@ https://ntrs.nasa.gov/search.jsp?R=19770021126 2020-03-22T09:35:55+00:00Z

General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



A HIGH REYNOLDS NUMBER NUMERICAL SOLUTION
07 THE NAVIER-STOKES EQUATIONS

IN STREAM FUNCTION-VORTICITY FORM

(NASA-CR=-1539133) A HIGHd REYNCLDS NUMBEEK

NUMERICAL SCLUTICN OF THE NAVIER-STCKES

EQUATIONS IN STEEAM FUNCTICN-VORTICITY FCRNM

M.5. Thesis (Mississippl State Univ.,

Misslissippl State.) S50 p HC AU3/MF AV1 u3/02

By

JOHN H. BEARDEN

A Thesis
Submitted to the Faculty of
Mississippi State University
in Partial Fulfillment of the Requirements
for the Degree of Master of Science
in the Department of Aercphysics and
Aerospace Engineering

Mississippi State, Mississippi

August, 1977

N77-28070

Unclas
Jy24b



A HIGH REYNOLDS NUMBER NUMERICAL SOLUTION
OF THE NAVIER-STOKES EQUATIONS

IN STREAM TFUNCTION-VORTICIZY FORM

By

JOHN H. BEARDEN

A Thesis
Submitted to the Faculty of
Mississippi State University
in Partial Fulfillment of the Requirements
for the Degree of Master of Science
in the Department of Aerophysics and
Aerospace Engineering

Mississippi State, Mississippi

August, 1977



A HIGH REYNOLDS NUMBER NUMERICAL SOLUTION
OF THE NAVIER~-STOKES EQUATIONS
IN STREAM FUNCTION-VLRTICITY FORM

by

John H. Bearden

Approved;

Professoxr of Aerospace Director of Graduate
Enginecring and Head, Instruction, College of
Department of Aerophysics Engineering

and Aerospace Engineering

Professor of Aerophysics Dean of the College
and Aerospace Engineering of Engineering
(Major Professor)

Dean of the Graduate School

August, 1977



e

ACKNOWLEDGEMENT

The support of NASA, Langley Research Center under Grant

NCR-25-001~055 is gratefully acknowledged.

114



Bt TN e

P
i
i
1
H
1
i
h

vy =l e ol e e

ABSTRACT
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ABSTRACT

High Reynolds number, incompressible flow has posed many

problems, some seemingly insurmountable, to researchers investi-

gating this phenomenon. It will be the purpose of this investigation

to consider what has been done in this f£ield, and use this as a

basis to attempt to overcome these problems and achieve a simulation

of incompressible high Reynoldis number f£low,

A choilce was made to use the stream function-vorticity form
of the Navier-Stokes equations. The coordinate system used was
a body fitted coordinate system with a "U" shaped cuter boundary.
A modified version of a numerical sclution computer program was
used to actually solve the Navier-Stokes equations around the body

used in the research.

The particular body used in the investigation was an NACA-

0018 airfoil. There was only moderate success, though, in this

R § =
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simulation of flow at a Reynolds number of 1,000,000 and body angle-

of-attack of zero.
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CHATTER I

INTRODUCTION

Since modern computers made the numerical solution of the
Navier~Stokes equations practical, the goal of researchers in the
incompressible flow regime has been to simulate flow at high Reynolds
numbers, The problems facing the researchers have proved to be
excessive computer storage requirements as well as tremendous amounts
of computer time needed. The computer storage requirement stems
from the need for having very ~lasely spaced coordinate lines in
the field over which the solution is made because of the high Reynolds
number flow. The necessity of using great quantities of computer
time 1s caused by the use of extremely small time steps in the solu-
tion to maintain stability. Presented here 1g an approach to over-
come at least part of these problems, and in doing so, achieve an

accurate simulation of high Reynoclds number flow about an airfoil.

There have already been computer programs written that solve
the Navier-Stokes equations about arbitrary bodies that work well at
lowv Reynolds numbexs, so one of these was used as a basis for this
work, Also, a '"U" shaped coordinate svstem has been developed For
use at high Reynolds numbers which was used. The difficulties faced
in the research were the conversion of the computer program that solved
the Navier-Stokes equations to a form compatible with the "U" shaped
coordinate system, the experimental evaluation of the various accel-
eration parameters, and the determination of the body vorticilty such

that the body velocity would be zero., The work herein was done in



the stream function-vorticity form of the Navier-Stokes equations.

