NASA Technical Memorandum 74026

(NASA-TM-74.26) FORCE TESIING MANUAL FCR
 THE LANGLEY 2C-INCH MACH 6 TUNNEL (NASA) 100 FHCA A $05 \mathrm{MF} \mathrm{AO1}$ CSCL 14E

N77-28145

Unclas
G3/09 40766

FORCE TESTING Mìhîinual FOR THE LANGLEY

20-INCH MACH 6 TUMNEL

J. WAYNE KEYES

CONTENTS

Page
INIRODUCTION 1
SECTION I - PRE-TEST AND TEST 2-23
Pre-Test 3-17
Model design and construction 3
Safety requirements for force testing 4
Starting loads tests 4
Prior to model installation 4
After model installation 6
Tables and figures 8-17
Test procedure 18-23
Beckman data recording system 18
Reference pressure run 18
Attitude - tare run 19
Data run 20
Base pressure data run 23
SECTION II - DATA REDUCTION 24-79
G0590-20-Inch tunnel force program 25-51
Input description 25-20
Computations 31-41
Output description 41-43
Data reduction turn-around time 44
Data reduction input sheets 45-51
oree data accuracy calculations program 52-60
Computetions 52-56
Input description 56-58
Output description 58-59
Input skeet 60
G0310 - Beta derivatives program $61-64$
Input description 61
Output cescription 61
Set-up sheet - sheet 1 63
Card input - sheet 2 64
G0613 - Beta derivative plotting program 65-70
Set-up sheet - sheet I 66
Card input (iuns to be plotted) - sheet 2 67
Card input (options) - sheet 3 68
Card input (plot layout) - sheet 4 69
Card input (symbols) - sheet 5 70
G0610 and G0619 - General force data plotting programs 71-79
Set-up sheet - sheet 1 72
Card input (runs to be plotted) - sheets 2, 3, 4, 5 73-75
Card input (options) - sheet 6 77
Card input (plot layout) - sheet 7 78
Card input (symbols) - sheet 8 79
APPENDIX 80-97
References 83
Tables and figures 34-97

Introduction

This manual describes the data r.duction and procedures for conducting force tests in the Langley 20-inch M.ch 6 tunnel. The pre-test and testing phases are discussed in Section I and the data reduction is discussed in Section II. An appendix by James C. Fmery, formerly of the Langley Research Center, which presents a description, operating characteristics, and Mach number calibration of the tunnel is also included (reporduced from NASA TN D-6280, 1971). The tunnel characteristics described in this appendix have been updated.

Section I outlines items that should be checked during model design and construction. Safety requirements and starting loads tests as well as instructions for data acquisition and model installation are discussed and outlined. Measurement of balance and model misalignment angles and instructions for calibrating the angle-of-attack screen are covered. Procedures for making reference pressure, attitude-tare, and data runs are included.

Section II discusses the 20 -inch tunnel force program along with a description of the Beckman data recording system input and load constant sheets. Programs for calculating balance accuracy, beta derivatives, and data plotting are described. Input sheets for these programs are also presented. The definitions of terms used in this manual are found on pages 25 thru 30.

SECTION I - PRE-TEST AND TEST

I. PRE-TEST
A. MODEL DESIGN AND CONSTRUCTION

Steps to be taken in the design of force models.

1. Method of model construction
(a) Machined.
(b) Cast.
(c) Fabricated.
(d) Consult with shop concerning construction of model; easiest or fastest method of construction.
2. Availability of balance (see current listing of active force balances)
(a) Primary balance and cooling shield or cooling adapter (Table 1).
(b) Current balance calibration.
(c) Alternate or backup balances.
(d) Availability of dumny balance (Table 2).
3. Sketch of model in tunnel (Figs. $A 1$ and $A 2$ of Appendix)
(a) Show model position relative to center of window and center of rotation of support system.
(b) Determine position of the angle-of-attack prism on model (locate $1 / 2^{\prime \prime}$ to $1^{\prime \prime}$ downstream of cenber-of-window). Prism always faces right side of tunnel looking upstream. Note: Prism can be rotated $\pm 42^{\circ}$ about longitudinal axis and still reflect light in plane of light source.
(c) Determine strut to be used and length and size of sting holder and sting needed (Tables 3 and 4). Sting sized for stress and base pressure interference criteria. Note: In order to avoid sting effects on the base pressure the ratio of sting diameter to model base diameter must not exceed. 5 and any increase in the sting diameter must not occur within 5-8 sting diameters downstream of the model base.
(d) Check for fouling of sting holder, sting, or cooling coil with base of model.
(e) Check for interference of Mach number probe and its shock ($\approx 11^{\circ}$) with model (Fig. A4 of Appendix).
4. Model drawings
(a) Check for correct dimensions.
(b) State on drawing that balance and dowel holes to fit and match actual balance with cooling shield in place.
(c) State on drawing that balance sleeves to be fitted on balance then fitted to model.
(d) Provision for prism and location on correct side.
(e) Specify that all dimensions and angles be checked and cor.rect values noted on drawing, also misalignment of balance hole and dowel holes with respect to horizontal and vertical plane of model are to be noted.
(f) Provision for flat reference surface for setting angles of attack either on model or su an attachment.
5. Stress check
(a) Calculate stress in model parts if necessary.
(b) Calculate stress in sting, sting holder, and cooling adapters. All stings made specifically for a test must meet safety standard for heat treatment.
(c) Supply necessary calculations as stated below in "Safety Requirements for Force Testing".
Note: The yield strengths of the materials must be based on the actual fabrication conditions and heat treatment.

B. SAFETY REQUIREMENTS FOR FORCE TESTING

All models, with their associated support systems and bolts, to be tested in this facility must be capable of withstanding stresses calculated for the following condition; tunnel unstarted (assuming normal shock) on one side of model and started on opposite side. If this condition cannot be satisfied, it may be possible to test provided stress calculation will allow for 3-1/2. times the normal force at 30° angle of attack.

Before model is tested in the tunnel, a copy of the stress calculations (signed by one who assumes responsibility for their reliability) must be given to the tunnel coordinator.

Any deviation from this procedure must be approved by the Branch Head or tunnel coordinator.

C. STARTING LOADS TEST

Prior to running any force test in the tunnel, the following procedure must be followed. Any deviation from this procedure can be made only with the prior consent of the Branch Head or tunnel coordinator.

1. All force tests will be run by injecting the model if possible. Also, tests should be run to the vacuum sphere instead of using the air ejector.
2. Model must first be mounted on dummy balance in same lucation and with same sting size as will be used for tests to determine optimum second minimum setting and lowest ejector pressure (if used) in that order, for each stagnation pressure to be run in test program. Tunnel will be unstarted with model in α and β attitude. For safety reasons, a dummy model is desirable but not necessary.
3. Starting loads must be determined with a balance having at least a 50 percant higher allowable load on each component than the balance to be used for tests. Model will be injected in the same attitudes at which tests will be made. Approximately three visicorder traces showing safe starting and unstarting loads should be obtained before installing proper balance to conduct test.

PRIOR TO MODEL INSTALLATION

1. Instructions for data reduction (see SECTION II - DATA REDUCTION, pages 25-30 and 45-51).
(a) Notify data reduction personnel at least one week before start of test and supply proper Beckman recording channel set-up sheets (pp 46-48).
(b) Balacce sensitivity constants, pressure transaucer sensitivity constants, model dimensions and angles, etc. must be supplied before test begins. Input sheets on pp 49-51.
2. Instructions for model installation
(a) Fill in Job Sheet (Figure 1) - one copy to tunnel coordinator and one copy to tunnel technician.
(b) Supply tunnel technician with drawings, sketches and a copy of Beckman set-up sheets. Sketches will show base pressure tube location and number of each tube, balance cooling water tubes, balance component and thermocouple lead hook-up, angle-of-attack and angle-of-sideslip ranges, etc.
3. Model
(a) Check all model parts for fit and correct dimensions.
(b) Check prism and prism location.
(c) Check flat reference surface for setting angle of attack.
4. Sting
(a) Check fit of sting holder in support, sting in holder, and balance in sting (also check fit of balance cooling adapter between sting and balance if used).
5. Balance
(a) Check length of both balance and thermocouple leads.
(b) Check balance components and record zeros.
(c) Check balance thermocouples.
(d) Check cooling shield and tubes for leaks and proper water flow.
6. Cooling water system
(a) Check water filters
(b) Check water flow
7. Schlieren system
(a) Check schlieren components (mirrors, power supply, camera, controls, knife edge, and light source).
(b) Install "eyeplece" system for more detail photographs if needed.
8. TV system
(a) Check operation of camera, monitor, and controls.
(b) Check for proper camera lens.
9. Mach number probe
(a) Check operation.

AFTER MODEL INSTALLATION

1. Balance
(a) Check all components.
(b) Check thermocouples.
(c) Check water flow through cooling shield.
(d) Check base pressure tubes for correct location and clearance to avoid fouling with model base. Make sure tubes are seaured to sting and support to prevent fore and aft movement when sweeping thru angle of attack.
(e) Span check balance leads.
(f) Calibrate visicorder and Sanborn recorder for maximum loads (Figures 2 and 3).
2. Instrumentation hookup
(a) Check hook-up of Beckman systam to test instrumentation ibalance, pressure transducers, Baratrons, thermocouples, and thermocouple reference junction) thru patch board using the digital voltmenter.
3. Balance and model misalignment (see "Note" below, fig. 4, and pages 25-30 in Section II - DATA REDUCTION for definition and sign convention of angles).
(a) With fixture on balance and ALPHA BAL $=0^{\circ}$ measure roll angle of balance relative to vercical plane of tunnel (DELTA PHI BAL) using standard sign convention (positive clockwise looking upstream with top senter $=0^{\circ}$). Normally DELTA PHI BAL can be set $=0^{\circ}$ by adjusting the sting holder. DELTA PHI BAL is a data reduction input.
(b) Leave balance at ALPHA BAL $=0$, remove fixture, put on model and measure angle of attack of model (ALPHA MOD) and roll of model (DELTA PHI MOD) relative to vertical plane of the tunnel using the same sign convention as above. DELTA PHI MOD is a data reduction input.
(c) Then determine the angle (ALPHA 7 ERO) between the balance centerline and the model centerine relative to the balance. ALPHA ZFRO $=$ ALPHA MOD - ALPHA BAL. ALPHA ZERO is a data reduction input.
(d) Alternate method of determining ALPMA ZERO for heavy models relative to balance stiffness is as follows:
1) Set balance and fixture at ALPHA BAL $=0^{\circ}$.
2) Hang weight equal to weight of model on fixture at a distance X from the balance pitch center (X - distance form balance pitch center to model cg).
3) Measure angle of fixture (α_{2}).
4) Remove fixture and place model on balance, measure angle of attack $\left(\alpha_{3}\right)$.
5) Then ALPHA ZERO $=\alpha_{3}-\alpha_{2}$.
(e) Determine the angle DELTA BASE between model vertical axis and base. DELTA BASE is a data reduction input.
4. Callbration of the angle-of-attack sereen (see 'Note' below)
(a) Set model at ALPHA MOD $=$ ALPHA ZERO, mark screen, and label the mark ALPHA BAL $=0^{\circ}$.
(b) Set the model at the prescribed angles of attack for the test, mark the screen, and determine the value of ALPHA BAL to label each mark. Include a mark for ALPHA MOD $=0^{3}$. For example, if the model is set at ALPHA MOD $=4^{\circ}$ and ALPHA ZERO is calculated to be -1°, then the screen would be marked for ALPHA MOD $=4^{\circ}$ and labeled ALPHA BAL $=5^{\circ}$.
(c) The same procedure for marking and labeling the screen would be used if the model is set at an angle-of-sideslip BETA.
5. Align schlieren system
6. Nlign TV camera for viewing angle-of-attack screen

NOTE: ALPHA BAL is always positive when balance centerline is rotated upward relative to tunnel centerline regardless of model roll angle, balance roll ancle, or sideslip angle.
ALPHA 2ERO is always positive when model centerline is rotated upward relative to balance centerline regardless of model roll angle, balance roll angle, or sideslip angle. BETA is always positive when balance is rotated to left looking upstream regardless of balance roll angle or model roll angle.

