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TEST PARTICLE PROPAGATION IN

MAGNETOSTATIC TURBULENCE

III. THE APPROACH TO EQUILIBRIUM
f

A. J. Klimas

G. Sandri

J. D. Scudder

D. R. Howell

ABSTRACT

The asymptotic behavior, for large time, of the quasi-linear diabatic

solutions and their local approximations is considered. A time averaging pro-

cedure is introduced which yields the averages of these solutions over time

intervals which contain only large time values. A discussion of the quasi-linear

diabatic solutions which is limited to those solutions that are bounded from be-

low as functions of time is given. It is shown that as the upper limit of the time

averaging irate: val is allowed to approach infinity the time averaged quasi-linear

diabatic solutions must approach isotropy (, -independence). The first deriva-

tive with respect to	 of these solutions is also considered. This discussion is

limited to first derivatives which are bounded functions of time. It is shown 	 1

that as the upper limit of the time averaging interval is allowed to approach

infinity the time averaged first derivative must approach zero everywhere in 3 L

except at = 0 where it must approach a large value which is calculated. The

impact of this large derivative on the quasi-linear expansion scheme is dis-

cussed. An H-- theorem for the first local approximation to the quasi-linear

L
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diabatic solutions is constructed. Without time averaging, the H .-theorem is

used to determine sufficient conditions for the first local approximate solutions

to asymptote, with increasing time, to exactly the same final state which the

time averaged quasi-linear diabatic solutions must approach as discussed

above. An explanation, based on our numerical results, of how this peculiar

final state develops is given. A formal discussion of the integro-differential

equation, equation 11.1 of pap .r II. in this series, which contains all of the funda-

mental approaches to statistical mechanics is given. The exact solution of this

equation, as well as all of its local approximations is considered. For this dis-

cussion the local approximation concept is generalized to include all of the

approximations which result when any of the Pade' approximants to the Laplace

transformed kernal of equation ILI are substituted for the exact kernel trans-

form instead of only those Pade' approximants which lie near the diagonal of the

Pade' table and correspond to the kernel convergents. This discussion is limited

to those solutions and their local approximations which are bounded from below

as functions of time, and to those local approximations which are generated by

a Pade' approX imant whose range is not reduced compared to the range of the

exact kernel transform. Then, it is shown that the time average of the exact

solution and also of all its local approximations must asymptote, with increasing

time, to a unique final state which is calculated.
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TEST PARTICLE PROPAGATION IN MAGNETOSTATIC TURBULENCE

111. THE APPROACH TO EQUILIBRIUM

1. INTRODUCTION

In the first paper of this series' (paper I.) we demonstrated the failure of

the familiar Fokker-Planck description of the propagation of a charged test

particle in a simple model of plasma turbulence. It had been shown previouslyz

that in the axi-symmetric slab model of the magnetostatic turbulence the

Fokker--Planck equation for the ensemble and gyro-phase averaged probability

distribution function follows from the quasi-linear diabatic equation through the

application of the adiabatic approximation. We showed in paper I. that the adia-

batic approximation is the leading term in the standard linear time-scale 3 ex-

pansion in a small parameter. As is typical in the derivation of many kinetic

theories this small parameter can be expressed as the ratio of two time scales

which are relevant to the mechanical system under consideration and which are

assumed to be well separated; i.e., one of the time scales is assumed to be much

larger than the other so that an appropriate ratio can be formed which is small

and which then plays the role of an expansion parameter. In paper I. we showed

that for the test particle propagation problem the assumed separation of the two

relevant time scales is generally satisfied if the plasma turbulence is weak,

however, if a strong mean magnetic field is present there is a small but impor-

tant region of the particle phase space in which the two time scales become

comparable, or mixed. This mixing of the two time scales was shown to lead to

a non--uniformity in the expansion which contains the Fokker-Planck result as

the leading term. This failure occurs in the vicinity of 90° pitch angle and is

1



due to the presence of a strong mean magnetic field. Thus, we showed that the

failure of the Fokker-Planck description is due to the mixing of time scales

which were incorrectly assumed well separated.

In the second paper in this series 4 (paper II.) we introduced our new local

approximation method. In that paper we showed that this approximation method

can be applied to the fundamental equations of statistical mechanics if they are

cast in the integrodifferential form of equation 11.1. We demonstrated the use of

this new method through its application to a very simple exactly soluble model

equation and to the quasi-linear diabatic equation whose solution, as discussed

above, could not be well approximated through the use of the more standard

approximation techniques. We showed that for these problems the local approxi-

mation method does not require a small parameter for expansion purposes.

Instead, the Equation under consideration was Laplace transformed and approxi-

mated near the origin of the Laplace variable using the smallness of the Laplace

variable in that vicinity. The purpose of this particular approach is identical to

that of the more standard approximation methods; i,e., we seek an accurate

representation of the slow and/or long time evolution of the probability distribu-

tion function. However, in the local approximation method, since we do not re-

quire a small parameter, we avoid the non-uniformity problems associated with

the standard asymptctic expansion procedures. In particular, this method was

used to replace the unsuccessful Fokker-Planck approximation with the re-

markably successful first local approximation.

Except for our considerations of the very simple exactly soluble model

equation in paper I., our characterizations of success or failure of the approxi-

mation methods discussed above rest on the results of numerical integrations

d
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of the equations which generate the quasi-linear diabatic solutions, the quasi-

linear adiabatic (Fokker-Planck) solutions, and the first local solutions. The

lengths of these numerical integrations are necessarily limited, and therefore,

our comparisons of the approximate solutions with the exact ones typically ex-

tend over two to three Larmor periods of elapsed time. While this amount of

time is sufficient to reject the Fokker-Planck approximation we are still left

with many unanswered questions concerning both the quasi-linear diabatic solu-

tions and their first local approximations. Do the diabatic solutions approach a

final steady state? If so, what is this state? Do the first local approximations

to the diabatic solutions approach a final steady state also? If so, how does this

final state compare with that of the diabatic solutions? These uestions are

answered in this paper.

We find that the accuracy of the first local approximations to the diabatic

solutions, which is evident during the first few Larmor periods from the

numerical results, almost certainly persists for all time beyond the origin

where: the initial conditions on these solutions are specified.

In section P. of this paper we discuss the behavior of the quasi-linear

diabatic solutions for very Iari;e tines. We limit our discussion to solutions

.vhich .ire bounded from below as functions of time and consider magnetostatic

turbulence whose i^mN spectrum contains finite total power and has no zeroes

in its high frequency tail except at infinite frequency. With these limitations we

are able to show thatthat the time average of these solutions, as defined by equa-

tion 111.1 below, must asymptote, with increasing time, to a final state which is

isotropic (independent of ;.). Even so, we are also able to show that the first

derivative with respect to ±i of these solutions, similarly time averaged, must

3



asymptote to a large non-zero value at 1-4 = 0. In the last part of this section

we make the further assumption that the solutions under consideration have a

_	 first derivative with respect to 4 which is a bounded function of time. Then we

are able to show that this derivative, again time averaged, must asymptote to 	 t	 '

zero everywhere that µ ^ 0. Various evidence from our numerical results is

presented later in this paper to give an indication of how this peculiar final state

actually develops.

We have noted earlier (in paper I.) that the structure of the quasi-linear

diabatic equation does not allow us to exclude the possibility that its solutions

contain wave-like behavior for large times. Thus, the solutions to the quasi-

linear diabatic equation need not approach a final state even though their time

averages must. On the other hand, we have never found evidence from our 	 r

numerical solutions, for as far as they gu in time, for any such wavelike be-

havior. If these solutions actually approach a final steady state, then the discus-

sion in the previous paragraph applies to the actual solutions rather than their

}	 time averages since in this case the time average of the steady state is identical

to the steady state.

