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INVESTIGATION OF POSSIBLE LOWER HYBRID EMISSION

FROM THE NASA LEWIS BUMPY TORUS PLASMA

R. Mallavarpu * and J. R. Roth

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

Radio frequency (rf) emission has been detected near the lower hybrid

frequency of the NASA Lewis Bumpy Torus plasma. Such emission has now

been more clearly identified than in previous attempts, using a simple but

more responsive detection system that consists of a spectrum analyzer and

a 50 0 miniature co-axial antenna concentrically located in a re-entrant

quartz tube. The frequency shift of a broad emission peak is monitored as

a function of the background pressure, electrode voltage, and the strength

of the do magnetic field. Simultaneous measurements of the average plasma
density are made with a polarization diplexina :microwave interferometer.
The information derived from the experiment is discussed with particular
reference to the following: (a) whether the emissions are dominated by atomic
or molecular species of deuterium, (b) the strength of the do magnetic field in
the emitting region, (c) the geometric location of the emitting region of the
plasma, (d) comparison of the lower hybrid plasma density with the average
plasma density, and (e) relation of the ion spoke geometry to the lower
hybrid emission.

*
National Research Council Research Associate,

i

STAR Category 75



The identification of rf emission near the lower hybrid frequency of the
NASA Lewis Bumpy Torus Plasma could provide important diagnostic infor-
mation and shed further light on the propagation characteristics of a lower
hybrid wave through an inhomogeneous plasma contained by strong radial
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	electric fields and an inhomogeneous toroidal magnetic field. Such emis-
sions from the Bumpy Torus Plasma have been identified and found to occur
with high amplitudes in the low pressure mode of operation: with negative elec-
trode potentials (ref, 1), Prior to reference 1, fluctuations at the lower hy-
brid frequency were reported by Burtis (ref, 2) who used the emission near
that frequency to determine the electron density in the outer magnetosphere
on the OGO-3 satellite, More recently an rf emission spectrum ranging from
300 MHz to 5 GHz was observed in low-density discharges in the Alcator
(ref, 3). A strong peak at the lower end o: the spectrum was identified with
the ion plasma frequency. The theoretical background relating to fluctua-
tions at the lower hybrid frequency is briefly reviewed. Diagnostic instru-
ments are described and experimental results pertaining to the lower hybrid
emission are discussed,

THEORETICAL BACKGROUND

In a theoretical investigation Stix (ref, 4) predicts that mode conversion, 	 1
that is, conversion of a fast electxomagnetic plasma wave into a very slow
electrostatic mode (or vice versa) can lead to effective absorpolon or radia-
tion of electromagnetic energy in or from a plasma. Evidence of radiation
via this process is due to Landauer (ref, 5) who detected radiation at the
electron cyclotron frequency with detectors placed well outside the plasma.
Stix (ref, 4) has proposed that Landauer radiation could be due initially to
excitation of Bernstein modes by thermal or superthermal electrons, followed
in turn by propagation of this wave energy inward to the upper hybrid critical
layer, mode conversion at this layer, and tunneling past the cutoff at
W2 = Wpe to a receiver outside the plasma,
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A similar mechanism may explain radiation at the lower hybrid fre-

quency. Since the Lewis Bumpy Torus has ions that are preferentially

heated, energetic ions could lead to excitation of the hot plasma electro-

static mode. This mode could travel towards the lower hybrid critical

layer converting to a cold plasma electromagnetic mode and tunneling

past the cutoff at W2 = W2.. The lower hybrid critical layer as describedpi
by the cold-warm-hot plasma theory (ref. 6) occurs at a lower density

than the density corresponding to the cold plasma lower hybrid resonance

given by the equation:

1 =	 1	 1

W2Wpi 
+ CO

2

 
Wceci	 W Ci

Simonutti (ref, 7), using an electrostatic approximation, has shown that

the ;node conversion density is, in general, lower than the density corre-

sponding to the cold plasma lower hybrid resonance when thermal effects

are taken into account.