Table 1. - Balance-To-Sting Adaptors and Nuts (all dimensions in inches)

Balance-To-Sting Adaptors

Taper max. dia.	Thread		L	Water	No. of each	
Bal.	Sting	Bal. (LH)			1	
.392	.500	None	$9 / 16-24$	1.594	Yes	1
.392	.500	None	$9 / 16-24$	1.594	No	1
.392	.687	$3 / 4-20$	$3 / 4-20$	2.00	No	1
.500	.500	None	$9 / 16-24$	2.094	Yes	3
.500	.500	None	$9 / 16-24$	2.094	No	1
$.50 n$.687	$1-20$	$3 / 4-20$	2.50	No	1
.500	.750	None	None	0.	No	2
.750	.937	None	None	0.	No	1

Nuts

O.D.,	Thread		
Max	(RH)	(IH)	No. of each
. 750	9/16-24	5/8-24	4
. 875	9/16-24	3/4-24	3
. 937	9/16-24	11/16-24	1
1.187	3/4-20	1-20	1
1.250	9/16-24	1-20	1
1.250	9/16-32	1-20	1
1.250	3/4-20	$1-20$	1
1.250	13/16-20	1 1/8-20	1

Table 2 - Dummy Balances
(All dimensions in inches)

Balance number	Outside diameter	Distance from balance L.E. to dowel	Taper max. diameter
2001	1.250	(1.975 \& 3.905) bottom	.6875
2007	1.250	. 600 top	.6875
2008	1.250	. 951 bottom	.6875
2009	.875	. 645 bottom	. 5000
2010	1.300	plug \& boit	. 6875
2011	1.250	. 750 top	.6875
2012	1.250	. 700 bottom	.6875
2014	.875	. 250 bottom	. 5000
2018, 19, 20, 21	. 750	. 530 bottom	. 3920
2022	. 8125	. 575 bottom	. 3920
2023	. 750	. 530 top	. 3920
2024	.8125	. 575 top	. 3920
2025	. 750	. 565 bottom	. 3920
2026	. 8125	. 680 top	- 3920
2027	. 8125	. 680 top	. 3920
2028	1.500	. 920 top	. 7500
2029, 32	1.250	. 800 toj)	.6875
2030, 31	1.000	. 800 top	. 5000
2033	1.000	. 800 toy	. 5000
2034	.875	. 870 bottom	. 5000
2035	. 750	. 530 top	- 3920
2036. 37	. 750	. 525 top	- 3920
2039	. 500	. 350 top	. 3125

Table 2 (Continued)

Beiance number	Outside diameter	Distance from balance L.s. to dowell	Taper max. diameter
733	.750	.680 top	.3920
826	1.000	1.050 bottom	.5000
827	1.000	$(.700 \& 1.450)$ top	.5000

Table 3.- Location and dimensions of sting support struts.
(All dimensions are in inches)

Solid strut and head assemblies

Head No.	\mathbf{x}	H	L	O.D.	I.D.	Tinread	Remarks
1	22.56	23.5	9.75	3.00	2.20		
2	20.19	23.5	11.00	3.00	1.25	2.75-12	Adj
3	21.13	23.44	9.50	2.50	1.50		
4	13.44	23.5	17.50	2.50	1.50	\{	1.5 1.D. 3 deep
5	22.75	22.63	9.69	1.75	. 93		
6			9.75	2.50	1.00		+
		piece	water	coole	stru	and head	
WC	21.56	24.87	12.31	3.0 C	1.25	2.75-12	Adj

Spacers

t
0.375
1.000
2.313
3.313
See 2
Note 2

WC -- Water cooled
Adj -- For adjustable sting holder

+ - 15° negative angle of attacik for limited use only
Notes: 1. Support struts may also be mounted on aft pad ($x+9.5$)

2. Support struts may also be mounted on inclined spacers $\left(-5^{\circ}\right.$ or $\left.-10^{\circ}\right)$

Table 4.- Stings and Sting holders (all dimensions in inches).

Sting					$\begin{aligned} & \text { Sting holder } \\ & \text { (barrel) } \end{aligned}$			Sting support strut head No.	Remarks
$\begin{gathered} \text { O.D., } \\ D_{s} \end{gathered}$	Length, $\mathrm{L}_{\text {s }}$		Taper max. dia.	$\begin{aligned} & \text { Thread } \\ & \text { (L.H.) } \end{aligned}$					
					No.	Length,L_{B}	$\begin{gathered} \overline{O . D .}, \\ D_{B} \end{gathered}$		
	Max.	Min.							
0.625	10.937	2.187	0.500	c.625-24	1	5.625	0.750	2, WC	Vee slot
. 625	12.625	3.750	. 393	. $500-20$	1	5.625	. 750	2, WC	Vee slot
. 625	16.375	4.875	. 500	.625-24	1	5.625	. 750	2, WC	Vee slot
. 750	9.375	0.500	. 5.00	. $750-24$	3	9.250	1.000	2, WC	Sq. slot
. 750	12.188	1.000	. 500	. $750-24$	3	9.250	1.000	2, WC	Vee slot
. 750	12.188	2.125	. 500	. $750-24$	3	9.250	1.000	2, WC	Sq. slot
. 750	21.188	9.875	. 500	. $750-24$	3	9.250	1.000	2, WC	Vee slot
. 938	14.313	3.000	. 500	. $625-24$	2	6.750	1.500	2, WC	Vee slot
. 938	14.313	3.375	. 688	1.062-20	2	6.750	1.500	2, WC	Vee s? ot
. 938	23.313	11.812	. 500	.750-24	2	6.750	1.500	2, WC	Vee slot
. 938	23.313	11.812	. 688	1.062-20	2	6.750	1.500	2, WC	Vee slot
1.062					4	8.212	1.500	2, WC	No keyway
1.000	22.000	3.000	. 500	.750-24	5	8.000	1.250	2, WC	Vee slot
1.000	22.000	3.000	. 688	1.000-20	5	8.000	1.250	2. WC	Vee slot
1.125	22.000	3.000	. 750	1.000-20	6	8.000	1.500	2, WC	Vee slot
0.625	7.375	2.875	. 500	0.625-24	1	5.625	0.750	6	10° bend
. 750	5.500	5.500	. 500	. $500-20$	3	9.250	1.000	6	$30^{\circ} \mathrm{dbl}$ bend
. 750	11.000	6.250	. 393	none	3	9.250	1.000	6	$25^{\circ} \mathrm{dbl}$ bend
. 750	11.625	5.250	. 393	none		9.250	1.000	6	$30^{\circ} \mathrm{dbl}$ bend

Test Project or ProgramDate
Project Engineer

\qquad Job OrderEstimated date of installation
\qquad Are drawings available?
Type or(4) Boundary layer survey?(2) Heat transfer?(3) Pressure distribution?
\qquad
(3) Pressure distribution?
\qquad————_
Type of mount: Sting? \qquad Injection? \qquad Stationary? \qquad Sidewall?
Other? \qquad
1 - Force test: Balance No.?
\square Sting cooling coil? \qquad Alpha calibration - (Degrees)? \qquad Beta calibration - (Degrees)? \qquad Number base pressure tubes? Other information? \qquad
2-Heat transfer: Type of thermo. wire I.C.? \square C.A.? \qquad Other? \qquad
No. thermocouples? \qquad Plugs to be installed? \qquad Removable instrumented sections (number)? \qquad Patch board hook-up furnished? \qquad
Phase change paint? \qquad Number of models? \qquad Grid models available?
Paint and thinner available for all temperatures? \qquad Other? \qquad
3 - Pressure dist.: No. of orifices? Tubes to be numbered?
Sequence of hook-up and range of gages furnished? \qquad
Patch board hook-up furnished? \qquad Extension required for tubes?
Other? \qquad
Schlieren pictures required? \qquad Shadowgraph?
Instrumentation equipment required not norm al to this facility. List:

Use back of sheet for adáitional information.
To: 1-Technical Support Supervisor
2-Technical Support Unit Facility Coordinator/Operator

MORE INFORMATION MEANS BETIER SERVICE

Figure 2.- Calibration of Visicorder

Balance No. \qquad Date \qquad

Balance component	NF	AF	PM	RM	MM	SF	
Design load, lb or in-1b							1
Bal. sens., lb/mV or in-1b/mV							2
Visicorder input, mV/V							3
Gage voltage, V							4
Visicorder input, mV							5
Visicorder deflection, in							6
Visicorder sens., lb/in or in-1b/in							7

Notes:

1. Visicorder must be calibrated for each balance by balance technicians.
2. Balance gage voltage should be checked before calibrating visicorder 8000 counts on Beckman, or approximately 10 mV on the digital voltmeter.
3. Visicorder calibration, (7) $=\frac{(\sqrt{5}}{(6)}$ where (5) $=(3)$.

Figure 3.- Calibration of Sanborn Recorder.

For force tests the Beckman recording range is 12.5 mV for Sanborn channels 1 thru 6 with each channel divided into 50 small divisions. The sensitivity for each Sanborn range is as follows:

Sanborn range		Sensitivity, $\frac{\text { divs. }}{\mathrm{mV}}$
1.0	$\frac{50 \mathrm{divs} .}{12.5 \mathrm{mV}}$	or
.5	$\frac{\text { Range } 1}{.5}$	or
.2	$\frac{\text { Range } 1}{.2}$	or
.1	$\frac{\text { Range 1 }}{.1}$	or
2.0	$\frac{\text { Range 1 }}{2.0}$	or

The number, N, of divisions for each balance component design load for Sanborn range 1 is calculated using the following equation:

$$
N=\left(\frac{\text { Balance component design load }}{\text { Component sensitivity }}, \frac{1 \mathrm{~b}}{1 \mathrm{~b} / \mathrm{mV}} \text { or } \frac{\text { in-1b }}{\text { in-1b/mV }}\right)\left(4 \frac{\text { divs. }}{\mathrm{mV}}\right)
$$

For example: Axial component design load $=100 \mathrm{lbs}$. Axial component sensitivity $=40 \mathrm{lb} / \mathrm{mV}$.

Sanborn range

1.0	$\left(\frac{100 \mathrm{lb}}{40 \mathrm{lb/mV})\left(4 \frac{\text { divs }}{\mathrm{mV}}\right)}\right.$ or	10 divs. for 100 lb.	
.5	$\frac{\text { range 1 }}{.5}$	or	20 divs. for 100 lb.
.2	$\frac{\text { range } 1}{.2}$	or	50 divs. for 100 lb.
.1	$\frac{\text { range 1 }}{.1}$	or	100 divs. for 100 lb.
2.0	$\frac{\text { range 1 }}{2.0}$	or	5 divs. for 100 lb.

Figure 4. - Angles and transfer distances

NOTE: \bar{Y} TRANS \& \bar{Y} BASE not shown in this view
(a) Angles of attack, base angle, and transfer distances

Figure 4. - Concluded
.- Tunnel top center =
Tunnel top center

$$
\phi_{\text {MOD }}=\phi_{\text {MOD NOM }}+\Delta \phi_{\text {MOD }}
$$

Balance

Rear view (looking upstream)
(b) Balance and model roll angles
$\$$

Top view
(c) Angle of sidesilp

I. TEST PRCCEDDURE

No change can be made in the following data recording method without prior approval of Branch Head.

A. BECKMAN SYSTEEM

1. Call for system 20 minutes prior to need.
2. Give facility number (20 inch Mach 6 tunnel is facility 6), test number and upcoming run number.
3. Dial in 24 ACH's at 40/sec. sample rate. ACH is analog channel.
4. Check balance (ACH23) and transducer (ACH24) power supplies and adjust to 8000 counts. Check all other channels.
B. REFFERENCE PRESSURE RUN (2XXX RUN)

Notes:

You may take reference pressures for base pressure, Main number probe, and stagnation pressure transducers in any order but ior each of them you must take reference pressures in ascending order.

If error is made in reference run, void run and start over with a new run number.

See Input Descripiion (pages 25-30) in Section II for definition of terms.

Digital Channel (DCH) Input

Digital Channel	Designation	Digital channel input for each type		
		Base Pressure	Mach Probe	Stagnation Pressure
DCH 1	TEST	XXXX	XXXX	XXXX.
DCH 2	RUN	$2 X X X$	$2 X X X$	$2 X X X$.
DCH 6	PREF BP	X.XXX	0000	0000
DCH 7	PREF PR	0000	XX.XX	0000
DCH 8	PREF PT	0000	0000	XXXX.
DCH 9	Not used	0000	0000	0000
DCH 10	Not used	0000	0000	0000

1. Enter 2 in first digit of run number (DCHR $=2 X X X$) and zerOs in $D C H 9$ and DCHIO (0000).
2. Get Beckman control.
3. Set manifold pressure is psia to approximate reference base presure (PREF BP). Dial set pressure value in DCE6 (X.XXXX) and zeros in DCH7 and DCH8 (0000). For a series of rums where the stagenation pressure is to be
varied, up to four reference base pressures can be taken but they must be taken in ascending crder. If multi-range Baratrons are substituted for the transducers, then only one range can be used. Make sure reference values fall within that range since there is no automatic range selection for $B P$. Use, $\left(B P-p_{\infty}\right) / q_{\infty}=-1 / M_{\infty}^{2}$, to estimate $B P$, where p_{∞}, q_{∞}, and M_{∞} are the free-stream static and dynamic pressures and Mach number, respectively.
4. Take a data zero and single frame for each reference pressure.
5. Several check pressures can be taken for each reference pressure by dialing in DCH6 and using the single frame mode.
6. Set manifold pressure in psia near expected reference Mach number probe (PREF PR) value, dial value in DCH7 (XX.XX), and zeros in DCH6 and DCH8 (0000). If the stagnation pressure is varied, up to nine reference values can be taken in ascending order (three per Baratron range). Make sure reference values fall in range to be used (between 20 percent and 80 percent of full scale for each range used in automatic range selection mode). No limits on one range operation.
T. Take a data zero and single fiame for each reference pressure.
7. Several check pressures can be taken for each reference pressure by dialing in DCH7 and using the single frame mode.
8. Set required reference pressures in psia on dial gage outside of control room for stagnation pressure transducers (PREF PT). Dial value in DCH8 (XOOX.), and zeros in DCHW and DCH7 (OOOO), up to six reference pressures can be taken in ascending order. Make sure reference pressure fail in range of the transducers.
9. Take data zero and single frame for each reference pressure.
10. Several check pressures can be taken for each reference pressure by dialing in DCH8 and using the single frame mode.
11. Push finish switch.
C. AITITUDE - TARE RUS (IXXX RUN)

Notes:
If eiror is made in attitude-tare run, void run, advance run number, and start over.

Turn belance water off when not needed to prevent water from condensing on balance.

See Input Description (pages 25-30) in section II for definition of terms.

