NASATECHNICAL MEMORANDUM

-APROVED STRESS-INTENSITY FACTORS FOR SEMI-ELLIPTICAL
SURFACE CRACKS IN FINITE-THICKNESS PLATES

```
by
I.S. Raju and J.C. Newman, Jr.
Langley Research Center
Hampton, VA 23665
```

TECHNICAL PAPER to be presentec at the 4 th International Conference on Structural Mechanics in Reactor Technology, August 15-19. 1977. San Francisco, California, U.S.A.

This informal documentation medium is used to provide accelerated or special release of technical information to selected users. The contents may not meet NASA formal editing and publication standards, may be ro, 3 vised, or may be incorporated in another publication.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

IMPRCVED STRESS-INTENSITY FACTORS FOH SEMI-ELLIPTICAL sURFaCE CRACKS IN FINITE-THICKNESS PLATES

I. S. Raju and J. C. Nemaan, Jr. NASA-Langley Research Center Hampton, Virginia

SUMMARY

Surface cracks sare among the roore common :laws in aircraft and pressure vessel components. Accurate stress analyses of surface-cracked components are needed for reliable prediction of their crack-growth rates and fracture strengths. Several coslculations of stress-intensity factors for semi-elliptical surface cricks subjected to tension have appeared in the literature. However, some of these solutions are in disagreement by 50 to 100 percent.

In this paper stress-intensity factors for shallow and deep semielliptical surface cracks in plates subjected to tersion are presented. To verify the accuracy of the three-dimensional finite-element models employed, convergence was studied by varying the number of degrees of freedom in the models from 1500 to 6900. The 6900 degrees of freedam used here were more than twice the number used in previorsly reported solutions.

INTRODUCTION

Surface cracks are among the more common flaws in aircraft and pressure vessel components. Accurate stress analyses of these surfacecracked components are needed for reiiable prediction of their crackgroutl rates and fracture strengths. Exact solutions to these difficult problens are not available; therefore, approximate methods must be used. For a semi-elliptical surface crack in a finite-thickness plate subjected to tension (Figure 1), Browning and Smith [1], Kobayashi [2], and Smith and Sorensen [3] used the alternating method and Kathiresan [4] used the finite-element method to obtain the stress-intensity factor variations along the crack front for various crack shapes. For a deep semielliptical surface crack (with $a / t=0.8$ and $a / c=0.2$) subjected to tension, the stress-intensity factors obtained by Smith and Sorensen [3], Kobayashi [2], and Kathiresan [4] disagreed by 50 to 100 percent. The reasons for these discrepancies are not well understood.

This paper presents stress-intensity factors for shallow and deep semi-elliptical surface cracks in plates subjected to uniform tension. To test the validity of the present analysis, two creck configurations, both embedded in a large body subjected to uniform tension, were analyzed:
(1) a circular (penny-shaped) ćrack and (2) an elliptical crack. These results are compared with exact solutions from the literature [5]. To verify the accuracy of the soiutions for surface cracks in finitethickness plates, convergence was studied by varying, from 1500 to 6900,
the number of degrees of freedom in the finite-element models. The 6900 degrees of freedom used here were more than twice the largest number used previously [4]. These models were composed of singular elements around the crack front and isoparametric (linear strain) elements elsewhere. Mode I elastic stress-intensity factors were calculat i by using a nodal force method.

The computations reported herein were conducted on a unique computer called the STAR-100 at the NASA Langley Research Center.

E Young's modulus of elasticity
F stress-intensity boundary-correction factor
h half-length of cracked plate
K stress-intensity factor (Mode I)
Q shape factor for an elliptical crack
S applied uniform stress
t plate thickness
x, y, z
u Poisson's ratio
\$ parametric angle of the ellipse

THREEEDIMENSIORAAL ANALYSIS

Several aitempts [6-8] have been made to develop special threedimensional finite-elements that account for the stress and strain singularities caused by a crack. These elements have had assumed displacement or stress distributions that simulate the square-root singularity of the stresses and strains at the crack front. Such three-dimensional singularity elements [9] were also used herein for the analysis of finite-thickness plates containing embedded elliptical or semi-elliptical surface cracks (see, for example, Figure l).

