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NOTATIONS
a specified crack depth
constant in Paris's equation for crack growth
height of casing
stress intensity factor
critical stress intensity factor
stress intensity factor after N uses
number of uses of the motor case
Pressure
outer radius of the casing
surface crack depth
critical crack depth
crack depth after N uses .
half the length of a surface crack
payload cost per pound
cost of total payload
cost of articles and accessories at proof test
component cost '
component cost
component cost
component cost
total cost
probability density function
constant in Paris's equation
initial case thickness
proof load factor
thickness of the case
thickness of the case after N uses
random variable representing crack depth
standard normal variable
shape parameter
thickness decreased during grit blasting
stress intensity range

maximum initial crack depth, scale parameter
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minimum crack depth

shape parameter

7 density of the material of the casing

yield stress



INTRODUCTION

Structural components of a solid rocket motor case are considered to
bel fracture critical whenever the game plan is to recover and reuse the
motor case for a designated anumber of missions. Proof tests, conducted on
the case between missions, are also significant to  rendering the
sﬂructural components fracture critical. Proof load 1levels 'may
sﬂgnificantly affect the design life of the structure. A fracture control
plan is, therefore, necessary and is considered in the design of the

case.

In particular, this paper is concerned with the fracture control of
the most critical membrane areas of the case. All discussions and
methodologies presented in this paper can, however, be used whenever
similar fracture critical structures of a reusable space vehicle system
are designed. Some modification might be necessary in particular
structures. Significant loads are applied to the motor csse during flight
and water recovery operation of each mission. The applied stresses from
all other events during the mission are assumed in this analysis to be not
significant enough to result in cyclic or time dependent crack growth, If
the test or analysis indicate the possibility of other critical loading
events they can be included in the fracture control plan by extending the
reported analysis. Before each mission, the case is also subjected a
proof test. The loads’ applied during the proof tests can result in
significant amount of crack growth. Grit blasting is assumed to be used
between each mission. This reduces the effective depth of cracks and the
thickness of the membrane by a selected amount. While the effective depth
of crack 1is reduced, the refurbishment grit blasting operation has the
effect of increasing the applied stresses. This necessitates a larger
iﬁitial thickness of the membranes than that would be required otherwise.
Tﬁerefore, any design of the membrane of the case must arrive at an
initial wall thickness t, the thickness t that will be decreased between
each mission and the proof load factor p. For example, a large value of

initial wall thickness results in increased reliability, but results in



thé need for increased propellant, increased cost of operation and reduced
pa§ load capability{ On the other hand, a small initial wall thickness
inéreases the probability of failure and the resulting loss of the reusable
spéce vehicle system and the pay lwad. Therefore, there is a-need for
opéimizing the initial wall thickness. Similar arguments can be presented
to‘explain the need for selecting the other design variables such as &t and

p by optimizing the desired objectivé function of cost and weight.

In general, these design variables depend on the probability
distribution for the initial flaw sizes present in the membrane, applied
stresses during the use of the vehicle, cfack growth characteristics of the
material, fracture control plans, specified reliability bounds, weight and
cost considerations. The paper describes a reliability-based procedure
that can be used to select the design variables of a“solid rocket motor
case in a reusable space vehicle S§étém 5y uéihg probabilistic fracture

mechanics and cost or weight:considerations;
Method of Approach

It 1is assumed that careful nondestructive inspection (NDI)
techniques can detect initial cracks greater than the surface length of 2c
and depth of a with 1007 success. Sometimes, it is assumed that
cracks corresponding to surface length 2¢ = 0.1 inch can be identified 100%
bf the time.1 If the corresponding maximum depth is 0.05 inch there is no
%ossibility of existence any initial cracks of depth larger than 0.05 inch.
$uch an initial crack depth distribution is assumed to be analytically
fepresented by Johnson Sb dis‘tribution.2 Reasons for this assumption can
be explained as follows. One of the requirements of any assumed
aistribution is that the minimum and maximum crack depths be bounded within
ﬁinite limits. Depending on the thickness and the available techniques of