A very thorough discussion of the actual computational aspects
and the computer code is contained in Reference [1]; this work by
Thames has proved to be the backbone of this research. Also of
possible interest to the reader is work by R. N. Reddy. This work
by Reddy is also in the high Reynolds number range, but was done in
the integro-differential form.[2] Work has also been done on sub-
merged hydrofoils by S. P. Shanks. Shanks's research produced a
computer code to simulate the flow around a submerged hydrofoil,

both with and without bottom effects.[3]



CHAPTER II

ANALYTIC DEVELOPMENT

Due to the nature of this research, it might be advantageous to
take a brief look at the derivation of the stream function-vorticity
form of the Navier- Stokes equations and the transformation of these
equations into the Y,0 form for use in the transformed plane. A
limited discussion of the related boundary conditions might also

prove helpful,

In cartesian coordinates, the Naviar-Stckes equations for non-

steady, incompressible flow are:

u +v =0, [ 1.1a ]
x y
up Fuuy t vy o= "%Px + yv2u, [ 1.1b ]
= -1 2 1l.1c
Ve + u v, + v vy Epy + yvev, [ ]

where u and v are the velocity components in the x and y directions,
respectively, where the subscripts represent partial differentiation
with respect to the variable used, and where p is the pressure. These
equations are transformed to the stream function-vorticity form by
first defining:
u = ¢y’ vVE s, m =V - ug3 [ 1.2a,b,c ]
then taking the curl of the Navier-Stokes equations, we have
o F Yy 0y T Py wy ® vIuws [ 1.3a ]
V24 = - w, [ 1.3b ]
With this information, the next step will be to consider the

transformation of the stream Function-vorticity equations from the



form used in the physieal plane to that used on the rectangular trans-—
formed plane. The equations are transformed using the following

operators:

fx E( yn fE - yg frI Y/ J [2.4a]

£
¥

And upon utilizing these operators the following equations result:

1

(xg £ =%, E) /3 [ 2.4b ]

o, *+ ¥y wg T Vg o ) /=

- 2
(a Wep =2 Bwg, +y U +o0w +T 0 ) / J° Ro, [ 2.5a ]
- = - J2 [ 2.5b ]
o wEE 2B w&n + v wnn + a wn + T wg Je ow,
where the functions w and ¢ are doubly differentiable. The derivation
of these expressions appears in Appendix A of Reference [1]. The

coordinate system parameters o, B, Y, @, T, and J are:
GEX%+Y%3
J = Xg Yy = % Yo
B = xXg Xp+ e ¥

~ o ? . 2
Y2 T

o]
|

Blyg Caxge =28 x  +yx, ) -

XE(GYEE_zsyEn+YYnn)] /J

+ -
en " Y nn )

¥ { o Xpp = 2B X + ¥ xnn) 1/ 7

28y

-
ut

[x) Co v

Note that the Equations [2.5a,b] have been non-dimensionalized
with respect to the free-stream velocity and the airfoil chord. The

Reynold's number, Ro’ is also based on these quantities.



In the case under consideration, where the coordinate system
remains fixed in time, the coordinate system parameters must only be
calculated once since they remain constant throughout the solution.
Also, 1if the coordinate system has no contraction of the coordinate
lines about the body, the coordinate system parameters ¢ and T
disappear.

The boundary conditlons for the equations in the rectangular

transformed plane are expressed in the following relacions:

Yix,y,8) = ¢ _(x,¥,£) , X, 7y £ T3 [2.7a]
w(x,Y’t) = mm(x:y,t) s X3¥ € I‘Z [2-7b]

P(x,y,t) = Pg = constant, y,y € I [2.7c]
——%3‘1,—1-) (x,v,t) = 0, [x,y] € T [2.7d]
an

where T'; and I's are the body and the outer boundary line segments,
respectively. Equation [2.7d] specifies conditions that, if met,
guarantee the tangential veloecity on the body surface to be zero.
Since the normal component vanishes in the same manner, it can be
assumed that the no-slip boundary conditions are met by satisfying
this equation,

For a much more indepth discussion on the material presented here
the reader is to refer to Reference [1]. Here Thames covers the various
aspects required in setting up the boundary conditions, as well as, the

transformations used in manipulating the equations.



