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ABSTRACT 

John H. Bearden, Master of Science, 1977 

Major: Aerospace Engineering, Department of Aerophysics and Aerospace 

Engineering 

Title of Thesis: A High Reynolds Number Numerical Solution of the 

Navier-Stokes Equations in Stream Function­

Vorticity Form 

Directed by: Dr. J. F. Thompson 

Pages in 'fhesis: 49 Words in Abstract: 149 

ABSTRACT 

High Reynolds number, incompressible flow has posed many 

problems, some seemingly insurmountable, to researchers investi­

gating this phenomenon. It will be the purpose of this investigation 

to consider what has been done in this field, and use this as a 

basis to attempt to overcome these problems and achieve a simulation 

of incompressible high Reynoljs number flow. 

A choice was made to use the stream function-vorticity form 

of the Navier-Stokes equations. The coordinate system used was 

a body fitted coordinate system with a "u" shaped outer boundary. 

A modified version of a numerical solution computer program was 

used to actually solve the Navier-Stokes equations around the body 

used in the research. 

The particular body used in the investigation was an NACA-

0018 airfoil. There was only moderate success, though, in this 



simulation of flow at a Reynolds number of 1,000,000 and body angle­

of-attack of zero. 
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CIIAPTER I 

INTRODUCTION 

Since modern computers made the numerical solutLon of the 

Navier-Stokes equations practical, the goal of researchers in the 

incompressible flO~l regime has been to simulate flow at high Reynolds 

numbers. The problems facing the researchers have proved to be 

excessive computer storage requirements as well as tremendous amounts 

of computer time needed. The computer storage requirement stems 

from the need for having very "los ely spaced coordinate lines in 

the field over which the solution is made because of the high Reynolds 

number flot<, The necessity of using great quantities of computer 

til'le is caused by the use of extremely small time steps in the solu­

tion to maintain stability, Presented here is an approach to over­

come at least part of these problems, and in doing so, achieve an 

accurate simulation of high Reynolds number flow about an airfoil. 

There have already been compuLer programs written that solve 

the Navier-Stokes equations about arbitrary bodies that work "ell at 

10H Reynolds numbers, so one of tllese «as used as a basis for this 

«ork. Also, a "u" shaped coordinate svstem has been developed for 

use at high Reynolds numbers "hi-eh "as used, The difficulties faced 

1 

in the research were the conversion of the computer program that solved 

the Navier-Stokes equations to a form compatible "ith the "U" shaped 

coordinate system, the experimental evaluation of the various accel­

eration parameters, and the determination of the body vorticity such 

that the body velocity would be zero. The ,;ork herein was done in 



the stream function-vorticity form of the Navier-Stokes equations. 

A very thorough discussion of the actual computational aspects 

and the computer code is contained in Reference [11; this work by 

Thames has proved to be the backbone of this research. Also of 

possible interest to the reader is work by R. N. Reddy. This work 

by Reddy is also in the high Reynolds number range, but was done in 

[ 21 the integro-differentia1 form. l~ork has also been done on sub-

merged hydrofoils by S. P. Shanks. Shanks's research produced a 

computer code to simulate the flow around a submerged hydrofoil, 

[31 both with and without bottom effects. 

2 
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CHAPTER II 

ANALYTIC DEVELOP~ffiNT 

Due to the nature of this research, it might be advantageous to 

take a brief look at the derivation of the stream function-vorticity 

form of the Navier- Stokes equations and the transformation of these 

equations into the ~,1Il form for use in the transformed plane. A 

limited discussion of the related boundary conditions might also 

prove helpful. 

In cartesian coordinates, the Naviar-Stokes equations for non-

steady, incompressible flow are: 

u + v = 0, l.la 
x y 

ut + u Ux + v 11y = -lp + 
P x vv2u , [ l.lb 

vt + u v + v v = -lp + vV2v, l.lc 
x Y p Y 

where u and v are the velocity components in the x and y directions, 

respectively, where the subscripts represent partial differentiation 

with respect to the variable used, and where p is the pressure. These 

equations are transformed to the stream function-vorticity form by 

firs t defining: 

u = .1. V = - .1. III = V - U • 
't'y' "'x' x y' 