non destructive inspection techniques, there is a finite maximum depth of

ﬁossible crack. It is not infinity as is provided by distributions such as

ﬁormal distribution, gamma or log-normal distributions. The minimum value
of depth of crack can be assumed to be zero or a small number . Such a
distribution can be obtained as: the transformation of the usual normal

variate. One such transformation is the following.
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In this equation, z is the standard normal variable and x is the variable

of interest i.e,, the crack depth, The four available parameters are Y ,

N, €, & A\ . The minimum and maximum crack depths fix € & A respectively.

The parameters can be called shape parameters and can be determined from
percentiles of the observed data,

The density function for the probabilistic model is written as
follows

_ A exp {~% |¥
fao(ao) Tom (ao - e (- a +. €) {

) ()

-~ Sy S ® , A>0

- S g S ®

This empirical distribution is called Johnéon Sb,distribution. It should

be noted that it is possible to obtain other empirical distributions to
represent the crack depths,



This probability distribution for initial crack depth changes after
each mission, each proof test and each time the material as removed from
the wall thickness. The change in distribution after each mission and
each proof test is due to the crack growth resulting from the applied
stresses. This crack growth also depends on the present length of the
crack, applied stress and the material that are responsible for the crack
growth. In this analysis,the applied stresses and material properties are
assumed to be known deterministically. If the initial crack length were
also known deterministically the crack length after each use can be
de%ermined from equations such as Paris' equation3, Foreman's equationa
or Collipriests equationss. Because initial crack lengths are not known
deterministically, ¢érack length after each use--of ‘the vehicle is again

another probabilistic distribution that has to be estimated.

' The cumulative density function (CDF) for crack length after N uses
isi denoted by F(aN). This represents the probability that aNSA.after N
uses. Each use is defined as one flight, one proof test and a material

removal. Crack growth due to time related effects such as stress

corrosion have been neglected,.

1f F(aN) is known, the probability distribution for the stress
intensity factor KN can be obtained from the knowledge of the applied
stresses, The probability distribution F(KN) for stress intensity factor
can be wused to estimate the probability failure Pf which is the
probability of stress intensity factor Ky greater than or equal to the
cﬁitical stress intensity factor during the projected design life of the
séructure. The critical stress intensity factor is denoted by Kc, In
ftﬁis analysis, stresses and the material properties are assumed to be
kﬁown deterministically. However, the applied stress changes after each
use due to material removal. Therefore, the probability of failure can be
e%pressed as the probability of a N:Zac' In this expression a_ is the
‘ c%itical crack depth that can be obtained from the critical stress

intensity factor and the applied stress corresponding to that particular

mission. This relationship between the stress intensity and the applied

stress is discussed in the next section.



Stress Intensity Factor

For the analysis of the stress intensity factor in the membrane, an
infinite plate model with elliptical surface flaws that are oriented per-
pendicular to the applied stress has been assumed. The relationship
between the stress intensity factor, the applied tensile stress and crack

depth is given by1

3
where
a 2 o] 2
Q ) =4¢" -0.212 (—;) (&)
y ‘

In this equation, OY is the yield stress and § is a function of the
ratio of crack depth to crack length (a/c). Variation wz with (a/e) is

given in reference 1.

: Because the crack depth a is a random variable the stressbintensity
factor K is also a random variable. 1In general, both crack depth a and
érack length 2¢ are random variables and there is a need for a joint
éistribution for a and ¢. In this analysis, only the crack depth is
éonsidered as the random variable. It is also assumed that the’
probability distribution for crack depth a is known initially and is given
by a Johnson sb distributionz. The density function for the distribution

5



is given in equation (1). This probability distribution for crack depth
changes with use. The next step will be to determine the change and the

new probability distribution after each flight and proof test.
Probability Distributions for Crack Depth After Use

The following symbols are used to properly account for the changes in
probability distributions.
f(ao): Probability density function for the
initial crack depth
F(ao): Cumulative distribution function for
initial crack depth
F(aop): Cumulative distribution function for
initial crack depth after the first proof test
F(aN): Cumulative distribution function after
N flights and (N+1) tests
F(aNp): Cumulative distribution function after
N flights and N proof tests.
F(QN): Cumulative distribution function after

material removal from the wall thickness.

