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SECTION 1.0 

INTRODUCTION 

The Langley Research Center of the National Aeronautics and Space 
Administration and the General Electric Company have conducted a scale 
model experimental development program for an over-the-wing (OTW), powered 
lift, propulsion system in support of the NASA-Lewis Research Center QCSEE 
(Quiet, Clean, Short-Haul Experimental Engine) contract with the General 
Electric Company. This program was structured to utilize the significant 
propulsive lift background and experience of the Langley Dynamic Stability 
Branch in the design of the QCSEE OTW exhaust system. The program was 
conducted in the time period of 1975 and early 1976. 

The exhaust system concept, which evolved under the QCSEE contract for 
the OTW installation, combined the requirements for engine cycle area 
variation and thrust reversal with the requirement of jet flow spreading 
for good jet/flap flow turning under powered-lift landing approach condi- 
tions. The large cycle area variation (about 20%) between takeoff and 
cruise was required to provide takeoff thrust at low pressure ratio (open 
nozzle) for QCSEE noise consideration, and high pressure ratio thrust 
(closed nozzle) for more efficient high speed cruise performance. This 
integrated OTW nozzle/reverser exhaust system employed new features about 
which there were some technical concerns: 

0 The new side door area variation concept lacked a sufficient data 
base to ensure adequate cycle area variation capability and flow 
spreading enhancement for wing/flap flow attachment at approach 
flap settings. 

0 The thrust reverser single blocker door and exit lip geometry 
lacked a sufficient data base to assess reverse thrust perfor- 
mance; and, axial placement of the blocker needed better aerody- 
namic definition from the standpoint of engine cycle area matching. 

The scale model program, therefore, was initiated at Langley to provide an 
adequate data base in response to these technical concerns, from which 
final design of the QCSEE OTW exhaust system could proceed. 

General Electric engineering coverage during the test period was under 
direct QCSEE Contract (NAS3-18021) funding. Documentation and comprehensive 
analysis of the nozzle and thrust reverser internal performance data included 
in this report were funded under separate contract to NASA-Langley (NASl- 
14270). 
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SECTION-2.0 

SUMMARY 

A static scale model test program was conducted by NASA-Langley in the 
static test area of NASA-Langley's 9.14- by 18.29-m (30- by 60-ft) Full- 
Scale Wind Tunnel Facility to develop an over-the-wing (OTW) nozzle and 
reverser configuration for the Quiet, Clean-Short-Haul Experimental Engine 
(QCSEE). The subject contract effort consisted of the engineering analysis 
and documentation of the major aspects of this test program. The objectives 
of the program being reported were to develop an OTW nozzle/reverser system 
which met the QCSEE demonstrator engine requirements in terms of nozzle 
area variation capability and reverse thrust level, and which provided good 
jet flow spreading over the wing upper surface for a high jet/flap static 
turning angle and turning efficiency at landing approach conditions. The 
models were scaled to 8.53% of QCSEE engine size and tested behind two 
13.97-cm (5.5-in.) tip-turbine-driven fan simulators coupled in tandem. 
Three nozzles: the QCSEE baseline, Recontour No. 1 (RC-l), and Recontour 
No. 2 (RC-2), and one basic reverser configuration were tested over a 
takeoff and approach power range of pressure ratios between 1.1 and 1.3. 
The principal nozzle design variables were internal flowpath contouring to 
increase exhaust flow kickdown angle (requirement for high jet/flap static 
turning performance), and nozzle area variation side door geometry (required 
for engine cycle/effective area matching and good flow spreading for static 
turning performance). The nozzles were tested over a range of side door 
area settings from cruise (closed) to beyond the takeoff setting (25' 
open), each configuration being evaluated with and without wing upper 
surface simulation. The principal reverser design variables investigated 
were blocker door axial spacing, blocker door height, blocker door inclina- 
tion angle (rotation about the blocker pivot point), lip length, lip angle, 
and blocker door side skirt geometry. 

OTW nozzle and reverser configurations have been identified which 
satisfy the QCSEE requirements. The variable area side door concept was 
shown to be a viable design demonstrating good area variation capability 
(20% takeoff to cruise) and good flow spreading characteristics. When 
employed with the recommended recontoured, high kickdown internal flowpath 
(RC-l), the nozzle shows promise of achieving high static turning angles 
and high turning efficiencies at powered-lift approach conditions. The OTW 
thrust reverser design demonstrated reverser effectivity levels commensurate 
with the 35% reverse thrust QCSEE requirement when tabbed or extended side 
skirts, which rotate outward to capture blocker door side spillage flow, 
are employed. While reverse mode effective discharge area (airflow capacity) 
was found to be -20% less than the QCSEE cycle takeoff power value, the 
recommended reverser configuration provides sufficient discharge area to 
maintain safe engine operating margins for full-scale experimental testing. 
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The nozzle and thrust reverser configuration which was experimentally 
developed under the QCSEE program, and whose analysis is reported herein, 
is considered to be fully representative of low speed OTW propulsive lift 
exhaust systems. It is recognized that further development of this experi- 
mental nozzle and thrust reverser configuration is required in order to 
arrive at a high performance flight configuration. 
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3.2.3 QCSEE Duct and Scale Model Simulation 

The QCSEE over-the-wing (OTW) engine is a high-bypass-ratio (1O:l) 
mixed-flow turbofan with fan and core streams exhausting through. a common 
"D" nozzle. Since,the 14cm (5.5in.)-diameter fans selected for use during 
these QCSEE exhaust system dwelopment tests could not simulate the hot 
core stream,, exhaust duct and centerbody geometries were defined which 
faired over the QCSEE core region. Figure 4 shows the faired model test 
configuration in relation to the real QCSEE duct geometry in the region 
between the full-scale engine fan exit guide vanes (Station 200) and the 
core nozzle centerbody trailing edge (Station 302). (Station notation 
applies to General Electric drawing number 4013174-198, design "B", as 
shown in Figure 5.) All engine dimensions which appear henceforth were 
referred to this reference drawing. The single-flow model centerbody was 
terminated at approximately the same engine station for better simulation 
of the flow field into the "D" nozzle, considering the single-flow con- 
straints. 

3.2.4 "D" Nozzle Configurations 

The QCSEE scale models tested were developed from l/4-scale undimen- 
sioned engine flowpath drawings with cross-sectional cuts photographically 
reduced to 0.0853 scale for model fabrication at Langley's model shop. All 
models were made of fiber glass. Hardware modifications were made on-site 
as required during the test, based on observed test results. 

In all, three scale model "D" nozzle models were built. The first of 
these was a direct scale of the QCSEE Baseline engine flowpath as defined 
by GE drawing 4013174-198, a reduced sized copy of which is shown as Figure 
5(a). Two nozzle area variation side door configurations were made as 
shown in Figure 5(b). The positions shown for both door geometries were 
designed to satisfy the QCSEE engine cycle discharge area requirements at 
takeoff; the two-door configurations were tested early in this program to 
determine their relative flow spreading characteristics for potential 
benefit to powered lift jet/flap static turning performance. Two inter- 
changeable sets of small doors were made with door angles at 60" and 70'; 
five sets of interchangeable large doors (with angle settings of 20°, 25*, 
30", 4o", and 50") were fabricated. Closed nozzle settings also were made 
for cruise nozzle simulation. 

The two additional forward thrust nozzles, RC-1 and RC-2, were recon- 
toured flowpaths designed for more downward flow direction (or kickdown 
angle) to improve jet spreading over the wing for increased static turning 
with the approach flap setting. The need for higher flow kickdown was 
established from the preliminary baseline nozzle test results shown in 
Appendix A. Both recontoured nozzles featured modified roof lines and 
steeper floor angles, as shown on Figures 5(c) and 5(d), which compare 
these two high-kickdown nozzle flowpaths with the baseline geometry. The 
baseline nozzle exit cross section was used in both recontoured nozzles, as 
shown in Figure S(d). 
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Figure 5. QCSEE Scale Model "D" Nozzle Geometry (Continued). 
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Figure 5. QCSEE Scale Model "D" Nozzle Geometry (Continued). 
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Figure 5. QCSEE Scale Model "D" Nozzle Geometry (Continued). 
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Figure 5. QCSEE Scale Model "D" Nozzle Geometry (Continued). 
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Figure 5. QCSEE Scale Model "D" Nozzle Geometry (Continued). 



Configuration RC-1 was modified from a foam core taken from the base- 
line pattern. Hand sketched nozzle roof templates were inserted into the 
foam core at selected axial stations, and epoxy filler was used to build up 
the new contour. The templates were designed to provide a steeper average 
flow angle over the nozzle roof as shown on Figure 5(e); as a result, the 
nozzle upper surface was flattened laterally with smaller corner radii 
employed to transition into the vertical side walls [Figure 5(d)]. 

The Recontour RC-2 flowpath was designed in l/4-scale engine size, and 
then reduced photographically to 0.0853 scale for model construction. The 
RC-2 roof line was made steeper at the top (28.5") and transitioned into 
the vertical side walls with larger radii (more like the baseline) to 
improve the nozzle external boattail lines. See Figures 5(d) and 5(e) for 
comparison with other configurations. 