Section III. of this paper is devoted to the large time behavior of the first

local approximation to the quasi-linear diabatic solutions. With some further

assumptions on the properties of the magnetostatic turbulence which are made

in this section and are further discussed in Appendix B, we are able to construct

an H-theorem for the first local approximate solutions. From the H-theorem



steady state to be zero at µ = 0, and it actually allows the first derivative to be

non-zero at other undetermined µ-values as well. We continue by limiting our

consideration to those solutions which conserve probability and which remain

integrable in µ for all r. We also assume that the magnetostatic turbulence is i
such that the zeroth and first moments of the Laplace transformed kernel in

the quasi-linear diabatic equation are continuous functions of µ with no zeroes

in the first moment as a function of A. Then, we are able to show that the first

derivative with respect to µ of the first local approximate solutions must be a

bounded function of T pointwise in A. Thus, these solutions must be continuous

in the closed µ-interval and bounded functions of µ pointwise in r. This infor-

mation allows us to prove that the first derivative with respect to /j. of the first

local approximate solutions must be a continuous function of µ for any finite

time, and when the time goes to infinity this first derivative must remain con-

tinuous in µ except at µ = 0 where it is discontinuous and tapes on the large

value which we found the time average of the first derivative of the quasi-linear

diabatic solutions must approach. Because we found from the H-theorem that

the first derivative must asymptote, with increasing time, to zero almost every-

where in µ, and since here we find that for µ ^ 0 the first derivative must re-	 i

main continuous in µ even as the time goes to infinity, we can finally conclude

that the first derivative must actually asymptote to zero everywhere in A except

at = 0. Thus, we find that the first local approximation to the quasi-linear

diabatic solutions must asymptote, with increasing time, to exactly the same

state which the time average of the quasi-linear diabatic solutions must also

approach.
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Given the very good agreement between the quasi-linear diabatic solutions

and their first local approximation which is evident from our numerical results

for short times, and given the manne, of agreement discussed in the preceding

paragraph as the time asymptotes to infinity, we feel that it is reasonable to

assume that the first local approximation remains an excellent approximation

for all time greater than zero.

In section IV. of this paper we discuss a general consequence of the local

approximation method which has broad implications to statistical mechanical

studies of the approach to equilibrium. We restrict our attention to those solu-

tions of the general integro-differential equation given in paper II. by equa-

tion H.1 and to those local approximations which remain bounded functions of

time. We generalize our conception of a local approximation in this section to

include any of the approximations which result when the Laplace transform of

the kernel in equation IIA is replaced by any one of its Pade' approximants.4

Then we show that the exact solution of equation II.1 and all of the local approxi-

mations which are generated by Pade r approximants that do not have a reduced
I
t
I

range compared to the exact kernel transform have time averages (as defined

through equation IIIJ) which must asymptote with increasing time to a single

unique final state, As a corollary to this result we show that the failure of the

adiabatic approximation can be understood on the grounds that it is in fact gen-

erated by a Pade r approximant which does have a reduced range.

i II. THE QUASI-LINEAR DIABATIC SOLUTIONS
1

In this section we consider the final behavior of the quasi-linear diabatic

solutions of equation I.20 (paper I.). We introduce the following type of time
i

E
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averaged probability distribution function,

1
< f >T T  fT 

d s f (4, s)	 IIL 1
T - 

and show that <f >T must asymptote to a final isotropic state (i.e., independent

of ;t) as T - .. In this expression T is any finite time which, however, can be

made as large as necessary so long as -r is larger. Thus, equation III.1 gives

a time average of the final evolution of the quasi-linear diabatic solutions. We

also consider the first derivative of f (µ., T) with respect top . We introduce

another time average,

< f'>T 	(	 1 
1 fT

ds o f(U's)
T -T 	 aA

and show that at µ. = 0, <f' > T does not asymptote to zero as might be expected

in view of the approach to isotropy of < f >T , but instead asymptotes to a large

but finite value given by,

<f,> 
ti 

1/2 - N(0, 0)
Ti	 772

We also show that when µ # 0, < f '>
T
 0 as T - ..

These results hold for "normal izable" quasi-linear diabatic solutions in magne-

tostatic turbulence which has a "simple" power spectrum associated with it.

Both of these terms are defined immediately below.

In our numerical evaluations of the solutions of equation I.20 from paper I.

(the quasi-linear diabatic equation), we have never found evidence for negative

values of F(µ, T) for any µ and T. Nevertheless, equation I.20 may contain solu-

tions which do become negative. We limit our discussion here to those solutions

III.2

III.3

I
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which are bounded from below so that a sufficiently large time independent

isotropic component of the probability distribution function can be added on to

the quasi-linear diabatic solution to make the sum non-negative, and thereby

qualify it as a probability distribution function. Thus, having made the restric-

tion to quasi-linear diabatic solutions which are bounded from below, it is no

further restriction to assume that these solutions are non-negative. We further

restrict our consideration to solutions which conserve probability. From equa-

tion I.24 of paper I., we see that we expect N (± 1, T) = constant so long as the

integral on the right side of that equation remains bounded. Due to the finite

range of the correlation function at kL = fl (see equation I.21), we expect the

integral to remain bounded unless

-32N (4, r ) _ ^f Gµ, "rl

iµ 2 	 aFL

becomes unbounded. We assume a bounded derivative at µ = ±1. Then N(tl, -r)

is a cc istant in time. Since equation I.24 is homogeneous we further set N (1, -r)

= 1 with no loss of generality. We call solutions which satisfy the above re-

quirements, "normalizable". Notice that for normalizable solutions,

0 < N (A, 'r ) < 1
	

III.4

because f (A, -r) > 0. In the last part of this section we will further limit our

discussion to those solutions which have a bounded first derivative with respect

to as a function of -r in order to deduce the behavior of this derivative when

µ 0 and "r - ..

8
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From equation I.38 of paper I. we find,

K(µ, 0)	 0() - 
	 P 	

111.5

in which P (w) is the power spectral density, or more simply, the power spec-

.	 trum. As in paper I., we will assume a "simple" power spectrum which is non-
.

negative and which does not contain any zeroes in the frequency range, 1 < C', <

In addition we will assume that

	

P (w) = o 
^J	

(w	 «^)	 III.6

so that the total power in the random field is finite. We note here that in our

dimensionless notation, w = 1 corresponds to that wavelength in the xnagneto-

static turbulence which is equal to the correlation length. In the next section of

this paper, where the first local approximation to the quasi-linear diabatic solu-

tions is discussed, another special requirement will be imposed on the turbu-

lence; the simple power spectrum is sufficient here.

The remainder of this section will be subdivided into four parts. In the
d

first, we will develop certain properties of the Laplace modes and their asso-

ciated eigenvalues which are necessary for the remainder of this section. In

the secondart we will rove that < f > asymptotes to isotropy,p	 p	 T as y p 	 and in the third

we will prove equation II1.3 nevertheless. In the fourth part of this section we

will prove that <f'>T ti 0 as T	 0 when	 0.

a). The Laplace Modes

We reintroduce the Laplace mode expansion of the probability distribution

function and prove several useful properties of the modes and their associated

J



L

k.

eigenvalues. On integrating equation 1.64 of paper I. in A from -1 to 	 and

then rearranging the result slightly, we find,

GL ' P)l	 )	 - - ^-	 J JP du'q).	111.7
ju

in which

(L' P)	 µ2) XX(µ, P) 111.8

where R (,u, p) is defined through,

(kL, p) = f d-r e -P ' R(^Lr) cos 7o 

(To obtain equation HL7 we have divided by X. (p). Since X 0 (p) = 0, we exclude

M = 0 in the following. We also point out that the divergence of the right side

of equation 111.7 at )u = ±1 i.: only apparent; the integral also goes to zero at

these points so that the ratio remains finite.) The quantity, R (^), is the two-

point correlation function associated with the magnetostatic turbulence (see

equation L19) and is a function of the spatial separation, ^.