Then, using Paris's crack growth equation3,

da n
an = ¢ 0 (5)

where C and n are empirical constants. Alternately, the rate of crack
growth can be assumed to be given by Foreman's equationl+ or Collipriest's
equations, if they are found to represent the situation more accurately.

For example, Collipriest's equation can be written as follows:

k T - ‘ - - % (i - AR
da _ o [n InK_ - 1nfKo -1 fInbK- % (Ing, (1-R) + lndK, )}
2 % (In Kc(l-R) - 1nAKg

dN
+ 1n {C exp (n 1an+1nAKc) }]
I ‘ 2

(6)




i wﬁere Paris's constants are used. By integrating either of the selected

eduations (5) or (6) crack depth after N+l uses can be detarmined if the

crack depth after N uses and N proof tests are known deterministically,

i.e.,

M1 T e {aNP} D

Similarly, crack depth after the proof .test can be determined from
equation (5) or(6) if the crack depth before proof test is known

deterministically, i.e.,
I U S (8

These functions represented by equations (7) or (8) can be determined
analytically or in the form of quadratures from equation (5) or (6). From

equation (7), ag, can be obtained for every known value of a

NP°
Similarly, agp can be obtained for every known value of ay from equation
(8). However, both ayp and ag are random variables in t. 2 present
analysis. In this case, equation (7) can be used to obtain the

probability distribution for anel if the probability distribution for ays
is known by using the principle of transformation of random variables. It



should te noted that all equations similar to (7) or (8) involving crack
depths are increasing functions. This property is useful in transforming-
the random variables.

For example, the probability density function for 4y, can be written

as follows

£ag )=f |ay {aNF% days (9a)
+1 +1 da
N+1
similarly
da
f(a = f la a N | 9b
G = 7 [ 10y] | 2 o)
Np§

Equations (7) and (8) can be written for every value of N from zero

to the projected number of uses.

Details of obtaining these equations for the membrane of the solid
rocket motor case, with the expression for stress intensity given by
equation (2) and Paris' equations for crack growth, is discussed in the

Appendix I.

The next step is to obtain a tool for change of probability

distribution due to the material removal from the wall thickness.

Material Removal and the
Change of Probability Distribution

Due to material removal after each use, the effective crack depth is

reduced by At . Thus, new crack derth is



aN':aN‘At . (10)

It is assumed that At is a constant. Thus, by using the principles of
transformation of random variablesz, the probability density function for

ay can be written as follows.

p(a) = £ (3 + Ab) (1)

In this equation, p(in) represents. the density function for ay and f

represents the functional form of the probability density. function for ay-

Probability of Failure

By following the method discussed in the preced.ing two sections
probability density function for crack depth can be obtained after every
flight, proof test and material removal. From the density function,
cumulative probabilities can be obtained by integration. Integration
after the transformation of variables as discussed in equations (9), (10),
and (11) needs the determination of appropriate limits of integration
consistent with the transformation of variables. This is also discussed
in the Appendix I. 1If F(aN) represents the cumulative density function
after Nflights & N proof tests the probability of failure is given by the
probability of a > a_ _. . The quanity of a

¥y

applied stress at the N~ use.

corresponds to K and the
cN c



It is to be noted that the probability of failure changes with
dffferent selections of the initial wall thickness t, increased loading
dde to proof test, the material remcved At and the number of designated
number of missions. The increased loading due to proof tests is denoted
bf a factor p. A cost function or a weight function can be formulated from
tﬁis knowledge of probability of failure and other related unit-cost or
weight. Such a cost or weight function depends on t, p, and number of
missions N. It is possible to select these design variables by minimizing
the cost or weight function subject to appropriate realiability bounds. ‘ -
The effect of nondestructive inspection (NDI) is indirectly related to
initial flaw distribution. Additional NDI effects such as the rejection
of structures are not considered in the analysis. However, they can be
included as units related to the probability of failure. A  numerical

example is illustrated in the next section to illustrate the developments

of the paper.