CHAPTER IIIL

THE COORDINATE SYSTEM

The coordinate system used in this work is a body fitted
coordinate system, that is, one that fits one coordinate line through
every point specified on the body being considered, This type of
coordinate line will be called an n-line. Another n-line is then
fitted to the outer boundary and the remaining lines spaced throughout
the field. A second type of lines is then used to subdivide the
n-lines, referred to here as £-lines. Although the coordinate sys-
tem created by this method is not necessarilly orthogonal, there are
no severe problems caused. On the contrary, the fact that the
coordinate lines follow the body contour, thus eliminating any
extrapolation, produces a profound advantage in the accuracy provided
in the boundary layer. References [1], [4], [5], and [6] cover this

toplc in greater detail.

Figure [1] shows such a coordinate system, in this case an
airfoil in an elliptical outer boundary. Alsc, Figure [2] shows the
ractangular transformed plane. This transformed plane is creatad by
"opening up" the body fitted coordinate system from the cut, The

line segment Fl in the body fitted coordinate system is analogous to
*
Pl in the transformed plane. the same correspondence also carries for

& F3

#

P2 and P2, as well as for I'q and F3 and PA and FA. Note that Ty and

T, are colinear, therefore each point on Pg is equal to the corres-
*

ponding point on Ty

By starting with some initial guess, Figure [3], the body



fitted coordinate system is generated by solving two elliptic partial
differential equations that have Dirichlet boundary conditions.

These equations are:

fax T oy =P (& 1), {3.1a]
Mex Ty =2 CE 0D, [3.1b]

with one coordinate being set constant on the body and outer boundary
and the other varying monotonically around the body. Since the indtial .
guess specifies the values of x and y for each £,n point, the
dependent and independent variables in the equations must be inter-
changed. Upon doing this, they take on the form of:

ax_ —-28x ; +yx =-32 x P (&, N0+ X 0 (&,n)[3.22]

EE E nn E

-28 en +tyy =-7 Ve P (g, n)+ v, Q ( £,n ) [3.2b]

ay
mm

EE

This quasi-linear elliptic set of partial differential equations
is much more complex than the linear equations [ 3.1], but the
boundary conditions are specified at the body and outer boundary which
are straight lines in the rectangular transformed plane. Also, the
grid spacing in the transformed plane is unity. The inhomogeneous
terms in equations [3.2], P{(&,n) and @ (&,n), are used in the
contraction of the n-lines to the body, to a given line, or even to
some specified point. These terms ave derived from the sums of

decaylng exponentials, TFurther discussion of thils topic is con-

tained in Reference [6].

These equations are then solved over the rectanpular transformed

plane using central space differences and successive overrelaxation



iteration.

With this as a hasis, the coordinate system used in this research
wi.l be considered. Instead of enclosing the body, in this case an
airfoll, in an elliptical outer boundary, it is enclosed in a "U"
shaped outer boundary, Figure [4 ]. The reasons for doing this are
the high contraction requirements and the necessity for good grid
resolution in the wake. For high Reynolds number flow, the coordinate
lines must be contracted veryclosely to the body to get enough lines
in the boundary layer to manitain stability in the solution. This
creates problems, though, in that the lines that are contracted close
to the body, in the system with an elliptical outer boundary,
must bend around the sharp trailing edge. This bend brings the lines
so close together that the separation becomes the order of magnitude
of the roundoff error. But with the "U" shaped coordinate system, the
n-lines "flow'" off of the trailing edge completely eliminating this
problém, Figure [6] . Also, the system with an elliptical outer
boundary does not have sufficient lines in the wake area downstream
of the body, and the lines spresd out even more further downstream.
The "U" shaped coordinate system also alleviates this problem
because of the flow of the lines from the trailing edge. Note,
also, that the lines have verv little spread downstream of the body.
This gives excellent resolution in the wake. This type of system is
created in the same manner as tlhe tvpe with the elliptical outer
boundary. The major difference is rhe way the rectangular trans-

formed plane is set up, with the body and the reentrant segments
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on the £=1 line and the infinity boundary occupying the other three
sides. Referring to Figure [4] and Figure [5], some idea of the
nature of the correspondence of the physical plane to the transformed

plane may be gained. Again, T. in the physical plane 1s the same as

1

the P; line segment in the transformed plane and P2 corresponds to
P;, r, to Pg, and so on. Since the coordinate lines Fg and PZ in the

transformed plane represent the "cut" in the physical plane, they
require special treatment when calculating the derivative across the
Yeut," Consider a peint on F; that has coordinates (N,1), where