A typical nozzle model is shown in Figure 5(f). This picture shows 
the baseline configuration with large area variation side doors set.at the 
25' position. 

3.2.5 Reverser Configurations 

The thrust reverser scale model was made from the original baseline 
nozzle model, cut up to form the basic reverser opening and blocker door 
assembly. The reverser geometries and parameters tested are shown on 
Figure 6. Figure 7 shows one of the final configurtitions on test, while 
Figure 8 illustrates some of the preliminary screening test models which. 
led to selection of the final test configurations. 

Referring to Figure 6, the reverser model was built so that blocker 
door axial spacing (Xp, XF), inclination angle (a), and height (HR) were 
variable through the ranges indicated. Seven interchangeable blocker lips 
were made with varying lip length (L) and lip angle (S). These lips were 
selected such that 15", 25", and 35" 0 settings were obtained at blocker 
door inclination angle increments of 95", 105", and 115“ a. As indicated 
from Figure 6, one lip was cut back to investigate its effect on reverse 
thrust; this configuration was a 0.4 L/DTH lip which had a 35" lip angle as 
tested with the 105' blocker angle. 

Interchangeable side skirts of varied design were added to the blocker 
during the development tests. These are shown in Figure 6 as the nominal 
side skirt, extended side skirt, and tabbed side skirt. These were made at 
0' and 45" 4 (with one extended skirt position at 25"). When skirt rota- 
tion was found to be beneficial to performance, the blocker door trim line 
was modified as shown by chamfering the door at a 45" angle (in line with 
45" 4) and the piece removed was added back into the nacelle (Section E-E). 
Figure 7 shows a tabbed side skirt configuration on test, with some of the 
important model and facility features flagged for easy identification: The 
evolution of the tabbed side skirt geometry is shown on Figure 8, which 
shows (a) the basic-blocker configuration without side skirts, and (b) the 
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Figure 5. QCSEE Scale Model I'D" Nozzle Geometry (Continued). 
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(f). Scale Model "D" Nozzle and Static Test Facility. 

Figure 5. QCSEE Scale Model "D" Nozzle Geometry (Concluded). 
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(a) Baseline Reverser with 0.4 L/DTH Lip 

(b) Reverser with Extended Side Skirt Rotated to 4S” 

Figure 8.- Reverser Configurations on Test 
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extended (2.54 cm model size) side skirt rotated outward 45". The tabbed 
side skirt which finally evolved (Figure 7) was made by trimming off the 
aft portion of the extension to clear the nozzle area variation side doors 
when the reverser was stowed. 

3.2.6 Wing Simulation 

Three different wing configurations were employed during forward 
thrust nozzle development tests. Two of those configurations, as shown on 
Figure 9, were flat plates positioned parallel to the engine centerline and 
perpendicular to the vertical centerline plane. Each flat plate spanned 
three nozzle widths (one width either side). Flat plate leading edge 
location was 15.24 cm (6.0 inches) ahead of the "D" nozzle floor trailing 
edge to simulate the wing proximity effect on flow beneath the nozzle side 
doors. The small plate was cut at the nozzle floor trailing edge, while 
the large plate extended 25.4 cm (10.0 in.) aft (-3 nozzle heights).to 
explore wing/nozzle flow coefficient effects and to turn the exhaust flow 
to the axial direction. These plates were attached to the 'ID" nozzle test 
configurations, hence, their effects on exhaust system thrust forces were 
measured directly in the force .balance readings. 

The third wing configuration, also shown on Figure 9, represented a 
typical OTW wing/flap segment during powered-lift conditions at approach. 
This wing section was used during preliminary wing jet/flap svtic turning 
investigations as presented in Appendix A. The. span of this wing section 
was 76.2-cm (30-in.) and the flap radius was 20.32-cm (8.0-in.) with a 
terminal angle of 73". Placement of the nozzle floor trailing edge was at 
about 30% of wing chord. 

3.3 INSTRDMENTATION 

Test facility and scale model instrumentation used in these tests is 
shown on Figure 10. 

Fan inlet airflow was measured during bellmouth tests only. For these 
tests, four wall static pressure ports were located at 90' spacing around 
the circumference of the cylindrical section of the bellmouth. These ports 
were manifolded into one recorded reading. 

Turbine drive air was measured before being split between front and 
aft fan drive manifolds. A rotating vane-type flowmeter (not shown) was 
used for this measurement with the required meter upstream pressure and 
temperature measurements also being taken. 

A two-component strain-gage load cell (not shown) was utilized to 
determine axial and normal force elements for all test configurations. 
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Nozzle total pressure was measured as a single manifolded reading from 
an 80-element sample (8 rakes with 10 elements per rake, positioned every 
45O). This method of nozzle total pressure measurement was selected on 
the basis of limited facility read-out capability. 

Fan speed (not shown) was measured using a magnetic pickup built into 
the simulator as standard equipment by the manufacturer. 

Barometric pressure measurements were recorded for use as fan inlet 
bellmouth total pressure and'nozzle discharge static pressure. Ambient 
temperature measured in the full-scale wind tunnel static test area was 
used as bellmouth inlet total temperature and also was assumed to represent 
fan discharge total temperature, since no measurement was made here, and 
the low temperature rise associated with the low pressure ratio fan was 
offset by the cold (expanded) tip turbine drive air. 

3..4 METHOD OF TEST 

The following procedures generally prevailed during the tests: 

All QCSEE "D" nozzle configurations were installed on the thrust stand 
with the nozzle rotated 90" counterclockwise (looking forward); all reverse 
configurations were rotated clockwise 90" (looking forward). This orienta- 
tion placed the model vertical and axial force components in line with the 
active force balance axes and in a plane parallel with the test table. 

Test points were set by incrementally varying fan speeds between 
20,000 and 30,000 rpm. For each point, fan speed was quickly brought up to 
the desired values by manually opening the turbine drive air supply valve. 
When stabilized, all data were recorded, and fan speed was reduced to a low 
sustaining value. This throttling back on fan speed between test points 
was required to prevent ice from forming on the exit guide vanes. Ice 
formation was found to occur during sustained fan operation at high speeds 
because of the prevalent low turbine drive air temperatures. Running under 
iced-up conditions was found to produce erratic airflow/thrust data. 

Repeat points were taken as deemed necessary during the course of 
testing. 
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SECTION 4.0 

ROUND NOZZLE CALIBRATION TEST RESULTS AND DATA ADJUSTMENTS 

Flow coefficient and velocity coefficient data computed from measured 
airflow, thrust, and pressure ratio (as outlined in Appendix B) are presented 
on Figures 11 and 12, respectively, as functions of the measured nozzle 
pressure ratio. The measured coefficients were found to be in disagreement 
with past experience on round nozzles of similar geometry. Both the flow 
coefficient level (too high) and the trend of increasing flow coefficient 
with decreasing pressure ratio were in contradiction with reliable data 
presented in NACA Report 933 (Reference 1). Velocity coefficient levels 
(Figure 12) were found to be greater than unity, and they also exhibited an 
increasing trend with decreasing pressure ratio. 

The observed coefficient characteristics of the round calibration 
nozzles resulted in reassessment of the measurement techniques employed 
during these tests, particularly with regard to the manifolded single' 
reading of fan discharge total pressure. This parameter was measured using 
eight lo-element rakes (Section 3.3), all manifolded to provide a compre- 
hensive, equal area sampling which was to account for the radial and circum- 
ferential pressure variations characteristic of the 14-cm (5.5-in.) fan 
design. It was theorized that the manifolded sampling technique was not 
sufficiently compensating for mass flow distribution effects in average 
total pressure because of the low turbine drive air total temperatures which 
existed in the outer annulus. Accounting for these mass flow distribution 
effects would weight the total pressure measured toward a higher value 
(higher pressures and higher weight flow per unit of flow area occur at the 
tip). It also was recognized that a small pressure ratio measurement error 
would have a large effect on both ideal weight flow and ideal velocity at 
low pressure ratios, and that an increase in measured pressure would produce 
the desire,d change in computed flow and velocity coefficients (lower in both 
cases, and with the greatest reduction at the lowest pressure ratios); 
therefore, a computational procedure was established to adjust the calibra- 
tion nozzle flow coefficients to correspond with the referenced NACA Report 
933 levels. The adjustment was made to each data point by applying a total 
pressure bias correction to computation of nozzle ideal weight flow to 
effect a match between calibration nozzle flow coefficients and the NACA 
data at their respective nozzle cone half angles (8). The resultant total 
pressure bias correction amounted to nominally 0.9 percent at a measured 
pressure ratio of 1.1, and 1.3 percent at a measured pressure ratio of 1.25. 
The pressure measurement bias corrections were then curve fitted by computer 
using a polynomial equation of the form: 

ST - k + A (P&PO) + B (Pm/PO)2 + C (PTM/PO)3 
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where: 

ApT = The pressure measurement adjustment 

PTM = The measured pressure 

The corrected pressure ratio then was computed as: 

PT/PO 5 $T "TM"O' 

The constants k, A, B, and C for the four round nozzles are given,in Table 1. 

Table 1. Constants for Polynomial Curve Fit for Total Pressure 
Bias Correction. 