[ l.2a,b,c 

then taking the curl of the Navier-Stokes equations, we have 

lilt + ~Iy Ill" - Iji" Illy = vv2w, 

V2~ = - Ill, 

1.3a 

l.3b 

l~ith this information, the next step will be to consider the 

transformation of the stream function-vorticity equations from the 
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form used in the physical plane to that used on the rectangular tral1S-

formed plane. The equations are transformed using the following 

operators: 

[2.4a] 

[ 2. 4b ] 

And upon utilizing these operators the following equations result: 

W
t 

+ ( ~n wr; - ~r; wn ) / J c 

( a wr;r; - 2 a wr;n + y wnn + a wn + T wF; ) / J2 RO, ( 2.5a 

a ~« - 2 a ~<n + y ~ + a ~ + T ~ c - J2 W (2.5b] 
~~ ~ nn n r; , 

where the functions W and ~ are doubly differentiable. The derivation 

of these expressions appears in Appendix A of Reference [1]. The 

coordinate sys tem parameters a, a, y, a, 'r, and J are: 

a = x~ + y~, 
J _ 

Xr; xn + Yr; Yn' 
2 2 

Y " xr; 'I' Yr; 

a - l Yr; ( a Xr;r; - 2 a xr;n + Y xnn ) 

xr; ( a Y r;1; - 2 a Y r;n + Y Y nn)] / J 

T _ x (a Y - 2 a Y + Y Y )-
n I;r; F;n. nn 

Yn ( a xr;r; - 2 a xr;n + Y xnn) ] / J 

Note that the Equations [2.5a,b] have been non-dimensionalized 

with respect to the free-stream velocity and the airfoil chord. The 

Reynold's number, R , is also based on these quantities. 
o 
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In the case under consideration, where the coordinate system 

remains fixed in time, the coordinate system parameters must only be 

calculated once since they remain constant throughout the solution. 

Also, if the coordinate system has no contraction of the coordinate 

lines about the body, the coordinate system parameters a and ~ 

disappear. 

The boundary conditions for the equations in the rectangular 

transformed plane are expressed in the following relations: 

~(x,y,t) = ~ro(x,y,t) 
W(x,y,t) = wro(x,y,t) x,y E f2. 

~(x,y,t) = ~o = constant, y,y E fl 

[2.7a] 

[2. 7b] 

[2.7c] 

(x,y,t) = 0, [x,y] E rl [2.7d] 

where rl and f2. are the body and the outer boundary line segments, 

respectively. Equation [2.7d] specifies conditions that, if met, 

guarantee the tangential velocity on the body surface to be zero. 

Since the normal component vanishes in the same manner, it can be 

assumed that the no-slip boundary conditions are met by satisfying 

this equation. 

For a much more indepth discussion on the material presented here 

the reader is to refer to Reference [1]. Here Thames covers the various 

aspects required in setting up the houndary conditions, as well as, the 

transformations used in manipulating the equations. 



CHAPTER III 

THE COORDINATE SYSTEH 

The coordinate system used in this work is a body fitted 

coordinate system, that is, one that fits one coordinate line through 

every point specified on the body being considered. This type of 

coordinate line will be called an n-line. Another n-line is then 

fitted to the outer boundary and the remaining lines spaced throughout 

the field. A second type of lines is then used to subdivide the 

n-lines, referred to here as ~-lines. Although the coordinate sys-

tem cr~ated by this method is not necessarily orthogonal, there are 

no severe problems caused. On the contrary, the fact that the 

coordinate lines follow the body contour, thus eliminating any 

extrapolation, produces a profound advantage in the accuracy provided 

in the boundary layer. References [1], [4], [5] , and [6] cover this 

topic in greater detail. 

Figure [1] shows such a coordinate system, in this case an 

airfoil in an elliptical outer boundary. Also, Figure [2] ShOHS the 

rectangular transformed plane. This transformed plane is create.<l by 

"opening up" the body fitted coordinate system from the cut. The 

line segment r in the body fitted coordinate system is analogous to 
1 

* r
1 

in the transformed plane. 
,~ 

the same correspondence also carries for 

* " r 2 and r 2, as well as for r3 and 1'3 and r4 and r4· Note that r3 and 

* are colinear, therefore encll Foint on r3 is equal to the corres-

* ponding point on r4 . 

By starting with some initial guess, Figure [3], the body 

6 



fitted coordinate system is generated by solving two elliptic partial 

differential equations that have Dirichlet boundary conditions. 