In calculations based on the experimental results in this report the cold

plasma formula given by equation (1) has been used. Since this formula

does not take thermal effects into account, discrepancies could arise between

the experimental data and predictions from equation (1).

DIAGNOSTIC INSTRUMENTS

The apparatus used to detect rf emissions from the plasma is shown

schematically in figure 1. The detection system consists of a 1. 5 m long

50 a miniature coaxial line, with 1 cm of the center conductor exposed at

one end to act as an antenna for receiving electromagnetic radiation. The

antenna is concentrically located in a reentrant quartz tube that is inserted

into the vacuum tank through an airlock. The other end of the coaxial line

is connected to a flexible coaxial cable by an appropriate 50 St adapter, and

(1)
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leads to a spectrum analyzer that can scan from 1 MHz to 1. 3 GHz. To

minimize cable resonances and any stray rf pickup, the length of the cable

circuitry is minimized and RG-214/U coaxial cables are used.

The tube-probe assembly is located in the equatorial plane of the torus

in a position shown in figure 2. The tip of the probe is 9 cm from the elec-

trode ring in sector 8 and almost in the same vertical plane as the ring.

The magnetic field at the location of the probe tip is about 0. 5 tesla, with

Bmax equal to 2.4 tesla.

The frequency response of the probe assembly is fairly flat from

50 MHz to 1.3 GHz. Below 50 MHz the response falls gradually until a

roll-off occurs at frequencies below 10 MHz, The response of this system

in the range 0-50 MHz is shown in figure 3. Even in this range, the sen-

sitivity of this probe assembly is at least 30 db better than that of the capa-

citive probe cathode follower assembly which was used previously (ref. 1)

in this plasma. A paired comparison of the peaks observed by the two sys-

tems under identical plasma operating conditions is shown in figure 4.

The amplitude of the rf emissions was seen to depend on the location

of the coaxial antenna with respect to the plasma boundary. Figure 5 shows

a series of pictures for varying locations of the probe with respect to the

S
plasma boundary. As might be expected, the amplitude of the peak is

greatest for the closest possible location of the probe to the plasma

boundary,

EXPERIMENTAL RESULTS AND DISCUSSION

Frequency spectra were taken with the rf probe system previously de-

scribed. Emission near the lower hybrid frequency, if present, appears

as a broad amplitude peak, shown in figure 4, for a typical set of plasma

parameters. Also apparent in the same photograph is a second harmonic.

The amplitude of the second harmonic, although less than the fundamental,

is quite significant. This anomaly occurs because the frequency response

of the rf probe improves with increasing frequency in the range shown.
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The broad amplitude emission peak shifts in frequency as the plasma param-
eters are varied. The frequency of the peak is measured as a function of the
background pressure, positive or negative electrode voltages, electrode cur-
rent, and the strength of the do magnetic field. Simultaneous measurements
of the average plasma density are made with a polarization diplexing micro-
wave interferometer.

Figure 6 shows the measured rf emission frequency versus the electrode
voltage for 12 positive rnidplane electrode rings. The do magnetic field is
held constant at a maximum magnetic field of 2.4 testa and data is taken in
the low pressure and high pressure anodes of operation. The dependence of
frequency on electrode voltage for both pressures is steep at low voltages
but saturates at high voltages. Upon extrapolation of these curves to VA = 0,
it is possible to obtain a limiting value which we identify with the ion cyclotron
frequency wci. This value may be used to relate the electron number density
to the emission frequency, on the assumption that the latter is the lower hybrid
frequency. The validity of such a calculation will. be discussed later.

Figures 7(a) and (b) show rf emission near the lower hybrid frequency as
a Ruiction of the anode voltage for several do magnetic fields in the low pres-
sure and high pressure anodes of operation, respectively. These data show
that there is a proportional shift in the emitting frequency for a given change
in the applied magnetic field at the same pressure and anode voltage. This im-
plies that this emission is dependent on the applied magnetic field and hence
cannot be mistaken for an emission at the ion plasma frequency, Wpi.

