r

ana
Vsr► 1t=1^ = a its -—^ K s + ^. 7^; - 3 K	 (25)

+3Txf+jK^}^SKp

For the cross section s(±1) the dipole selection rules for determinantal

states allow only contributions from the 2p 3 ( 4 S) nd 3D° intermediate states
in lowest order. After performing the angular integrations, we obtain the

following radial form of Eq. ( 16) for the 2p4 3p to 2p 3 ( 4 S) 3p 3p

transition in oxygen;

4 1S	
P	

}	 (26)

8
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q
where	 <Ase 1 1 w 1 1 Y10 = !o ew4j(r) Dv PrAr) dr	 1	 (27)

^v a  r} - 4 PnQt"}̂.,<nI 11 -N, 1 a P )	 (28)
A	 E2P r Ent + ftw

and D v = djdr + [toRo + 1) - tf (tf + 1)]l2r. One should note that

the intermediate sum is now present in the expression for the perturbed

bound state function 
0 
I(nt,r) of Eq. (28). For the cross section s(0)

the dipole selection rules allow contributions from all three types of inter-

mediate states. The radial form of Eq. (16) is thus:

Dl ' 1b 0^ 'Y^ ^4 ^3p )1 )l ŷ (ns}1 ♦ b4 <3P ^v l ) v^+►d}^

M4	 i'tx'15	 (29)a
4 has fI DY IIJp)Qpi1F4

 EX E sp }hie

The radial matrix elements for BL (±1) and sl (0) derived from Eq. (17)

are the same as those found in Eqs. ( 26) and (29) except that Dv is

replaced by D L	 r and 4v (roar) is replaced by k(nt,r).

The perturbed bound state function 4 
I
(nt,r) of Eq. (28) may be

found by solving the inhomogeneous differential equation4,5:

T, - 2,Vs,(Q) + at) t,(At,r) = Dv Pa p(r) j	 (30)

where ^ = C 2 + m. The experimental energy of c 2p 2 - 13.62 eV i9 is

used for functions fv (nt,r) which represent 2p 3 ( 4 S) nt 
3Lo 

virtual

excitations. Similar equations for perturbed functions # L (nt,r) were

also solved. The accuracy of our solutions was checked by computing

cross sections for the two photon ionization of argon using perturbed

bound state functions and comparing them with results obtained using the

radial integration truncation method. 15 The two methods agree to three

significant figures in both the length and velocity forms at energies

away from resonances.

9



The lifetime of T f of the 2p 3 ( 4S) 3p 3p final state of oxygen may

be taken as the natural decay time T nf for single photon emission to the

2p 3 ( 4S) 3s 
3So 

state. This will only be true when the laser pulse time TL

is such that T L > Tnf.2	 For laser intensities currently envisioned

in atmospheric remote sensing work? the photoionization rate from the 2p3

( 4S) 3p 3p final state will be much smaller than the natural decay rate.

The handbook 23 value of Tnf - 3.57 - 10- 8 sec (accuracy to 10%) is used 	 .r

for all subsequent calculations. If we use Eqs. (A2) and (A3) of the

APPENDIX along with Tnf - U RSe , we find in lowest order that Tnf - 3.31 - 10-8sec

in the velocity form and T nf = 2.97 - 10- 8 sec in the length form.

The lowest order Hartree Fock (HF) results for the generalized cross

section 8 for the 2p4 3p to 2p 3 ( 4S) 3p 3p transition in oxygen are given

in both the length and velocity forms in Table I. Due in part to the

inclusion of contributions from the 2p 3 ( 4S) ns 'So intermediate states,

e(0) is seen to be a factor of 20 to 30 larger than 8(±1). For B(0) the

velocity form is 1.4 times larger than the length form, while for a(±1)

the two forms almost agree. If we transform our wave function representa-

tion according to:

(LS? Mj ^ = I C+^^M1 
f (LS ML Ms)	 (31)

M,NIs

where e ll-2
2

1

-

3	 is the usual Clebsch-Gordan coefficient, we may construct

cross section expressions between fine structure levels using the results

already obtained for o(0) and a(±1). The experimental fine structure wave-

lengths 19 and our lowest order cross section results are found in Table II.