Finite-Element Idealization

Two types of elements (isoparametric and singular) [9] were used in combination to model elastic bodies with embedded elliptical cracks or semi-elliptical surface crasks. Figure 2 shows a typical finiteelement model for an embedded circular crack in a large body $(h / a=b / a=5)$. This model idealizes one eighth of the body. Various numbers of wedges were used to form the desired configuration. Figure 2(a) shows a typical model with eight wedges. Each wedge is composed of elements that are identical in pattern to that shown in the $\phi=$ constant plane. The arrangement of the elements around the crack front is shown in Figure 2(b). The isoparametric (linear strain) elements (denoted as I) were used everywhere except near the crack front. Around the crack front each wedge contained eight "sjngularity" elements (S) in the shape of pentahedrons. The "singularity" elements
had square-root terms in their assumed displacement distribution and, therefore, produced a singular stress field at the crack front. Details of the formulation of these types of elements are given in Reference 9 . The finite-element model for the embedded elliptical or semielliptical surface crack was obtained fram the finite-element model for the circular crack by using an elliptic transformation. This transforuation was needed because the stress-intensity factors must be evaluated from either crack-opening iisplacements or nodal forces along the normals to the crack front. If (x, y, z) are the Cartesian coordinates of a node in the circular-crack model and ($x^{\prime}, y^{\prime}, z^{\prime}$) are the coordinates of that same node in the elliptical-crack model, then the transformation is given by

$$
\begin{align*}
& x^{\prime}=x \sqrt{1+\frac{c^{2}-a^{2}}{x^{2}+z^{2}}} \\
& y^{\prime}=v \tag{1}
\end{align*}
$$

and

$$
z^{\prime}=z
$$

for x and z not, at the origin. Figure 3 shows how circular arcs and radial lines in the x, z plane of the circular-srack model are transformed into ellipses and hyperbolas, respectively, in the x^{\prime}, z^{\prime} plane of the elliftical-crack model using equations (1). Because equations (1) are not valid at the origin, a circle of very small radius, $a / 1000$, was used near the origin in the circular crack model. The small circle maps onto an extremely norruw ellipse in the x^{\prime}, z^{\prime} plane. The use of
the small circle avoids ill-shaped elements near the origin in the elliptical-crack model. Figure 4 shows a typical finite-element model of a finite plate conteining an elliptical crack. The transformation reduced the b / c ratio; therefore, in order to maintain $b / c \geq 4$, additional elements were added along the x^{\prime}-axis to eliminate the influence of plate width.

Stress-Intensity Factor

The stress-intensity factor is a measure of the magnitude of the stresses near the crack front. ['nder general loading, the stressintensity factor depends on three basic modes of deformation (tension and in- and out-of-plane shear). But here only tension loading was considered and, therefore, only Mode I deformations occurred. The Mode I stress-intensity factor, K, at any point along an elliptical or semi-elliptical crack in a finite plate is taken to be

$$
\begin{equation*}
K=S \sqrt{\pi \frac{a}{Q}} F\left(\frac{a}{t}, \frac{a}{c}, \phi\right) \tag{2}
\end{equation*}
$$

where S is the applied stress, a is the crack depth, Q is the shape factor for an ellipse and is given by the square of the complete elliptic integral oi the second kind [5]. The boundary-correction factor, $F(a / t, a / c, \phi)$, is a function of crack depth, crack length, plate thickness and the parametric angle of the ellipse. The present paper gives values for F as a function of a / t and ϕ for $a / c=0.2$ and 1.0. The a / t values ranged from 0.2 to 0.8 .