These equations are: 

7 

~xx + Syy = p ( ~, n ) , [3.1aJ 

[3.lb) 

with one coordinate being set constant on the body and auter boundary 

and the other varying monotonically around the body. Since the initial 

guess specifies the values of x and y for each E;,n point, the 

dependent and independent variables in the equations must be inter-

changed. Upon doing this, they take on the form of: 

ex xE;~ - 2 

Cl y~1; - 2 

a Xo + y x .,n nn 

il y1;n + Y Ynn = - J 

xE; P ( 1;, n) + xn Q 

yE; P ( 1;, n) + Yn Q 

( 1;,n ) [3.2a) 

( 1;,n ) [3.2b] 

This quasi-linear elliptic set of partial differential equations 

is much more complex than the linear eqvations [3.1), but the 

boundal)' conditions are specified at the body and outer boundary which 

are straight lines in the rectanr,ular transformed plane. Also, the 

grid spacing in the transformed plane is unity. The inhomogeneou~ 

terms in equations [3.2J, P(1;,nl and Q (1;,n), are used in the 

contraction of the n-lines to the body, to a given line, or even to 

some specified point. These terms are derived from the sums of 

decaying exponentials. Further discussion of this topic is con-

tained in Reference [6]. 

These equations are then solved over the rectangular transformed 

plane using central space differences and successive overre1axation 



iteration. 

IUth this as a basis, the coordinate system used in this research 

wi_l be considered. Instead of enclosing the body, in this case an 

airfoil, in an elliptical outer boundary, it is enclosed in a "U" 

shaped outer boundary, Figure [4 1. The reasons for doing this are 

the high contraction requirements and the necessity for good grid 

resolution in the wake. For high Reynolds number flow, the coordinate 

lines must be contracted very closely to the body to get enough lines 

in the boundary layer to manitain stability in the solution. This 

creates problems, though, in that the lines that are contracted close 

to the body, in the system with an elliptical outer boundary, 

must bend around the sharp trailing edge. This bend brings the lines 

so close together that the separation becomes the order of magnitude 

of the roundoff error. But with the "U" shaped coordinate system, the 

l1-lines "flow" off of the trailing edge completely eliminating this 

problem, Figure [61. Also, the system l'lith an elliptical outer 

boundary does not have sufficient lines in the wake area downstream 

of the body, and the lines sprei,rl nllt even more further dmffistream. 

The "u" shaped coordinate system also alleviates this problem 

because of the flm' of the lil1e~ from the trailing edge. Note, 

also, that the lines have verv little spr<;!ad dm-ffistream of the body. 

This gives excellent resolutiun in the I,ake. This type of system is 

created in the same manner as t[,e type ',rith the elliptical outer 

boundary. The major difference is the I,ay the rectangular trans-

formed plane is set up, .. ith the body and the reentrant segments 

8 
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.1 



on the 1';=1 line and the infinity boundary occupying the other three 

sides. Referring to Figure [41 and Figure [51, some idea of the 

nature of the correspondence of the physical plane to the transformed 

plane may be gained. Again, rl ill the physical plane is the same as 

the r~ line segment in the transformed plane alld r2 corresponds to 

r~, r3 to r~, and so on. Since the coordinate lines r~ and rz in the 

transformed plane represent the "cut" in the physical plane, they 

require special treatment when calculating the derivative across the 

"cut." Consider a point on r~ that has coordinates (N,l), where 

1 < N < LBYl, and where LBYI is the left hand coordinate of the body. 

It I S corresponding point on r~ then has the coordinates [UIAX - (N-l) , 

11, where UIAX is the number of I;-lines in the field. Using this, the 

9 

i; 

, j 

, , 

derivative of lJ! with respect to n becomes:, 

~'n = "'N,2 - lJ!UIAX-(N-l),2 

In the same manner the partial derivative of w with respect to I'; and n 

becomes: 

instead of the form used in the field calculations which is: { 
\ 

This holds true for all derivatives taken across the cut. 

The coordinate system was gpnerated using the TOHeAT code in 

Reference [6J. The code permilR the attraction of the lines to decay 

aft of the trailing edge thus pennitting them to expand slightly, this 

feature was also used in resea "(·h. The outer boundary was set up 5 
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chord lengths from the body except for the downstream dimension which 

was 10. The coordinate system has 10 coordinate lines contracted into 

the boundary layer. this attraction is explai·.led in the appendix, 

Figure [6]. 