It should be noted that for two photon absorption we may have eJ : + 2, + 1

and 0.

10
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The importance of the complete sum over intermediate states in the

results for the cross section B may be shown by comparing the matrix

element MY n .< 3pil Oyll o v (ns)> with

^ - (yu 1135)<35^ .2p	 (32)

CAP	 + '1'►W

where P3s (r) is the radial orbital for the 20 3 ( 4S) 3s 3S° stets. We

found that (in atomic units) MY = 0.671 and v = 0.443, while M' = 12.8
	 ..-

and Rs 	19.2. Thus if we use only one intermediate state in the evalu-

ation of B(0), we would find a factor of 2 reduction in the velocity

form while the length form would show a factor of 2 increase.

If we assume incident radiation that is circularly polarized, one

must perform the angular integrations in Eqs. (16) and (17) using

different dipole selection rules. The lowest order Hartree Fock results

for the 2p4 3p to 2p 3 ( 4S) 3p 3p transition in oxygen are then Bv>

1.704 • 10-43 cm4 sec and < Be = 0.935 • 10-43 cm4 sec.

Electron correlation effects may be important in certain multiphoto

processes in complex atoms. A many-body diagrammatic expansion of

Eq. (12) was developed previously to handle electron correlations in

the two photon ionization of argon. 15 The configuration interaction R matrix

method has been applied to the calculation of the third-order o ptical harmonic

coefficient for helium. 24 We may also use the multi-configuration Hartree-

Fock (MCHF) method 20 to calculate electron correlation corrections for

multiphoton processes in a manner similar to that used in recent photo-

ionization work.25

We therefore examine first the third order electron correlation

corrections to the second order two photon cross section for the 2p 4 3P

to 2p 3(4S) 3p 3P transition in oxygen. The complexity of the ground state

11
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correlation problem in oxygen may be appreciated by studying Table IV

of a correlation energy paper by Marchetti, Krauss and Weiss.26

The largest contribution comes from pair excitations of the 2p shell

(43%). Since 2p 2 may couple to give 3P, I D, and I S an y 3d2 may couple

to g • ve 3 F, 3P, 1G, 1 D, and I S, we have quite a number of allowed ways

to attain an overall 3P symmetry. To get a feel for the strength of

the ground state correlation correction, we chose the largest angular

components among those 2p shell pair excitations given by Marchetti et

al. The mixing coefficients of a fixed core MCHF calculation for the

configurations zP4 'P ' 2p2 3 P (3s 2 I S) 3P, 2p2 3 P (3d2 1 D) 3 P and 2p2 3p

(3s3d ID) 3 P are given in Table IIIA. The coefficients a i of the three

excited configurations are all quite small. The contribution of the 2p2

3p (3d2 1D) 3p configuration to the cross section $ v (± 1) of Ea. (26)

is given explicitly by:

[F

4  Q^^^PIIDvII^(^d)^ °	 a3 (apll^,111 ►' 3 â^^ 	 (33)

 39S

where	 IK(3e) _
f i

hd.

P"'(r)<ndl)3d) < 	 11

EaP - C hd, +

Dv li ^d>	 a	
(34)

*AV3

We may again solve for the perturbed bound state function *v (3d2 ) using

the inhomogeneous differential equation technique. This two step method

of accounting for ground state pair excitations should be equivalent to

solving the inhomogeneous pair equation used by Garpman et al. 12 Expressions

for 0v (0), Y± 1) and S
L 
(0) have forms similar to Eq. (33).