Numerical Example

For the numerical example, it 1is assumed that the Johnson §

distribution for the initial crack depth is such that the minimqm'éfack T

depth is zero and the maximum crack depth is 0.1 inch. Paris's‘@quation

. . A : A
for crack growth is assumed with !

» il
C' = 0.847 x 10718 o

3.0 , (o)

el
[

The variation of ¢2 with (a/c) as shown in figure 1 is approximated by a

quadratic relation.

The primary objective of reusing the solid rocket motor case is to
reduce the cost of operation of the reusable space vehicle system in which |
itéis used. However, as the number of uses is incpeased, the probability
of%failure increases because of the propagation of the crack depth. On %
thé‘otherhand, smaller number of uses increases reliability and also the
cost ié distributed over a smaller number of uses. This means the casing

has to be replaced after a fewer number of uses.

10



A larger initial thickness would increase the weight of the casing
and costs more in terms of payload. But the probability failure is less
if the thickness is more. The proof test factor p and the material
érosion At are kept constant in this example. However, they also can be
varied and their effect on total cost can be considered in the most
general case. The total cost function Cps therefore, comprises the

folloWing component coOsts.

i) Initial cost of the casing, c:H
ii) Expected cost of flight failure i

iii) Expected cost of proof test failure i and

iv) cost due to multiple usage, civ' ,
The initial cost s is given by the product of the weight of the casing

and the cost per pound of the system, i.e.,

“-, 2 ) ;
¢, = n (ZROtN - tN YH Yy < (12)

where Roé outer radius of the casing
tN= thickness of the casing at the
: Nth cycle
H= height of the casing
v= density of the material
c.= payload cost per pound
The expected cost of flight failure is the product of the probability of
flight failure and the entire payload cost, i.e.

i1 = Py - €2 (13)

11



where P is the probability of failure at the neh flight c, is the total

cost of the payload. Similarly the cost of proof test failure is

iii Np 3 (14

Where pnp is the probability of failure at the Nth proof test and cq is
cost of articles and accessories of proof test. Finally, the cost due to
multiple usage is given as follows:

e . | 0.3
iv 3/(N) ' (15)

Thus, substituting all the components, the total cost function Cr is given
by the following equation

T i ii iii iv - (16)

The following numerical values are usedl’6 in evaluating equation (16).

Y = 0.3 lbs/cubic inch
H = 816 inches
Ro = 72.5 inches
C1 = $1624 per 1lbs.
¢, = %250 x 10°
c, = $ax10°
Results

The initial thickness t, is varied from 0.535 inch to 0.435 inch in steps

of 0.005 inch. Also, 1% of the initial thickness is eroded after each flight.
The’total cost functicn is calculated for various initial thicknesses and

o
‘,( -

use cycles by means of a digital computer. Figure 2 illustrates the

12



Qariation of the cost function with to and N. If is obvious that as the
number of uses increases, the minimum occurs at a higher initial
thickness. For example, for 18 missions the minimum cost occurs at an
initial thickness of 0.48 inch. The initial thickness to give minimum

cost for 20 mission cycles increases to 0.497 inch, for 22 missions the

thickness required is 0.512 inch.

Figure 3 delineates the variation of reliability with initial
ﬁhickness, after 20 missions cycles. The reliability corresponding to the
ﬁinimum cost for 20 uses is 99.3%. If this reliability is not ade-
quate, theh'a higher initial thickness should be used even though the

total cost will be higher than the minimum.

General Procedure

Based on the preceding example, a general procedure can be delineated
in the following steps.
1. Obtain the parameters of the Johnson Sb distribution2 for

the initial flaw size.