The stress-intensity factors from the finite-element models of embedded elliptical and semi-elliptical surface cracks were obtained by using a nodal force method, details of which are given in Reference 9. In this method, the nodal forces normal to the crack plane and ahead of the crack fand are used to evaluate the stress-intensity factor. In contrast to the crack-opening displacement method [6], this method requires no prior assumption of either plane stress or plane strain. For a surface crack in a finite plate, the state of stress varies from piane strain in the interior of the plate to plane stress at the surface. Thus, the crack-opening displacement method could yield erronecus stress-intensity factors.

RESULTS AND DISCUSSION

In the following sections a circular (penny-shaped) crack and an elliptical crack completely embedded in a large body su.4ected to uniform tension were analyzed using the finite-element method. The calculated stress-intensity factors for these crack configurations are compared with the exact solutions to verify the validity of the present finite-element method.

For a semi-ci: . ular and semi-elliptical surface crack in a finitethickness plate, convergence of the stress-intensity factors was studied while the number of degrees of freedom in the finite-element models ranged from about 1500 to 6900. The stress-intensity factor variations along the crack front for semi-circular ($a / c=1$) and semi-elliptical
(a/c $=0.2$) surface cracks were obtained as functions of a / t with $h / c=b / c \geq 4$. Whenever possible, these stress-intensity factors are compared with results from the literature.

Exact Solutions

In this section a comparison is made between the stress-intensity factors calculated from the finite-element analysis and from the exact solution [5] for an embedded circular (penny-shaped) crack (a/c = 1) and an embedded elliptical crack ($a / c=0.2$) in an infinite body. In the finite-element model, h and b were taken to be large enough that the free boundary would have a negligible effect on stress intensity. The boundary correction on stress intensity for a circular crack in a cylinder of radius b with $b / a=5$ is about one percent [10]. Therefore, to simulate a large body the finite-element model was assigned the dimensions $h / a=b / a=5$, along with 3078 degrees of freedom. The calculated stress-intensity factors along the crack front from the circular crack model were about 0.4 percent below the exact soli ion.

The embedded elliptical crack ($\mathrm{a} / \mathrm{c}=0.2$) model, with $\mathrm{h} / \mathrm{c}=\mathrm{h} / \mathrm{c}=4$ and $t / a=5$, had 3348 degrees of freedom. The influence of finite boundaries on stress intensity was estimated to be about one percent. The finite-element analysis gave stress-intensity factors along the crack front generally within one percent of the exact solution, except in the region of sharpest curvature of the ellipse, where the calculated values were abo'st 3 percent higher than the exact solution. Further refinement in the mesh size in this area gave more accurate stressintensity factors.

Abstract

because the present method yielded stress-intensity factors for completely embedded circular and elliptical cracks within 0.4 to 3 percent of the exact solutions, the method was considered suitable for analyses of more complex configurations, provided that enough degrees of freedom were used to obtain good convergence.

Approximate Solutions

To verify that the finite-element meshes used for the circular and elliptical crack models were sufficient to analyze cracked plates with free boundaries, through-the-thickness cracks with crack length-to-width ratios ranging from 0.2 to 0.8 were analyzed under plane strain assumptions. The meshes used here were exactly the same as those which occur on the $\phi=\pi / 2$ plane of the circular and elliptical crack models. These meshes were then used to model the certer-crack tension specimen. For crack length-to-width ratios (c / b) ranging from 0.2 to 0.6 , the finite-element results were within 1.3 percent of the approximate solutions given in Reference 10. For $c / b=0.8$, the finiteelement result was 2 percent below the solution given in Reference 10. These results indicate that the mesh pattern along any plane has tnough degrees of freedom to account for the influence of free boundaries on the stress-intensity factor.

Convergence

In the previous section the mesh pattern along any $\phi=$ constant plane was found to be sufficient to acccunt for the influence of free
boundaries even for very deep cracks. In this section, the mesh pattern in the angular direction, ϕ, is studied. Figures 5 and 6 show the results of a convergence study on the stress-intensity factors for a semi-circular surface crack and a sfmi-elliptical surface crack, respectively, in a finite-thickness plate. The arger numbers of degrees of freedom are associated with smailer wedges in the ϕ-dirertion and a more accurate representation of the cruck shape.