Nozzle 

Constant 

k 
A 

B 

C 

R1 R2 R3 R4 

-4.9861273 0.76635849 0.073401583 -2.122906 
16.314239 0.50122243 2.217829 7.5142339 

-14.813435 -0.33157444 -1.7606428 -6.0071377 

4.4891577 0.07068393 0.4703686 1.6014451 

The final flow and velocity coefficient data calculated using the 
polynomial curve fit for total pressure measurement bias are presented on 
Figures 13 and 14, respectively. Also shown on Figure 13 are the NACA 
reference report flow coefficient curves. The resultant calibration nozzle 
flow and velocity coefficient trends and level with the adjusted pressure 
ratio are reasonable and lend credence to the method used to correct the 
data. 

All scale model flow and velocity coefficient data contained in this 
report have been adjusted using the corrections to total pressure developed 
from analysis of these round nozzle results. Note from Figure 15 that the 
round nozzle airflow-pressure ratio characteristics bracket the range 
observed from the QCSEE "D" nozzle and reverser tests. Because of the close 
proximity of the takeoff nozzle and round nozzle R2 flow characteristics, the 
pressure correction curve fit for that calibration nozzle was applied for all 
takeoff test configurations. For the cruise and reverse thrust configura- 
tions, a pressure correction midway between R3 and R4 was applied. Polynomial 
equation constants for cruise and reverse thrust data reduction pressure 
corrections are given in Table 2; 
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Table 2. Constants for Polynomial Curve F$t For Cruise 
and Reverse Thrust Total Pressure Corrections. 

I Constant I Value I 
k -0.58932853 

A 3.7516409 

B -2.9345061 

C 0.7666686 
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SECTION 5.0 

FORWARD THRUST NOZZLE DEVELOPMENT 

5.1 TEST MATRIX 

Final documentation of QCSEE nozzle performance was made using the 
tandem fan propulsion simulator to obtain higher nozzle pressure ratios 
which more closely matched the QCSEE mixed-flow takeoff pressure ratio of 
approximately 1.29. The test matrix shown in Table 3 was set up.to evaluate 
the nozzle flow coefficients, velocity coefficients, and exhaust flow angle 
(or kickdown angle) over a range of pressure ratios. All three nozzle flow- 
paths (baseline, RC-1, and RC-2) were tested without wing simulation (for 
exhaust flow angle, primarily), with the small plate attached and with the 

,larger plate installed to obtain internal performance data in a wing back- 
pressure environment. Each configuration was tested at the .cruise nozzle 
position and at various side door areas in the vicinity of the takeoff area 
position (25“ door setting for the baseline and RC-1; 30" for RC-2). Only 
the large door design was included in this final test matrix, the 60" small- 
door configuration having been eliminated in earlier model screening tests. 

Preliminary static turning data obtained in baseline and RC-1 nozzles 
are shown in Appendix A. 

5.2 INTERNAL NOZZLE PERFORMANCE 

5.2.1 Flow Coefficient Results 

Flow coefficients for the three "D" nozzle configurations are presented 
on Figures 16, 17, and 18 for the cruise and takeoff nozzle side door 
settings. The flow coefficients defined in these figures and elsewhere in 
this report were based on ideal exhaust flow calculated at each test 
ratio using the cruise nozzle exit area of 109.68 cm2 (17 in?) as the 

pressure 

reference. Hence, the takeoff flow coefficients shown are substantially 
greater than unity. The cruise nozzle area was selected for reference on 
the basis that it was a completely bounded area whose value was more readily 
determined with accuracy. Note from these figures that the area changes 
measured between takeoff and cruise nozzle positions with the large plate 
installed were between 18.74% (RC-2) and 21.3% (RC-1) at a pressure ratio of 
1.25. This level of change was in the range expected to meet QCSEE takeoff 
cycle area requirements (see nozzle selection, Section 5.3). 

The effect of wing proximity on nozzle flow coefficient (back pressure 
effect) also can be noted from a comparison of large plate data with small 
plate and "plate-off" results. Figures 16, 17, and 18 show only moderate 
wing back-pressure effects at either the takeoff or cruise condition; flow 
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Table 3. Forward Thrust Test Matrix. 

Door 
Angle 

5o" 
50" 
5o" 

30" 
30° 
3o" 

40" 
40" 
4o" 

25' 
25' 
25" 

Cruise 
Cruise 
Cruise 

20° 
2o" 
2o" 
mm- 
m-w 
--- 
-em 

Cruise 
Cruise 
Crutse 

Plate 

Large 
Small 
Off 

Off 
Small 
Large 

Large 
Small 
Off 

Off 
Small 
Large 

Large 
Small 
Off 

Off 
Small 
Large 
--- 
mm- 
--- 
--- 

Large 
Small 
Off 

Run Nozzle 
Door 
Angle Plate 

I 28 
29 
30 

RC-1 
RC-1 
RC-1 

61 RC-2 
62 RC-2 
63 RC-2 

25' 
25' 
25" 

Off 
Large 
Small 

31 31 RC-1 RC-1 
32 32 RC-1 RC-1 
33 33 RC-1 RC-1 

it 

34 34 RC-1 RC-1 
35 35 RC-1 RC-1 
36 36 RC-1 RC-1 

30° 
3o" 
3o" I 

Small 
Off 
Large 

64 RC-2 
65 RC-2 
66 RC-2 

67 
I 

RC-2 
68 RC-2 

* 
** I Large 

Large 

69 RC-2 
70 RC-2 
71 RC-2 

40° 
4o" 
40° 

Off 
Large 
Small I 37 

38 
39 

RC-1 
RC-1 
RC-1 72 Baseline 

73 Baseline 
74 Baseline I 40 

41 
42 

RC-1 
RC-1 
RC-1 

40 RC-1 
41 RC-1 
42 RC-1 

43 43 RC-1 RC-1 
44 44 RC-1 RC-1 
45 45 RC-1 RC-1 

51 51 2 2 
52 52 3 3 
53 53 4 4 
54 54 1 1 

55 55 RC-2 RC-2 
57 57 RC-2 RC-2 
60 60 .RC-2 .RC-2 

75 Baseline 
76 Baseline 
77 Baseline 

30° 
3o" 
30° 

Large. 
Off 
Small 

78 Baseline 
79 Baseline 
80 Baseline 

40° 
40° 
4o" 

Small 
Off 
Large 

81 Baseline 
82 Baseline 
83 Baseline 

* Door Removed 
** Door Removed, Opening Enlarged 



1.15 

1.10 

0.95 

I I 

- - 

/ 

Takeoff Nozzle 
-v 25O Door Angle 

0 Large Plate 
0 Small Plate 
n Plate-Off 

w measured I Aeff 
Cd = w ideal cruise = AS cruise 

1.10 I 
1.15 1.20 1.25 1.30 1.35 

Total Pressure Ratio, P,/P, 

Figure 16. QCSEE Baseline OTW Nozile Flow Coefficients. 

36 



1.15 

1.10 

1.05 

“” 
- 

z 
.z 1.00 
0 
;;: +I 
$ v 
g 
G: 

0.95 

0.90 

0.85 

I 
W measured A' 

cd = w 
eff 

ideal cruise = AS cruise 

25' Door Angle 

A&ff = 21.3 % 

0 Large Plate 

0 Small Plate 

a Plate Off 

Cruise Nozzle 

1.15 1.20 1.25 1.30 
Total Pressure Ratio, PT/Po 

Figure 17. QCSEE RC-1 h'ozzle Flow Coefficients. 
37 



1.10 

1.05 

0.95 

0.90 

0.85 

0 Laige Plate 

0 Small Plate 

D Plate-Off. 

Takeoff Nozzle 
- 30" Door Angle k 

1.15 1.20 1.25 1.30 

Nozzle Pressure Ratio, PT/Po 

Figure 18. QCSEE RC-2 Nozzle Flow Coefficients. 

38 



coefficient changes observed for the three takeoff nozzles and plate con- 
figurations were 0.012 or less, while the cruise nozzle position indicated 
changes in flow coefficient of up to about 0.026. 

The effect of recontouring the nozzle internal flowpath for higher 
kickdown angle also can be assessed from an examination of Figures 16 
through 18. At 1.25 pressure ratio, these figures show both recontoured 
nozzles to have slightly lower flow coefficients than the baseline for the 
takeoff and cruise nozzle positions. For the large flat plate case, take- 
off flow coefficient values measured were 1.12, 1.093, and 1.071 for base- 
line, RC-1, and RC-2, respectively; comparable measured values at cruise 
were 0.931, 0.902, and 0.903, respectively. The lower flow coefficients 
observed for the recontoured nozzle reflect the effects of steeper internal 
flow angles (duct convergence effect) and higher back-pressure levels which 
result from increased flow kickdown angle on the simulated wing. Similar 
trends can be noted from these figures for the small flat plate and plate- 
off cases, but the effects were of smaller magnitude, being predominantly 
due to the steeper internal duct geometry. 