CHAPTER IV 

THE N~ffiRICAL SOLUTION PROGRAM 

Perhaps the next step would be an explanation of the computer 

code used in this research to solve the Navier-Stokes equations over 

the rectangular transformed plane. This code was written by F. c. 

Thames, [1] and was chosen for the work because it uses the stream 

function-vorticity form of the Navier-Stokes equations. 

The space derivatives of this solution are approximated using 

central differences and the vorticity time derivatives using a first­

order bac~~ard time difference. This implicit numerical method with 

SOR iteration <.s used to converge the space derivative variations in 

11 

the flow solution. Then, with the field converged, the vorticity on 

the body is approximated with mocllfied false position iteration. This 

method of iterating the body vortIcity is designed to force the body 

tangential velocity to zero.rll[~1[7][8] 

The numerical procedures used in accomplishing the solution and 

the finite difference form of l"~ Navier-Stokes equations are now 

given attention. The finite dHf"rence grid, that is the rectangular 

transformed plane, is pictured in FIgure [7] for clarity. The grid 

pictured is one used in the "U" ""'Iped coordinate system. The dark-

circles represent the body, on the J~l line, and the outer boundary 

on the I~l, I~I~~, and J=~~ lines. The points represented by the 

open circles are the re-entrant boundary segments and as pointed out 

earlier represent the same set of points in the physical plane. In 

.\ 
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other words the point immediately down stream of the trailing edge 

in the physical plane is represented by the points I and II in the 

transformed plane, Figure [7]. Since the velocity at the outer boun-

dary is the free stream velocity and the vorticity is zero and since 

the body velocity is zero, the boundary conditions are specified at 

all points denoted by a darkened circle in Figure [7]. 

The procedure used in solving the difference equations over the 

rectangular transformed coordinate system is central differencing 

for the spacial derivatives and backwards differencing for the time 

derivative of the vorticity. The difference equation for the vorti-

city, after substituting the central difference and backwards dif-

ference approximations, iu: 

n n-l n n n n 
(wi,j - Wi ,j)/6t = [(.~)i.j(w~)i,j - (.~)i,j(wi)i,j]/J~,j 

+ 4[1l~,j (wil;)~,j - a~,j (Win)~./2 + Yi,j (w~n)~,j 

+ ai' ,(w')~ , + T~ ,(w~)ni ,]/Ro(J
i
' ,)2 

,J n 1.,J ~,J.,)J ,J 
[ 4.1 ] 

where the primed quantities represent difference expressions documented 

in Appendix D of Ref erence [1]. n 
Then solving for wi ' yields: 

,J 

W~,j = [(Cf)i,j - (C4)i,j(.~)~,j + (CS)i,j]W~+1,j 

+ [(Cl> i,j + (C4) i,j (.~) ~,j - (CS) i,j ]W~_l,j 

+ [(C;)i,j + (C4)i,j(.~)~,j + (CS)i,j]W~,j+1 

+ [(C;li,j - (C4)i,j(.~)i,j - (C§)i,j]W~,j_1 

+ [(C:Di,j](W~n)~,j + {1 - 2[(C1\,j + (C3\,j]}W~,j [4.2] 
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where: 

(C l ) i,j - 4I1tCti,/ II 

(C2)i,j - -211t(3i,/1I 

(C:i) i,j - 4I1tYL/1I 

(Clf) i,j = IItROJi,/1I 

(cg) i . - 4I1toi,/ II ,J 

(CG) i,j - 4I1tTi,/ II 

and 

The stream function equation is derived in the same manner and is: 

2[(Cll i . + eCa)i .l!JPi j ; [(Ci)· j + (Cli)i j j!JIi
n
+l . ,J ,J, 1, , ,3 

+ [(C1)i,j - (CS)i,j JIjJ~-J.,j + [(Ca\,j + (C5)i,jl!JI~,j+l 

+ [(C§)i,j - (CS)i,j JIjJ~,j-l + IIt{l - 2[(C1\,j + (C3)i,j]}w~,/Ro 

[ 4.3 1 

The vorticity and stream function equations are then solved 

simultaneously over the computational grid by SOR iteration at each 

time step. Also it is necessary to calculate the vorticity iterate 

first in each sweep of the field if the two equations are coupled. 