2. Obtain the stress in the membrane from the known geometry of

the case and wall thickness.

In the equation p 1is the proof stress factor. During flight,
p 1is replaced by a value of 1. Pressure P is the MEOP pressure

on the case and Ro is the radius of the case.

3. Obtain the new CDF and density function for the crack depth after
the proof test.

13



4. Obtain the new CDF for the crack depth during the flight
following the proof test.

5. Estimate the probability of failure.
6. Compute the cost function parameters.

7. Obtain the new CDF after the material removal.

mission until the total number of missions are complete.
9. Change t and N and repeat the calculations as necessary.

10. Select the design variables for the minimum value of the
objective functlon subject to re11ab111ty constraints.
A computer program has been written to carry out these steps (?ee Appendlx
1.

Conclusions and Recommendations

This paper has demonstrated that the reliability analysis based on
prbbabilistic fracture mechanics can be used to optimize the selection of
the design variables of a solid rocket motor case. In particular, basic
deéign variables such as the thickness and projected design life as well
as, the fracture control variables such as the proof factor and material
eﬁosion can be included in the analysis. Accuracy in estimation of the
initial flaw size distribution is reflected in the assessment of the risks
involved in the design. By knowing the risks involved in the design,
weight and cost can be reduced from those obtained by the conventional

deterministic analysis and use of arbitrary safety margins.

This report is only a first step in the development of procedures
based probabilistic fracture mechanics. Additional work that is
necessary can be listed as follows: E |

14



1.

2.

A more accurate analysis can be obtained by considering the
joint distribution for the crack depth and crack length

along the surface.

Accurate methods of estimation of the probability distribution

for the initial flaw size distribution should be developed.

In particular, effects of water impact and time dependent
crack growth, stress corrosion, should be considered. This
is particularly important if the missions are spaced over

years.

Uncertainties in external loads and material properties

should be considered.

Accuracy of the different models for crack growth (in the

point of view of probabilistic fracture mechanics) should

be evaluated.

Alternate fracture control plans and more accurate stress
intensity measures based on cylindrical geometry can be

considered.
Cost of NDI efforts in relation to the cost that will be
incurred by additional safety factor should be evaluated

in the point of view of improved reliability.

Thermal effects should be considered.

15
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APPENDIX I

This appendix describes estimation of the new CDF of crack depth after use

from a knowledge of the old CDF and probability density before use.

Crack Growth Rate

The rate at which the crack depth increases is given by Paris's
equation as follows.

%ﬁ - CAK™ = 0.8472107 'S (ary™

For subsequent convenience in algebra, the value of n is taken to be 3.0.
By substituting for c and n,

3
da _ 0.847 |c = a, 2 * 8 (Al)
= 0, a, -
dN 4 Cg + c2_2_+ c3_(c; X10
Simplifying this further,
1.5
da ) % a zl (A2
da  _ a = A2)
dN 6 {;; M) (c) + S (c) ;

where

17



g = 0.847 x ¢,” x 10 "% (A3)
Separating the variables a and N in %%, it follows that
2 1.5
a a
c. +¢,) + ¢,2) { 4a
aN =l 5T 2 3% (A%
6 a

Integrating both sides between state (1) and state (2) the following

equation is obtained

2, LS

ay a da
j cg + ¢, (0) + ¢300) } (A5)
6 al

In order to evaluate the integral on the right hand side, it is found

necessary to expand the numerator of the integrant binomially.