5.2.2 Velocity Coefficient Results 

Velocity coefficients for the baseline, RC-1, and RC-2 nozzles are 
presented on Figures 19, 20, and 21, for the cruise and takeoff nozzle 
configurations. These coefficients are based on the resultant velocity, 
calculated from resolution of axial and normal force balance readings into a 
resultant thrust value, and then divided by the measured exhaust flow; the 
ideal velocity used in computing velocity coefficient was evaluated as a 
function of nozzle pressure ratio. The results from these three figures 
show that baseline and RC-1 takeoff velocity coefficients are essentially 
the same (CV = 0.914) with the large plate installed, while comparable 
values for RC-2 were slightly lower on the average. A comparison of plate- 
off and small plate takeoff velocity coefficients shows the recontoured 
nozzles as having about the same performance, both being higher than the 
baseline by approximately 0.01. The difference in performance (0.03 to 0.06 
AC 
ta eoff K 

) between the large plate and either the plate-off or the small plate 
configurations is attributed to a combination of: 1) large plate 

skin friction, 2) epanwise velocity components (flow angularity loss) which 
arise from the side door flow-spreading characteristics, and 3) jet impinge- 
ment losses associated with turning the exhaust flow axially aft along the 
large plate surface. Also shown in these figures is that little difference 
in velocity coefficients was measured between plate-off and small plate 
configurations. For the takeoff nozzle data, plate-off performance was 
observed to be consistently slightly higher, indicating some small plate 
scrubbing friction losses from flow spreading underneath the nozzle side 
doors ahead of the nozzle exit plane. 

Cruise nozzle velocity coefficients presented in Figures 19, 20, and 21 
show trends simililr to those observed for the takeoff values. Baseline and 
RC-1 configurations with large plates installed show comparable performance, 
with results for RC-2 being somewhat lower (-0.01). As with the takeoff 
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nozzles, differences in performance between large plate and small plate/plate- 
off configurations are attributed to large plate friction and jet impingement 
turning losses. Angularity losses, however, are considered to be eliminated 
when the side doors are closed to the cruise position. Note that the 
difference in performance between small plate/plate-off, and large plate 
configurations is less than that observed for takeoff; this is attributed 
to the fact that flow spreading is reduced substantially when the doors are 
closed. The trend of increasing CV with reduced pressure ratio is not fully 
understood, but it may be attributable to small residual pressure measure- 
ment errors. Figure 22 compares the flow-spreading characteristics using the 
lamp black flow visualization technique. 

5.2.3 Nozzle Kickdown Angle 

One of the key parameters relating to achievement of good exhaust flow 
static turning angles at approach flap settings, as determined from pre- 
liminary configuration screening tests, was nozzle kickdown angle. It was 
from these early tests that the QCSEE baseline nozzle configuration was 
recontoured to the RC series to provide a higher wing impingement angle for 
better static turning performance. Figures 23, 24, and 25 present nozzle 
exhaust flow angle (e-j>, or kickdown angle for the baseline, RC-1, and RC-2 
nozzles. The exhaust flow angle was determined trigonometrically from 
measured force balance axial and normal thrust components. While flow 
angles are shown for take-off and cruise nozzles with all three plate con- 
figurations, the plate-off takeoff nozzle exhaust flow angle data are most 
significant; these data show both recontoured nozzles to have higher kick- 
down angles than the baseline, with RC-1 indicating the highest value of the 
three configurations. Note that pressure ratio has little effect on exhaust 
flow angle in the range investigated. Final static turning and wind tunnel 
data will be published in a future report by the NASA Langley Research Center. 

Large plate exhaust flow angle data on these figures indicate flow 
leaving angles at the trailing edge of the plate to be nominally between 1 
to 2 degrees. These small leaving angles are considered to be attributable 
to either slight plate misalignment with the simulator axis or some slight 
downward trailing edge curvature on the plate. In either case, the unre- 
covered axial thrust component which results from these angles is negligible, 
being about 0.1 percent of the absolute thrust vector based on the 2" 
misalignment. 

5.2.4 Side Door Angle Derivatives-for Flow and Velocity 
Coefficients 

Much of the data taken in the final forward thrust test matrix included 
nozzle side door angle settings to explore the area variation capability of 
the QCSEE "D" nozzle design. These data were taken with the large plate, 
small plate, and plate-off wing variants-for a range of door angles between 
20 and 50 degrees. In one case, the side doors were removed altogether, and I 
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tests were made to evaluate the internal performance of this configuration 
and a modification to it which enlarged the opening (runs 67 and 68, Table 
3). These test data, and all other internal performance.test data not 
presented in Section 5.2.3, are included in Appendix C. The results from 
all of the side door area variation tests were condensed to derivative form 
and presented in this section. 

Flow coefficient derivatives are shown on Figures 26, 27, and 28. 
These derivatives are all referenced to the 25" side door setting and include 
cruise nozzle data for more complete definition of area characteristics. One 
of the most important observations to be made from analysis of these data is 
that flow separation appears to occur at side door settings beyond 25" (30" 
for baseline and RC-2). .This phenomenon presents an upper limit for potential 
full-scale QCSEE engine tests aimed at exploration of open nozzle use at 
approach conditions. It also should be noted from these figures that neither 
pressure ratio nor plate configuration greatly influenced the flow coefficient 
derivative characteristics for either model tested. 

Velocity coefficient derivatives presented on Figure 29 are referenced to 
the 25" side door setting. Except for the cruise nozzle case, these deriva- 
tives show little dependency on side door position, pressure ratio, or plate 
configuration. For the cruise,case with the large plate installed; the rise 
in velocity coefficient increment is attributed to wing scrubbing reduction 
or reduced flow-spreading angularity' losses, or both, as discussed in Section 
5.2.2. 

5.3 NOZZLE CONFIGURATION RECOMMENDATION 

On the basis of internal nozzle performance results and from preliminary 
indications of the static turning characteristics of the three nozzle con- 
figurations evaluated, configuration RC-1 is recommended for use on the QCSEE 
OTW experimental engine. The basis for selecting this nozzle design is 
summarized on Table 4. As indicated from this table, RC-1 was shown to rate 
best in terms of nozzle velocity coefficient, and it provided the largest 
exhaust flow angle (12.5") for best jet/flap turning. It also met the QCSEE 
cycle area requirements (0.026 greater than required), as calculated from 
scale-model effective area (17.0 times Cd) versus pressure ratio character- 
istics extrapolated to the QCSEE takeoff fan pressure ratio of 1.32'and 
scaled to full size by dividing by the model linear scale factor squared 
(0.08532). The QCSEE cycle reference area used for comparison in Table 4 was 
16355 cm2 (2535 in.2). This value was determined from the QCSEE fan and 
core engine stream flow properties (flow rate, pressure, and temperature) 
converted to a single equivalent stream value at the takeoff fan pressure 
ratio, considering temperature, pressure, and flow functioqdifferences 
between streams. 
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Table 4. Nozzle Performance Summary. 

Internal Performance* 

Calculated Takeoff Exhaust Flow Takeoff Cv Cruise Cv 

Nozzle Effective Area Relative Angle, 

'.ci 
Large Plate- Large Plate- 

Configuration to QC8EE Cycle Reqmt Plate Off Plate Off 

Baseline 1.037 8.5' 0.914 0.948 0.944 0.952 

RC-1 1.026 1215' 0.914 0.966 0.946 0.969 

RC-2 0.994 11.5O 0.898 0.957 0.934 0.965 

* Evaluated at a nozzle pressure ratio of 1.25, the highest pressure attainable 
for takeoff nozzle test configurations. 
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SECTION 6.0 

THRUST REVERSER PERFORMANCE 

6.1 PERFORMANCE BASIS 

The scale-model thrust reverser test results presented in this section 
were referenced to forward thrust performance data from configuration RC-1 
as tested with 25" side doors and the small plate attached. Airflow ratio 
(WREV/WFWD) and effectivity (FREv/FFwD) data given are defined as measured 
flow and reverse thrust at the test pressure divided by forward-mode airflow 
and resultant forward thrust, respectively, at the same pressure ratio. 
Resultant thrust and airflow characteristics for the reference nozzle are 
given on Figure 30. These data, presented as a function of nozzle pressure 
ratio adjusted for measurement bias (Section 4.0), were curve fitted and 
incorporated into the final reverser data reduction program for computation 
of reverserairflow ratio and effectivity. Variations in prevailing ambient 
test conditions (barometric pressure and test facility room temperature) 
were compensated for by normalizing all forward and reverse mode thrust and 
airflow input data to standard sea level atmospheric conditions prior to 
computation of reverser performance parameters. 

Reverser efflux angles (BE) also were calculated from force balance 
normal and axial thrust readings. These calculated angles indicate the 
average reverser efflux angle as affected by blocker lip geometry and side 
skirt configuration. This angle is referenced to the model centerline, 
which is consistent with the blocker lip angle definition. Therefore, lower 
angles are indicative of higher reverse thrust. 