1 < N < LBYl, and where LBYl is the left hand coordinate of the body.
It's corresponding point on Pg then has the coordinates [IMAX - (N-1),
1], where IMAX is the number of £-lines in the field. Using this, the

derivative of ¥ with respect to n becones:

Yo = Pu,2 T Yomax-v-1),2
In the same manner the partial derivative of w with respect to £ and n
becomes:

“en T UNt1,2 T YIMAx-(N-2),2 T “mMAx-N,2 T “N-1,2

instead of the form used in the field calculations which is:

en T P14, 341 T Y1, g-1 Y-, -1 T %i-1, §H
This holds true for all derivatives taken across the cut.
The coordinate system was generated using the TOMCAT code in
Reference [6]. The code permits the attraction of the lines to decay
aft of the trailing edge thus permitting them to expand slightly, this

feature was also used in researh. The outer boundary was set up 5
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chord lengths from the body except for the downstream dimension which
was 10. The coordinate system has 10 coordinate lines contracted into

the boundary layer, this attraction is explaiued in the appendix,

Figure [6].
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CHAPTER IV
THE NUMERICAL SOLUTION PROGRAM

Perhaps the next step would be an explanation of the computer
code uged in this research to selve the Navier-Stokes equations over
the rectangular transformed plane. This code was written by F. C,
Thames, [1l] and was chosen for the work because it uses the stream

functiopn-vorticity form of the Navier-Stokes equations.

The space derivatives of this solution are approximated using
central differences and the vorticity time derivatives using a first-
order backward time difference. This implicilt numerical method with
SOR iteration s used to converge the space derivative variations in
the flow solution, Then, with the field converged, the vorticity on
the body is approximated with modified false position iteration. This
method of iterating the body vorticity is designed to force the body

(LI051E7108]

tangential velocity to zero.

The numerical procedures used in accomplishing the solution and
the finite difference Eorm of the Navier-~Stokes equations are now
given attention. The f£inite dif[crenca.grid, that is the rectangular
transformed plane, is pictured in Figure [7] for clarity. The grid
pictured is one used in the "U" shuaped coordinate system. The dark-
circles represent the body, on the J=1 line, and the outer boundary
on the I=l, I=IMAX, and J=IMAX lines. The points represented by the

open circles are the re-entrant boundary segments and as pointed out

earlier represent the same set of points in the physical plane. 1In



other words the point immediately down stream of the trailing edge
in the physical plane 1is represented by the points I and IT in the
transformed plane, Figure [7]. Since the velocity at the outer boun-
dary is the free stream veloclty and the vorticity is zero and since
the body velocity is zero, the boundary conditions are specified at

all points denoted by a darkened circle in Figure [7].

The procedure used in solving the difference equations over the
rectangular transformed coordinate system is central differencing
for the spacial derivatives and backwards differencing for the time
derdvative of the vorticity. The difference equation for the vorti-
elty, after substituting the central difference and backwards dif-

ference approximatioms, is:

n n
. = o , J/
(wi,J uy j)/At [(tPE)i j( n)i,J (w ) (wE 1,3]/ 1,4
n
+ bl j( t1,5 ™ B j( RIS (RIC Y
- : J? )2 4.1
’.(wn)l’J (wg)i J]/Ro( ) [ 1
where the primed quantities represent difference expressions document
in Appendix D of Reference [1]. Then solving for mz j yields:
1
n — - -
uy 4 = [(01)1’3 (Cq) ( n)i,j (Cg)y ]mi+1,3

F LD, * (c;)i,j(w;)i,j - (€8 4M0f g

b - - n P n
+ [({13)1’j + (c:q)i’j(w&.)i’j + (05)1,j1“1,3+1
o - - » n

n

- - n - ”

12

ed
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where:
(Ci)i,j E: 4Ata /A
(cg)ij = -2Atsi’j/é£\
(c3) 3 = 4ACY£,1/A
(cg)i’j z AthJ /A
(cg)i,j = 4iro] /A
(cg)i’j Z 4AbTS ,j/!.\

and

= Ro(J7 j) + BAt(ai PR j)

The stream function equation is derived in the same manner and ig:

2UCD)y 5+ (€3 J105 5 = LD 4 + (CB)y 3105y,

+ [(ci)i! (Cs) ] [(Cé)i,j + (Cg)i,j]w:,jﬂ

Vi |
+ ey 4 - ccg)i,jw‘;j_l + 8e{l - 2[(Gf); 4 + (G, ;1luyf i/Rg
- PR |
+Lead, I [ 4.3 1]

The vorticity and stream function equations are then solved
simultaneously over the computational grid by S0R iteration at each
time step. Also it is necessary to calculate the vortiecity iterate

first in each sweep of the field if the two aquaticns avre coupled.