Having adopted the simple power s pectrum, we find that when u ^ 0,

-Z	 0	 0)	 111.10

!, ('U ' P ) Pi

and therefore that,

X 0)
'a 'P C	 - 0
	 G'	 HIM

^^m (P)^ 	 3 lU

U, p ) 

PI

On the other hand, when 4 = 0 we have,

111.9

f
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K (0, P)	 P	 111. 12
l+ P2

(we have normalized the correlation function so that R (0) = 1) and, in contrast

to equation 11I.10	 i

1	 GL = 0)	 I1I.13
0(, P) Al-	 €	

I

Thus,
a	 ^i

p	 '3	 ( 0 , P)	 Q	 a

f djL' ,i, (4 ', 0)	 111.14
X. (P)^	 ^ f^'gy	 PL	 1

In paper I. (see discussion surrounding equation 1.69) we have shown that the
k	 j

m 	 0) can be constructed through even and odd combinations of the eigen--
` r

functions which form a complete orthogonal set on the half-domain, -1 < µ < 0.

In this half-domain, and starting at m = 0, each pair of ^m (^L, 0) (e.g., m. = 0, 1;

m = 2, 3; etc.) are identical to each other. Thus, from the orthogonality of

these eigenfunctions on the half-dt; rnain we can conclude that the integral on the

right side of equation .M.14 is non-zero for m = 0 and 1 only. Therefore,

P ^m C O , P)	
II1.15

^m(P)	 P!
0	 (m > 1}

We have further seen in p; .per 1. that,

P) 
HI. 16

	

D 1U	PI

Thus, even though k (p) 0 (p 	 0), we still have,

t ^:
F^	 11



V,
[

1

P	 0	 III.17
X, (p) Pi

For m > 1 we found in paper I. that XJ(p) - X (A) (p -^ 0) with all ,^, A) > 0.

Therefore, we can make the general statement,

P _ 0	 (m > 0)	 III.18^'m (P) pi 

Finally, from equation 111.7 we find,

p	 a ^" (µ• P)	 !^ (µ+ P) _	 P	 1 f a du,'tkm (A', P) 	 II1.19
,gym (P)	 ^!-L	 Am (P)	 ^m (P)l	 1

and therefore,

	

p	 3^M GIIP) ^(A'P)

	

^m	
p)

µ
(p)	 -a	 km	 Pi 0

	 m > 0	 III.20
{

With this information, we can now proceed to a discussion of the final states of

the time averaged quantities introduced P.bove. We note in passing, that we have

only assumed the simple power spectrum to ob"An the results presented so far

in this section.

b). Isotropy

From equations 1.65 through 1.67 of paper I., we find that the Laplace mode

expansion of pi (µ, p), where f (µ, p) is the Laplace transform of the probability

distribution function, is given by,

	

ro	 1

(^m (µ, 
P) f idµ' `gym (Ili, P) f	 0)

	P E (µ, P) - fo( 0 ) +	

^	

III.21

	

Em (P)
 1-172
	

P
m (A)

M=I
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1
I f (1^^, 0)	 2- - - i

111.22

the last equality holding for normalizable solutions.

By construction, and through the properties of the Laplace modes which are

solutions of the Sturm-Liouville problem (equation 1.64, paper I.), we are guar-

anteed that this expansion converges absolutely and uniformly in tt for any p > 0.

Furthermore, by our construction of this same expansion for f ( Iu, p) at p = 0 in

terms of the adiabatic Laplace modes we are also assured that this expansion

converges absolutely and uniformly in µ for p = 0 as well. From our discus-

sion in section a). concerning the properties of the eigenvalues as p -a 0 we

conclude,

^i	

P f (µ, P)	 f  (0)
	 IH.23

P1

Because the normalizable solutions are non-negative we can apply the Tauberian
`i	

theorem, theorem 4.3, Chapter V., of Widder, which is a special case of a

theorem provided by Karamata, as well as a special case of Wiener's general

Tauberian theorem, and which allows us to conclude from equation 111.23 that,

1	 T
T f d  f(µ, s) ti fa(0)

o	 rr

From equation IH.1 we can obtain,

13

I11.24
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< f> T 	=	 T J	 ds f (µ, s) - T I ds T(4 , s)
0	 0

HI.25
r	 T

T
+	 d s f (µ, s) -	 f ds T(µ, s)fT 

(TT	
T)	

T (T T ) J0	 0

_

.I
Therefore,

< f >T	 f0 (0)	 1II.26
T?

for any T less than infinity. Thus, we conclude that <f >T must asymptote to an

isotropic state, with increasing T, which is actually the isotropic component of

the initial probability distribution function at -r 	 = 0.

:. c).	 The First Derivative (µ = 0)

We introduce the notation,

_ r
Q(T)	 =	

T	
ds Q(s)	 I11.27fo

for any quantity, Q, and note that if the integral on the right side of this expres-

s ion is bounded for any finite T , then Q ( T) ^	 <Q> TI (T

We also reintroduce the functions g(µ, T) and h(µ,T) which were originally

defined by equations I.47 and I.48 in paper I. We adopt these functions here with

P
the exponential correlation function replaced by an arbitrary functional depen-

dente on spatial separation. 	 With g (µ, T), the quasi-linear diabatic equation for

N (µ, T ), equation I.24 of paper I., can be written,

t
<. a N

a	 =	 77 2 g	 111.27
TT 

r.

i
On differentiating g (µ, T) and h ( )U, T) with respect to time we find,

1
14
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a g
	

U2) '3 2N 2  
fo 

T	

a R ( u (r - X ))	 a2 N (k)
ar J (I - 	 2 - h + (l. - µ )	 dX	

ar	
cos (r - ^)	

aµ
2

aµ 

111.28
and,

T	
aR( r - )	 z ( )a h	 g + (I - 

µ2) f dX	
µ (	 ) 

sin (r - X) a N 2 	1[1.29-r- 	o	 aT	 aµ2

At µ = 0, these equations reduce to

a N(0, r) _

a r	
W 7? 2 g(0, T)	

HI.30

a g(0, r} _ a 2 N(0, r)

a r	 a	 - h (0, r)	 III.31u2 

and

a h ( 0 , -")
D 

r	 N g(0, r)	 III.32

because,

aR l	A))
o 0	 111.33

µ(T-A)

for bounded R' (0) which we will assume.

On applying the integral operation ,given by equation III.27 to equations HIM

through III.32 we obtain,

N(0, T) - N(0, 0) _	 2 -
r	 - - n g(0, r)	 III.34

g( O , r ) 	a2 N(O, T) 	 }=i (0, T )	 M.35r 	 a z

15
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and,

h (0, T)
T	= g(0, T )	 III.36

Through the substitution of equation IH.36 into equation III.34 we find,

h(0, T) 
= N(0, T) - N(0, 0)

2	 III.37
71 

from which we conclude that h (0, T) is a bounded function of time in view of

equation III.4. From equation III.37 we determine h (0, T) and substitute the

result into equation 11I.35 to obtain,

	

g(0,.0a2a^	
^7

0, T) _ ^N(0• T) 	N(0, 0 )^	
111.38T	 2	 2

Our evaluation of the asymptotic behavior of this expression depends on the be-

hav for of g (0, T) as T ..

From equation 111.32 we see that,

1-1(0, T) = J ds g(0, s)	 111.39
0

Since h (0, T) is a bounded function of time we conclude that g (0, T) must also be

a bounded function of time except that it could contain integrable singularities.

However, it is possible to show that if we assume the existence of an integrable

singularity in the time dependence of g (0, T) we obtain a contradiction with the

boundedness of h (0, T) through its definition ;N,hich is,

11(0, T)	
fo

dX sin (T - k)	 I11.40
 -&^4

2

A`
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If g(0, T) contains an integrable singularity, then from equation 111.39,

h (0, T ) remains bounded at the position of that singularity. However, if g (0, T)

contains an integrable singularity then g (0, T) contains a non-integrable singu-

larity at the same position in T. Since h (0, T) is a bounded function of time we

see from equation HIM that in this situation a 2 N (0, T) /'a µ 2  must also contain

a non-integrable singularity in time at the position of the singularity in g (0, T).