Digital Channel (DCH) Input

Digital Channel	Designation	Input
DCH 1	TEST	XXXX.
DCH 2	RUN	1XXX.
DCH 6	COLIF	X CXX .
DCH 7	DELTA PHI MOD	XX. XX
DCH 8	DEITA PHI BAL	XX. XX
DCH 9	AIPEA ZERO	XX. XX
DCE 10	ALPHA BAL	XX. XX

1. Rnter 1 in first digit of rum number ($D C H 2=1 X X X$) and advance rum number.
2. Set in the following:
(a) Put configuration number in DCH6 (XXCXX) if used.
(b) Put model roll angle, DELTA PHI MOD, in DCH7 (XX.XX)
(c) Put balance roll angle, DELTA PHI BAL, in DCH8 (XX.XX).
(d) Put angle or attack between balance and model centerlines, ALPHA ZERO, in DCH9 (XX.XX).
3. Get Beckman control.
4. Turn balance water on and maintain a balance temperature differential of less than 5° if possible and an overall temperature $=125^{\circ} \mathrm{F}$.
5. Take data zero at ALPHA BAL $=0^{\circ}$ with model and balance fixture off.
6. Turn balance water off.
7. Put model on.
8. Turn balance water on.
9. Starting at lowest ALPHA BAL, set model at each ALPBA BAL marked on screen in ascending order, stopping to dial in value in DCHMO ($X X . X X$) and take single frame. You must take a single frame at ALPEA BAL $=0^{\circ}$.
10. Return model to ALPBA bAL $=0^{\circ}$.
11. Turn balance water off.
12. Push finish awitch.
D. DATA RUS (XCOOX RUNS)

Motes:

If error is made during data run, note error on run sheet, and inform data reduction personnel.

Turn balance cooling water off when not needed to prevent water from condensing on balance.

See Input Description (pages 25-30) in Section II for definition of terms.

Digital Channel (DCH) Input

Digital Channel	Designation	Input	Remarys
DCH 1	TEST	XXXX.	
DCH 2	RUN	XXXXX.	
DCH 6	ALPHA BAL ID		
	AND PREFF BP	1. SxCX	$1=\alpha^{\prime}, 2$
DCH 7	CONF	XXXX.	
DCH 8	CONF	XXXXX.	
DCH 9	BETA	XX. XX	
DCH 10	ALPHA BAL	XX. XX	α^{\prime} or θ

1. Remove 1 or 2 in first digit that was there for attitude or reference run number (XXXX), advance rum number, and enter 1 or 2 in first digit of DCH6. Hormally 2 is used ($2 X X X$) for the support and sting system currentiy in use. That is, model longitudinal axis and support axis are in same plane and BETA is set by rotating the support system. ($1 \times X X$) is used when BEIA is set by bending the sting (model longitudinal axis is at sideslip angle to support pitch plane). Set in configuration (CONF) in DCH7 and 8 and BETA. angle in DCH9.
2. Get Beckman control.
3. Turn on balance water at same setting as attitude-tare run.
4. Set base pressure transducers at expected reference value and dial value in last three digits of DCH6 (1.XXX) or (2.XXX). If zeros are dialed in DCH 6 ($\mathrm{X}, 000$) then the last reference value taken in previous rum will be used.
5. Take deta sero at ALPBA BAL $=0^{\circ}$ (wind off). For sensitive balance take data zero with tunnel pumped down to tunnel static pressure value.
6. Turn balance water off.
7. Record balance zeros from digital voltmeter.
8. Set model at ALPHA MOD $=0^{\circ}$. ALPEA MOD = ALPHA BAL + AIPHA ZHRO. If ALPHA ZERO 1s large set model at AMPRA BAL $=0^{\circ}$.
9. Staxt tunnel (operate visicorder if model not to be injected).
10. Tura balance water on (approximately 20 percent open).
11. Inject model (operate visicorder) and inject Mach probe.
12. Open pinchbar to $B P$ and $P R$ transducers and close pinchbar to manifold.
13. Observe stagnation pressure and temperature.
14. When using the Mach number probe, first and lasti data points of each run with wind-on must be with Mach probe in tunnel. Probe may be left in tunnel or reinjected into the tunnel any number of times during a run. Mach number will be computed for the points when the probe is in the tunnel and interpolated for frames when the probe is not in tunnel.
15. Normally start a ALPHA MOD $=0^{\circ}$, if not possible then staxt at ALPHA BAL $=0^{\circ}$, go to the lowest ALPHA BAL dial in ALPHA BAL in DCHIO (XX.XX) and take single frame at each ALPHA BAL in ascending order. Final data point will be at AIPPHA MOD $=0^{\circ}$. For rums to vacuum sphere it may be better to start at highest ALPHA BAL and come down. (Use vacuum sphere when possible even if test program is lengthened).
16. Monitor digital voltmeter at each ALPHA BAL to assure that the base pressure settles out (BP normally settled by the time ALPHA BAL set).
17. Inject probe if not already in tunnel and take single frame data.
18. If the model is to be run through un angle-of-attack range at another sideslip angle, push finish switch, advance run number and dial in new RETA angle. Get Beckman control, inject probe if not already in tumnel, take single frame data, ru through angle-of-attack range, take final probe single frame and continue run procedure. (You will need to make separate run if using vacum sphere since run time is limited to approximately one minute).
19. Close pinchbar to model.
20. Withdraw model (operate visicoder).
21. Unstart tunnel (operate visicoder if model not retracted).
22. Push IInish switch.
23. Thurn balance water off.
24. Record balance zeroes from digital voltmeter with ALPHA BAL $\approx 0^{\circ}$.
25. Tura balance water on if balance heats up between runs.
26. Change run number, configuration, and BETA.
27. Notify Becknan of next run number and approximate time of next run.

F. BASE PRESSURE DATA RUN ($3 \times X X$ RUNT).

The purpose of this type of rin is to obtain base pressures on models where component changes will have a negligible effect on base flow. These base pressures will be applied to subsequent force data runs. The procedure is the same as the force data runs with the exception that a 3 is dialed in DCH2 ($3 \times X X$).

SECTION II - DATA REDUCTINN

GO590 20 - INCH TUNNEL FORCE PROGRAM

In brief, the program converts Beckman counts to millivolts, corrects for gage voltage fluctuations, and computes the temperature and various pressures, forces, and moments. The stagnation pressure and temperature are used to calculate Mach number, free stream static and dynamic pressures, and Reynolds number per foot. Next the correct angles (angle of attack, sideslip, and roll) are calcilated. The forces and moments are corranted for interactions, initial and attitude tares, and base pressures if desired. They are in turn transferred and rotated through the various angles. Final coefficients are computed for the body and stability axis systems. Center of pressure, trim and stability data are then computed. A more detailed discussion including equations and input and output definitions are in the following sections. Input and output are in U.S. customary units.

I. INPUT DESCRIPTION

A. DIGITAL INPUT (Page 47)

Item	Digital Channel	Description
TEST	1 (all runs)	Test number (XXXX)
RUN	2 (ail runs)	```Run number (XXXX, 1XXX, 2XXX, or 3XXX)```
PREF BP	6. (reference and data run)	Reference pressure for base pressure transducers (X.XXX), psia
PREF PR	7 (reierence run)	Reference pressure for Mach number probe (XX.XX), psia
PREF PT	8 (reference run)	Reference pressure for stagnation pressure transducers (XXXX.), psia
DELTA PHI MOD ($\Delta \phi_{\text {MOD }}$)	7 (attitude run)	Small misalignment roll angle of model added to PHI MOD NOM, (XX.XX), deg. Positive clockwise (cw) looking upstream and measured from vertical (top center $=0^{\circ}$). See fig $4(b)$, pp. 17.
DELTA PHI BAL $\left(\Delta \phi_{\mathrm{BAL}}\right)$	8 (attitude run)	Small misalignment roll angle of balance added to PHI BAL NOM, (XX.XX), deg. Positive cw looking upstream and measured from vertical (top center $=0^{\circ}$). See fig 4(b), pp 17 .

ALPHA ZERO $\left(\alpha_{0}\right)$	9 (attitude run)
ALPHA BAL $\left(\alpha_{\text {BAL }}\right)$	$10\left(\begin{array}{c}\text { (attitude and data } \\ \text { run })\end{array}\right.$

ALPHA BAL ID 6 (data run)
$\frac{\text { BETA }}{(B)} \quad 9$ (data run)

Angle from balance centerline to model centerline $\mathrm{XX} . \mathrm{XX}$, deg. Positive when model centerline rotated up relative to balance centerline, See fig. 4(a), pp 16 and "Note", pp 7.

Uncorrected angle of attack of balance ($X X . X X$), deg. Positive when balance centerline rotated up relative to tunnel centerine. See fig 4(a), pp 16 and "Note", pp 7.

Type of angle of ettack dialed in DCHIO (1.XXX or 2. XXX). See pp 33.

Angle of sideslip ($X X . X X$), deg. Positive when balance rotated to left looking upstream. See fig 4(c), pp 16 and "Note" pp 7.

B. CARD INPUT (Pages 49-51)

Item

NORMAL SENS
AXIAL SENS
PITCH SENS
ROLL SENS
yaw sens
SIDE SEMS

BPI SLOPE

BP2 SLOPE
BP3 SLOPE
BP4 SLOPE
BP5 SLOPE

Location
1
2
3
4
5
6
7
8
9 10

11

Description
Normal force sensitivity, lbs/mv
Axial force sensitivity, lbs/mv
Pitching moment sensitivity, in-lbs/mv
Rolling moment sensitivity, in-lbs/mv
Yawing moment sensitivity, in-lbs/mv
Side force sensitivity, $\mathrm{lbs} / \mathrm{mv}$
Base pressure 1 transducer slope, psia/uv
Base pressure 2 transducer slope, psia/mv
Base pressure 3 transducer slope, psia/mv
Base pressure 4 transducer slope, psia/my
Base pressure 5 transducer slope, psia/my
\square

Locaticn 12 13 14

15

PTI-4 RANGE
BASE AREA-SB
REF AREA-S
CHORD-CBAR

SPAN-B

Description
Rase pressure 6 transducer slope, psia/mv Mach probe Baratron 19 slope for range 5, psia/mv

Mach probe Baratron 19 slope for range 6, psia/mv

Mach probe Baratron 19 slope for range 7, psia!mv

Mach probe Baratron 20 slope for range 5, psia/mv

Mach probe Baratron 20 slope for range 6, psia/IIV

Mach probe Beratron 20 slope for range 7, psia/mv

Stagnation pressure tranducer slope, $0<$ PT1<90, psia/mv

Stagnation pressure transducer slope, $0<\mathrm{PT} 1<190$, psia/mv

Stagnation pressure transducer slope, $0<\mathrm{PTl}<290, \mathrm{psia} / \mathrm{mv}$

Stagnation pressure transducer slope, $0<\mathrm{PTl}<550, \mathrm{psia} / \mathrm{mv}$

Overrides PIl-1 upper limit (if $\neq 90$), psia Overrides PIl-2 upper limit (if $\neq 190$), psia Overrides PTl-3 upper limit (if $\neq 290$), psia Overrides PT1-4 upper limit (if $\neq 550$), psia Base pressure reference area, in ${ }^{2}$ Reference area for coefficients, in ${ }^{2}$

Reference length for longitudinal noment coefficient, in.

Reference length for lateral and directional moment coefficients, in.

Item	Location	Description
REF LIEHGTH-IREW	39	Length of model, chord, or diameter of model, in.
CP REF-XREF	40	```Distarce from model center of gravity (cg) to reference point of center of pressure, in```
$\overline{\mathbf{X}}$	42	Transfer distance along balance x-axis from balance pitch center (pc) to model cg, in. Positive when cg is aft of pc relative to balance. See fig $4(\mathrm{a})$, pp 16.
$\overline{\mathbf{Y}}$	42	Transfer distance along balance y-axis from balance (pc) to model cg , in. Positive when cg is to right of pc relative to balance when looking upstream. Specify $4(a)$, pp 16.
$\overline{\mathbf{Z}}$	43	Transfer distance along balance z-axis from pc to model cg, in. Positive when cg is below pc relative to balance. See fig 4(a), pp 16.
CG	44	Model center of gravity location relative to model nose, percent body length.
PHI MOD NOM ($\phi_{\text {MOD NOM }}$)	45	Nominal model roll angle deg. Positive clockwise (cw) looking upstream and measured from vertical (top center $=0^{\circ}$). $0^{\circ}=$ model upright, $180^{\circ}=$ model inverted, $90^{\circ}=$ model rolled $90^{\circ} \mathrm{cW},-90^{\circ}=$ model rolled 90° ccw. See fig $4(\mathrm{~b}), \mathrm{pp} 17$.
PHI BAL NOM $\left(\phi_{\text {BAL NOM }}\right)$	46	Nominal balance roll angle deg. Positive cw looking upstream and measured from vertical (top center $=0^{\circ}$) to balance positive normal force. $0^{\circ}=$ balance upright, $180^{\circ}=$ balance inverted, $90^{\circ}=$ balance rotated $90^{\circ} \mathrm{cw},-90^{\circ}=$ balance rotated $90^{\circ} \mathrm{ccw}$. See fig $4(\mathrm{~b}), \mathrm{pp} 17$.
$\begin{aligned} & \text { PHI MOD } \\ & \left(\phi_{\text {NOD }}\right) \end{aligned}$	47	Overrides DELTA PHI MOD (DCHT) + PHI MOD NOM (location 45), deg. Same sign convention as other roll angles.
$\begin{aligned} & \text { PHI BAL } \\ & \left(\phi_{B A L}\right) \end{aligned}$	48	Overrides DELTA PHI BAL (DCHB) + PHI BAL NOM (location 46), deg. Same sign convention as other roll angles.