As Thames pOints out, there are two observations that should be 

made about these difference equations. The first being the large 

quantities of computer storage needed for the implimentation of the 

solution. The reason being the nine field size arrays used to store 

n n-1 the six coefficient arrays, the .p array, and the wand w arrays. 



, , , 
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Secondly, the fact that the velocity tangent to the body is explicitly 

enforced at zero alleviates instabilities in the solution. 

The changes made in this computer code were centered around the 

change from a coordinate system with the elliptical outer boundary to 

one that has the "U" shaped outer boundary. Recall from Chapter III 

that the re-entrant segments were moved from the 1=1 and I=IMAX lines 

in the transformed plane of the elliptical coordinate system to either 

side of the body on the J=l line of the transformed plane of the "u" 

shaped coordinate system. Also the infinity boundary was moved to 

where it occupied the three remaining sides of the field of the "u" 

shaped coordinate system. Since no calculations are made on the 

infinity boundary, the original code swept the field from 1=1 to 

I=IMAX and then from J=2 to J=J}uu{-l. That is every point is swept 

except the body and the infinity boundary at J=J}UU{. But on the "u" 

shaped system, with the infinity boundary on the 1=1, I=IMAX, and the 

J=J}UU{ lines, the field must be swept from 1=2 to I=IMAX-l and J=2 

to J=J}UU{-l, or in ohter. words, all the interior points of the field. 

Then the points on the re-entrant boundary segments had to be calcu-

lated. This was done by sweeping from 1=2 to the point immediately 

down stream of the body. Note that the J=-l. points shown in Figure 

[8] correspond to the J=2 points of the other re-entrant segment. 

And, finally, the program was changed to sweep only the body points 

on the 1=1 lines and not the entire line. 



The bocly vorticity was calculated using Isreali's method for 

the first two changes in body vorticity. The algorithm is: 

(k+1) 
wi,l 

= w(k) 
i,l 

_ 0 (l.'i!.) (k) 

an i,l 

But the method is slow and is therefore used only to make the first 

15 

couple of changes in body vorticity. The subsequent iteration in body 

vorticity is clone with the false position method: 

w(k) (k-l) (k) (k+1) (k) - w. 1 ~ - 0 
i,l J., 

Wi 1 ~ wi,l (k) (k-l) [ (n) 1 , 
a~ a~ an 1 [ (n )] - [ (n)] i,l 

au 1 
i,l 

a!! 1 
i,l 

EJ!. Because the boundary condition is imposed on rp and an' the vorticity, 

w, is calculated such that the body velocity is zero. R. L. Walker 

also used this method in an investigation of flow over a semi-infinite 

flat plate, Reference [8]. 
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CHAPTER V 

RESULTS 

The test case considered in this research was the flow about an 

NACA-0018 airfoil at a Reynolds number of 1,000,000. Detail of the 

coordinate system near the airfoil is shown in Figure [9]. The entire 

field is shown in Figure [6]. This case was run usin.; a one-hundred 

step gradual start. The velocity was gradually increased by an in-

crement of .OJ. from zero to free-stream velocity while holding the 

Reynolds numher fixed at 1,000,000. The field vorticity acceleration 

parameter was 1.8, and the vorticity convergence tolerance, the stream 

function convergence tolerance, and the maximum body velocity were 

set at 0.0001, 0.00001, and 0.0001, respectively. 

There were some difficulties encountered in starting the solution. 

The primary difficulty was finding an accurate approximation for the 

trailing edge vorticity. The cause of the problem appeared to be a 

loss of synulletry of the vorticity between the top and the bottom of the 

airfoil, probably due to the extreme gradients encountered in the 
.1 

start. The number of iterations rE'quired to converge the fj.eld was so 

large that the body velocity was converged to a value of .005 rather 

than .0001 during the start. Even "Hh this change, it became necessary 

to ignore the value of velocity at the trailing edge points and the two 

points adjacent to the trailing edge. The vorticity at the trailing 

edge, then had to be set at zero rather than calculated because the 

velocity was not converged at thp points used for extropolating the 



vorticity. This is valid for a symmetric flow. Finally, just before 

the solution reached free-stream velocity, the as symmetry caused the 

solution to diverge. To ~orrect this, the points above and below the 

airfoil were averaged to make the field symmetrical. 