But, from equation III.40 we see that then h (0, T) must become unbounded at the

position of the singularity leading to a contradiction with the assumed integra-

bility of the singularity in equation 111.39. Thus, we conclude that g(0, T) must in

fact be a bounded function in time. Therefore,

	

f , >	 1/2 - N (0, 0)	 I11.417 Tr	 2

follows from equation 111.38 as T ^.

d). The First Derivative (µ / 0)

The Laplace transform of equation I.24 (paper I.) is,

P N (fl , P) - N (4, 0 ) - 77 1 ^ (kL , P) 
a f (µ, P)	 III.42

Therefore,

4

	

a f (µ, p)	 PIPN(,u, P) - N (µ, 0)]
p	 =	 III.43

aµ	 772
	

P)

Division by Z (4, N) is allowable since at µ = t 1, p N(^L, p) - N (µ, 0) = 0, and

the right side of this equation remains bounded. In addition we exclude µ = 0

from consideration where J (0, p) has a zero when p = 0. From equation Ill. 10

we see that we expect the right side of this equation to ti 0 as p - 0 unless the

-4
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quantity on the right side in the square bracket becomes unbounded as p - 0.

In the following we first show that this quantity in fact remains bounded as p - 0.

We then use this result to deduce the behavior of < f' > r as r - w when µ # 0.

Since the infinite expansion given by equation III.21 is known to converge

uniformly in µ, we can integrate that expansion term by term to find p N (µ, p).

We find,

	

O0	 1	 _

X m(A, P) J dµ ^m^ll ^, P) f (ML' , 0)
-

	
(T.—P(P))	 1

P

	

M = 1	 M (P))]

III.44
where,

Xm (fl , P)	 dµ^ ^m ( u ', P)	 I1I.45

But, from equation III.7,

P)	
a 

^'m (/J, P)
Xm (µ, p} - -III.46

km (P)	 a µ

Therefore,

P N (lu , P) _ (µ + 1) f0(0)

`n 
	

)'P., (µ, P)	 J^ (4, P) f 1	 —

^ 	 a µ	 Xm (P) J	
µ' ^'m (µ^, p) f (µ'+ 0)

-	 ^	

P

M = 1	 —M( 
P

II1.47

1s
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. ,.

and, from equation LII.20, we see that,

PN(µ, p) ti {µ f 1) f 0 (0)	 III.48
P1

which is certainly bounded. Since N (µ, U) is also bounded we conclude that 	 -

CU , P)P ti 0	 M. -19
3 µ	 P1

We now assume that 3 f (µ, T) / 3µ is a bounded function of time. Therefore, we

can apply Wiener's generalized Tauberian theorem to Laplace transforms, to

obtain (see Appendix A),

f0 rd s 
3 £ (µ' s

1 p	 111.50
T	 ° µ	 TT

and then, we can conclude,

<f' >T ti 0	 (µ	 0}	 111.51
TT

Before proceeding, we note that as a corollary of the above results we can con-

clude that if the quasi-linear diabatic probability distribution function actually

approaches a final steady state given by,

f (µ, T )	 SCµ)	 III.52
TT

and

7(4, T)
D µ	 '% T

ti S (u}	 III.53

then,

S(µ) = f  (0)	 111.54



111.55

i /) — ni in n\

(A " 0)
TI

S, (µ) -

0	 (µ 9 0)

and,

Otherwise, as we showed above, this final steady state is the time average of the

final evolution of the quasi-linear diatatic solutions. One of the main conclu-

sions of the next section will be a proof that the first local approximation to the

quasi-linear diabatic solutions must approach this final steady state as T

(no time averaging is necessary).

III. THE FIRST LOCAL APPROXIMATION TO THE

QUASI-LINEAR DIABATIC SOLUTIONS

In this section we consider the first local approximation to the quasi-linear

diabatic solutions whose large time properties were discussed in the preceding

section. The central issue here is an H-theorem which we will construct for

the first local approximation and which we will use to show that in very general

circumstances the approximate solutions must asymptote to the steady state

characterized by S (µ) and S' (µ) above. Thus, in this section we show that the

approximate and exact solutions must asymptote to exactly the same final steady

state if the exact solutions have a final steady state. If the exact solutions do not

have a final steady state, then what we show in this section is that the first local

approximations and the time average of the exact solutions must still asymptote

to that final state given by S(µ) and S' (µ) .

We divide this section into four parts also. In the first part we construct

the H-theorem and from it deduce that 1 1 	 T) ti isgtropy, (T - ^) and f 1t (^, r)

ti 0	 almost everywhere in µ (f ; (µ, T) = a f 1 (µ, T) 1-34). The amplitude
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p	 of the isotropic final state is not given by the H-theorem. However, we restrict

our consideration to solutions for which f l ' (t 1, T) and a f l' (t 1, T) /aT are

bounded, so that total probability is conserved, and then the amplitude is given

by S(u) = f  (0). The H-theorem does not determine the asymptotic behavior of

fl ' (µ, T) at those points where f l ' (µ, T) ^-' 0 ( T - ), it does not tell where those

points are, and it also tells nothing of the asymptotic behavior of Y,(0,(0, T). The

remaining three parts of this section are directed to a fuller understanding of

these issues.

In the second part of this section we restrict our attention to those solutions

for which f 1 (^,, T) remains integrable in E,. so that N 1 ( F c, T) exists and is finite

for all (µ, T). Since this property is an essential ingredient in the definition of

a probability distribution function we feel that this restriction is reasonable.

For these solutions we show that 	 T) is a bounded function of time point-

wise in u. From this result it follows that both f i (u, T) and N, ( j-,, T) are con-

tinuous functions in the closed interval - 1 < u < 1, and therefore that f 1 {u, T}

is a bounded function of g for any T. Thus, these solutions are normalizable in

the sense of section II. In the third part of this section we show that because

these solutions are normalizable,

1 1/2 - M(n n)
E1(0, T)	 III.56

TT
	

77'

and in the fourth part we show that fl '	 T) is continuous in µ for any finite T,

is continuous in A at T = ,, and µ ^ 0, and is discontinuous in 4 at T = - and

y = 0. To prove this result we must make the further assumption that both

IT0 (^) and 1, (4) are continuous functions of 4. The significance of this result
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is that we can then conclude that f l ' (^ , r)	 0 (r -» .) for all µ 0. Therefore,

we conclude that fl ' (µ, r) ti S' (µ) (r

a). The H-theorem

In order to construct the H-theorem we require,

ml (µ) - J dr R(µ r) r cos r < 0	 111.57
0

with IRK t 1) bounded. This requirement is met by the exponential correla-

tion function used in paper I. and II. to obtain the numerical results given there.

However, we have not been able to devise any simple criterion for the correla-

tion function or its associated power spectrum in order that equation III.57 be

satisfied. For the remainder of this section we do assume that this condition on

the magnetostatic turbulence is met, and in Appendix B we list a few alternative

expressions for equation 111.57 none of which, unfortunately, are particularly

transparent. We also continue to assume a simple power spectrum as defined

in the previous section.

Equation II.62 (paper H.) generates the first local approximation to the

quasi-linear diabatic probability distribution function. We reproduce this equa-

tion here for f l (µ, r) instead of N 1 (µ, r):

_ of of

a r	 f 1 ^ '^2 µ Q1(µ )	 ^ 
µl

=	 71 2 aµ TO (4) a µl	 III.58

subject to the reinitialized condition which is given in terms of the initial condi-

tion by,

f	 ++ 2 a ^	 a f l(µ 0 + )	 _
1 (µ. 0)	 a µ 5^

1 ^^)	 a µ	
= f (µ, 0)	 IH.59
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•0

We further introduce the quantity, H(T),  through,

1

 (
Id,H ( T) - 2 	 r i (µ, T ) - T7 2 1(I^) ` f i (µ, T )^ 	 III.60

	

,1 	 ,

and note that through its definition and the assumed properties of 5) 1 (µ), H (T) > 0.