6.2 INITIAL PARAMETER SENSITIvITy_SCREEN 

Initial tests conducted at the Langley static facility were informal 
explorations to improve reverser performance when the basic reverser per- 
formance without side skirts [Figures 6 and 8(a)], and with a short blocker 
lip (L/DTR = 0.2) set at a 30" lip angle, showed low reverse thrust and 
airflow relative to the takeoff nozzle, with indications that a large fraction 
of flow was spilling out the sides of the blocker. These informal tests 
(many not recorded) were conducted to establish the direction for further 
reverser development effort. Significant reverse thrust improvement was 
noted with lip extension (up to L/DTR = 0.8), and by addition of extended 
side skirts (including one configuration, the full skirt, which totally 
blocked off the two sides) rotated outward to capture the spillage flow 
previously observed. Increasing the blocker door inclination angle,also was 
found to substantially increase reverse thrust. The results from these 
early tests led to formulation of the reverser parameter sensitivity screen- 
ing matrix on Table 5. This matrix was established to further explore the 
effects of blocker door inclination angle, lip angle and length, and various 
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Table 5. Reverser Parameter Sensitivity Screening Matrix. 

Untrimmed Cut Line 

xP 

%i a 

HB 

DTH 

L 

DTH Skirt 
Run Blast 
No. B Inlet Shield 

- 
9 0.915 95 25 1.63 0.8 Bellmouth On 

10 0.915 95 25 1.63 0.8 Bellmouth On 
11 0.915 95 25 1.63 0.4 Bellmouth On 
12 0.915 95 25 1.63 0.4 Bellmouth On 
13 0.915 95 25 1.63 0.4 Bellmouth On 
14 0.915 95 25 1.63 0.4 Bellmouth On 
15 0.915 95 25 1.63 0.8 Bellmouth On 
16 0.915 95 25 1.73 0.8 Bellmouth On 
17 0.915 95 25 1.73 0.4 Bellmouth On 
18 1.017 95 25 1.63 0.4 Bellmouth On 
19 0.823 95 25 1.63 0.4 Bellmouth On 
20 0.790 105 25 1.63 0.4 Bellmouth On 
21 0.790 105 25 1.63 0.4 Bellmouth On 
22 0.790 105 25 1.63 0.4 Bellmouth Off 

23 0.790 105 25 1.63 0.4 Flight Off 

24 0.790 105 25 1.63 0.8 Bellmouth Off 

25 0.790 105 25 1.63 0.8 Bellmouth Off 
26 0.790 105 25 1.63 0.8 Bellmouth On 

- 
Note: Refer to Figure 6 for definition of parameters. 

Full 

Nominal 

Nominal 

Extended 

Extended 

Nominal 

Extended 

Extended 

Extended 

Extended 

Extended 
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25 
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side spillage flow containment skirts on reverse thrust and airflow. Blocker 
axial spacing variation and blocker door height increases were investigated 
also to determine what effect these parameters would have on the previously 
observed low reverse mode airflow characteristics. 

6.2.1 Side Skirt Effects 

Figures 31 through 35 present the effects of side skirt geometry and 
rotation angle on reverser performance. Data shown are for lip .length 
ratios of 0.4 and 0.8 L/DTB, blocker door angles of 95" and 105", and spacing 
ratios of 0.915 and 0.79. 

These data show a significant improvement in reverse thrust with the 
extended side skirt rotated to 45"; an increase in reverser effectivity of 
about 0.12 was observed with this configuration relative to the nominal, 
unrotated skirt (Figures 31 and 32). Intermediate effectivity improvements 
were noted for the full-skirt case and for the nominal skirt rotated outward 
45O. 

Little variation was seen in reverse-mode airflow ratio (0.02 and less) 
for these configurations except for the full-skirt extension, which showed a 
reduction in flow ratio of about 0.06 (Figure 32) relative to the nominal, 
unrotated-skirt design. All configurations indicated airflow capacity 
considerably below the forward takeoff nozzle levels, with ratios generally 
in the 0.84 to 0.88 range for the 95" blocker angle (Figures 31 and 32) and 
between 0.79 and 0.83 for the 105" angle with spacing ratio of 0.79 
(Figure 34). 

The reverse thrust effective efflux angles shown on Figures 33 and 35 
confirm the observed trend of increased performance with decreasing pressure 
ra.tio, with lower angles indicating more forward direction of reverser 
efflux (more turning, hence, higher reverse thrust). 

6.2.2 BlockerSpacing Effects 

The effects of blocker door spacing ratio on reverse-mode airflow ratio 
and reverser effectivity are presented on'Figure 36, while Figure 37 shows 
the effect on effective efflux angle. Blocker spacing ratio was investi- 
gated in an attempt to obtain a better match between reverse and takeoff 
nozzle airflow levels. For the blocker, lip, and side skirt configuration 
tested, it was found that increasing the spacing ratio from 0.823 to 1.017 
improved airflow capacity by about 0.075; but, at the highest spacing, the 
reverse-mode flow ratio was increased to only 0.91, with a corresponding 
loss to reverser effectivity amounting to about 0.075. 
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6.2.3 Blocker Height Effects 

Blocker door height was varied between 1.63 and 1.73 HB/DTH during the 
parameter screening tests. Results from these tests, as presented on 
Figure 38, show little effect on either reverse-mode airflow ratio or 
reverse thrust ratio for lip lengths of 0.4 and 0.8 L/DTR. At increased 
blocker height, airflow ratio improved about 0.02 for both lip lengths, 
while reverse thrust increased 0.01 to 0.02 for the 0.4 L/DTH lip configura- 
tion. No reverser effectivity change was observed for the 0.8 lip length 
ratio. 

6.3 PARAMETRIC MATRIX 

The parametric test matrix, Table 6, was established on the basis of 
results obtained from earlier screening tests and the QCSEE reverser geometry 
which began to emerge from these results. For these parametric investi- 
gations, a blocker spacing ratio of 0.865 Xp/DTB was chosen, corresponding 
with the blocker spacing ratio selected for the QCSEE full-scale experi- 
mental nacelle. Blocker height was fixed at 1.63 HB/DTE to match the QCSEE 
blocker design. Side skirt geometry evolved from the extended design to the 
tabbed configuration (see Figure 6, Section 3.0) in order to eliminate side 
skirt and nozzle side door interference which would otherwise occur when 
stowing the reverser with the extended skirt concept. Blocker door inclina- 
tion angle and lip angle were included as-major parametric variables with a 
range of variation between 95" and 115", and between 15" and 35", respectively. 
Lip length ratio was varied between 0.2 and 0.8, with primary emphasis given 
'to a value of 0.4. 

All test results obtained from this test matrix may be found in Appendix 
D. From these data, reverse airflow ratios and reverser effectivity trends 
were reduced to derivative form for presentation in this section. While 
these derivatives were found to be independent of pressure ratio effects, 
some secondary effects were'observed which could not be sorted out systemati- 
cally for presentation individually; these effects are indicated by use of 
symbols on the derivative curves (Figures 39 through 42) and by shading the 
regions affected. Test run numbers and important geometric parameters also 
are given for easy reference. 

6.3.1 Side Skirt Angle Effects 

The effects of side skirt angle on reverse thrust and airflow are shown 
on Figure 39, with the 45" skirt angle position as the reference. These 
derivatives show higher airflow capacity (by 0.03) and higher reverse 
thrust (by 0.05) when the side skirts are rotated outward 45". Although the 
trends appear linear with rotation angle, some earlier unrecorded tests with 
extended side skirts rotated to beyond 45" showed no additional-gains. 
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Table 6. Reverser Parametric Test Matrix. 

Trimmed Cut Line, QCSEE Pivot 

Skirt 
Blast Angle, 

Inlet Shield Skirt 9" 
40 0.86'5 95 25 1.63 0.4 Bellmouth On Nominal 45 

41 0.865 95 25 1.63 0.4 Bellmouth On Tabbed 45 

39 0.865 95 25 1.63 0.4 Bellmouth On Tabbed 0 

42 0.865 95 25 1.63 0.2 Bellmouth On Tabbed 45 
43 0.865 95 25 1.63 0.8 Bellmouth On Tabbed 45 
46 0.865 95 35 1.63 0.4, Bellmouth On Nominal 45 

45 0.865 95 35 1.63 0.4 Bellmouth On Tabbed 45 

44 0.865 95 35 1.63 0.2 Bellmouth On Tabbed 45 

37 0.865 105 15 1.63 0.4 Bellmouth On Nominal 45 

36 0.865 105 15 1.63 0.4 Bellmouth On Tabbed 45 

38 0.865 105 15 1.63 0.4 Bellmouth On Tabbed 0 

35 0.865 165 15 1.63 0.2 Bellmouth On Tabbed 45 

32 0.865 105 25 1.63 0.4 Bellmouth On Nominal 45 

33 0.865 105 25 1.63 0.4 Bellmouth On Tabbed 45 

31 0.865 105 25 1.63 0.4 Bellmouth On Tabbed 0 
34 0.865 105 25 1.63 0.2 Bellmouth On Tabbed 45 

51 0.865 105 35 1.63 0.4 Bellmouth On Tabbed 45 

50 0.865 105 35 1.63 0.4 Bellmouth On Tabbed 0 

29 0.865 115 15 1.63 0.4 Bellmouth On Nominal 45 

27 0.865 115 15 1.63 0.4 Bellmouth On Tabbed 45 

28 0.865 115 15 1.63 0.4 Bellmouth On Tabbed 0 

30 0.865 115 15 1.63 0.2 Bellmouth On Tabbed 45 
48 0.865 115 25 1.63 0.4 Bellmouth On Nominal 45 

47 0.865 115 25 1.63 0.4 Bellmouth On Tabbed 45 

49 0.865 115 25 1.63 0.4 Bellmouth On Tabbed 0 
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6.3.2 Blocker Inclination Angle Effects 

Figure 40 presents the effect of blocker door angle on reverser per- 
formance. Note from this figure that the most significant improvement to 
both airflow ratio and reverse thrust ratio occurs between blocker door 
angles of 95' and 105", with little additional improvement above 105O, 
except as indicated from effectivity data taken on the short, 15O lip. As 
shown, the reference blocker door angle was chosen as 105'. 