As Thames points out, there are two observations that should be
made about these difference equations. The first being the large
quantities of computer storage needed for the implimentation of the
solution. The reason being the nine field size arrays used to store

the six coefficient arrays, the ¢ array, and the.mn and mn_l arrays.
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Secondly, the fact that the velocity tangent to the body is explicitly

enforced at zero alleviates instabilities in the solution.

The changes made in this computer cbde were centered around the
change from a coordinate system with the elliptical outer boundary to
one that has the "U" shaped outer boundary. Recall from Chapter III
that the re—entrant segments were moved from the I=l and I=IMAX lines
in the transformed plane of the elliptical coordinate system to eilther
side of the body on the J=1 line of the transformed plane of the "U"
shaped coordinate system. Also the infinity boundary was moved to
where it occupied the three remaining sides of the field of the "U"
shaped coordinate system. Since no calculations are made on the
infinity boundary, the original code swept the field from I=1 to
I=IMAX and then frem J=2 to J=JMAX-1l, That is every point is swept
except the body and the infinity boundary at J=JMAX. But on the "U"
shaped system, with the infinity boundary on the I=1, I=IMAX, and the
J=JMAX lipnes, the field must be swept from I=2 to I=IMAX-1 and J=2
to J=JMAX-1, or in ohter words, all the interior points of the field.
Then the points on the re-entrant boundary segments had to be calcu-
lated. This was done by sweeping from I=2 to the point immediately
down stream of the body. Note that the J=-1 points shown in Figure
[8] correspond to the J=2 points of the other re-entrant segment.
And, finally, the program was changed to sweep only the body points

on the I=1 lines and not the entire line.
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The body vorticity was calculated using Isreali's methed for

the first two changes in body vorticity. The algorithm is:

LK) ()

3y, (k)
i,1 1,1 GGEE)

i,1
But the method is slow and is therefore used only to make the first
couple of changes in body vorticity. The subsequent iteration in body

vorticity is done with the false position methed:

NOBNCEY

SR ) 1,0 = %,1 o ®

i,1 i,1 : 3 ](k) . 5 ](k—l) an(nl)
— Y T
o 1,1 o8 1,1

Because the boundary condition is imposed on ¥ and Eﬂ; the vorticity,

&, is calculated such that the body veloeity is zero,

R. L. Walker

also used this method in an investigation of flow over a semi-infinite

flat plate, Reference [8].



CHAPTER V

RESULTS

The test case considered in this research was the flow about an
NACA-0018 airfoil at a Reynolds number of 1,000,000. Detail of the
coordinate system near the airfoil is shown in Figure [9]. The entire
field is shown in Fipure [6]. This case was run using a2 one-hundred
step gradual start. The velocity was gradually increased by an in-
crement of .0l from zero to free-stream velocity while holding the
Reynolds numper f£ixed at 1,000,000. The field vorticity acceleration
parameter was 1.8, and the vorcicity convergence tolerance, the stream
function convergence tolerance, and the maximum body velocity were

set at 0.0001, 0.00001, and 0.0001, respectively.

There were some difficulties encountered in starting the solution.
The primary difficulty was finding an accurate approximation for the
trailing edge vorticity. The cause of the problem appeared to be a
loss of symmetry of the vorticity between the top and the bottom of the
airfoil, probably due to the extreme gradients encountered in the
start. The number of itervations required to converge the field was so
large that the body velocity was converged to a value of ,005 rather
than .000l during the start. Even with this change, it became recessary
to ignore the value of velocity at the trailing edge points and the two
points adjacent to the trailing edge. The vorticity at the trailing
edge, then had to be set at zero rather than calculated because the

velocity was not converged at the points used for extropolating the
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vorticity. This is valid for a symmetric flow. Finally, just before
the solution reached free-stream velocity, the assymmetry caused the
solution to diverpge. To correct this, the points above and below the
airfoll were averaged to make the field symmetrical.