Item	Location	Description
delch alpha zero $\left(\Delta \alpha_{0}\right)$	49	Added to ALPHA ZERO dialed in DCH9 of attitude run, deg. ALPBA ZERO correct $=$ ALPHA ZERO (DCH9) + DELITA ALPHA ZERO. Positive when model centerline rotated up relative to balance centerline.
DELTA ALPHA $(\Delta \alpha)$	50	Added to ALPH BAL dialed in DCHIO of data run, deg. Same sign convention as ALPHA BAL. ALPHI. BAL correct $=$ ALPHA BAL (DCH10) + DELITA ALPEA. Only one value of DELIA ALPHA can be applied per run.
DELTA BETA $(\Delta \beta)$	51	Added to BETA dialed in DCH9 of data run, deg. BETA correct $=$ BETA (DCH9) + DELTA BETA. Positive when balance rotated to left looking upstream. Only one value of BETA can be applied per run.
$\begin{aligned} & \text { DELTPA BASE } \\ & \left(\delta_{B}\right) \end{aligned}$	52	Angle between model base and model vertical axis, deg. Positive when base slopes forward. See fig $4(\mathrm{a})$, pp 16.
COLD JUNCITON	55	Overrides cold junction reference (ACB21) for stagnation temperature, mv .
$\overline{\mathrm{X}}$ BASE	56	Transfer distance along balance x-axis from balance pc to centroid of base, in. Positive when ceutroid is aft of pc relative to balance. See fig 4(a), pp 16.
$\overline{\mathrm{Y}}$ BASE	57	Transfer distance along balance y-axis from balance pc to centroid of base, in. Positive when centroid is to right of pc relative to balance when looking upstream. See fig. 4(a), pp 16.
$\overline{\mathrm{z}} \mathrm{Biss}$	58	Transfer distance along balance 2 -axis from balance pc to centroid of base, in. Positive when centroid is below pe relative to balance. See fig 4(a), pp 16.
$X T$	60	Distance along tunnel centerline from forward window vertical centerline to model: in. Used to compute difference between Mach number at probe and at model. XT positive when model is upstream of forward window vertical centerline. (x^{\prime} in Appendix)

II. COMPUTATIONS

A. CONVERSION TO KNGINEERTING UNITS (EU)

Conversion from counts (CTS) to millivolts (mV) for all analog channels (ACH) using a gage voltage (GV).
$m V=\frac{(C T S)(8000)}{(A T H E U A T O R)(G V \operatorname{in~CTS})}$
Above equation corrects for gage voltage fluctuetion if locations 66, 67 , and/or $68=0$ on load constant sheet (page 51). Gage voltage for balance (ACH1-6) is in ACH23 and for transducers (ACH7-12, 17-20) is in ACH24. Also the 2 samples of data taken for each ACH at $40 / \mathrm{sec}$ are averaged if location $63=0$ on load constant sheet (page 51).

1. Forces and moments, $\mathrm{NF}, \mathrm{AF}, \mathrm{PM}, \mathrm{KM}, \mathrm{YM}, \mathrm{SF}$ (ACH - 6).
$\operatorname{COMP}_{\text {IU }}=\left(\operatorname{COMP}_{\mathrm{mV}}-\mathrm{ZERO}_{\mathrm{mV}}\right)$ (SENS $)$ ZERO $_{\text {MV }}$ - zero value, SENS - component sensitivity constant.
2. Base pressure, BP1-6 (ACHT-12)
(a) Reference pressure (PREF BP), mode 4

Rum number $=2 X X X, D C H 7$ and $8=0000$, DCH6 $=$ PREF $=\mathrm{X} . X X X . A$ maximum of 4 different PREFs can be taken. A mV value for each of the 6 BP transducers is stored for eaca of the PREFs taken and is designated BPZEROS ${ }_{i j}$. The PREF values are also stored as BPINTC $_{i j}{ }^{\circ}$
Where $1=1-6$ is the number of the $B P$ and $j=1-4$ is the number of the PREF taken.
(b) Wind-on data (BP), mode 2

A $\triangle \mathrm{mV}_{\text {iA }}$ is computed for each PREF that was taken for each BP transaticer. The PREF that gives the smallest $\Delta m V_{i f}$ is used as $\Delta m V_{i}$ in the following equation to calculate BP_{i}.
$\Delta m V_{i j}=B P_{m V_{1}}-$ BPZEROS $_{i j}$
Where $\mathrm{BP}_{\mathrm{mV}}{ }_{1}$ is BP data in MVs .
$B P_{i}=\left(\Delta m V_{i}\right)\left(\right.$ BP SLOPE $\left._{i}\right)+$ BPINTC $_{j}$
3. MACH number probe pressure, PT2 (ACH13-16)

Baratron 20 with range identification (ID) in $m V s$ in ACHl5 and reading in ACH 16: Backup Baratron 19, ID in ACH13 and reading in ACHI4.
(a) Reference pressure (PREF PR), mode 4

Rum number $=2 X X X$, DCH6 and $8=0000, \mathrm{DCH}=\mathrm{PREFF}=\mathrm{XX} . \mathrm{XX}$. The $\mathrm{ID}^{\prime} \mathrm{s}$ (ACHI 3 and 15) or ACHI 4 and 16 respectively, are checked to determine the proper range for the reference pressure. The allowable ranges are $5(65-75 \mathrm{mV}), 6(75-85 \mathrm{mV}), 7(85-95 \mathrm{mV})$. Three PRFF may be taken in each range. The PREFs and mV values are designated as:

PROBEZ $(1, j, k)=$ PREF
PROBEZ $(2, j, k)=$ PREF $m V$ value for ACHI 4
PROBEZ $(3, j, k)=$ PREF $m V$ value for ACHI6
where $j=1-3$ for ranges $5,6,7$, respectively, and $k=1-3$ for three separate PREF's for each range.
(b) Wind-on data (PI2), mode 2

For each channel (ACHI 4 and 16) the program determines the range from its ID (ACHI 3 or 15). For each PREF of that range a $\Delta m V_{\text {ijk }}$ is computed as follows,
$\Delta m V_{i j k}=P T Z_{m V_{i}}-$ PROBEZ $_{i j k}$
where $i=2,3$ for Baratron 19 or 20, respectively, $1=1-3$ for range 5, 6, or 7, and $k=1-3$ for the three different PREFs of each range.

The PREF that gives the smallest $\Delta m V_{i f k}$ is used as $\Delta m V_{i}$ in the
folloring equation to calculate $P T Z_{i}$
PTR $_{i}=\left(\Delta \mathrm{mV} \mathrm{i}_{i}\right)$ PROBE SLOPE $\left._{i j}\right)+$ PROBER $_{j k}$
PROBEZ $_{j k}$ is the PREF corresponding to the $m V$ value used to compute
$\Delta m V_{i}$
If Baratron 20 (ACHI6) is recording, it will be used to compute PT2.

4. Stagnaiton pressure, PTI (ACHI7-20)

There is a possibility of l-4 transducers recording PTI. Each transducer has a different range; they are in order $0-90,0-190,0-290$, and $0-550$ psia. The upper limits on the transducers may be changed by using locations 23-26 on constant sheet pages 49 and 50.
(a) Reforence pressure (PREFF PTI), mode 4

Run number $=2 \times X X$, DCH6 and $7=0000, D C H 8=$ PREF $=X X X X$. The value of DCH8 is checked against the upper limits of each transducer to determine which transducers the PREF should be applied;
e.g. if DCH8 is less than or equal to 90 , the PREF is stored for all transducers; if DCH8 is greater than 290 and less than or equal 550 , the PREF is stored for transducer 4 (ACH2O) only. A maximum of 6 PREFs can be taken for PTI.

PTIZR (1-6,1) contain the PREF mV values.
PTIZR ($1-6,2$) contain the PREF values.
ICEANPT (1-4) contains the lowest channel number to which the mV values and the PREFs can be applied.
(b) Wind-on data (PII), mode 2

For each transducer the array of channel numbers is searched to find which PREFs apply to that transducer. For each PREF applying to a transducer a $\Delta m V_{i j}$ is computed.
$\Delta \mathrm{mV}_{i j}=\mathrm{PPI}_{\mathrm{mV}}^{1}-\mathrm{PMIZR}_{i j}$
where $1: 1-4$ for the number of the transducer and $j=1-6$ for the number for the PREF.

The PREF that gives the smallest value of $\Delta m V_{i j}$ is used as $\Delta m V_{i}$ in the following equation to calculate PTH_{i}
$\mathrm{PII}_{1}=\left(\Delta m V_{i}\right)\left(\right.$ PTI SLOPE $\left._{1}\right)+$ PTIZR $_{j}$
After the pressure for each PII transducer that is in range has been computed, the program takes the difference between the pressure for each transducer and the pressure for the transducer with the next highest range. The first transducer for which the difference is less than or equal to 20 will be used as the value of PTI. Or if no difference is less than 20 , the transducer with the highest range is used.
5. Stegnation temperature, TMI (ACH22)

The stagnation temperature mV value is calculated as follows:
$T I_{m V}=A C E R 2_{m V}+$ COID JUNCTION $_{m V}$.
Where cold junction $m V$ value is either recorded in ACBRI or input in location 55 on constant sheet page 50.

Using the IRON CONSTANTAN THMMOCOUPLE table, a slope and intercept are found corresponding to $T T I_{m V}$ and inserted in the following equation to calculate TTI.
$\operatorname{TNI}($ deg. $R)=\left(\right.$ THI $\left._{\mathrm{mV}}\right)($ SLOPE $)+$ INTARCEPT +459.6
B. COMPUTATION OF TUNNEL PARAMETERS

1. Probe Mach number (MACH PROBE)

There are three possible ways of computing MACH PROBE.
(a) If the probe remains in the twnel during the run the ratio PT2/PTI
is interpolated in the Ames Tables to find the corresponding value of MACH PROBE if location $62=0$ on the load constant sheet page 51.
(b) If the probe is being inserted and remored during the rum the program will read data tape; find the record of the probe-in data corresponding to the current run and using the current time and the values from the tape, interpolate to find PI2 for each frame. Then the ratio PTR/FTI is interpolated in the Ames Table to find MACH PROBE if location $62=0$.
(c) If location $62 \neq 0$ and Mach number is given on page 51, then MACH PROBE $=$ location 62 and is called MACH.
2. Model Mach number (MACH MODEL)

The probe Mach number (MACH PROBE) can be corrected to any axial position in the tunnel by setting location $61=0$ and applying XT (location 60) as follows;

MACH MODEL $=$ MACH PROBE $-(X T)(0.0013)-0.01$
This correction is not applied if the Mach number value is given in location 62 or location $61=1$ on constant sheet page 51 .
3. P1tot pressure (PT2)

After the Mach number has been given, computed, interpolated, and/or corrected, PI2 is recomputed for all frames using the following equation.
PT2 $=\left(\frac{6 M^{2}}{M^{2}+5}\right)^{7 / 2}\left(\frac{6}{7 M^{2}-1}\right)^{5 / 2}($ PTI $)$
where $M=M A C H, ~ M A C H ~ P R O B E, ~ o r ~ M A C H ~ M O D E L ~$
4. Free-stream static pressure (PIS) and dyanic pressure (Q)
 following equation.

FTS $=\left(1+0.2 M^{2}\right)^{-7 / 2}($ PTI $)$
$Q=\left(0.7 M^{2}\right)(P S S)$
5. Reynolds number per foot (R/PT)
$(R / F T) \times 10^{-6}=\frac{(4943.61388)(N j i \bar{F} T I)}{(T I I)^{3 / 2}\left(1+0.2 M^{2}\right)^{2}}$

An average Reynolds number for a complete run is alfo computed.
6. Bese pressure force correction (BPCORR)

An average base pressure (BPAVG) is computed from the total number of base pressures taken. From this average, a base pressure coefficient (BPCOEF) and the base pressure force correction (BPCORR) are computed using the following equations.

BPCOEF = (BPAVG - PIS)/Q
BPCORR = (BPAVG - PIS)SB
The pressure coefficient BPCOEF is used only for printing. BPCORR is used to compute the effect of base pressure on the 6 balance components. The base pressure force coefficient along the model x-axis CAB is also printed.
$\mathrm{CAB}=-\left[(\mathrm{BPAVG}-\mathrm{PTS})(\mathrm{SB})\left(\cos _{\mathrm{B}}\right)\right] /[(\mathrm{Q})(\mathrm{S})]=-\left[(\operatorname{BPCORR})\left(\cos \delta_{\mathrm{B}}\right)\right] /[(\mathrm{Q})(\mathrm{S})]$
The base pressure corrention will always be computed if there are base pressures but it will nnly be applied if location $64=0$ on the load constant sheet on page 51 .
C. INITIAL TARES AND ATHTMUDE LOADS

Initial tare and attitude loads are recorded with a run number of 1XXX. On encountering a mode 4 of run $1 \times X X$ the program will set a switch that void any former tares or attitude loads. Following the mode 4 should be a numer of frames (maximum 25) of mode 2 at different ALPHA BAL values. Note: One of the mode 2 ' s must have the same value of ALPHA BAL as the mode 4 . For a tare $\operatorname{FW}, \mathrm{DCH}, 8,9$, and 10 must be set appropriately.