Through integration by parts we find that the time derivative of H(T) is given by,

	

^1	 -

a 	 af1
H(T) _	 dµ f1 aT f 1 + r7 2 a

 aµ TI({^) aF^

III.61
i	 1

a '1)
r2 dµ (ko 

and thus, H(T) < 0. It is impossible for H(r) to remain greater than zero

unless H (T}	 0 (r -). Thus, we conclude that fl ' (µ, T)	 0 ( T ^) almost

everywhere in 4. Since :P,(0) = 0, it is clear that f 1' (0, T) does not have to

asymptote to zero. It is also possible that f 1 ' (µ, r) does not asymptote to zero

at other points in µ so long as these points do not contribute to the integral in

equation HI.61. Nevertheless, we must have,

f 1 (µ, T) = f 1 (µp, T ) +	 dµ' f,, (4" -r ) 	 f1(µo, T) 	 1II.62

	

f14
	 7- T
0

where µ o is any point in µ at which f 1' (4 0 , T) does asymptote to zero. Thus, we

conclude that F, (µ, T) must asymptote to an isotropic function of r. But, it is

also easy to see that this function must be constant in T . Because H ( T) - 0 (T

we must have H (T) - H f (r -• .) where H f is indeed a constant number which is

independent of T. But, from equation III.60, we see that H (T) ti f i (µo , T) (T
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Therefore, f  (µ o , 7) - H f (-r	 We conclude that f 1 (µ, r) must asymptote

to an isotropic steady state as r 	 We further restrict our attention to those

solutions for which f f ' (f 1,-r) and a El l (±1,-r) / a -F are  bounded functions of -r.

Then we see from equation H.62 (paper II.) that N 1 (± 1, ,T) is constant in time;

i.e., these solutions conserve total probability. In this case it is clear that

f 1 (4, r) - fo (0) ( r -' °°)•

In the remainder of this sectton we determine the sufficient conditions to

ensure that f i ' {µ, r) - 0 (r - oc) everywhere in µ except at = 0.

b). f,l (µ, r) Is Bounded Pointw i se in µ

We have already assumed that 1 i (t 1, r) is bounded in T. Here, we show

that f,' (µ, r) is bounded pointwise in µ in the open interval, -1 < µ < 1. To

proceed, we define,

q(µ, r )	 _ *] z Q1(µ) f 1( 'U ' `r )	 III.63

and,

To (µ)
A(µ)	 in,> 0	 {- 1 < µ < 1)	 111.64

Here, we are assuming that J 1 (µ) has no zeroes in the open interval. Then,

equation H.62 (paper II.) can be rewritten for positive r as,

q (4, r)	 a N1 Cµ, r)

a -,
	 + A (g ) q ('U T)	

-a

and integrated.

IH.65
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u T) = e' ^ ' T q (IU , 0 + ) + fdk e^^(µ)1^	
N 1 (I^, X)	

III.66q C , 
	 a^0

With the use of integration by parts and reinitialization we find,

q (µ, r) = N 1(I-L , T ) - 
e' A(1'')r N(u, 0) - A	 e- 0 (µ) T	 dk e

fo	
A(^))l^ N 1(µ, X)

r"
III.67

r

Thus,

I q (µ, T)I < j N 1 (U, T )I + le- A(µ)TN(µ,0)^
III.68

+ (o(µ) e-0(Ayr fo
 d)` eA{µ)'k N (µ, X )l

We have already assumed that the initial condition is normalizable and that

N 1 (µ, T) is uniformly bounded in µ and r; i.e., I N 1 (µ, T) < M 1 where M 1 is

finite. Therefore,

q (µ, T)I < M 1 + 1 + M 1 I 1 - e-
III.69

< 2M 1 + 1

From equation III.63 we see then that f (µ, -r) is bounded on the open interval

in µ. We can further conclude that both f 1 Cu, T) and N 1 (µ, T) are continuous on

the closed interval, -1 < µ < 1. Therefore, both of these quantities are uni-

formly bounded in µ. We are thus able to assume that these solutions are nor-

malizable without loss of generality, and that,
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0 < N 1 (µ, T) < 1	 (- 1 < µ < 1)	 III.70

for any T.

C). f l ' (0, T)

Since To (C) = 0, we see from equation II.62 (paper II.) that,

a	 a f 1 (0, T)

a TT 
[N i (0, T) + '7 2 JT1 (0)	 a	 = 0	 (T > 0)	 HIM

Therefore, the quantity in brackets in this equation is a constant in time which,

by integrating equation 111.59 in µ, we can find is N(0, 0). Thus,

a f 1 (0, T)

N 1 (0, T) - '772	

aµ	
= N(0, 0)	 III.72

since 5) 1 (0) = -1. Given that these solutions are normalizable, we have

N 1 (0, T) - 1/2 (°- -	 ). Therefore,

f ' 0 T)	
1/2 - N(0, 0) 	 HIM

1( 	 ti
' TT	 7?

whi r+ is exactly the same value that this derivative must take on in a time

averaged sense for the exact quasi-linear diabetic solutions.

It is relatively easy to se q. from equation I11.67 that q(µ, T), and therefore

{	 f 1' (µ, T), is a continuous function of µ for any finite T, and when T = ao that

q (µ, T) remains continuous in µ for # 0. We examine I q (µ I , T) - q (µo , T)

where µl and µ0 are two different values of µ, and show that this difference can

be made as small as we like if µ l - µo is made small enough except when
I

µ0 = 0 and T = (we hold 40 fixed and let µ l -, µo ).
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We define,

E = N1 (,ul, -r) - N 1 (µpi T}

	 III.74

and,
	 I

6 = D(µ 1 } - ACUO )	 III.75

We have already shown that N 1 (µ, rj is a continuous function, of µ, and we have

assumed that A (µ) is also continuous. Therefore, both E and S can be made as

small as we like for small enough µ l - µ o . In general E should be considered

a function of time, however, in light of equation III.70 a bound on this difference

can be found which is uniform in -r. Thus,

jEl 	 r) - q(,uo, T) I ^ I N 1 (µ 1 , T) - N 1(Iko, T)I

I

+ je
- do,°)r ( e - II _ 1) N(µ, 0) + E e	 (µ1) T i

III.76

+ IA(µ	
fo

p) 	dk e°) (e-SA - 1) N1 (40, r - ^)

+ IEI	 1(µo) f
o
dX e-A(^')a +ISI V

o"
dX e-x 	 N(µ 1 ,T - X)I

 

and then, with the use of equation III.70,
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q (µ 1 , T) — q (Flo, r)^ < 1 6 1 + e- A (AO) 7- (1 -
 e--ST)

+ jej e-
 A(uI)T + Q	

1 - e-(A(uo)+s}r
(^o)	

^(^) + 8	
ll - e	 (uo)T)

0

`DUz )7	
1	

e^A(u1)r^+ IE ^ (1	 e	 ) + ^b	 III.77

It is clear that for finite T, this expression can be made as small as is neces-

sary by making E and S small enoug' When T = - we consider the two cases,
,uo / 0 and µo = 0, separat-31y. If µo ^ 0, then (we assume j 0 also),	 i

q (,uo, .) j < 2 jej + 2	 S	
III.78

which can be made as small as we like. However, if uO = 0, then,

jq (,u 1 , m) - q ( 0 ,-)l < 3 + 1E1	 III.79

In this case we cannot make the differeiiee as small as we like by reducing E

and b . Thus, we conclude that q (u , T) is continuous in µ for any finite 7- ,  and	 £1
that q (fie., T) is continuous in U for T = m when jL / 0; q (4 ,  T) is not continuous
at µ = 0 and T = ^, Since T, 1 (µ) has been assumed continuous in 4 , these same
conclusions hold for T 1, (µ, r).