Figure 8 shows the emission frequency measured near the lower hybrid
frequency plotted against the average plasma density measured by the polariza-
tion diplexing microwave interferometer. These curves correspond to the data
of figure 6. Also plotted in figure 8 is the curve given by the formula for cold
plasma lower hybrid resonance for B = 2.4 tesla. It appears from this that
emission in the high pressure mode is taking place from a region of lesser
magnetic field than that of the emitting region in the low pressure mode.

Figures 9(a) and (b) sWv the frequency plotted as a function of the meas-
ured average number'derisity for the low pressure and high pressure modes
respectively, and the effect of varying the maximum do magnetic field. As

Y
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expected, for a given pre ssure'the'emission frequency is a'funetion of the
do magnetic field.

The following additional observations can be made from the data given
abov e,

(a) The emissions near the lower hybrid frequency seem to be dominated
by the highly energetic ionized species of atomic deuterium, rather than
molecular deuterium. This observation is substantiated by the fact that the
experimental points in figures 8, and 9(a) and (b), lie in the neighborhood of
the curves described by the cold plasma lower hybrid resonance formula.
The mass of ionized atomic deuterium has been used in calculations from
that formula.

(b)The strength of the do magnetic field in the emitting region is a
function of the plasma density (or electrode voltage) and the background
pressure, as is evident in figures 8, and 9(a) and (b). For a maximum ap-
plied magnetic field of 2. 4 tesla (see fig. 8) the magnetic field in the emitting
region varies from 1.5 to 2.4 tesla.

(c)An exact value of the plasma density cannot be obtained from the fre-
quency for lower hybrid emission since the do magnetic field in the emitting
region is not known. However, it has been possible to make an estimate of
Bdc for the low pressure mode curve of figure 6. By extrapolating the
f versus VA curve to VA = 0 2 coci/27 was determined to be 10. 5 MHz.
Using this v lue of fci , ne was calculated from the formula for cold plasma
lower hybrid resonance and plotted against n e , as shown in figure 10. The
experimental points fall into two distinguishable regions. Region I repre-
sents experimental points that lie on a 45 0 slope line and correspond to
lower hybrid emission densities that are four times higher than the average
plasma densities, Region II represents a marked departure from the 450
line, The density calculations in this region could be erroneous for two rea-
sons: (1) the assumed value of Bdc in the formula for the cold plasma
lower hybrid resonance is no longer valid and (2) finite temperature effects
may be significant enough to cause a departure from the density described
by the cold plasma lower hybrid resonance formula.
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(d)For the experimental data presented in this report, the magnetic
field in the emitting region varies from 1.5 to 2.4 tesla for a maximum
applied magnetic field of 2.4 testa. This region is enclosed by contours
L and T, shown in figure 11. This region is just that in which we would
expect the electric field between the plasma and the coil dewars to be
strongest.

(e) As shown in Region I of figure 10, the electron density in the emit-
ting region is much higher than the average electron density. This differ-
ence in density may result from the emitting region being located within
the density concentration of a rotating ion spoke.

CONCLUSIONS

Radio frequency (rf) emission near the lower hybrid frequency has
been identified for 12 positive electrode operation of the bumpy torus.
Important diagnostic information has been obtained from the emission
frequency. The emissions appear to be dominated by atomic deuterium.
Emission densities are in general higher than the average density obtained
by the micrc,wave interferometer. The emission frequency appears to be
dependent on the applied magnetic field, indicating that it is not emission
at the ion plasma frequency. Experimental data for the rf emission does
not seem to fit the entire cold plasma lower hybrid description of the
resonance. Discrepancies are evident, especially at higher densities, in-
dicating that thermal effects may be dominant.
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Figure 11. - Approximate geometric location of the lower hybrid emitting region. Dolled lines Indicate
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