1. Initial tares. To compute initial tares the program uses the mode 4 which is a balance alone frame and the mode 2 at the same ALPMA BAL value with the model on the balance.

EIITIAL TARS (uncorrected) $=$ (Moder $_{i}-$ Model $_{i}$) (UEMS ${ }_{i}$)
where $1=1-6$ for the six balance components.
The program uses subroutine INIR to remove interactions from the initial tares. The resulting values are used in INIR to correct attitudes and wind-on data.
2. Attitude 10ads. Each point (AIT my) in the attitude load table has a corresponding ALPHA BAL. The mode 4 with balance alone is used as the zero for computing attitudes loads as follows:

ATPGA BAL = DCH1O
$A T H I T U D E$ LOAD (uncorrected $)_{1}=\left(\right.$ ATP $_{m V}-$ ATTEERO $\left._{\text {mV }}\right)\left(\right.$ SENS $\left._{1}\right)$
where $1=1-6$ are the $s i x$ balance components and SENS is the component sensitivity constant.

Each point of the attitude loads table is passed through INTR and corrected for interactions and initial tares. To facilitate the interpolation of attitude loads between given values of ALPHA BAL, the ALPHA BALs are arranged in ascending order, indexed by k and stored in the following arrays (ATTKI and ATTK2) for each component (COMP).
ATTK工 $_{\mathbf{k}, \mathrm{j}}=\left(\operatorname{COMP}_{\mathbf{k}+1, j}-\operatorname{COMP}_{\mathbf{k}, \mathrm{j}}\right) /\left(\right.$ ALPEA BAL $\mathrm{L}_{\mathbf{k}+1}-$ ALPHA BAT $\left.\mathbf{K}_{\mathbf{k}}\right)$ $\operatorname{ATTXP}_{k, j}=\operatorname{COMP}_{k}-\left(\right.$ ATTK $\left._{k, j}\right)(\text { ALPHA BAL })_{k}$
The attitude load for any ALPBA BAL for a wind-on point is obtained from the following equation;
ATTIIUDE LOAD ${ }_{k}, j=\left(\right.$ ALPHA BAL $\left._{\text {wind-on }}\right)\left(\right.$ ATTK $\left._{k, j}\right)+$ ATTKK $_{k, j}$
where $k=1-25$ is the frame number and $j=1-6$ is the belance component.

D. ANGLES

All angle load constants, (location 45 thru 51) are listed on constant sheet page 51.

1. Angle of attack (ALPHA CORR $=\alpha_{c}$)

The corrected angle of attack ALPHA CORR is as follows;
$\alpha_{c}=\tan ^{-1}(z / x)$ where
$Z=\left[\left(\cos \phi_{\text {MOD }}\right)\left(\sin \left(\theta+\alpha_{0}\right)\right)\left(\cos \beta^{\prime}\right)-\left(\sin \phi_{\text {MOD }}\right)\left(\sin \beta^{\prime}\right)\right] \cos \alpha^{\prime}+$ $\left[\left(\cos \phi_{\text {MOD }}\right)\left(\cos \left(\theta+\alpha_{0}\right)\right)\right] \sin \alpha^{\prime}$
$X=\left[\left(\cos \left(\theta+\alpha_{0}\right)\right)\left(\cos \beta^{\prime}\right)\left(\cos \alpha^{\prime}\right)\right]-\left[\left(\sin \left(\theta+\alpha_{0}\right)\right)\left(\sin \alpha^{\prime}\right)\right]$
and $\alpha_{0}, \alpha^{\prime}, \theta, \beta^{\prime}$, and $\phi_{\text {MOD }}$ are defined below.
ALPEA ZERRO $=\alpha_{0}=$ DCH9 + location 49. Angle of attack between balance and model axds recorded in DCHY of attitude rum.
$\alpha^{\prime}=$ DCHIO. Pitch angle of support when it pitches in the plane of symmetry of the tunnel.
$\theta=$ DCHIO. Pitch angle of balance when support pitches in plan of symmetry of model.
If the ieft-most digit in DCB6 is $1 ; \theta=0^{\circ}$ and $\alpha^{\prime}=$ DCAIO + location 50.
If the left-most digit in DCH6 is 2; $\alpha^{\prime}=0^{\circ}$ and $\theta=$ DCBIO + location 50.
2. Angle of sideslip (BETA CORR $=\beta_{c}$)

The corrected angle of sideslip BETA CORR is,

$$
\begin{aligned}
& \beta_{c}= \sin ^{-1}\left\{\left[\left(\sin \phi_{M O D}\right)\left(\sin \left(\theta+\alpha_{0}\right)\right)\left(\cos \beta^{\prime}\right)+\left(\cos \phi_{M O D}\right)\left(\sin \beta^{\prime}\right)\right] \cos b^{\prime}\right. \\
&\left.+\left[\left(\sin \phi_{M O D}\right)\left(\cos \left(\theta+\alpha_{0}\right)\right)\right] \sin \alpha^{\prime}\right\} \\
& \beta^{\prime}= \text { DCH9 + location 51. Angle between balance } X-a x i s \text { and plane of } \\
& \text { symmetry of tunnel. }
\end{aligned}
$$

3. Augle of roll (PHI MOD, PHI BAL, PHI PRIME).

PHI MOD $=\phi_{\text {MOD }}=$ DCH7 from attitude run + location 45. PHI MOD may be over-ridden ${ }^{\text {BOF }}$ location 47.

PHI BAL $=\phi_{\text {BAI }}=$ DCH8 from attitude run + lo ation 46. YEI BAI may be over-ridden BAL location 48.

PHI PRDME $=\phi^{\prime}=\phi_{\text {MOD }}-\phi_{\text {BAF: Angle }}$ of roll of model about balance X-axis relative to of bainnce.
E. FORCE AID MOMBNT COEFFICIENTS

The program expects one six-component balance with $N F=$ normal force, $A F=$ axial force, $P M=$ pitching moment, $R M=$ rolling moment, $Y M=$ yawing moment, and $S F=$ side force i. $\Lambda C H 1-6$.

1. Conversion to engineering units
$\operatorname{COMP}_{E U_{1}}=\left(\operatorname{CONP}_{m V_{i}}-\operatorname{ZERO}_{m V_{i}}\right)\left(\right.$ SENS $\left._{i}\right)$
where $Z_{m R O}{ }_{m i}$ is from the most recent mode 4 and $i=1-6$ belance compcuents.
2. Removel of interactions

Subroutine INPR is called. By using the previousiy calculated initial tares and the interaction array supplied by input cards the interactions are removed from each component as follows:
$\operatorname{COMP}_{C I_{1}}=\left[\operatorname{CONP}_{E U_{1}}+\right.$ Corrected initial tere $\left._{1}\right]$

- [Final epsilon of combined value ${ }_{1}$ - Final epsilon initial tare ${ }_{1}$]
- [Corrected initial tare ${ }_{1}$].
where 1 = 1-6 balance components.

3. Coriecticu for attitudo loads

Using l)CHIO of the current record as ALPHA BAL, a table lookuf is done to finit an ALPHA BAL in the array of tare qoints that is greater than or equil to the ALPHA BAL of the current record. The program then interpolales to find the attitudes for the current value and subtracts them from the for:as and moments.

ATM $_{i}=\left(\right.$ ATHK $\left._{k, 1}\right)($ ALPHA BAL $)+$ ATMK2 $_{k, i}$
where $i=1-6$ balance components and $k=$ index of first attiture angle greater then or equal to ALPHA BAL. Then the component corrected for ettitude joads is;
$\operatorname{COMP}_{C A_{i}}=\operatorname{COMP}_{C I_{i}}-\operatorname{ATI}_{i}$
4. Correction for base pressure

The balance components are corrected for base pressure erficets $\triangle C O M P$ in the following manner.

$$
\begin{aligned}
& \Delta N F_{B P}=-\left(\cos \phi^{\prime}\right)\left(\sin \left(\alpha_{0}-\delta_{B}\right)\right)(B P C O R R) \\
& \Delta A F_{B P}=\left(\cos \left(\alpha_{0}-\delta_{B}\right)\right)(B P C O R R) \\
& \Delta P M_{B P}=-\left(\Delta N F_{B P}\right)(\bar{X} B A S E)-\left(\Delta A F_{B P}\right)(\bar{Z} B A S E) \\
& \Delta R M_{B P}=-\left(\Delta N F_{B F}\right)(\bar{Y} \operatorname{BASE})+\left(\Delta S F_{B P}\right)(\bar{z} \operatorname{BASE}) \\
& \Delta Y M_{B P}=-\left(\Delta S F_{B P}\right)(\overline{\mathrm{X}} \mathrm{BASE})+\left(\Delta A F_{B F}\right)(\overline{\mathrm{Y}} \mathrm{BASE}) \\
& \Delta S F_{B P}=-\left(\sin \phi^{\prime}\right)\left(\sin \left(\alpha_{0}-\delta_{B}\right)\right)(B P C O R R)
\end{aligned}
$$

$$
\text { where } B P C O R R=(B P A V G-P T S)(S B) \text { and the load constints from page } 50 \text { are }
$$

$$
\mathrm{SB}=\text { location } 35, \delta_{B}=\text { location } 52, \overline{\mathrm{X}} \mathrm{BASE}=\text { locat } \perp \text { on } 5 \overline{\mathrm{~B}}, \overline{\mathrm{Y}} \mathrm{BASE}=
$$

$$
\text { location } 57 \text {, and } \bar{Z} \text { BASE }=\text { location } 58 \text {. The cnrrected components are: }
$$

$$
\operatorname{CONP}_{\mathrm{BP}_{1}}=\operatorname{SONP}_{\mathrm{CA}_{1}}+\operatorname{CONP}_{\mathrm{ADP}}^{1} 1
$$

where $1=1-6$ balance components

$$
\begin{aligned}
& R H_{3 P}=N F_{C A}+\Delta N F_{B P} \\
& A F_{B P}=A F_{C A}+\Delta A F_{B P} \\
& P M_{B P}=P M_{C A}+\Delta F M_{B P} \\
& R M_{B P}=P M_{C A}+\Delta R M_{B P}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{YM}_{\mathrm{BP}}=\mathrm{YM}_{\mathrm{CA}}+\Delta \mathrm{YM}_{\mathrm{BP}} \\
& \mathrm{SF}_{\mathrm{BP}}=\mathrm{SF}_{\mathrm{CA}}+\Delta \mathrm{SF} \mathrm{~F}_{\mathrm{BP}}
\end{aligned}
$$

5. Rotate forces and moments through PHI PRIME from balance to model axis.

$$
\begin{aligned}
& N F_{P}=\left(N F_{B P}\right)\left(\cos \phi^{\prime}\right)+\left(S F_{B P}\right)\left(\sin \phi^{\prime}\right) \\
& A F_{P}=A F_{B P} \\
& P M_{P}=\left(P M_{B P}\right)\left(\cos \phi^{\prime}\right)+\left(\mathrm{YM}_{B P}\right)\left(\sin \phi^{\prime}\right) \\
& R M_{P}=R M_{B P} \\
& \mathrm{MM}_{P}=\left(\mathrm{MM}_{\mathrm{BP}}\right)\left(\cos \phi^{\prime}\right)-\left(P M_{B P}\right)\left(\sin \phi^{\prime}\right) \\
& S F_{P}=\left(S F_{B P}\right)\left(\cos \phi^{\prime}\right)-\left(N F_{B P}\right)\left(\sin \phi^{\prime}\right)
\end{aligned}
$$

6. Transfer moments to refererce point (CG).

$$
\begin{aligned}
& P M_{Y_{1}}=P M_{P}+(\bar{X})\left(N F_{P}\right)+(\bar{Z})\left(A F_{P}\right) \\
& \mathrm{RM}_{\mathrm{T}}=\mathrm{RM}_{\mathrm{P}}+(\overline{\mathrm{Z}})\left(\mathrm{SF}_{\mathrm{P}}\right)+(\overline{\mathrm{Y}})\left(\mathrm{NF}_{\mathrm{P}}\right) \\
& \mathrm{YM}_{\mathrm{T}}=\mathrm{YM}_{\mathrm{P}}+(\overline{\mathrm{X}})\left(\mathrm{SF}_{\mathrm{P}}\right)-(\overline{\mathrm{Y}})\left(\mathrm{AF} \mathrm{P}_{\mathrm{P}}\right)
\end{aligned}
$$

7. Rotate forces and moments through initial angle of attack (ALPHA ZERO) to body axis.

$$
\begin{aligned}
& N F_{B}=\left(N F_{P}\right)\left(\cos \alpha_{0}\right)+\left(A F_{P}\right)\left(\sin \alpha_{0}\right) \\
& A F_{B}=\left(A F_{P}\right)\left(\cos \alpha_{0}\right)-\left(N F_{P}\right)\left(\sin \alpha_{0}\right) \\
& P M_{B}=P M_{T} \\
& R M_{B}=\left(R M_{T}\right)\left(\cos \alpha_{0}\right)-\left(M M_{T}\right)\left(\sin \alpha_{0}\right) \\
& M M_{B}=\left(M M_{T}\right)\left(\cos \alpha_{0}\right)+\left(R M_{T}\right)\left(\sin \alpha_{0}\right) \\
& S F_{B}=S F_{P}
\end{aligned}
$$