Since in a). we have learned from the H-theorem that f 1 ' (^ , r) is zero
almost everywhere at T = cc, we can now conclude from the continuity of f 1 ' ( 'U , T)
that in fact f 1 ' (µ., T)	 0 (T- -) for all µ except µ = 0. We have seen in c), that
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f 1 ' ( )u, T) does not asymptote to zero at µ = 0; this is consistent with equa-

tion III.79.

We conclude, finally, that under the conditions outlined in this secticn, the

first local approximation to the quasi-linear diabatic solutions must asymptote

to the final steady state characterized by S (µ) and S' ( f ,,) in the previous section.

As peculiar as this final state is, we see that the first local approximation yields

exactly the time averaged behavior of the quasi-linear diabatic solutions as

T — oo .

In Figure 1, we have plotted f i (µ, T) at various T for the broad parallel

beam injection considered earlier in papers I. and II. in order to give some in-

dication of how the final state, S (u) and S' (µ), develops; figure 20 of paper H. is

also useful for this purpose. As , increases, we can see from figure 20 of

paper II. that f l (µ, -r) tends to the isotropic state, S(µ) = f p (0), but with a nar-

row region near µ = 0 in which a steep gradient persists. From Figure 1 of

this paper, we see that the width of this region decreases with increasing T

while the amplitude of the gradient at µ = 0 increases. We suppose that as

T -- x, the amplitude of the gradient saturates at the value given by equation III.73,

the width of the peak in the gradient shown in Figure 1 goes to zero, and f l (µ, T)	 t
4

reaches isotropy. The amplitude of the peak in the gradient is plotted in Figure 2

as a function of T. From this figure, the approach of this peak value to the

maximum S' (0) seems reasonable. We also point out that the approach to S' (µ)

= 0 (µ / 0) is consistent with Figure 1 for µ / 0.
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=2 GYRO PERIODS
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µ

Figure 1. The first derivative with respect to µ of the first local ap-
proximation to the broad parallel beam injection solution computed
earlier in papers I. and II. The derivative is plotted as a function ofµ
for several values of time in units of gyro-periods. The irregularity
of these curves is due to the presence of numerical noise which has
been amplified by the differentiation process.
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Figure 2. The first derivative with respect to µ, evaluated at = 0, of the
first local approximation to the broad parallel beam injection solution computed
earlier in papers I. and H.
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IV. THE GENERAL N'TH LOCAL APPROXIMATION

In paper iI we constructed the local approximation method as it applies to

the integrodifferential equation defined by equation IIJ. The Laplace transform

of that equation is,

P f (P) - f (0) = E K(P) f ( p )	 111. 80

and, the Laplace transform of the equation which generates the n'th local ap-

proximation to its solution is,

P f„ (p) - f (0) = E K,, (p) f,, (p)	 III.81

where K,, (p) is the n'th convergent (see paper II, section In to K (p), A formal

solution of either of these equations can be written as,

fn (P) = 1P -	 K„ ( p )] 	 (0)	 111.82

The exact solution of equation III.80 is obtained in some exceptional cases for

all n ? N (N finite), but in general can be obtained by letting n - .. Thus,

equation III.82 contains all of the local approximations, as well as the exact so-

lution, within the entire set of n-values.

We have retained the notion, and associated notation, here that the local

approximations are generated by those entries in the Pade' table (see paper II.)

which are near the diagonal and are the convergents to K (p). However, the fol-

lowing discussion holds t^,ue for those approximations to the solution of equa-

tion I1.1 which are generated by any of the Pade' approximants. Thus, for the

discussion in this section we can generalize the definition of the local approxi-

mations to include all approximations which are generated by any Pade' table entry.
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From equation III.82 we .see that generally,

n( 	
(^PVpP fn (P) =	 1 - E p— 	f (0) 

P1 
1 - E 	 f (0)	 111.83

for any n. Thus, through the application of the Tauberian theorems which we

discussed in the previous two sections we can come to the very important con-

clusion that the time averages (as defined through equation HLI) of all of the

local approximations, including the exact solution, must approach a single final

state given by,

11 

-1

p l- 0 1- E P 1	 f ( 0 ) I11.84

There are exceptions to this very general statement; the failure of the adiabatic

approximation is due to one of them. In the following we will discuss these ex-

ceptions briefly.

a). The Exactly Soluble Model Equation of Paper II

The exactly soluble model equation has a C-number kernel whose moments

are given by equation II.48. In this case, from equation HI.84, we expect that

the time average of all of the local approximations, including the exact solution,

to asymptote to zero as T - c.. From figures 2 through 5 of paper II we see

that this expected behavior is obtained except in some special situations. First,

from figure 4 we see that the third local approximation does not fit in to the

general pattern predicted above. Indeed, as was discussed in paper H, f 3 (T)

- . (T -) for 0 < 4 ^ 0.6. Sine this local approximation is not bounded
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from below, we simply cannot apply the Tauberian theorems which lead to equa-

tion III.84. Thus, there is no contradiction here; we cannot apply equation III.84

to this case in the first place.

The remaining exceptions to the general statement made in the previous

paragraph occur in figure 5 at µ = 0 in the exactly soluble model equation. In

this case we see that the time averages of the first, second, and third local

approximations agree exactly with the time average of the exact solution, but,

none of these time averages are zero. In addition, the time average of the

zeroth local approximation (the adiabatic approximation) obviously does not

agree with any of the others. This peculiar behavior occurs because M o (0) = 0,

and M 1 (0) _ - 1 # 0. The time average given by equation II1.84 must be re-

placed by,

P	 0
	 M1(0)]-1 f(0)	 HI.85

in this situation. Since M 1 (0) _ -1 and E = 1 in the example being discussed

here, we see that application of equation 111.85 does lead to the prediction of the

correct time averages (= 0.5) for the first through fourth local approximations.

On the other hand, we see that the zeroth local approximation must fail to pro-

duce the correct time average at µ = 0 because the dominant term in the con-

tinued fraction expansion of K (p), namely M 1 (0), is apriori neglected in this case.

Thus, we see that equation III.84 does yield the asymptotic state of the time

averages of all the local approximations so long as M o / 0. If M o = 0, then

other considerations must be made which lead to replacements for equation I11.84

... for example, when M, / 0 then equation 111.85 follows ... and the adiabatic

approximation must be abandoned.

i
1
t^
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J_ 

1

2	 dµ f (µ' 0)I
HI.89

b). The Quasi-Linear Diabatic Equation

We have seen in paper I (equations I.65 through I.67) that the Laplace trans-

form of the exact solution of the quasi-linear diabatic equation can be written,

f (µ, P)	 fm (P) 0m (µ, P)
M=O

where the ^m (µ , p) are the Laplace modes and where,

Em
1	 dµ,p. (µ, P) f (µ, 0)
(P)	 1

P f m (P) ^	 - -

^ (P)
1 + 772

	 _ P

III.86

III.87

In addition, we found there that X 0 (p) = 0, and that x 1 (0) = 0, but, from part a).

of section H in this paper we found that p/X m (p) — 0 (p -- 0) for all m > 0 in-

cluding m = 1. Therefore, p f m (p)	 0 (p - 0) for all m > 0 and

fl _

	

p f o (p) — 1	 dµ f (µ, 0)	 IH.88

	

Pt 2	 1

Thus, through the use of the Tauberian theorems we conclude (as we have

earlier in this paper) that the time average of the quasi-linear diabatic solution

must asymptote to the final isotropic state,

Equation III.89 gives the projection of the initial state onto that Laplace

mode which is the only one outside the range of K (p). The zeroth Laplace mode

is given by .off , p) = 1, and the projection of the initial state onto 00 (U , p) is

given by equation IH.89. We say that do (µ, p) is outside the range of K(p) because,
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K ( p ) ^ O (µ, P) - i µ ( 1	 K(4, p )^^ 4,0 GL , P) = 0	 I1I.90