Once the solution reached free-stream velocity, the assymmetry 

17 

was still present as shown in Figure [10) which pictures the stream­

lines around the airfoil at time step 110. Since this'assymmetric 

vorticity distribution caused the solution to diverge, it had to be 

somehow eliminated. Refer to Figure [11) and Figure [12) which show 

the velocity distribution around the &irfoil. Note that the velocity 

leaving th .. upper surface is greater than that leaving the lower sur­

face, even at ti.me step 20. This could be caused by one :)f two things, 

first, the relative field vorticity iteration error was only converged 

to a value of .001, rather than to .0001, before the first change in 

body vorticity was made, thus leading to error before the solution is 

even started. Secondly, the field and body numerical iteration scheme 

sweeps from the trailing edge around the under side of the airfoil then 

over the top of the airfoil and back to the trailing edge. It is 

possible that this method of "sweeping" the field is perhaps biasing 

the velocity around the body, as a result of the large gradients at the 

start, leading to a higher v,"locity on the top of the airfoil. Figure 

[13) shows the pressure distribution on the airfoil at four times. Due 

to the above-mentioned numerical error, the assymmetric pressure dis­

tribution becomes worse as time progresses. The pressure coefficient 

after the acceleration has stopppd does, however, resemble the expected 

profile for this airfoil. The drag is about t"< I.ce the experimental 

) 

\ 



value, but was still decreasing at the end of the run. The high drag 

and the linear tendency in the pressure distribution during the start 

are, of course, due to the acceleration. 

18 

Two proposed changes to correct these problems are: (1) Converge 

the field vorticity iteration error more completely before attempting 

a change in body vorticity. (2) Sweep the field from the center to the 

outside edges, i.e., leading edge to trailing edge rather than froro 

left to right, and start from a potential flow. 

'. 
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APPENDIX 

AUTOHATIC CONCENTRA'fION OF COORDINATE LINES INTO A BOUNDARY LAYER* 

In this appendix, the procedure by which a specified number of 

coordinate lines can be automatically concentrated into a boundary layer 

of specified thickness is discussed. Consider the coordinate system 

generation equations (3.2) applied to the one-dimensional case of 

straight boundaries parallel to the x-axis. lVith n = cons tant on these 

boundaries, and the t;-lines being normal to the boundaries, we have 

Yt; = Yt;t; = Yt;n = 0 and the x-equation is identically zero so that the 

coordinate equations reduce to 

yY + J2QY = 0 
nn n 

(A-l) 

or 
Y 2 
--D.!l + L. Q = 0 
Y Y n 

(A.2) 

This can be made a perfe"t differential by choosing the form of the 

control function Q to be 

Q (n) -
y £" (n) 

} £' (n) 

where the minus sign has been introduced merely for convenience. 

(A.2) becomes 

~ _ f" 
y' f' = 0 

*Personal communication from Dr. Thompson 

(A.3) 

Then 

(A.4) 

, ; 

, , 

, j 

, i 
! 

• 

~. -

~ 
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which can be integrated to yield 

(A.S) 

The constants of integration may be evaluated from the boundary condi-

tion: yell = Yl' y(J) = Y J so that 

(A.6) 

This equation should be solved for fen) to yield 

fen) - fell = yen) - Yl 
f(J) - fell YJ - Yl 

(A. 7) 

which, l'lich arbitrary definition of f (1) and f (J) will yield the 

requj,red f(n), and hence the required Q(n) via substitutfon in (A.3), 

to produce a desired distribution yen). The evaluation of Q(n) may be 

done without actual evaluation of fen), however, by solving (A.4) for 

y"/y' and substituting into (A.3) to produce 

" Q(n) = - ? 7 (A.8) 