The largest contribution to the electron correlation corrections

for the 2p 3 ( 4S) 3p 3P final state of oxygen should come from the mixing

12
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was found to be quite strong in recent photoionization work on chlorine.27,28

The mixing coefficients of a fixed core MCHF calculation for the configura-

tions 2p 3 ( 4S) 3p 3P, 2p 3 ( 2D) 3p 3P, and 2p 3 ( 2P) 3p 3p are given in

Table IIIB. The MCHF radial 3p function wa-s found to differ only slightly

from the 3p function obtained using Eq. (23). The contribution of the 2p3

( 2D) 3p 3P configuration to the cross section By (± 1) of Eq. (26) is

given explicitly by:

^v^li^ = Ib ei
W
^a -rf	

j

bl <3? IIDV

 
 11 ^V(4))

M Ca	 (35)

ri b2 < 3p11 DV 11 ^;t'^)^ -r
ta b.,0P II D„ 0 ^v^ )

 

where the perturbed bound state functions 0'
v

	and Oy ( nd) are obtained
by using Eq. (30) with c 2p = - 16.94 eV. 19 Expressions for Bv (0), BL (± 1)

and B^ (0) also have forms similar to Eq. (35).

The multi-configuration Hartree-Fock (MCHF) results for the generalized

cross section B for the 2p 4 3 P to 2p 3 ( 4S) 3p 3p transition in ox ygen are

given in both the length and velocity forms in Table I. Cross sections

between fine structure levels are given in Table II. We have included only

the excited configurations 2p2 3p (3d 2 1 D) 3 P, 2p 3 ('D) 3p 3P and 2p 3 (2P)

3p 3p in our final results. The MCHF values for 0(0), B(± 1) and < B >

are all lower than the corresponding Hartree-Fock values. We must note

that the agreement between length and velocity has not improved. This

indicates we have inly touched the surface of a very complex electron

correlation problem and the continuing difference between the length and

velocity forms seems to be a good indicator of this fact. What we have

13
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fi
learned is that the result of a more complete solution of the problem

will probably not differ from our lowest order Hartree-Fock values by more

than a factor of 2.

As one goes to stronger and stronger photon intensities, tho

standard perturbation theory begins to break down. In this case the

electric component of the radiation field is becoming comparable to the

Coulomb field which binds the atom. From previous work' s we estimate

that radiation field corrections, such as the fourth order process

involving the absorption of 3 photons and the emission of one, will

begin to significantly affect our lowest order results at a flux F of

1032 photons/cm2 sec. At higher intensities one must use an exact

summation of a whole series of higher order radiative terms 28 or

go to an alternative formulation of the problem. 3 We should also note

that long before this regime is entered (around 10 25 photons/cm2 sec),

the Lorentz distribution of Eq. (14) will be modified by either a decrease

in laser pulse time 
(T L 

< Tnf) or photoionization from the excited state.

This in turn will affect the excitation cross sections s of Eqs. (16)

and (17).

14
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IV. SUMMARY

In this paper we determined a value for a two photon excitation cross

section in oxygen of sufficient accuracy for laser atmospheric remote

sensing applications. We used the inhomogeneous differential equation

technique to handle the sums over bound and continuum intermediate states

found in a standard perturbation theory development. Although the electron

correlation corrections are found to be quite complex, their overall

effect should not significantly alter the lowest order Hartree-Fock

results. In the future we hope to extend our work to the study of

certain two photon transitions in nitrogen, chlorine, and argon.