Now consider the numerator of the integrand with C5 = 1. Neglecting

terms of higher order than (a/c)3, it follows that

18



‘ 2,13
five, &rey @

e

' a
= 1.0 + 1.5 cy (c)

| o 2
+[1.5c3 + 1.5 (0.25)} 69

+[o75 c. - 0.25(0.5)° 3] 3)3
75¢,¢4 = 0.25(0.5) ¢, | (A6)
Letting
P =1 1.5 c ‘ (A7)
1 c 2
1 2
Pt {1.5 ¢y + 0.375 ¢, } (A8)
and
1 2 3
P3-c3 10.75¢,c, - (0.25)" ¢,’} (A9)
Then, it follows that
1 A +c (5)2 = 1.0+ P.a+ P.a’ 4+ p.ad
{L+e, 3 @ =L0+P 2%+ F3% (a10)

Substituting in the integral the following result is obtained

19



) |
) az's] (Al1)
a

Solution of a,as a function of a,

Substituting the limits of integration in A(1l1l)

. 1.5
0.5 0.5
Ce (N2 - Nl) = -2a2 + 2P1(a2) + %Pza2
-0.5
2.5 . 0.5 1.5 2.5
+_§ P3a2 + 2al - ZPla1 % P2a2 - %PBal (A12)

Rearranging and neglecting terms of order higher than three, it reduces to

the following equation

3
2
(a)) +p (a)” +a(a) +¥=0 (A13)
where
2 :
_ 1.0 (4]?1 - §P2) (Al4)
P=3 PP, - 8 P, 3
3 5

20



-1.0 2 |
1875, -8, (82, + ¢ (415)
3 5
and
y = 4 (A16)
8PP, - 8P,
3 5

Now, the three roots of this cubic equation, (al)1 are given as follows

(1)
a = A4+ B -P
1 3 ;
(2) _A+B A-B — _P (A17)
i N T2 3 3
(3) _A+B A-3B  _ P
a1 B z 2 3 3
where
3 2 -3
A =q/-Db+ b +a (A18)
2 4 27
3 -
B=gq-b o) b +3
2 4 27
-1 2. 3
a=30Gq-p),b=1 (2p - gpq+ 27)

21



Transformation

Probability density of a, is given by

da1
f (az) =-E;— f

(a,) (A19)
&9 2 3 1
CDF of a, 1s then
: a (a,)
‘ 1 2
a2 y .
f £, (a,) da, =/ £, (a) da (A20)
- 2 . 1
al LY}
al(aZ) al\az)

f fal (a)) da, = [Fal (al)] (A21)
[o]

where Fa (al) is the CDF of Johnson SB distributionz.
1 .

Now, it is needed to obtain a, as a function of a,, No. of cycles etc.

1 2’
This can be done by solving the polynomial equation obtained previously in

térms of a, and treating a5, N1 and N2 as constants. The infinite degree

polynomial equation is truncated at the 3rd degree for convenience.

Of the three roots only one will be the real root because of 'the

physical nature of the problem, vy al(az)

4

Then by substituting in the expression for the CDF of a,

Ql(az)

oy = | 2
Fo(ay) f fé11 (a)) da; (A22)
,;,..\ ) o . N

22



Page intentionally left blank



Substituting the values for point (i),

Substituting the values for point (ii)

1.0 + ¢, (0.5) + Eq (0.25) = 1.5 (A27)
or 2 ¢y r g = 2.0 (A28)

Substituting the values for point (iii)

1.0 + €yt ey = 2.5 (A29)

(X!
+
0t
]

or 2 3 1.5 . (A30)

Solving equations (2) and (3) simultaneously
c, = 0.5 (A31)

and c, 1.0 (A32)

Thus the chosen parabolic fit is as follows

4a

9 ,
¢ =1.04+0.5—+

o lwp

(A33)
(o4



32 a rzndom warizsble

(..
(&5

limit of a; is zero, it follows Irom the functional relationship batween
a, and-a, that the lower limit of &, is also zero. Next, if the upper

1 z 2
limit of 2 is a;, the corresponding upper limit for a, can be obtsgined by

solving the cubic relation between a, and a

[3%]
fis
17)]
f
Hh
[
jos
[¢]
(a4
e
o]
jor ]
o]
a1]
rt
58
1]
g
(3
1]
re

- 2 _ 'y _
of cycles N hz Nl'
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Figure No. 1. Variation of Shape Factor with a/c
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