8. Compute body axis coefficients

$$
\begin{aligned}
C N_{B} & =N F_{B} /[(Q)(S)] \\
C A_{B} & =A F_{B} /[(Q)(S)] \\
C M_{B} & =P M_{B} /[(Q)(S)(\bar{C})] \\
C R_{B} & =R M_{B} /[(Q)(S)(B)]
\end{aligned}
$$

$$
\begin{aligned}
& C Y_{B}=Y M_{B} /[(Q)(S)(B)] \\
& C S_{B}=S F_{B} /[(Q)(S)]
\end{aligned}
$$

where $Q=$ dynamic pressure, $S=$ location $36, \overline{\mathrm{C}}=$ location 37, and $B=$ location 38 , from load constant sheet page 50.
9. Rotate to stability axis.

$$
\begin{aligned}
& C L=\left(C N_{B}\right)\left(\cos \alpha_{C}\right)-\left(C A_{B}\right)\left(\sin \alpha_{C}\right) \\
& C D=\left(C A_{B}\right)\left(\cos \alpha_{C}\right)+\left(C N_{B}\right)\left(\sin \alpha_{c}\right) \\
& C M_{S}=C M_{B} \\
& C R_{S}=\left(C R_{B}\right)\left(\cos \alpha_{C}\right)+\left(C Y_{B}\right)\left(\sin \alpha_{C}\right) \\
& C Y_{S}=\left(C Y_{B}\right)\left(\cos \alpha_{C}\right)-\left(C R_{B}\right)\left(\sin \alpha_{C}\right) \\
& C S_{S}=C S_{B}
\end{aligned}
$$

10. Center of pressure (XCP LONG AND XCP DIR)

The longitudinal center-of-pressure location is;
$X C P$ LONG $=S R E D / L R E F-\left[\left(C M_{B}\right)(\bar{C})\right] /\left[\left(C N_{B}\right)\left(L_{R E F}\right)\right]$
and the directional center-of-pressure location is;
$\mathrm{XCP} \operatorname{DIR}=\mathrm{XREF} / \mathrm{LREF}-\left[\left(\mathrm{CY}_{\mathrm{B}}\right)(\mathrm{B})\right] /\left[\left(\mathrm{CS}_{\mathrm{B}}\right)(\right.$ LREF $\left.)\right]$ (computed only if $\mathrm{B}_{\mathrm{C}} \neq 0$)
where XREFF $=$ location 40 and LREF $=$ location 39 from load constant sheet page .50 .
11. Maximum values (CL MAX, L/D MAX, CL AT L/D $M A X$, and ALP AT L/D MAX)

A least squares fit of order 5 is made to obtain a curve of CL/CD vs $\alpha=\alpha_{c}$. L/D MAX and ALP AT L/D MAX are obtained at a critical point on this curve. A second curve of CL vs α is generated to find CL MAX. CL AT L/D MAX is also obtained from this curve at $\alpha=\operatorname{ALP}$ AT L/D MAX.

Note: If the data do not have sufficient definition near the critical points, their values may be of questioneble value.
12. Trim data (ALPHA $T, C L T, C D T, L / D T$, and $D C M / D C L T$ and $D C M / D C H T A T C M=0$

Piecewise linear curves of $C M$ vs $\alpha, C M$ vB CL, and $C M$ vs $C D$ are used to obtain ALPBA T, $C L T$, and $C D T$ for each $C M=0$. At each $C M=0, C L / C D T$ or $L / D T$ is computed providing $C M=0$ is not an end point.

The slope of $D C M / D C N T$ is also computed at $C M=0$ on the $C M$ vs $C N$ curve. If the $C M=0$ is at an end point then $D C M / D C L T$ and $D C M / D C N T$ are set equal to 0 .
13. Stability data (CL ALFHA, CN ALPHA, CM ALPHA and DCM/DCN AT ALPHA $=0^{\circ}$)

Using only selected points with $|\alpha|<3.5^{\circ}$ a linear least square ift is made to describe each of CL vs α, CN vs α, CM vs α, and CM vs CN by a Ine. CL ALPHA, CN ALPHA, CM ALPHA, and DCM/DCN are the slopes of each of the respective lines.
F. PROGRAM OPTIONS

These options are handled by the data reduction personnel only at the request of the engineer.

1. Omit whole runs or certain frames of a run.
2. Process several series of runs. A reference pressure and attitude run must precede first data run of each series.
3. Raw mV listing or card input listing may be omitted.
4. Raw Beckman counts majy be listed instead of mV.
5. Test title may be changed for any run.
6. Extra copies of output listing can be made.
7. Extra computations (trim data, $C_{M A X}$, etc.).
8. Check point (run and frame).
9. Any DCH or $A C H \mathrm{mV}$ reading may be changed (added to, subtracted from, multiplied by, or divided by a constant). Only one frame at a time.
10. Type of run can be changed ($1 \times X X$ to $2 X X X, 1 X X X$ or $2 X X X$ to $X X X$, etc.).
11. If data obtained before $5-14-76$ is reprocessed inform data reduction personnel so angle of attack will be handled correctly.
III. OUTPUT DESCRIPTION

TEST

RUN
AVG R/FI
CG

FRAME, FRM

Q

MACK PROBE
test number
run number
average frestream Reynolds number per foot
center-of-gravity location, percent body length
frame number (data has been averaged for both samples per frame) - $4 \times X$ frame is with Mach probe in tunnel when probe is operated in the inject and retract mode
free-stream dynamic pressure, psia
uncorrected probe Mach number

MACH MODES

PT1
PT2
$T 11$
F / FT
$C A B$
TIME
DCH6-DCH8

BETA
ALPHA
CN
CA
CM
CL
$C D$
L/D
CROLL B
CYAW B
CSIDE B
CROLL S
CYAW S
CSIDE S
XCP/LONG
SCP/DIR
BPCOEFF
corrected Mach number
stagnation pressure, psia
liach number probe (pitot) pressure, psia stagnation temperature, ${ }^{\circ} \mathrm{R}$
fres-stream Reynolds number per foot
hast pressure force coefficient along model X-axis
time, sec
Beckman digital channels (DCH6-ALPHA BAL IDENTIFICATION and PREF BP, DCH7 and 8 - CONFIGURATION)
angle of sideslip, deg.
corrected fngle of attack, deg.
normal force coefficient
axial force coefficient
pitching moment coefficient
lift coefficient
drag coefficient
lift-to-drag ratio $\left.\begin{array}{l}\text { rolling moment coefficient } \\ \text { yawing moment coefficient } \\ \text { gide force coefficient }\end{array}\right\}$ rolling moment coefficient yawing moment coefficient $\}$ stability axis side force coefficient $\quad \int$
longitudinal center of pressure directionsl center of pressure average base pressure coefficient
body axis

BP1 - BP6	base pressure, psia
BP AVG	average base pressure, psia
CL MAX	maximum lift coefficient
L/D MAX	maximum lift-to-drag ratio
CL AT L/D MAX	lift coefficient at maximum lift-to-drae ratio
ALP AT L/D MAX	angle of attack at maximum lift-to-drag ratio, deg.
CL ALPHA	slope of lift coefficient versus angle of attack at zero angle of attack, per degree
CN ALPHA	slope of normal force coefficient versus angle of attack at zero angle of attack, per degree
DCM/DCN	slope of pitching moment coefficient versus normal force coefficient at zero angle of attack or zero pitching moment
CM/ALPHA	slope of pitching moment coefficient versus angle of attack at zero pitching moment, per degree
DCM/DCL	slope of pitching moment coefficient versus lift coefficient at zero pitching moment
ALPHA T	value of angle of attack at trim, deg.
CL T	value of lift coefficient at trim
CD T	value of drag coefficient at trim
L/D T	value of lift-to-drag ratio at trim
NF	normal force, lb
$A F$	axial force, lb
PM	pitching moment, in-1b $\quad \begin{aligned} & \text { corrected for } \\ & \text { interactions, }\end{aligned}$
RM	rolling moment, in-lb attitudes, and iares
YM	yawing moment, in-1b
SF	side force, lb

Data Reduction Turn-Around Time

In order to decrease data reduction twrn-around time the following steps must be taken:

1. Engineers should supply Request for Data Reduction Support form and Beckman set-up sheets to ACD data reduction personnel at least one week (earlier if possible) before start of test program.
2. Notify data reduction personnel as soon as possible if quick turnaround ($3-4$ hours) is necessary and for what runs and channels.
3. Check with data reduction personnel if data is late in delivery. Do not notify contract personnel.
4. Keep up with data reduction programs. Do not wait more than two days before contacting data reduction personnel.
5. Inform Branch Head if data reduction falls behind on your test and keep brief records of how much time.

DATA REDUCTION INPUT SHEETS

Copies of all data reduction and plotting input sheets are located in the 20-inch tunnel control rocm.

REQUEST FOR ACD DATA REDUCTION SUPPORT (Page 46)
1 - Standard form used for ACD support for all types of testing.
BECKMAN SETUP SHEET - DIGITAL CHANNEL INPUTS - SHEET I (Page 47)
1-Shows digital channel inputs for reference pressure run, attitude-tare run, and force data run.

2 - Specifies facility data, test number, balance number, balance caifbration date, number of runs, number of Beckman channels (N), and test iicle. Also specifies configuration code for data runs (DCH7 and 8).

BECKMAN SETUP SAEET - ANALOG CHANNELS - SHEET 2 (Page 48)
1 - Shows analog channel locations for balance components, base pressure transducers, Mach probe Baratrons, stagnation pressure and temperature, reference temperature, and gage voltage for the balance and transducers.

2 - Specifies mV. range for balance components (12.5 mV .), Baratrons (100 mV), stagnation temperature (25 mv .) and reference temperature (12.5 mV .). The gage voltages $\mathrm{GV} 1(12.5 \mathrm{mV}$.) and GV $2(25 \mathrm{mV}$.) are set to read 10 mV . and 20 mV ., respectively, on the digital voltmeter. MV ranges for the base pressure and stagnation pressure transducers must be specified for each test. (Note: The stagnation pressure transducers are protected by gage savers and cannot sense full scale pressure.)

20-INCH TUNNEL FORCE PROGRAM CARD INPUTS. SHEET 3, 4, and 5 (Pages 49-51)
1 - Specifies balance number and calibration date, test number, and run number for card input. Cards not used should be left blank.

2 - A description of the card inputs is in "G0590-20INCH TUNNEL FORCE PROGRAM - INPUT DESCRIPTION" (Pages 25-30).

REQUEST FOR ACD
 DATA REDUCTION SUPPORT

\qquad
PROJECT ENGINEER \qquad PHONE \qquad
PROJECT OR TEST NUMBER \qquad TENTATIVE TEST DATE TO \qquad
JOB ORDER \qquad ESTIMATED RUNS OR POINTS \qquad
ACCOUNT NO. \qquad
PROJECT OR TEST TITLE \qquad

\begin{tabular}{|c|c|c|}
\hline CLASSIFICATION: \& UNCLASIIFIED \(\square\) CONFIDEN \& IAL \(\square\) SECRET \(\square\) \\
\hline TYPE OF TEST \& CHARACTERISTICS \& \\
\hline FORCE \(\square\) \& \begin{tabular}{l}
QUANTITIES ONLY COEFFICIENTS \(\square\) \\
OTHER \(\qquad\)
\end{tabular} \& \begin{tabular}{ll}
BASE PRESSURE \& \(\square\) \\
INTERNAL DRAG \& \(\square\) \\
BALANCE NUMBER
\end{tabular} \\
\hline \& \& TRANSDUCER TYPE NUMBER \\
\hline PRESSURE \(\square\) \& \begin{tabular}{ll}
QUANTITIES ONLY \& \(\square\) \\
INTEGRATIONS \& \(\square\) \\
SOEFFICIENTS \& \(\square\)
\end{tabular} \& \begin{tabular}{ll}
\hline INDIVIDUAL GAGES \& \(\square\) \\
SCANIVALVES \& \(\square\) \\
OTHER
\end{tabular} \\
\hline TEMPERATURE \(\square\) \& QUANTITIES ONLY HEAT TRANSFER COEF. \& \begin{tabular}{lll}
THERMOCOUPLE \& \(\square\) \& \\
THERMISTOR \& \(\square\) \& \\
OTHER \& \(\square\) \&
\end{tabular} \\
\hline \& \& TYPE OF. MODULATION \\
\hline DYNAMIC \(\square\) \& \begin{tabular}{l}
quantities only \(\square\) \\
TIME SERIES ANALYSIS \(\square\) OTHER \(\qquad\)

 \&

DIRECT \& \square

FM/FM \& \square

PAM/PDM \& \square

PCM \& \square
\end{tabular}

\hline \multicolumn{3}{|l|}{RECORDING SYSTEM _}

\hline INPUT: CARDS \& \square COMPUTER COMPATIBLE \& TAPE \square OTHER

\hline
\end{tabular}

| nUTPUT: | TABULATED \square | \square | NO. OF COPIES | PLOTS \square | CALCOMP |
| :--- | :--- | :--- | :--- | :--- | :--- |\square

PROCESSING INSTRUCTIONS ATTACHED \square DATA REDUCTION REQUIREMENTS DOCUMENT:

ATTACHED \square TO FOLLOW \square DATE

SUPERVISOR APPROVAL

DATE

G0590 - 20 INCH TUNNEL FORCE PROGRAM
BECKMAN SETUP SHEET - DIGITAL CHANNEL INPUTS SHEET 1 OF \qquad

PROJ. ENGR.