It is that projection of the initial state which is outside the range of K (p) which

survives as T - - and becomes the final state which the time average of the

solution must approach. The first Laplace mode is not outside of the range of

K (p) since,

K ( p ) 1(i L , p )	 1 (P) 1 (Fu , P) ;^ 0	 (p ), 0)	 IH.91

i
	But, in the zero'th local or adiabatic approximation we replace this relationship 	 {

with,

KO (P) 01 Ca, 0) _ - X 1 ( 0 ) `, I (µ, 0 ) = 0	 111.92

with the hope that q 1 (JL , 0) and k 1 (0) are reasonable approximations to 0 1 (µ, p)

and .k I (p) when p is small. Unfortunately, in this attempt we have introduced a

convergent to K (p) which, crudely speaking, "contains a zero" which the original

K (p) did not. (This feature is analogous to that of the simple model equation

discussed above in which M O (0) = 0.) Speaking more precisely, we have intro-

duced a convergent to K (p) which has a reduced range compared to K (p). This

reduction in range then allows additional projections of the initial state outside

the range of the kernel transform which survive as T - . and falsely modify

the final state of the time averaged solution. More specifically, we have seen

above that p f 1 (p)	 0 (p - 0) and therefore the projection of the initial state

onto 0 1 (µ, 0) cannot contribute to the final state. However, if we replace X 1(p)

by its zeroth local approximation, X 1 (0) = 0, before taking the limit, p - 0, we

find erroneously that,
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1	 _

P f 1 (p)	
1	

dµ Q 1 (µ, 0) f (4, 0)
P1 2 ^ -1

HIM

and then the erroneous final state for the. time average of the solution contains a

step in it at 	 = 0 due to the presence of 0 l (µ, 0) (see figures 2 and 6 of paper I)

At this point we are able to make the statement preceding equation II1.84

more precise. We can say that the time averages of all those local approxima-

tions, including the exact solution, which are bounded functions of time must

approach a single final state. This statement does not apply to those local

approximations which are generated by a convergent, K,, (p), which has a re-

duced range compared to the range of the exact operator kernel transform, K (p).

We feel that this general principle should be considered in future statistical

mechanical studies of the approach to equilibrium.

V. CONCLUSION

In this series of three papers we have addressed two separate issues. In

order to clarify these individual issues we present here a brief summary of our

work.

We begin our summary with the equation which Klimas and Sandri derived

(see equation I.8) from first principles, using the method of Kaufman, which

governs the exact evolution of the ensemble averaged test particle probability

distribution function in magnetostatic turbulence. This "master equation" .. .

an unfortunate name, since it has nothing to do with the well known master equa-

tion formalism ... follows directly from the Liouville equation through aver-

aging over an ensemble of stochastic magnetic fields. In principle this master

equation yields an exact solution; in practice, it must be simplified in order to

extract any information from it at all.

J
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Two steps must be taken in order to reduce the master equation to the

Fokker-Planck equation. First, if either the magnetostatic turbulence is weak

or if the energy of the test particle is high, a small parameter enters the master

equation which allows its expansion. If a power series expansion of the master

equation is constructed and then truncated beyond the leading non-trivial term,

then the quasi-linear approximation results. The product of this truncation is

an integro-differential equation in time which, in paper I., we named the quasi-

linear diabatic equation (see equation 1.20 for a specific example in a simple

model of the magnetostatic turbulence and also following gyro-phase averaging).

In the second step, we apply the adiabatic approximation which reduces the

quasi-linear diabatic equation to the quasi-linear adiabatic equation that is also

known as the Fokker-Planck equation. In this step we have reduced the quasi-

linear diabatic equation, which is integro-differential or non-local in time, to

its Markovian approximation. The end result is a velocity space diffusion equa-

tion which is first order partial differential in time and which governs the evo-

lution of the probability distribution function in the spirit of the Markov chain;

i.e., changes in the probability distribution function depend only on its instan-

taneous state, and are independent of the manner in which this state was achieved.

As we have discussed in paper I., solutions of the Fokker-Planck equation

are so blatantly unreasonable that even in the absence of any exact solutions of

the master equation we are able to conclude that something went wrong in our

two step simplification which lead to the Fokker-Planck equation. The standard

response to this failure has been various attempts, labeled non-linear, or orbit

modification, or diffusing- orbit, or partially averaged theories which are all

attempts to renormalize the power series expansion of the master equation in
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such a way that, on further applying the adiabatic approximation, the result is a

K
velocity space diffusion equation much like the Fokker-Planck equation but with

'	 a diffusion coefficient which is considered more reasonable. These attempts
r

are all based upon the apriori prejudice that a reasonable approximation to the

y	 unavailable solutions of the paster equation must be governed by a Markov chain

of events as expressed through a velocity space diffusion equation similar to the
F

Fokker-Planck equation. However, as we have just mentioned, exact solutions
f

of the master equation are not available, and furthermore, to our knowledge,

g	 solutions of the quasi-linear diabatic equation, which follows after step one,

mentioned above, and before the imposition of the Markovian approximation,
z

have also never been calculated prior to this work. Thus, the predictions of the

non-Markovian theory have been unknown. In addition, as we showed in paper L,
i

t
the imposition of step two, the adiabatic approximation which leads to the

Markov chain, clearly leads to an incorrect description of the quasi-linear

!	 diabatic solutions. In fact, although it is only step two of the simplification

procedure which leads to the Fokker-Planck equation which is clearly in error,

it is only step one which has been modified in all previous attempts to correct

^	 the Fokker-Planck predictions. Apparently, the idea of a Markov chain is so

imbedded that its abandonment has not been considered even in situations where

it clearly introduces serious errors.

Thus, we come to the two separate issues which we have considered in these

papers. First, we ask, "What are the predictions of the non-Markovian quasi-

linear diabatic equation, and do its solutions indicate that a renormalization of

the power series expansion is indicated?" and second, regardless of the neces-

sity or not of the renormalization, we ask, "Is there a modification, or
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replacement, for the adiabatic approximation which then allows us to produce a

successful approximation to the solutions of integro-differential equations like

the quasi-linear diabatic equation?" After all, if modifications of the quasi-

linear diabatic solutions are necessary, then it makes sense to start with the

quasi-linear diabatic solutions and see what direction these modifications must

tale. In addition, since solutions of the quasi-linear diabatic equation are very

difficult to obtain, even numer-^°.'.:y, a simpler method for obtaining good approxi-

mations to these solutio ,s cannot hurt in this endeavor. If this method happens

to be powerful enough to be applicable more generally, then all the better.

In paper R. of this series we introduced the new local approximation method.

In that paper we showed that this approximation method can be applied to the

fundamental equatL= is of statistical mechanics if they are cast in the integro-

differential form of the quasi-linear diabatic equation (the master equation is

included). In addition to ;bowing the wide applicability of this method we also

demonstrated its application to a very simple exactly soluble problem and

furthermore, to the quasi-linear diabatic equation which we constructed in

paper I. In general we found this new approximation method to be remarkably

successful. However, in the case of the quasi-linear diabatic equation, since

both the exact and the approximate solutions could only be obtained through

numerical integrations of the respective equations, the comparisons we have of

these solutions extend only over a little more than two Larmor periods of

elapsed time. Thus, in this paper we have presented an analytic study of the

long time behavior of both the quasi-linear diabatic solutions and their local

approximations.

Y
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We have found in this paper that the first local approximation to the quasi-

linear diabatic solutions probably remains remarkably accurate for all time.