For the semi-circular crack (Figure 5), $h / a=b / a=5$ and $a / t=0.8$. This configuration was chosen because the close proximity of the back surface to the crack front was expected to cause difficulty in achieving =onvergence. The number of degrees of freedizi ranged from 1500 to 6195. The two finest models (4317 and 6195 degrees of freedom) gave stress-intensity factors within about one percent of each other. Therefore, the mod sl with 4317 degrees of fref lom was used subsequently to obtain stress-intensity factors as a function of s/t.

Figure 6 shows the convergence study for a semi-elliptical surface crack (. $c=0.2$). The h / c and b / c ratios were equal to four and, again, a / t was chosen as 0.8 . The number of degrees of freedom ranged from 1092 to 6867 . The model with 4797 degrees of freedom guve results within about one fercent of those from the finest model. Therefore, the model with 4797 degrees of freedom was used subsequently to obtain stress-intensity factors and crack-opening displacements as a function of a / t.
Semi-Circular Surface Crack in a Finite-Thickness Plate
Figure 7 shows and Table I presents the stress-intensity Pactors for a semi-circular surface crack in a finite-thickness plate as a function of the parametric angle, ϕ, und the crack depth-to-plate thickness ratio, a/t. Hear the intersection of the crack and the free surface, the stress-intensity factor increases more rapidiy with a/t than at the deepest point $(\phi=\pi \prime 2)$. For each value of a / t, the -tress-intensity factor calculatel from the model with 4317 de rees of freedom is largest at the free surface $(\phi=0)$.
For a semi-circular surface crack with $a / t=0.55$, the stressintensity factors calculated by Browning and Smith [1], who used the alternating method, vere about 1 to 3 percent below the present results for various values of ϕ.
Semi-Elliptical Surface Crack ir a Pinite-Tnickness Plate Figure 8 shows and fable I presents the stress-intensity factors for a semi-elliptical surface crack (a/c $=0.2$) in a finite-thickress plate as a function of the parametric angle, ϕ, and the crack feptr-toplate thickness ratio, a / t. For each value of $a_{i}^{\prime} t$, the maximum stressintensity factor occurs at the deepest point $(\phi=\pi ; 2)$. Also, the maximum stress-iniensity factor is larger for larger values of a / t.
Figures 9 and 10 show stress-intensity factors obtained by several investigators for a semi-ellipticai surface crack ir a finite-thickness plate. Figure 9 shows the results for a s:arface crack with $a / c=0.2$ and $a / t=0.8$. Smith and Sorensen [3] and Kobayasini [2] used the
alternating method and Ksthiresan [4] used the finite-element method to obtain stress-intensity factor variations along the crack front. These three solutions disagree by as much as 50 to 100 percent. The reasons for these discrepancies are not well understood. The present results, shown as solid symbols, are consideratly higher than the previous sollitions [2-4]. The results from Smith and Sorensen [3] are generally closer to the present results, though 10 to 25 percent lover.

Figure 10 shows a comparison of the maximum stress-intensity factors $\operatorname{sbtained}$ by several investigators for a semi-elliptical surface crack as a function of a / t. The maximum stress-intensity factors occurred at $\phi=\pi / 2$. The present results are shown as solid symbols. The open symbols show the resuits from Smith and Sorensen [3], Kobayashi [2,11], and Rice and Levy [12]. The results f:om Rice and Levy, obtained from a line-spring model, are about 3.5 percent below the present results cier an ε / t range from 0.2 to 0.6 . For $a / t>0.6$, the Rice-Levy solution shows a reduction in stress intensity. The dash-dot curve shows the results of an approximate equation proposed by Newman [13] fcr a wide range of a/c and a/t ratios. Newman's equation is within ± 5 percent of the present results over an a/t riage from 0.2 to 0.8. Neuman's equation gives a good engineering estima;e for the maximum stress-intensity factor.