Now a number of smooth functions for yen), such as exponentials, 

logarithmic functions, hyperbo1ie function, etc., may be found which 

will concentrate lines near Y1 with a spread out to yZ' However, since 

the boundary layer thickness at high Reynolds number is only a very 

small fraction of the distance to outer boundary of the computational 

field, such smooth functions cannot allow the lines to spread rapidly 

enough outside of the boundary lAyer. The result is that nearly all 

of the lines in the field will be "Uhin a few boundary layer thick-

nesses of the body, with a great gap near the outer boundary. 
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Therefore, a composite function was used for yen), formed by 

joining a logarithmic function to a quartic polynomial near the edge of 

the boundary layer. This function was constructed as follows: assume 

that it is "desired to space the lines in the boundary layer such that 

the change in velocity from each at the next is the same. Let the 

velocity profile in the boundary layer be approximated by the expo-

nential 

u(y) = 1 _ e-ey 

Let the edge of the boundary layer be defined by 

u = 0.99 at y = 0 

Then the decay factor c will be given by 

c = - f In (0.01) 

Now solve (A.9) for y(u): 

y(u) = - 10 In (l-u) 
c 

(A.9) 

(A.lO) 

(A.ll) 

In order to achieve the same velocity change from each line to the 

next, take u = 0.99 n-l (--1) where no is the line at the edge of the 
no-

boundary layer. Substitution is (A.ll) then yields 

yen) - 10 ln [1 - 0.99 
c 

( n-l ) ] 
n -1 o 

(A.12) 

Let this logarithmic function be joined to a quartic polynomial 

at some line inside or at the outer edge of the boundary layer. Thus 

with the function at n=N, the polynomial is of the form 

yen) y' (N) [n-Nj + t y"(N) [n-N]2 

+ i- y"(N) [r,-N]3 + a(n-N)4 + yeN) 

(A.13) 



22 

Here y' (N) is functional notation, etc. The derivativ'es are determined 

by differentiation of (A.12) with evaluation at n=N. The remaining 

coefficient "a" is used to satisfy the boundary condition at the outer 

boundary y(J) = YJ' Thus 

YJ - yeN) - y'(N) [J-N] - t y"(N) [J_N]2 - t y"(N) [J-N]3 
a = ~--------------------~--~--------~~----------

(J-N) " 
(A.14) 

Note that the junction to the polynomial need not occur at the edge of 

the boundary layer, but anywhere inside it. It was found advantageous 

to place the junction two or three lines inside the boundary layer. 

Thus if the boundary layer thickness, 0, and the number of lines 

therein, no' are specified, along with the distance to the outer 

boundary, Y
J

, and the total numb .. r of lines .I, and the function line N, 

the control function Q(n) can be evaluated from 

Q(n) = 

y 

0.99 
no-I -"* -----"-------- n = 1,2,--, N < no 

1 - 0.90 (9- J _) 
'11 .. -1 

y"(N) + ,"(m [n-N] + 12n[n-N]2 
Q(n) = 

J2 y'(N) + y"(N) rq-N] + t y"(N) [n-N]2 + 4a[n-N]3 

n = N, N + 1, J 

with the required derivatives given by 

(A. IS) 

(A.16) 

(A. I?) 
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and yeN) by 

yeN) = - ! In[l - 0.99 
c 

(A.1S) 

Although this analysis is developed for the one-dimensional case of a 

flat boundary, much the same results will be achieved by its use with 

curved boundaries since curvature tends to affect both the boundary 

layer thickness and the line control in the same way. Thus convex 

curvature thins the boundary layer but also causes the lines to 

concentrate to a greater degree near the boundary. 

In the present work, the boundary layer thickness was taken as 
5 

o = lli where R is the chord Reynolds number, and 10 lines were placed 

therein (1]0 = 10) with the junction to the polynomial at line 7 (N = 7). 

There were 31 lines in the field, and the outer boundary was at 5 

(J = 31, YJ = 5). 

Additional coordinate system control, in the form of ~-line 

attraction was used to pool the s-lines in the wake nearer the trailing 

edge. This attraction was of the exponential type used in Thames [1] 

and in the original TOHCAT code [6], except that in order to be 

compatible with the boundary layer attraction function, the attraction 

was calculated for 

" Q(I]) = -" S(I]) (A.19) 
J-

where S(I]) corresponds to the QU,) of [1] and [6]. The attraction was 

point attraction to the trajling edge, with amplitude of 0.7 on the 

bottom of the trailing edge lind -0.7 on the top. The decay factor was 

0.1 and the feature of attraction to the convex side and repulsion to 

the concave provided for in the TOHCAT code was activated. 
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Figure 1. Coordinate System - Elliptical Outer Boundary 
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Figure 3 . Initial Guess for Coordinate Genera tion 
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