More specifically, we have found that an H-theorem can be constructed for the

first local approximation which, uuider fairly general conditions, allows us to

conclude that the first local approximate solutions must asymptote, with increas-

ing time, to exactly that final state which the time average of the quasi-linear

diabatic solutions must also approach. Given the remarkable ?grreement between

these solutions during early times, and also this manner of agreement for very

large times, we feel reasonably confident in the accuracy of the first local ap-

proximation for all time. Thus, we feel that the second of the two questions

posed above has been answered. The non-Markovian local approximation method

does successfully replace the adiabatic approximation in applications to integro-b
I

differential equations like the quasi-linear diabatic equation.	 G.
F:

From the results of this paper, the first question posed above can now be 	 3

answered as well. From paper I. (see discussion leading to equation I.10) we 	 r

can see that the power series expansion of the master equation which we dis-

cussed above is actually in powers of -?7 Go 2' where n is our small parameter

and Go and i' are linear operators which are defined fully in paper I. For our

purposes here, it is sufficient to realize that 2' is actually a first order differ-

ential operator with respect to the velocity phase space variables. Thus, if the

quasi-linear diabatic solutions are to be considered a leading approximation to

the solutions of the master equation in a perturbation expansion in 77, it is clear

•	 that the quasi-linear diabatic solutions should not contain velocity space gradi-

ents which grow large with decreasing 1. But this kind of behavior is exactly

what we have discovered here. We have found that as T — - the first derivative
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with respect to µ of the time average of the quasi-linear diabatic solutions

approaches a value which, at µ = 0, is proportional to 7) - 2 . Thus, at 	 = 0,

-r7 Go 2' — G (77 -1 )	 when operating on the quasi-linear diabatic solutions.

We must conclude that we have no basis for believing that the power series ex-

pansion converges in the vicinity of µ = 0; in fact the evidence seems to indicate

just the opposite. It seems clear that, in the vicinity of µ = 0, some presently

unknown renormalization of the power series expansion must be constructed.

However, this renormalization ctuinot be based upon the Fokker-Planck approxi-

mation since we have shown here that this approximation does not accurately

represent the leading term in the power series expansion. We point out the

possibility, which we feel as a result of this work is quite likely, that the re-

normalized result may not be Markovian nor governed by a velocity space

diffusion equation.

1
r

r
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APPENDIX A

In this appendix we restate Wiener's generalized Tauberian theorem as

given by theorem 13b., Chapter V of Widder, but in our notation. We then apply

Wiener's theorem to Laplace transforms, much in the same way as Widder does

to obtain his theorem 14 in Chapter V, but with a slight modification which

allows us to then conclude equation HI.50.

a). Statement of Theorem 13b

Let

	

1 ) •	 gl ( T )	 0	 g i (T)	 L	 (0 < T < °°)

(functions in L can be represented by absolutely convergent Fourier

integrals)

2).
J dT g l (r) -riX w 0	 (-^ < X < ^,)

0

3). F (T) ? - c (c finite and positive)

4). g2 (-r) be continuous almost everywhere on (0, ro)

°O	 u. b.
en < T < en + l 7- g2 (7	 < eo

	

f
6).	 hl (p) = p 	 dr g l( pT ) F(T)

0

a.
exist and be bounded for (0 < p <

Then if h, (0) exists,

JO 
&r 92 (T)

lim
0 

p	 dr g 2 (p T ) F(T) - h l ( 0 ) 
	

A.1
P "	 -/ o

r dT 9 1 CT
-o

45



i
w

b}. Application to Laplace Transforms

We introduce the notation, P ()u , T ) = of {1^+ r)1 aµ and use the theorem

stated above to prove the following: if f' (I^, r) ? - c for 0 "S T r	 and is such

that the integral, r

fo d'r e —PTC
G( , T)	 A.2

converges for all p > 0 (i.e., 	 T) has a Laplace transform for p > 0), and

if
i

fd-r e - P7 f '(Il , T) ti	 A.3

o	
PL	 P

then,

1	

T

-	 ds f'(u, s) - A(µ)	 A.4
T fo	 T1

Proof:

First notice that,

lim 1	 1A.5— f d  f'(u. s) = 0
T °° 7 p

and since,

P f 'd -r e- P7 f ' (µ, r )	 < P f dr ^ f'(µ, 
r)I	 A.6

_ 0 	0

then,

1im	 C	 -P
	 dr e-Ps f'(p, T ) . . = 0	 A.7

P 
0	 o

O

46



Thus, if we introduce,

0	 (0 < r < 1)

F(4 , r) =	 A.8

T, (µ, r )	 (1 < r < °°)

and complete this proof for F (,a, r ), then we will have completed this proof for

f (A, r) as well.

Following Widder, we chose

g l (r) = e -T	 (0 < r <	 A.9

and,

1	 (0 < r < 1)

9 2 (r) =	 A.10

0	 (1 < r < ^}

Then conditions 1)., 3). and 4). of section a). are obviously satisfied. Condition

2). holds since

dr r[x e-r = F 1 + i X)	 0	 < X <	 A.11
.a

Condition 5). becomes

En+1	
e	 A.T 192 (r)^	 e 

n=-00	 —	 n=—eo

Finally G). is satisfied since

11 1 ( p ) - p	 dr e-PT F(µ, r)	 A.13
t

is clearly continuous in the interval (0 < p < -) and approaches finite limits
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when p approaches zero or becomes infinite. By equation A.3, h I (p) approaches

A (4) as p - 0. For T > 1, and I < p < -,

PT	 T + I1 --it P T > T + ^1 - 11 p	 A.14
P	

`
/J 	P)

Therefore,

hi(P)^	 P f dT e- P ' J F ( L , T)
0

< p e-(P- I )	 d-r e-	 F(,u, 7-)l	 A.15
f1w

0
Pt

i	
All conditions of section a), are satisfied and when we apply equation A.1 we

ii	 obtain the desired result, equation AA. This result has been used to obtain

equation 111.50 in section U.
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APPENDIX B

In order to construct the H-theorem in section III., in addition to assuming

	

a "simple" power spectrum we have assumed that )H,(µ) < 0 where V, (,u) is de-	 i

fined by equation IH.57. In addition we have assumed that V 	 = f 1) is bounded.

Since the correlation function is normally assumed to have a finite spatial range

such that its moments exist, it is natural to assume V, (µ = t 1) is bounded. We

have not found a clear characterization of the magneto'static turbulence which

would guarantee that )R 1 (µ) < 0 however. In the following we simply list a num-

ber of expressions for V, (,u) with the hope that at least one of these may prove

useful in future studies of this issue.

Following immediately from its definition, it is easy to see that,

)II 1 (µ) = i2
fo

ds s R(s) cos 
	

B.1

and therefore,

a
fil l (µ) -	 IµI 

L 
ds R(s) sin 0 ,U1	 B.2

o	 /

With the introduction of the Fourier transform of the correlation function,

R ( K ) =	 1 J d^ a —iKC 
R (t)	 B.3

2r

we also find,
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M	 limdK R(K) 	
2F2	 +	 1 - 2p2

p .w p	
r2—, fo	

2+ 
(K u 

x 1 2 2	 2+ 
( K u + 1)']'

B.3

which can be expressed as a Cauchy principle value

n

	

t 1 (µ) - -	
1	

12	 dK R' (K + 1 
K	

BA
V2 ^i 1 ) f	 _.	 1

More explicitly,

00

_ _ lim	 1	
1]	

dK	
(	

f	 /	 + i
1 {µ} -	 E 0 ^ ^1 L2I	 K [^,	 +	 B.5

1K	Iµ^^ - R L_K	
IU-

and through integration by parts,

J	 /	 l
E1M
	 V2 -T 	2)	 dK {^2 R{K + I µ i

J 

+ R(K	
^µ^}

	

1^ ^µ	 1 /	 1	 1
E

	

1	 1

1	 1	
R^E	 +

+ ^u^^_	

2Tr u 2^	 r

B.6

All of these expressions yield,

1 _ µ2

^^ „i



k. I

for the exponential correlation function used in the analysis contained in

papers I. and II.

a.

i.
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