15
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APPENDIX

The various single photon emission and absorption transition rates

may be obtained from Eq. (12) with m = n ± 1. In the dipole approxima-

tion the lowest order expression for the absorption rate is given by:

R` = 4>f^ea	 F_x I«1 •valo>1
a 

S(w,,-e) )	 (Al)

moo

where Aw = (Ef - E_
0
 )/,h. The induced emission rate has a form similar

to Eq. (Al) except that &w = (Eo - Ef )/fi. For spontaneous emission the

flux F equals c/V, where V is the volume of the radiation cavity. If

the summation 
j 

is replaced by an integration over w with the appropriate

density v w of modes, 8 we obtain for the spontaneous emission rates at

w = ew:

^k = 4e:3 ({ I ̂V . lob ^ y	 (A2)

30 C'

and	 Rsz `	 4ea CO I « I 	

r.1 off , a.	
(A3)

3 ^, C 3
	 d-^ d

The absorption cross section a (in cm 2 ) may be obtained from Eq. (Al) by

considering an external radiation field containing only one mode and replacing

the delta function as in Eq. (14). The cross section a at W =	 Ow is then

M, C u3
d	 1 (A4)

and	 cY1.	 = a
gTe u3 ^^

tj
' «	 C • d I off' A5(	 )^

If we take for 
tf 

the natural lifetime for decay to (o>, we recover the

well-known result17



where g i is the statistical weight of state (i>.

For two photon emission processes we find an induced emission that

is proportional to F 2 , a spontaneous emission that is independent of

photon flux, and cross terms that are linear in F. The spontaneous

emission rate may also be obtained from Eq. (12) by replacing the

summations over modes a l and a2 by integrations over frequencies, giving:

Rs = 4 e4 i;'	 dw
gW M4Cf. io

x	 % <^I.1 -- xml ,y^ Io? +^^1 _,ya1^Xml Ci lo. a (A7)

E, E N - iiuJ	 Eo- 6n - ii w

and	 Ru = 4e;	 W3 ^^ dw	 (A8)

9tccOr io

r	 N
4— [m -$60

where w = ew - w. In thermal equilibrium the level populations of states

(o> and If> are related by Boltzmann's law. Equating two photon absorption

and emission processes at each frequency w, we may again recover Planck's

law for the frequency distribution of the photon flux.

18
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TABLE I: The Two Photon Cross Section 0 for the 2p4 3p to

2p 3 ( 4S) 3p 3P Transition in Oxygen (in units of 10 "43 cm'' sec)

Approximation 0(0) 0(±1) <0 >a

HF velocity 6.538 0.232 2.334

HF length 4.729 0.234 1.732

MCHF velocity 6.330 0.155 2.213

MCHF length 4.566 0.174 1.638

a < 0 > = [ 20(+1 ) + 0(0)7/3
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TABLE II: The Fine Structure Components of the Two Photon Cross Section

B for the 2p4 3p to 2p3	( 4S) 3p 3P Transition in Oxygen (in

units of 10- 43	 ,m4 sec)

J i J f a(^) sHF
v

0 H
L

0MCHF
v

sMCHF
L

2 0 2256.5390 0.192 0.127 0.200 0.132

2 2 2256.5430 1.711 1.319 1.562 1.211

2 1 2256.5574 0.431 0.286 0.451 0.296

1 0 2260.5758 0.000 0.000 0.000 0.000

1 2 2260.5798 0.718 0.477 0.751 0.493

1 1 2260.5940 1.616 1.256 1.462 1.146

0 0 2262.3328 1.377 1.097 1.211' 0.980

0 2 2262.3368 0.957 0.636 1.001 0.657

0 1 2262.3510 0.000 0.000 0.000 0.000

- i
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TABLE III: Multi-Configuration Hartree-Fock Calculations for Oxygen

A. Ground State

Configuration

2p4 3p

2p2 3p (3s 2 1S)

2p2 3p (3d 2 1D)

2p2 3p (3s 3d 1

Mixing Coefficients

a 1 - 0.9989

3 p	 a2 = 0.0191

3p	 a3 = 0.0398

D) 3p	 a4 - 0.0143

Go-

B. Final State

Configuration	 Mixing Coefficients

2p 3 ( 4 S) 3p 3p	 b  = 0.9958

2p 3 ( 20) 3p 3p	 b2 = 0.0862

2p 3 ( 2p ) 3p 3p	 b3 - - 0.0323
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