Once the solution reached free-stream velocity, the assymmetry
was still present as shown in Figure [10] which pictures the stream-
lines arcund the airfoil at time step 110. Since this assymmetric
vorticity distribution caused the solution to diverge, it had to be
somehow eliminated, Refer to Figure [11] and Figure {12] which show
the velocity distribution around the ailrfoil. MNote that the wvelocity
leaving the upper surface is greater than that leaving the lower sur-
face, even at time step 20. This could be caused by one 2f two things,
first, the relative field vorticity iteration error was only converged
te a value of .001, rather than to .0001, before the first change in
body vorticity was made, thus leading to error before the solution is
even started. Secondly, the field and body numerical iteration scheme
sweeps from the trailing edge around the under side of the airfoil then
over the top of the airfoil and back to the trailing edge. It is
possible that this method of "sweeping" the field is perhaps biasing
the velocity around the body, as a result of the large gradients at the
start, leading to a higher velocity on the top of the airfoil. Figure
[13] shows the pressure distribution on the airfoill at four times. Due
to the above-mentioned numerical error, the assymmetric pressure dis-
tribution becomes worse as time progresses. The pressure coefficient
after the acceleration has stopped does, however, resemble the expected

profile for this airfoil., The drag 1is about twice the experimental

S
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value, but was still decreasing at the end of the run. The high drag
and the linear tendency in the pressure distribution during the start
are, of course, due to the acceleration.

Twa proposed changes to correct these problems are: (1) Converge
the field vorticity iteration error more completely before attempting
a change in body vorticity. (2) Sweep the field from the center to the
outside edges, f.e., leading edge to trailing edge rather than from

left to right, and start from a2 potential flow.

v e



P Y T

er 1 il B L

e TR LT et

!

19

APPENDIX

AUTOMATIC CONCENTRATION OF COORDINATE LINES INTO A BOUNDARY LAYER*

In this appendix, the procedure by which a specified number of
coordinate lines can be automatically concentrated into a boundary layer
of specified thickness is discussed. Consider the coordinate system
generation equations (3.2) applied to the one-dimensional case of
straight boundaries parallel to the x-axis, With n = constant on these
boundaries, and the £-lines being normal te the boundaries, we have
Y =%Y_.. =Y. =0 and the x-equation is identically zero so that the

E EE En

coordinate equations reduce to

+ J2Qy_ = A-1
Y+ I 0 (A-1)
or

¥ 2

_m oI 520 (A.2)

Yn Y

This can be made a perfert differential by choosing the form of the

control function ¢ to be

y £"(n)
FLEREY “

Q(n)

where the minus sign has been introduced merely for convenience. Then

{(A.2) becomes

- =0 (A.4)

[

!

™

L1
%T -

*Personal communication from Dr. Thompson

S T L
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which can be integrated to yield

y(n) = clf(n) +c (A.5)

2
The constants of integration may be evaluated from the boundary condi-

tion: y(l) = ¥y y{J) = y; so that

y) =y, + vy G ER, (4.6)
This equation should be solved for f£{n} to yield
y(n) -y
E(n) - £Q1) _ 1 (A.7)

which, wich arbitrary definirion of £{1) and £(J) will yield the
required £(n), and hence the required Q(n) via substitution in (A.3),
to produce a desired distribution y{(n). The evaluation of Q{n) may be
done without actual evaluation of f£(n), however, by solving (A.4) for

y"/y? and substituting into (A.3) to produce

Q) = - EYZ{FT (A.8)

Now a number of smooth functions for y(n), such as exponentials,
logarithmic Functions, hyperbolic function, etc.,, may be found which
will concentrate lines near ¥q with a spread out to Yo- However, since
the boundary layer thickness abt high Reyneolds number is only a very
small fraction of the distance to outer boundary of the computational
field, such smooth funccions cannot allow the lines to spread rapidly
enough outside of the boundary layer. The result is that nearly all
of the lines in the Ffield will be within a few boundary layer thick-

nesses of the body, with a great gap near the outer boundary.
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Therefore, a composite function was used for y{n), formed by
joining a logarithmiec function to a quartic polynomial near the edge of
the boundary layer. This function was constructed as follows: assume
that it 1s"desired to space the lines in the boundary layer such that
the change in velocity from each at the next is the same. Let the
velocity profile in the boundary layer be approximated by the expo-

nential

u{y)y =1 - e & (A.9)
Let the edge of the boundary layer be defined by

u=0.99 at y = §
Then the decay factor ¢ will be given by

¢ = - -61- 1n (0.01) (A.10)