CONCLIDING REMARKS

A three-dimensional finite-element elastic stress malysis was used to calculate stress-intensity factor variations along the crack front for completely embedded elliptical cracks in large bodies and for semi-elliptical surface cracks (crack depth-to-crack length ratios were 0.2 and 1.0) in finite-thickness plates. Three-dimensional singularity elements were used at the crack froni. A nodal force method which requires no prior assumpticn of either plane stress or plane strain was used to evaluate the stress-intensity factors along the crack front.

Completely embedded circular and elliptical cracks were analyzed to verify the accuracy of se finite-element analysis. The stressintensity factors for these cracks were generally about 0.4 to 1 percent below the exact solutions. However, for the elliptical crack the calculated stress-intensity factors in the region of sharpest curvature of the ellipse were about 3 percent higher than the exact solution. The numbers of degrees of freedom in the embedded crack models were about 3000. A convergence study on stress-intensity factors for semielliptical surface cracks in finite-thickness plates showed that convergence was achieved for both the semi-circular and the semieiliptical surface crack with about 4500 degrees of freedom.

For the semi-rircular surface crack the maximm stress-intensity factor occurred at the intersection of the crack with the free surface. On the other hand, for the semi-elliptical surface crack (craci: depti-to-crack half length ratio of 0.2), the maximum strese-intensity factor
-15-
occurred at the deepest point. For both the semi-circular and semi-
elliptical surface crack the stress-intensity factors were larger for
larger values of crack depth-to-plate thickness ratio.
For the semi-circular surface crack, the stress-intensity factors
calculated by Browning and Smith [1] using the alternating method,
agreed generally within about 3 percent with the present results.
However, for semi-elliptical surface cracks (crack depth-to-plate
thickness ratio of 0.2) Saith and Sorensen [3] using the alterna ing
method gave stress-intensity factors in considerable disagreement
(lo to 25 percent) with the present results. For semi-elliptical
surface cracks the results fram Rice and Levy [12] for crack depth-
to-plate thickness ratios less than or equal to 0.6 and an approximate
equation proposed by Nevman [13] were in good agreement with the
present results.
The stress-intensity factors obtained rerein should be useful in
correlating fatigue crack-growth rates as well as fracture toughness
calculations for the surface-crack configurationi considered.

REFERENCES

[1] Bccraing, W.M. and Smith, F.W.: "An Analysis for Complex ThreeIi snsional Crack Problems," Developments in Theoretical and lpylied Mechanics, Vol. 8, Proceedings of the 8th SECTAM Con:erence, April 1976.
[a] Kobl yasiti, A.S.: "Surface Flaws in Plates in Bending," Proceedinge of the linth Annual Meeting of the Society of Engineering Science, Auscin, Texas, October 1975.
[3] Smith, F.W. and Sorensen, D.R.: "Mixed Mode Stress Intensity Factors for Beri-Elliptical Surface Cracks," NASA CR-134684, June 1974.
[4] Iathiresan, K.: "Mhree-Dimensional Linear mastic Fracture Machanics Analysis by a Displacement Hybrid Finite Element Model." Fit.D. Thesis, Georgia Institute of Technology, September 1976.
[5] Greek, A.E. and دieddcn, I. T .: "The Distribution of Stress in the Neighborhood of a Flat Elliptical Crack in an Elastic Solid," Proc. Cambridge Phil. Soc., 46, 1959.
[6] Tracey, D.M.: "Finite Element for Three-Dimensional Elastic Crack Analysis," Nucl. Engi. and Design, Vol. 26, i974.
[7] Barsoum, R.S.. "On the Use of Isoparametric Finite Elements in Linear Fracture Mechanics," Int. J. Num. Meth. Engr., Vol. 10, no. 1, anuary 1976.
[8] : u uri, S. and Katriresan, A.: "An Assumed Displacement Hybrid Finite Element Model for Three-Dimensional Linear Fracture Mechanics Analysis." Proc. I2th Annual Meeting of the Soc. Engr. Science, Universily of Texas, Austin, Texas, October 1975.
[9] Raju, I.S. and Newman, J.C., Jr.: "Three-Dimensional FiniteElement Analysis of Finite-Thickness Fracture Specimens," NASA TN D-8414, 1977.
[10] Tada, H.; Paris, P.C.; and Irwin, G.R.: "The Stress Analysis of Cracks Handbook," Del. Research Corp., C. 1973, pg. 28.1.
[11] Kobayashi, A.S.: "Crack Opening Displacement in a Surface Flawed Plate Subjected to Tension or Plate Bending," presented at the Second International Conference on Mechanical Behavior of Materials, Boston, Mass., August 1976.
[12] Rice, J.R. and Levy, N.: "The Part- Through Surface Crack in an Elastic Plate," Trans. ASME. J. Appl. Mech. Paper No. T1-APM-20, 1970.
[13] Neman, J.C., Jr.: "Fracture Analysis of Surface- and ThroughCracked Sheets and Prates," Engineering Fracture Mechanics, Vol. 5, 1973.