6.3.3 Lip Length Ratio Effects 

Reverser effectivity was strongly influenced by increased lip length 
ratio, while airflow ratio was found to be relatively unaffected. Figure 
41 shows these effects. Note particularly the change (0.135) in reverse 
thrust ratio between the lip length ratios of 0.2 and 0.4. Also observe 
the apparent secondary effects attributable to blocker door angle and .low 
lip angle. A substantial reverse thrust increase also was realized for lip 
length ratios of 0.8, secondary effects of blocker angle and lip angle were 
not investigated here, however. 

6.3.4 Lip Angle Effects 

Blocker lip angle, which was varied between 15" and 35", showed only 
moderate effects on airflow ratio and reverse thrust ratio as indicated by 
Figure 42. The greatest reverse thrust change was observed in decreasing 
lip angle from 35O to 25", ignoring the secondary effects shown, with little 
additional reverse thrust benefit from a further angle decrease to 15O. 
Airflow ratio change was linear throughout the range of angles tested. 

6.4 OTHER PERFORMANCE EFFECTS 

Reverser development effort concluded with tests of a cut-back lip 
configuration (see Figure 6) evaluated.alternately with bellmouth, flight- 
type inlet, blast shield, ground plane simulation (QCSEE full-scale tests 
will be conducted with the nozzle and reverser hardware mounted inverted so 
that the reverser will discharge groundward), and reingestion pipe installed 
(Figure 43). The reingestion pipe was scaled to model size from full-scale 
drawings of a pipe used for reingestion shielding in General Electric full- 
scale outdoor tests. 

The configurations evaluated in these investigations are given in Table 
7. Test results are presented on Figures 44 and 45. 

6.4.1 Lip Cutback Effects 

Figure 44 shows that both reverse thrust and airflow ratios are essen- 
tially unaffected by lip cutback for the 35" lip configuration investigated. 
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Table 7. Supplementary Reverser Test Configurat$ons. 

Trimmed Cut Line, QCSEE Pivot 

Skirt 
Run 

L&H* 
Blast Angle 

No. XP/DTR a0 8" RB/DTH Inlet Shield Skirt 0" 

52 0.865 105 35 1.63 0.4 Bellmouth on Tabbed 45 

53 0.865 105 35 1.63 0.4 Bellmouth Off Tabbed 45 

54 0.865 105 35 1.63 0.4 Flight Off Tabbed 45 
55 0.865 105 35 1.63 0.4 Flight Off Tabbed 45 ground 

plane 
56 0.865 105 35 1.63 0.4 Flight/Pipe** Off Tabbed 45 simulated 

* Lip cutback in accordance with Figure 6. 

** Pipe installed over inlet to prevent reingestion from ground plane. 



1.00 - I -- ii, Inlet Blast 
Symbol Run Geometry a Shield 

0 52 Cutback B/M On. 
53 Cutback B/U Off 

0.90 ; 54 Cutback Flt Off (No Airflow Data) 
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d 51 Full B/M On' 

0.80 d 
00 

0.70 - 

0.50 

I? 
0.40 

? 
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0.30 

0.20 
1.10 1.15 1.20 1.25 1.30 1.35 
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Figure 44. Effect of Lip Cutback on Reverse Thrust and Airflow 
Characteristics. 
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0.60 

ReiAgestion Ground Plane Inlet 
Sym. Run Shield. Simulation Type 

054 No No Flight 

cl 55 No Yes Flight 

0 56 Pipe Yes Flight 

0 52 Blast No JW 
Shield 

0 53 No No B/M 

'PDTI-I = 0.865 

HB/DTH = 1.63 

p = 35O 
! 

Tabbed Side 

Lip Cutback Skirt at 
45O (8) 

1.18 1.20 1.25 1.30 1.35 

pT'pO 

Figure 45. Effects of Ground Plane and Reingestion Shielding on 
Reverse Thrust. 
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The small differences in measured values which appear (comparing runs 51 and 
52) are considered to be within test accuracy. As indicated on Figure 44, 
no airflow.data were measured with the flight inlet. 

6.4.2 Reingestion Shield Effects 

Two types of reingestion prevention devices were used in these tests: 
1) the blast shield (see Figure 7), and 2) the reingestion pipe shown on 
Figure 43. 

The blast shield utilized was a simple flat plate attached to the 
facility and positioned between inlet and reverser, so that inlet and. 
reverser flow fields were not adversely affected and installation around the 
model would not ground the force balance system (see Figure 7). A com- 
parison of test runs 52 and 53 on Figure 44 shows no effect due to blast 
shield installation on either airflow or reverse thrust performance. 

The reingestion pipe was installed over the inlet without grounding the 
force balance through an inlet/pipe contact; the pipe is attached to facility 
ground. A comparison of pipe-on and pipe-off data on Figure 45 (compare 
runs 52, 53, and 54 against the pipe installation run 56) shows a significant 
increase in measured reverse-thrust ratio (about 0.05). This increase in 
reverse thrust is attributed to increased airflow inlet momentum (analogous 
to ram drag) at the face of the inlet inslde the pipe. Had the pipe been 
coupled to the model or force balance instead of grounded to the facility 
test bench, the pipe body forces would have directly cancelled the inlet 
face momentum term, and test results would have fallen back in line with 
runs 52, 53, and 54. These reingestion pipe data indicate the approximate 
level of reverse thrust correction which must be made on full-scale outdoor 
reverser tests in QCSEE should a shield such as this be required. The level 
of correction observed is consistent with full-scale engine test experience 
with this type of reingestion shield. 

6.4.3 Ground Plane Effects 

A comparison of test results obtained with a flight-type inlet and 
without reingestion shields (Figure 45, runs 54 and 55) shows a reduction in 
reverse thrust ratio of about 0.02 when the ground plane is simulated. This 
reduction in reverser performance was attributed to reingestion from the 
ground of simulator exhaust flow directed groundward and forward by the 
inverted reverser simulation. This reduced performance condition indicates 
a potential requirement for conducting full-scale QCSEE reverser tests at 
the General Electric outdoor facility with a reingestion shield. 

Similar airflow ratio effects with and without ground plane simulation 
could not be investigated because simulator airflow measurements were not 
made with the flight inlets tested here. 
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6.5 REVERSER CONFIGURATION R.ECOMM.ENDATIONS 

Analysis of results obtained from reverser scale model testing has led 
to the selection of the recommended QCSEE reverser configuration shown on 
Figure 46. This configuration has a blocker inclination angle of 105" 
(model basis) with the blocker spaced at Xp/DTH = 0.865; the blocker height 
ratio, HR/DTH, is 1.63. The recommended reverser lip angle is 25", with a 
lip length ratio, L/DTH, of 0.4. Tabbed side skirts were selected on the 
basis of side door clearance when stowing the reverser. The side skirts are 
rotated outward'to 45". 

This recommended configuration geometry was tested as part of the 
reverser matrix evaluation; the test data for this model may be found in 
Appendix D as run 33. These data, in combination with other data in the 
reverser test matrix and the derivative curves from Section 6.0, were used 
to make up the scale model carpet plot performance curves on Figures 47 and 
48. 

The carpet plot data show reverser effectivities between 0.38 and 0.36 
for pressure ratios between 1.2 and 1.3, respectively (Figure 47), with 
corresponding airflow ratios of 0.78 to 0.805 at the selected blocker angle 
and lip length ratio (lOSo a and 0.4 L/DTH). Previous analysis of these 
data (Reference 2) has shown that this level of performance will enable the 
QCSEE reverse thrust requirement of 35% of takeoff thrust to be met, even 
when allowance is made for reverser blocker-door leakage losses. QCSEE 
engine cycle studies (Reference 2) have further indicated that adequate 
engine stability margins are maintained with these reverser airflow ratios, 
adjusted for blocker leakage flow rates, to permit satisfactory experimental 
engine testing. 
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Figure 46. OlW Reverser Configuration Recommendation. 



0.60 
I I 

Tabbed Side Skirt at 45“. (0 

0. 

0. 

-PT/PO = 1.3 

I IA-i-\ 

30 

20 

,lO 

Figure 47. Effect of Lip Length Ratio and Blocker Door Angle on Reverse Thrust Performance for 
Various Pressure Ratios. 
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Figure 48. Effect of Side Skirt Angle and Blocker Door Angle on Airflow Performance for 
Various Pressure Ratios. 
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SECTION 7.0 

CONCLUSIONS 

l Scale-model static tests have defined an Over-the-Wing "D" nozzle 
and a reverser exhaust system which meet the cycle area require- 
ments at takeoff, provide acceptable cycle effective area in 
reverse thrust, and meet the 35 percent reverse thrust objective 
established for the Quiet Clean Short-Haul Experimental Engine 
(QcSEE) Program. 