	PHONE
BLD	ROOM
TEST	BALANC
DATA	T0

REVISION YES \qquad NO \qquad
DATE
JOB ORDER
BALANCE CALIB. DATE \qquad
N(40/SEC) \qquad

DIGITAL CHANNEL INPUT FOR EACH TYPE OF RUN
REFERENCE PRESSURE RUN (2 XXX)

DIGITAL CHANNEL	VARIABLE NAME	UNITS NAME	INPUT		
			BASE PRESS.	MACH PROBE	STAG. PRESS.
D 6	PREF BP	PSIA	X. XXX	0000	0000
D 7	PREF PR	PSIA	0000	XX. XX	0000
08	PREF PT	PSIA	0000	0000	XXXX.
D 9	------	---	0000	0000	0000
D 10	---	---	0000	0000	0000

ATTITUDE TARE RUN (IXXX)
(DCH 6 MAY BE USED FOR CONFIGURATION CODE)

DIGITAL	VARIABLE	UNITS		
CHANNEL	NAME	NAME	INPUT	REMARKS
D	6			$X X X X$.
D	7	$D E L T A ~ P H I ~ M O D$	$D E G$.	$X X . X X$
D	8	$D E L T A ~ P H I ~ B A L ~$	$D E G$.	$X X . X X$
D	9	$A L P H A ~ Z E R O$	$D E G$.	$X X . X X$
D	10	ALPHA BAL	$D E G$.	$X X . X X$

FORCE DATA RUN ($x \times x X$)
(USE DCH 7 \& 8 FOR CONFIGURATION CODE AND DCH 6 FOR ALPHA BAL IDENTIFICATION AND PREF BP IN LAST 3 DIGITS)

$\begin{aligned} & \text { DIGITAL } \\ & \text { CHANNEL } \end{aligned}$	VARIABLE NAME	UNITS NAME	INPUT	REMARKS
06	ALPHA BAL ID \& PREF BP		$\begin{aligned} & \text { 1.XXX or } \\ & \text { 2. XXX } \end{aligned}$	1= $\alpha^{\prime}, \quad 2=0$
D 7			XXXX.	
D 8			XXXX.	
D 9	BETA	DEG.	$\frac{X X . X X}{}$	β
D 10	ALPHA BAL	DEG.	XX. XX	α or θ
ACD USE				
				TE
CENTRAL DATA PROCESSING DA				F

ANALOG		OUTPUT		INSTRUMENTATION	REMARKS
CHAN-	RAN-	VARIABLE	UNITS		
A 1	12.5	NORPAL FORCE	LBS.	Balance	Balance No. Calib. Date
A 2	12.5	AXIAL FORCE	LBS.	Balance	
A 3	12.5	PITCHING MOMENT	IN LBS	Balance	
A 4	12.5	ROLLING MOMENT	IN LBS	Balance	
A 5	12.5	YAWING MOMENT	IN LBS	Balance	
A 6	12.5	SIDE FORCE	LBS.	Balance	
A 7		BASE PRESS BPI	PSIA	Trarsducer or Baratron	Circle instrument used
A 8		BASE PRESS BP2	PSIA	Transducer or Baratron	Circle instrument used
A 9		BASE PRESS BP3	PSIA	Transducer or Baratron	Circle instrument used
A 10		BASE PRESS BP4	PSIA	Transducer or Baratron	Circle instrument used
A 11		BASE PRESS BP5	PSIA	Transducer or Baratroll	Circle instrument used
A 12		BASE PRESS BP6	PSIÁ	Transducer or Baratron	Circle instrument used
A 13	100	MACH PROBE ID -1	MV	Baratron	Baratron, No. 19
A 14	100	MACH PROBE PT2-1	PSIA	Baratron	Baratron, No. 19
A 15	100	MACH PROBE ID -2	MV	Baratron	Baratron, No. 20
A 16	100	MACH PROBE PT2-2	PSIA	Baratron	Baratron. ${ }^{\text {NO}} 20$
A 17		STAG PRESS PTI - 1	PSI, 9	Transducer	Range, $0<P T 1 \leq 90$ PSIA
A 18		STAG PRESS PTI - 2	PSIA	Transducer	Range, $0<P T 1<190$ PSIA
A 19		STG P PRESS PTI - 3	PSIA	Transducer	Range, $0<$ PTI <290 PSIA
A 20		ST, $:=$ PRESS PTI - 4	PSIA	Transducer	Range, $0<P T 1<550$ PSIA
A 21	12.5	STAG TEMP REF	MV	$32^{\circ} \mathrm{F}$ cold junction	Iron Constantan
A 22	25	STAG TEMP TT1	DEGR	Thermocouple	Iron Constantan
A 23	12.5	GAGE VOLT GV1	MV	Balance power supply	Used for ACH 1-6
A 24	25	GAGE VOLT GV?	MV	Transducer power supply	Used for ACH 7-12, 17-20..

G0590 - 20-INCH TUNNEL FORCE PROGRAM

G0590-20-INCH TUNNEL FORCE PROGRAM BAL. NO.
BAL. CALIB. DATE

+ If Mach number is not computed list Mach rumber in VALUE column

FORCE DATA ACCURACY ChICULATICNS PROGRAM

Accuracies for each of the six balance components, CL, CD, L/D (MAX) and the three beta derivatives are calculated using the Theorem of Supurposition of Trrors. The angles of attack at which the maxtmum errors in CL and $C D$ occur are calculated. Effect of base pressure error on the axial force is also included. The following inaccuracies are considerer in the calculations.

1. Balance component calibration
2. Malanse zero chift
3. Beckman
4. Angle of attack and angle sidesilp
5. Pressure transducer calibration
6. Dynamic pressure measurement

The inputs include the belance design loads, balance sensitivities, transfer distances, reference area and lengths, average beta derivatives and coefficients, angles of attack and sideslip, maximum L / D, Beckman mV. range, and base pressure error. The computations input and output descriptions, an' input sheet computations follow. Input and output are in U.S. customary unics.
I. COMPUTATIONS (Using the Theorem of Superposition of Errors)

A. BALANCE COMPONENT ERRORS

Four sources of error are considered for each balance component (balance calibration error, balance zero shift ervor, Beckman error, and error due to error in measiring Q). Frror in measuring base pressure is also included in the axifil force error calculation.

1. Conversion of errors to percentage of "alance lesigr Joad for eaci. component
(a) Balance calibration error, $\operatorname{BCPCE}=0.5$ percent
(b) Balance zero shift error, BZPCE $=0.5$ percent
(c) Beckman error, ARPC $=0.1$ percent
$B E()=\frac{(A R)(B C S())(A B P C)}{F D L()}$
Where,
$\mathrm{BE}($) - Beckman percent error for each component
BCS (; - balance sensitivity for each component, $\mathrm{lb} / \mathrm{mV}$ or in-lb/aiV
FDL () - design load for each component, ib or is-lb
$A R$ - Bechnin millivolt range, mV
(d) Frror in force or moment due to error in dynamic pressure, $\Delta Q=0.5$ percent (average based on tunnel conditions from PT $=75$ psia to 440 psia)
$F O M Q=\frac{(F())(\Delta Q)}{F D L()}$

Where,
FONQ - percent error in force or moment due to ΔQ
F() - average force or moment

In general assume $F()=0.5$ (FDL())

Then

FOMQ : 0.5 ($\triangle Q$)
$=0.25$ percent
(e) Base pressure error effect on axial force, BPE, psia
$\mathrm{AFBPE}=\frac{(\mathrm{SB})(\mathrm{BFE})(100)}{\text { FDLAF }}$
AFBPE - percent error of component design load.
SB - base arta, in ${ }^{2}$
$A F B P A V E=\frac{(A F B P E)(F D L A F)}{(C A A V)(Q)(S)}$
AFBPAVE - percent error of a.verage axial force coefficient
CAAV - average axial force coefficient
Q - dynamic pressure, psia
S - reference area, in ${ }^{2}$
2. Combined probable error in forces and moments in percent design load
(a) Normal force

CENF $= \pm\left[(\text { BCPCE })^{2}+(\text { BZPCE })^{2}+(\text { BENF })^{2}+(\text { FOMQ })^{2}\right] \cdot 5$
(b) Axial force
$C E A F= \pm\left[(B C P C E)^{2}+(B Z P C E)^{2}+(B E A F)^{2}+(F O M Q)^{2}+(A F B P E *)^{2}\right]^{5}$
*AFBPE can be deleted.
(c) Pitching moment
\mathcal{U} GPM $= \pm\left[(\text { BCPCE })^{2}+(\text { BZPCE })^{2}+(\text { BEPM })^{2}+(\text { FOMQ })^{2}\right]: 5$
(d) Rolling moment

CEEM $= \pm\left[(\text { BCPCE })^{2}+(\text { BZPCE })^{2}+(\text { BERRM })^{2}+(\text { FOMQ })^{2}\right]^{5}$
(e) Yawing \boldsymbol{T} ment
$C E Y M= \pm\left[(B C P C E)^{2}+(B Z P C E)^{2}+(\text { BEYM })^{2}+(\text { FOMQ })^{2}\right] \cdot 5$
(f) Side force

$$
\text { CESF }= \pm\left[(B C P C E)^{2}+(B Z P C E)^{2}+(B E S F)^{2}+(F O M Q)^{2}\right]^{5}
$$

3. Maximum combined probable error in forces and moments in 1 lb or in-lb
(a) Normal force

DELNF $= \pm[(($ CENF $)($ FDLNF $)) / 100]$
(b) Axial force

DELAF $= \pm[(($ CEAF $)($ FDLAF $)) / 100]$
(c) Pitching moment

DELPM $= \pm[(($ CEPM $)($ FDLPM $)) / 100]$
(d) Rolling moment

DELRM $= \pm[(($ CERM,$~ '$ FDLRM $)) / 100]$
(e) Yawing moment

DELYM $= \pm[(($ CEMM $)($ FDLYM $) / / 100]$
(f) Side force

DELSF $= \pm[(($ CESF $)($ FDLSF $)) / 100]$
4. Maximum combined probable error in force and moment coefficients
(a) Normal force coefficient

DELCN $= \pm[D E L N F /((Q)(S))]$
(b) Axiai force coefficient

DELCA $= \pm[$ DELAF/((Q)(S))]
(c) Pitching moment coefficient

DELCM $= \pm[($ DELPM $+($ XTRANS $)(D E L N F)+($ ZTRANS $)(D E L A F)) /((Q)(S)(C B A R))]$
(d) Rolling moment coefficient

DELCR $= \pm[($ DELRM $+($ ZTRANS $)($ DELSF $)+($ YTRANS $)(D E L N F)) /((Q)(S)(B))]$
(e) Yawing moment coefficient

DELCY $= \pm[($ DELYM $+($ XIRANS $)($ DELSF $)-($ YTRANS $)($ DELAF $)) /((Q)(S)(B))]$
(f) Side force coefficient

DELCE $= \pm[\operatorname{DELSF} /((Q)(S))]$
B. PROBABLE ERROR IN LIFT AND DRAG COEFFICIENTS AND MAXIMUM LIFT TO DRAG RATIO

1. Frrors in lift and drag coefficients were calculated using the average positive angle of attack (AL2MA), average lift coefficient (CLIMA), average drag coefficient (CD2MA), and error in angle of attack (DELALP) in radians.
(a) Lift coefficient

DELCL $= \pm\left[((\text { DELCN })(\operatorname{Cos}(\text { AL2MA })))^{2}+((\text { DELCA })(\operatorname{Sin}(\text { AL2MA })))^{2}\right] \cdot 5$
(b) Drag coefficient

DELCD $= \pm\left[((\text { DELCN })(\operatorname{Sin}(\text { AL2MA })))^{2}+((\text { DELCA })(\operatorname{Cos}(\text { AL2MA })))^{2}\right]^{.5}$
2. Angle of attack at which maximum errors in lift and drag coefficient occur.
(a) Angle at maximum lift coefficient error ALPCL $=\operatorname{TAN}^{-1}[$ (DELCA/DELCN) $]$
(b) Angle at maximum drab coefficient error

ALPCD $=\operatorname{TAN}^{-1}[$ (DELCN/DELCA) $]$
3. Error in maximum lift to drag ratio

$$
D E L O D= \pm\left[\frac{\left[(D E L C L)^{2}+((A L O D)(D E L C D))^{2}\right]^{5}}{C D L O D}\right]
$$

Where ALOD = maximum lift-to-drag ratio
CDLOD $=$ drag coefficient at ALOD
C. PROBABLE ERROR IN BETA SLOPES

1. Frrors in $C_{R_{B}}, C_{Y_{B}}, C_{S_{B}}$ based on average slope values (CRBAV, CYBAC, CSBAV) and measured β difference
(a) Error in CRBETA
$D C R R= \pm\left[\frac{\left.\left[(D E L C R)^{2}+((\mid C R B A V))(D E L B E R)\right)^{2}\right]^{.5}}{D E L E T}\right]$
Where DELBER and DSLBT are in degrees
(b) Error in CYBETA
$D C Y R= \pm\left[\frac{\left[(\text { DELCY })^{2}+((\mid \text { CYBAY } \mid)(\text { DELLBER }))^{2}\right]^{.5}}{D E L B T}\right]$
(c) Error in CSBETA DCSR $= \pm\left[\frac{\left[(\text { DELCS })^{2}+((|\operatorname{CSBAV}|)(\text { DELBER }))^{2}\right]^{-5}}{\text { DELETT }}\right]$
2. Brror in $\mathrm{C}_{\mathrm{R}_{\beta}}, \mathrm{C}_{\mathrm{Y}_{G}}, \mathrm{C}_{\mathrm{S}_{\beta}}$ in percent average slope
(a) CRBETIA