Now solve (A.9) for y(u):

y{u) = —'%-ln (1-u) (A.11)

In order to achieve the same veloeity change from each line to the

next, take u = 0.99 (;Pia) where Ns is the line at the edge of the
§
boundary layer. Substitution is (A.1ll)} then yilelds

n-1
Rl LEn < (4.12)

y() = -2 in [1-0.99 ¢

Let this logarithmic function be joined to a quartic polynomial
at some line inside or at the outer edge of the boundary layer. Thus
with the function at n=N, the polynomial is of the form

y(m = y' M) [n-N] + 5 y" () [n-N]2

+ % y'(N) [r-N13 + a(n-M)"* + y(N)

Ns<nsJd (A.13)
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Here y'(N) is functional notation, etc. The derilvatives are determined
by differentiation of (A.1l2) with evaluation at n=N. The remaining
coefficient "a" is used to satisfy the boundary condition at the outer

boundary y(J) = Yz Thusg

y; = y@ - y' () [J-N] - %-y"(N) [J-N]2 - %-y"(N) [J-N]3
a = (A.18)
(J-N)*

Note that the junction to the polynomial need not occur at the edge of
the boundary layer, but anywhere inside it. It was found advantageous
to place the junction two or three lines inside the boundary layer.
Thus if the boundary layer thickness, §, and the number of lines
therein, Ngs are specified, along with the distance to the outer
boundary, Yys and the total number of lines J, and the function line N,

the control function Q{n) can be evaluated from

0.99
o1
o) = - % 8 n=1,2,-, N < n (4.15)
1 - 0.99 (9—%Q
Q) = Y y"' (1) + y"(8) [n-N] + 12a[n-N]?
2yt () + 3" [n=N] + 3 y" () [n-NI2 + ba[n-N]3
n=N, N+1, —, J (A.16)
with the required derivatives given by
Le=1)t (ﬁ.g_sl)
vy @y = B W=l g a1,2,3 (A.17)
-1

[1L ~0.99 ( )]
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and y(N) by

.1 - -1
y() = ~ = In[l ~ 0.99 (”5'1)] (A.18)

Although this analysis is developed for the one-dimensional case of a
flat boundary, much the same results will be achieved by its use with
curved boundaries since curvature tends to affect both the boundary
layer thickness and the line control in the same way. Thus convex
curvature thins the boundary layer but also causes the lines to
concentrate to a greater degree near the boundary.

In the present work, the boundary layer thickness was taken as
§d = \T%fwhere R is the chord Reynolds number, and 10 lines were placed
therein (n5 = 10) with the junction to the polynomial at line 7 (N = 7).
There were 31 lines in the field, and the outer boundary was at 5
(J = 31, Y= 5).

Additional coordinate system control, in the form of £-line
attraction was used to pool the E£-lines in the wake nearer the trailing
edge. This attraction was of the exponential type used in Thames [1]
and in the original TOMCAT code [G6], except that in order to be

compatible with the boundary layer attraction function, the attraction

was calculated for

Q(m = - J{. S(n) (4.19)

where S(n) corresponds to the Q(n} of [1] and [6]. The attraction was
point attraction to the trailing edge, with amplitude of 0.7 on the

bottom of the trailing edge and -0.7 on the top. The decay factor was
0.1 and the feature of attraction to the convex side and repulsion to

the concave provided for in the TOMCAT code was activated.



24

- .; % '.. .

Y <
:K( —“,‘.

$ 8 PP

Xk

NN

Coordinate System - Elliptical Outer Boundary

Figure 1.



n .
I,
n=n»
o I
- . 4 4
1
11 1
: + q
. J r*
r Region D* | 3
.
ol
1
|
n=n re
1 1"1

Transformed Plane
(Natural Coordinates)

Figure 2. Transformed Plane - Elliptical Outer Boundary



1111

Figure 3.

Initial Guess for Coordinate Generation
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Figure 7.

Computational Grid
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Figure 11.

Velocity Profiles Near Leading Edge



Figure 12.

Velocity Profiles Near Trailing Edge
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