0 The QCSEE nozzle side door area variation concept demonstrated 
acceptable area variation capability, but internal flow separation, 
experienced at side door angles beyond the 25" door setting re-, 
quired for takeoff/cycle area, sets an upper limit on area varia- 
tion capability. 

0 The nozzle side door concept demonstrated good flow-spreading 
characteristics for low speed powered-lift performance. 

a Recontouring the nozzle roof (top) and floor internal flow lines 
to increwe the flow kickdown angle provided 3 to?4 degrees more 
downward exhaust flow direction onto the wing surface relative to 
the baseline, and showed promise for meeting the objective 60 
degrees of flow turning during powered-lift approach operation. 

l Redontouring the nozzle internal flowpath reduced nozzle flow 
coefficients moderately, relative to the baseline at both takeoff 
and cruise positions, with reductions generally ranging between 
0.01 to about 0.03. 

l Wing surface proximity showed only a moderate reduction in flow 
coefficient, with about 0.01 reduction obServed at takeoff settings 
and'up to 0.026 for cruise, as evidenced from flat plate wing 
configuration testing. 

l Velocity coefficients for baseline and recontoured nozzles were 
shown to be in general agreement levelwise, with the data spread 
between configurations ranging up to 0.02. 

l Velocity,coefficients were not significantly affected by side door 
position or wing presence, except for the cruise nozzle positions, 
which showed increases relative to takeoff settings of about 0.04, 
on the average, with the simulated wing attached. These increases 
resulted from less wing scrubbing friction and from reduced non- 
axial flow thrust losses when the side doors were closed. 
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0 The QCSEE reverser concept was found to have a low effective dis- 
charge area relative to the engine cycle takeoff requirement, with 
measured scale-model.reverse-to-forward mode airflow ratios between 
0.80 and 0.90, generally, and with the recommended configuration 
at 0.80. A study of QCSEE engine stability under these operating 
conditions indicated acceptable safety margins for demonstration 
testing, however. 

a Increasing the blocker door axial spacing ratio was found to be an 
ineffective means of increasing the reverse-to-forward-mode airflow 
ratio over the range of increased spacing ratio investigated 
(0.823 to 1.017); airflow ratio improved by Q.075 while reverse 
thrust ratio decreased a comparable amount. 

0 The blocker door height ratio increase from 1.63 to 1.73 showed 
some small improvement in'airflow ratio and reverse thrust with 
increases up to about 0.02 observed for both. 

0 Rotating the blocker door forward to increase the blocker inclina- 
tion angle from 95" to 105" significantly affected reverse thrust 
ratio (increased by about 0.08) and airflow ratio (decreased 
approximately 0.05). Further rotation to 115" inclination angle 
showed little additional change in reverser performance. 

l Extended and tabbed side skirts, rotated outward 45", produced 
significant improvement in reverse thrust ratio (0.1 to 0.12 
increase) relative to the nominal skirt baseline case, with out- 
ward rotation of the side skirt contributing about half the amount. 
Correspondingly, only a little change in airflow ratio was observed 
from side skirt extension and tabbing. 

a Increased lip length ratio was found to have a strong favorable 
effect on reverse thrust ratio with the greatest improvement 
(better than 0.10) in the lip length range between 0.2 and 0.4. 
Reverse-to-forward-mode airflow ratio was essentially insensitive 
to lip length ratio variations. 

0 Decreasing the lip angle produced only moderate improvement in 
reverse thrust ratio, with the greatest change (0.04) between 25" 
and 35". Decreasing lip angle from 25" to 15" showed little 
additional reverse thrust improvement. In the range investigated, 
lip angle variation did not significantly influence airflow ratio. 
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SECTION 8.0 

NOMENCLATURE 

A8 

Aeff 

Al5 

cd 

CV 
D 

DTH 

Fi 

Fresultantr FF~D 

FREV 

HB 

HV 

HX 

KPT 
L 

NF 

PO 

P2 

?cM 

PT 
R 

TO 

N2 

NT 

w8, wREV, wF, 

WI 

KF 

xp 
ACd 
ACV 

Nozzle discharge area 

Nozzle effective flow area 

Calibration nozzle upstream area 

Nozzle flow coefficient = N8/Ni 

Nozzle velocity coefficient = Fresultant/Fi 

Diameter 

Reverser reference dimension (13.97 cm) 

Ideal thrust based on PT/Po and N8 

Resultant nozzle thrust -&V2 + HK2 

Reverse thrust 

Blocker door height, reverser 

Normal scale force 

Axial scale force 

Nozzle total pressure correction factor 

Lip length, reverser 

Fan speed 

Ambient pressure, bellmouth total pressure 

Static pressure, bellmouth wall 

Measured nozzle total pressure 

Adjusted nozzle total pressure = KPTPm 

Radius 

Ambient temperature, bellmouth total temperature 

Bellmouth airflow 

Simulator drive airflow 

Nozzle.and reverser total airflow 

Ideal airflow, based on PT/PC and A8 

Blocker door spacing dimension 

Blocker door pivot spacing dimension 

Change in flow coefficient 

Change in velocity coefficient 

a4 



NOMENCLATURE (Concluded) 

APT 
BTipO 
FREVIFFWD 

*FREvI~FWD 
wREV/wFWD 

AWREV/~FWD 
a 

B 

% 
e 

ej. 
4 

CE 

Adjustment to measured nozzle total pressure 

Nozzle pressure ratio 

Reverser effectivity, reverse thrust ratio 

Change in reverser effectivity 

Reverse thrust airflow ratio 

Change in reverse thrust airflow ratio 

Blocker door inclination angle 

Reverser lip angle 

Effective exhaust flow angle (reverser) - tan -' (Hv/Hx) 
Calibration nozzle cone half angle 

Exhaust flow angle (nozzle) = tan -' (yI/Hx) 
Reverser side skirt rotation angle 

Angle between engine axis and wing chord 
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APPENDIX A 

PRELIMINARY STATIC TURNING PERFORMANCE 
DATA AND TEST METHODOLOGY 
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OTW 