TABLE I: Boundary Correction Factors, F, for Semi-Elliptical Surface Cracks Subjected to tension

$$
(v=0.3 ; F=K / S \sqrt{\pi a / Q})
$$

a / c	$2 \phi / \pi$	a / t			
		0.2	0.4	0.6	0.8
1^{a}	0	1.166	1.229	1.355	1.464
	0.125	1.130	1.206	1.321	1.410
	0.25	1.092	1.157	1.256	1.314
	0.375	1.070	1.126	1.214	1.234
	0.5	1.054	1.104	1.181	1.193
	0.625	1.046	1.088	1.153	1.150
	0.75	1.039	1.075	1.129	1.134
	0.875	1.037	1.066	1.113	1.118
	1.0	1.036	1.062	1.107	1.112
0.2^{b}	0	0.608	0.724	0. 999	1.190
	0.125	0.632	0.775	0.953	1.217
	0.25	0.738	0.883	1.080	1.345
	0.375	0.863	1.009	1.237	1.504
	0.5	0.968	1.122	1.384	1.657
	0.625	1.046	1.222	1.501	1.759
	0.75	1.099	1.297	1.581	1.824
	0.875	1.130	1.344	1.627	1.846
	1.6	1.140	1.359	1.642	1.851

a
$\mathrm{h} / \mathrm{c}=\mathrm{b} / \mathrm{c}=5.0$;
b
$h / c=b / c=4.0$

Fig. 1.- Surface crack in a plate subjected to tension.

[^0]

(a) Circular crack.

(b) Elliptic crack.

Fig. 3.- Circle to ellipse transformation.

Fig. 5.- Convergence of stress-intensity factors for a deep semicircular surface crack $\left(Q=\pi^{2} / 4\right)$.

Fig. 6.- Convergence of stress-intensity factors for a deep semieiliptical surface crack $(Q=1.104 ; a / t=0.8 ; a / c=0.2)$.

Fig. 7.- Distribution of stress-intensity factors along crack front for a semi-circular surface crack $\left(0=\pi^{2} / 4\right)$.

Fig. 8.- Distribution of stress-intensity factors along crack front for a semi-elliptical surface crack ($Q=1.104$; $a / c=0.2$).

Fig. 9.- Comparison of stress-intensity factors for a deep semielliptical surface crack $(Q=1.104 ; a / t=0.8 ; a / c=0.2)$.

Fig. 10.- Comparison of the maximum stress-intensity factor for a seni-elliptical surface crack as a function of a / t ($\dot{\phi}=\pi / 2 ; Q=1.104 ; a / c=0.2)$.

[^0]: (a) Specimen model.
 (b) Element pattern around crack
 front on the $i^{\text {th }}$ plane.
 Fig. 2.- Finite-element idealization for an embedded
 circular (penny-shaped) crack.