NASA LANGLEY lEST METHODOLOGY 

EXHAUST SYSTEM STATIC TURNING AND 

TURNING EFFICIENCY DETERMINATION 

,I. DETERMINE BARE NOZZLE KICKDOWN ANGLE 

TEST CONFIGURATION FORCE DIAGRAM 

FLOW 

TWO COMPONENT 
FORCE BALANCE 

FNI - MEASURED NORMAL FORCE 

FAl - MEASURED AXIAL FORCE 

FRl = CALCULATED RESULTANT GROSS THRUST =[w 

‘JI = CALCULATED KICKDOWN ANGLE = TAN-1 FNI/F,, 

2. DETERMINE INSTALLED NOZZLL PERFORMANCE (WITH FIAT PLATE WING) 

TEST CONFIGURATION FORCE DIAGRAM AT 

~~~+=$ FLOW ‘;T;;;y; FN2 

FORCE BALANCE 

o FLAT PLATE SIMULATES CRUISE WING SCRUBBING DRAG 
o PROVIDES CORRECT NOZZLE BACKPRESSURE FLOW FIELD 

FA2 - MEASURED AXIAL FORCE 

FN2 - MEASURED NORMAL FORCE (IDEALLY ZERO WITH PERFECT 
PLATE ALI GNMENTI 

FR2 - CALCULATED INSTALLED GROSS THRUST =/&-+ T 

‘J2 - CALCUlATED FLOW ANGLE n TAN-l FN~/F 
A2 

( -I” FOR lISTSI 
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NASA LANGLEY TEST METHODOLOGY (CONT’d) 

3. DETERMINE ENGINE / WING FLAP SYSTEM 
LIFT AND DRAG CHARACTERISTICS 

TEST CONFIGURATION 

’ FLOW 

o NOZZLE DECOUPLED FROM WING 
a NOZZLE BACKPRESSURED BY WING PRESENCE 
o WING FLAP IN POWERED LIFT MODE 

BALANCE FORCE DIAGRAM CONTRIBUTING WING 
SURFACE FORCES 

FRICTION FLAP LIFT 

FOR THE REAL INSTALLED .CASE WHERE ENGINE AND WING 
ARE COUPLED, THE EXHAUST IMPACT FORCE IS CANCELLED 
BY THE NOZZLE KICKDOWN FORCE: 

WHERE KICKDOWN FORCE = FR2 SIN OJ, (COMBINATION OFSTEPS l & 2 ) 
AND NET AXIALFORCE IS THE SUM OF THE NOZZLE FLAT PLATE 
AXIAL FORCE (STEP21 AND THE WING DRAG FORCE (STEP31 

- ENGINE/WING SYSTEMLIFT - FN3 = fNW + FR2 SIN BJI 

- ENGINE/WING SYSTEM AXIAL FORCE - FA3. FR2 COS BJI t FAw 
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NASA LANGLEY TEST METHODOLOGY - CONT’D 

4 ~OIIIP~UT’N~“N”G ~;F5$Vl~yTURNING ANGLE 

FROM PROPULSION /LIFT SYSTEM NET FORCE ELEMENTS (STEP 3) 

SYSTEM LIFT - FN3 * FN 

SYSTEM AXIAL FORCE (NETTHRUST) = FA3 a FA 
+ 

FN3 

+ 

JET FLOW ANGLE (TURNING ANGLE) AT FLAP TRAILING EDGE 

6J * TAN-l FN3/F,j3 

ENGINE /WING SYSTEM RESULTANT- FORCE AT FLAP TRAILING EDGE 

FR3 -6% 

SYSTEM STATIC TURNING EFFICIENCY 

37 
FR3 I- 
FR2 

PLOTIED PARAMETERS 
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Configuration 1 
WSEE OTyl Baseline with 

Configuration 2 

Small Side Doors) 
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Configuration 3 

Removed 

Configuration 5 

\ 
QCSEE Nozzle 

Configuration 4 

Figure 49. Preliminary Exploratory Test Configurations for Static 
Turning Performance. 
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Figure 50. Preliminary Static Turning Performance, Configuration 1, QCSEE OTW Baseline Nozzle. 
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Figure 51. Preliminary Static Turning Performance, Configuration 2. 
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Figure 52. Preliminary Static Turning Performance, Configuration 3. 
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Figure 53. Preliminary Static Turning Performance, Configuration 4. 
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Figure 54. Preliminary Stati? Turning Performance, Configuration 5. 



, 

Angle of Flap Trailing 
Edge = 73O 

(Jet Turning Angle) l T = Measured Thrust of the 
Forward Nozzle with the 
Appropriate Takeoff 
Side Doors and Large 
Flat Plate Installed. 

- 
0.2 0.4 0.6 0.8 

-FA Net Axial Force 
T' Total Installed Engine Thrust 

Figure 55. Preliminary Static Turning Performance, Baseline and 
Recontoured Nozzle;RC-1. 
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APPENDIX B 

DATA REDUCTION SUMMARY 
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Inlet Parameter 

PO 

TO 

PP 

M2 
W2 

q 

Simulator Parameters 

N 

N/6 

AW 

TW 

PW 

APPENDIXB 

DATA REDUCTION SDMMARY 

Ambient pressure, inlet total 
pressure, 

Ambient temperature, inlet total 
temperature, 

Bellmouth wall static pressure, 

Bellmouth Mach number 

Mass flow, bellmouth, 

Mass flow, corrected to standard 
day conditions, 

Simulator fan speed, 

Fan speed corrected to standard 
day temperature, 

Simulator turbine drive mass 
flow, 

Temperature at drive air flow. 
meter, 

Pressure at drive air flow meter, 

Nozzle and Reverser Parameters 

pT*pTM 
~T/~(),~~~~o - 

TT 

Nozzle total pressure, 

Nozzle pressure ratio 
Nozzle total temperature 
(assumed TO), 

Balance force, axial component, 

Balance force, normal component, 

Resuitant force,dHx2 + Hv , -2 

Total mass flow, W2 + AW, 

Ideal nozzle mass flow based on 
pT/pO, 

K (' RI 
N/m2(lbf/in.2) 

kg/set (lbm/sec) 

kg/set (lbm/sec) 

rpm 

rpm 

kg/set (lbm/sec) 

K (" RI 
N/m2 (lbf/in.2) 

N/m2 (lbf/in.2) 

K (" R) 
N (lbf) 

N (lbf) 

N (lbf) 

kg/set (lbm/sec) 

kg/set (lbm/sec) 
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Fi 

cd 

Vi 

CV 

DATA REDUCTION SUMMARY (Concluded) 

- Ideal thrust based on Wg and 
pT/pO, 

- Nozzle flow coefficient 

- Nozzle ideal velocity based on 
pT/pO, 

- Nozzle resultant velocity 
coefficient, HR/Fi 

N (lbf) 

mfsec (ft/sec) 

- Nozzle effective flow area, -m2 (in.2) 

- Nozzle flow angle, degrees 

- Reverse effective efflux angle, degrees 

- Airflow ratio 

- Reverser effectivity, or reverse 
thrust ratio, bm#kFwD 
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Inlet Flow Calculations 

l wi*g & f 
0 

C2 A2 PO M2 (1 + I$ M,2)-3 

. 

where: g is gravitational constant, 9.8066 m/sec2 (32.174 ft/sec2) 

Y = 1.4 

R = gas constant, 287.04 m2/sec/sec/K (1716.322 ft2/sec/ 
set/" R) 

Cp = bellmouth flow coefficient, (0.987, based on analysis 
of boundary layer) 

A2 = bellmouth area, 0.0153 m2 (23.758 in.') 

PO =I ambient pressure, N/m2 (lbflin.') 

and M2 = bellmouth Mach number 

M2 = 

and P2 = bellmouth average static pressur.c (from four measure- 
ments) 

l (W2)c-r- = w24162 

where: 92 = TO/288.2 K, and 288.2 K is standard day temperature 

and: 62 = PO/lO1.325 kN/m2, and 101.325 kN/m' is standard atmos- 
pheric pressure 

Simulator Calculations 

l (N)corr a N/G 

where N is fan rotational speed, electrical pickup 

82 = TCl288.2 K 

l AW = f(TW, Pw) and rotating vane-type flowmeter electrical signal 

Nozzle Performance Calculations 
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l ej = tan -l IWHXI 

0 W8 = W2 + AU 

l ppo - Kp.pm/Po) 

where: Pm/PO is the manifolded rake nozzle total-pressure ratio 

KPT is a total-pressure ratio bias correction factor used 
to adjust measured total pressure from an equal area 
average value to a mass-weighted average. This factor 
was established from comparison of round calibration 
nozzle data with NACA data reported in Report 933; 

where: Vi = Mi m 

and: Ml = 

and: TT is assumed equal to TO 

0 Ae8 = 
WgG(A/A*) 

'T K 

where: K is the choked flow (Mi = 1.0) value 

for the flow function !6 =M 
'TA i 

and: A/A* = Mi 

l Wi' &T i 
1+y-l 2 

2 Mi 
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where: Ag is the nozzle physical exit area consistent with the nozzle 
being tested 

Nozzle Physical Exit 
Round Nozzles Area, AS 

Rl 0.01503 m2 (23.3 1x1.~) 

R2 0.01348 m2 (20.9 in.2) 

'R3 0.01193 m2 (18.5 in.2) 

R4 0.01032 m2 (16.0 in.2) 

QCSEE Nozzles 0.01097 m2 (17.0 in.2) 

(cruise position referenced) 

and Ml is calculated as in Fi 

l c, = HR/Fi 

0 cd = Wg/Wi, 01: A&A8 

Reverser Performance Calculation 

l w8 - WREV = [W2 + AWIREV 

e +/PO = $T(p~Ipo) 

0 SE = tan -' O+/Hx) 

Calculated in the same 
way shown under nozzle 
performance calculations. 

where: WFm is determined from a curve fit of the reference forward 
thrust test results evaluated at corresponding reverser 
test pressure ratios. The quation for Wm is given as: 

WFWD = -64.9239 + 145.8658 (PT/PO> 

-108.2791 (PT/PO)2 + 28.0100 (PT/PO)3 

with units for flow expressed in kg/set. 
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This method accounts for differences in ambient temperature and pres- 
sure between forward and reverse thrust tests by correcting both sets of 
data to sea level standard conditions. 

0 FREV'Fm = (&),, ' ($)m = (@o() 

where: HR is the resultant forward thrust reference value deter- 
mined from a curve fit of forward thrust test data evaluated 
at corresponding reverse test pressure ratios. The equation 
for HR is given by: 

% = -2326.1662 + 2310.9103 (RT/po) 

with units for HR in newtons. 
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APPJmDIXC 

FORWARD THRUST TEST RESULTS 
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Figure 56. Effect of Nozzle Side Door Angle on Performance, QCSEE 
Baseline Configuration, Large Plate On. 
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Figure 57. Effect of Nozzle Side Door Angle on Performance, QCSEE 
Baseline Configuration, Small Plate On. 
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Figure 58. Effect of Nozzle Side Door Angle on Performance, QCSEE 
Baseline Configuration, Plate Off. 
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Figure 59. Effect of Nozzle Side Door Angle on Perforynce, RC-1 
Configuration, Large Plate On. 
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Figure 60. Effect of Nozzle Side Door Angle on.Performance, RC-1 
Configuration, Small Plate On. 
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Figure 61. Effect of Nozzle Side Door Angle on Performance, RC-1 
Configuration, Plate Off. 
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Figure 62. Effect of Nozzle Side Door Angle on Performance, RC-2 
Configuration, Large Plate On. 
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Figure 63. Effect of Nozzle Side Door Angle on Performance, RC-2 
Configuration, Small Plate On. 
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on Reverse Thrust and Airflow, a = 95", $ = 25O. 
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Figure 70. Effect of Lip Length Ratio and Side Skirt Configuration on 
Reverse Thrust and Airflow, U = 105O, 8 = 25O. 
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Figure 77. Effect of Side Skirt Configuration on Reverse Thrust and 
Airflow, ci = 115', B = 25O. 
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Figure 78. Effect of Lip Length Ratio and Side Skirt Configuration on Effective 
Efflux Angle, U = 115', i3 = 15'. 
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Characteristics. 
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