ROLL $= \pm\left[\frac{(\text { DCRR }) 100}{\text { CRBAV }}\right]$
(b) Cybeta

YAA $= \pm\left[\frac{(\text { DCYR }) 100}{\text { CYBAV }}\right]$
(c) CSRETA

SIDE $= \pm\left[\frac{(\text { DCSR }) 100}{\text { CSBAV }}\right]$
II. INPUT DESCRIPTION

TEST
RUNF
RUNL
AMACH
PT
BAL
MONTH
DAY
YEAR
FDLINF
FDLAF
FDLPM
FDLRR
FDLYM
FDLSF
test number
first run number for balance
last run number for balance
free-stream Mach number
stagnation pressure, psia
balance number
balance calibration date
full design load, normal force, ib
full design load, axial force, ib
full design load, pitching moment, in-lb
full design load, rolling moment, in-lb
full design load, yawing moment, in-lb
full design load, side force, ib

BCSNF
BCSAF BCSPM BCSRM BCSYM BCSSF ALIMA DELCBT

Q
AR
SB
BPE
CAAV
CBPE
S
B
CBAR
XTRANS
YTRANS
TITRANS
ALOD
CDLOD
CRBAV
balance component sensitivity, normal force, $\mathrm{Ib} / \mathrm{mV}$ balance component sensitivity, axial force, $\mathrm{lb} / \mathrm{mV}$ balance component sensitivity, pitching moment, in-lb/mV balance component sensitivity, rolling moment, in-ib/mV balance component sensitivity, yawing moment, in-lb/mV」alance component sensitivity, side force, $\mathrm{Ib} / \mathrm{mV}$ average positive angle of attack $\left(\alpha_{\text {MAX }} / 2\right)$, deg measured change in angle of sideslip

$$
\left(\beta_{B=X^{\circ}}-\beta_{\beta=0^{\circ}}\right), \operatorname{deg}
$$

free-stream dynamic pressure, psia
Beckman analog millivolt range, mV
base area, in^{2}
base pressure error (normaily .005), psia average axial force coefficient
compute base pressure error, YES $=0$, NO $=1$
reference area, in ${ }^{2}$
reference span, in
reference chord, in
x transfer distance, in
y transfer distance, in
z transfer distance, in
maximum lift-to-drag ratio
drag coefficient at maximum lift-to-drag ratio average value of $C_{R_{G}}$

CYBAV average value of $\mathrm{C}_{\mathbf{Y}_{\beta}}$		
	CSBAV	average value of $\mathrm{C}_{\mathrm{S}_{\beta}}$
	BCPCE	balance component percent calibration error (normally 0.5 percent of design load), percent
	BZPCE	balance component zero shift error (normally 0.5 percent of design load), percent
	ARPC	Beckman recording system error (normally 0.1 percent of mV range AR), percent
	FOMQ	error due to error in Q (normally 0.25% design load), percent
	DELALP	angle-of-attack error (normally 0.1 percent), deg
	DELAEER	angle-of-sideslip error (normally 0.1 percent), deg
III OUTPUT DESCRIPTION		
	TEST	test number
	FIRST RUN	first run number
	LAST RUN	last run number
	balatice	balance number
	CALIB. DATE	balance calibration date
	MACH NO.	Mach number
	PT	stagnation pressure, psia
	NF	balance normal force
	AF	balance axial force
	PM	balance pitching moment
	RM	balance rolling moment
	YM	balance yawing moment
	SF	balance side force
	CNORMAL	normal force coefficient

CAXIAL	axial force coefficient
CPITCH	pitching moment coefficient
CROLL	rolling moment coefficient
CYAW	yawing moment coefficient
CSIDE	side force coefficient
CL	lift coefficient
$C D$	drag coefficient
L/D (MAX)	Iift-to-drag ratio
CRBETA	$C_{R_{B}}$
CYBETA	$c_{Y_{B}}$
CSBETA	$c_{S_{B}}$
ALPHA (CL)	angle of attack at maximum CL error
ALPFA (CD)	angle of attack at maximun CD error
AFBPE	error in axirl force due to error in base pressure, percent design load
AF'BPAVE	error in axial force due to error in base pressure, percent CAAV

FORCE DATA ACCURACY CALCULATIONS PROGRAM

IMPUT SHETGT

GO310 - BETA DERTVATTVES PROGRAM

The program is capable of computing the 3 beta derivatives, printing an output listing, and generating a plotting tape. There is a limit of 50 points per rum and a limit of 250 runs on a tape. Beta derivatives or slopes can be computed for either the body axis coefficients or the stability axis coefficients or both in the same submission. A "CONFIDENTIAL" header can be printed on the data listing and plots if necessary. Slopes can be plotted using program, GO613 - BEIA DERIVATIVE PLOTTING PROGRAM.

The program uses data from the G0590-20 INCH TUNNEL FORCE PROGRAM answer tape for 2 specified runs (primary ($\beta_{p}=X^{\circ}$) and secondary ($\beta_{s}=Y^{\circ}$) to compute the 3 slopes at each angle of attack (α_{p} and α_{s}).

$$
\operatorname{SLOPE}_{(p-s)}=\frac{\text { Data }_{p}\left(\text { at } \alpha_{p}\right)-\text { Data }_{s}\left(\text { at } \alpha_{s}\right)}{\beta_{p}-\beta_{s}}
$$

where p and s are two different run numbers and $\left|\alpha_{p}-\alpha_{s}\right|$ is less than a specified tolerance (normally $=0.5^{\circ}$). Description of input, output, and input sheets are as follows:

INPUT DESCRIPTION
primary runt
SECONDARY RUN
tolerance

OUTPUT DESCRIPTION
MACH Mach number
TEST test number
RUN
BODY AXIS SLOPES
STABILITY AXIS SLOPES
POINT
ALPHA angle of attack of primary or secondary sun
BETA
AVE ALPHA
$\beta=X^{0}$ run
$B=Y^{0}$ run (Normally $Y^{0}=0^{\circ}$)
angle-of-attack tulerance between primary and secondary runs

ROLU
YAW
SIDE
slope of rolling moment vs. sidesilp curve, $C_{R_{\beta}}$ slope of yawing moment vs. sideslip curve, $C_{Y_{B}}$ slope of side force vs. sidesilp curve, $C_{S_{B}}$

G0310 - BETA DERIVATIVES PROGRAM

$$
\text { SHEET } 1 \quad 0 \text { OF _ }
$$

FAC. \qquad TEST \qquad ENG. \qquad DATE
A.XIS SYSTEM (check one)
\square Compute body axis slopes
\qquad Compute stability axis slopes
\qquad Compute body and stability axis slopes
PLOTTING TAPE FOR G0613 PLOTTING PROGRAM
\qquad Yes
\qquad No
SPECIAL HEADINGS (Check one)
\square None
\qquad "CONFIDENTIAL" and date at top and bottom
"CONFIDENTIAL" and date at top - "GROUP 3...." at bottom
"CONFIDENTIAL" and date at top - "GROUP 4...." at bottom
ANGLE OF ATTACK TOLERANCE
Give value if $\neq .5^{0}$
ADDITIONAL INSTRUCTIONS

G0310 - BETA DERIVATIVES PROGRAM
 CARD INPUT

SHEET
_ \qquad

FAC. \qquad TEST \qquad ENG. \qquad D. 1 TE \qquad

RON

		PRIMARY
1	21	SECONDARY
B		
$\frac{B}{B}$		
B		

Keypunch instructions: Punch B in Column 1, right justify numbers within specified fields.

Program plots slopes from the plotting tape of GS310. Input includes type of plot, paper size, grid size, grid color, and ink color. Additional input are rum number, labels, scale size, symbol size, centered or open symbols, zero lines, and plot location. Input sheets are presented.

G0613 - BETA DERIVATIVE PLOTS

DATA TAPE NOS.

TYPE OF PLOTTER
CALCOMP 12 IN.
CALCOMP 30 IN.
VARIAN

PAPER NO. (GRID SIZE)

CALCOMP 12 IN.
00 (NO GRID)
01 (10/IN.)
02 (20/IN.)
CALCOMP 30 IN.
300 (NO GRID)
301 (10/IN.)
302 (20/IN.) \qquad

ADDITIONAL INSTRUCTIONS

GRIC COIOR
RED ? E EN BLUE

INK COLOR
RED
GREEN
BLACK
BLUE
Keypunch instructions: Puncn everything except DESCRIPTION. Right justify numbers within specified fields.

TEST _______

LATA TAPE NOS.

DATE

ENG.
G0613 - BETA DERIVATIVE PLOTS
CARD INPUT (RUNS TO BE PLOTTED ?

G0613 - beTA derivative plots

G0613 - BETA DERIVATIVE PLOTS
CARD INPUT (PLOT LAYOUT NO_

G0613 - BETA DERIVATIVE PLOTS

G0610 and G0614 - GENTERAL FORCE DA:IA PLOTHITIG PROGRAMS

Programs plot data from answer tape of GS590. G0610 plots symbols only, whereas G0614 plots symbols and fits a spline fairing to the symbols. Input includes type of plot, paper size, grid size, grid color, and ink color. Additional input are rum number, labels, scale size, symbol size, centered or open symbols, zero lines, and plot location. Input sheets are presented.

G0610 or G0614 - GENERAL FORCE DATA PLOTS

SET-UP SHEET

FAC. \qquad TEST \qquad ENG. \qquad DATE
\qquad

TES \qquad

DATA TAPE NOS. \qquad

TYPE OF PLOTTER

CALCOMP 12 IN.
CALCOMP 30 IN. VARIAN \qquad

PAPER NO. (GRID SIZE)
CALCOMP 12 IN. 00 (NO GRID) \qquad
 02 (20/IN.)
CALCOMP 30 IN.
300 (NO GRID)
301 (10/IN.)
302 (20/IN.) \qquad

GRID COLOR
RED GREEN BLUE \qquad

INK COLOR
RED
GREEN
BLACK
BLUE

ADDITIONAL INSTRUCTIONS
G0610 or G0614 - GENERAL FORCE DATA PLOTS CARD INPUT (RUNS TO BE PLOTTED)
TEST_____ DATE____ DATA TAPE NOS.

\pm	CARD No.	description	LOCATION	Value *
1	- 8	9 Column number 34	$35 \quad 38$	$39+5$
J	00001	RLIN TO BE PLOTTED	0001	
3	00002		0002	
3	00003		0003	
3	00004		0004	
J	00005		0005	
J	00006		0806	
1	00007		0007	
J	00008		0008	
3	10009		0009	
3	00010		0010	
3	00011		0011	
J	C0012		0012	
J	00013		0013	
J	00014		0014	
J	00015		0015	
J	00016		0016	
J	00017		0017	
3	00018		0018	
3	00019		0019	
3	00020		0020	
3	00021		0021	
J	00022		0022	
3	00023		0023	
3	00024		0024	
J	00025		0025	

G0610 or G0614 - GENERAL. FORCE OATA PLOTS
card input (runs to be plotted)
ENG. \quad DATE__ DATA TAPE NOS. TEST

J	CARD NO.	DESCRIPTION	LOCALION	Value *
1	8	9 Column number 34	35 _ 38	39
J	00051	RUN TO BE PLOTTED	0051	
J	00052		0052	
J	00053		0053	
3	00054		0054	
J	00055		0055	
3	00056		0056	
J	00057		0057	
J	00058		0058	
3	00059		0059	
J	00060		0060	
3	00061		0061	
3	00062		0062	
J	00063		0063	
J	00064		0064	
\bigcirc	00065		0065	
J	00066		0066	
J	00067		0067	
J	00068		0068	
J	00069		0069	
i	00070		0070	
3	00071		0071	
J	00072		0072	
J	00073		0073	
J	00074		0074	
J	00075		0075	

G0610 or G0614 - GENERAL FORCE DATA PLOTS
CARD INPUT (RUNS TO bE PLOTTED)
TEST___ DATE______ DATA TAPE NOS.
Keypunch instructions: Punch everything except DESCRIPTION. Right justify numbers within specified fields.

G0610 or Ge614 - GENERAL FORCE DATA PLOTS
CARD INPUT (OPTIONS)
ENG. DATE
TEST
Keypunch instructions: Punch everything except DESCRIPTION. Right justify numbers within specified fields.

G0610 or G0614 - GENERAL FORCE DATA PLOTS
CARD INPUT (PLOT LAYCJT NO.___)
ENG._ DATE___ DATA TAPE NOS.
Keypunc:a instructions: Punch everything except DESCRIPTION. Right justify numbers within specified fields.

d	CARD NO.	DESCRIPTION	LOCATION	YALUE
1	48	Column number	$35 \quad 38$	32 52 5
J	00010	A WORD LOACATION	0202	
J	00011	A OFFSE ${ }^{-}$, INCHES FRCM RP	0216	
J	00012	A SCALE, PER INCH	0217	
J	00013	B WORD LOCATION	0203	
J	00014	B OFFSET, INCHES FROM RP	0218	
J	00015	B SCALE, PER INCH	0219	
J	00016	C WORD LOCATION	02.04	
J	00017	C OFFSET, INCHES FROM RP	0220	
J	00018	C SCALE PER INCH	0221	
J	00019	D WORD LOCAIION	0205	
J	00020	D OFFSET, INCHES FROM RP	0222	
J	00021	D SCALE, PER INCH	0223	
J	00022	E WORD LOCATION	0206	
J	00023	E OFFSET, INCHES FROM RP	0224	
J	08024	E SCALE PER INICH	0225	
J	$0 \mathrm{CO25}$	F WORD LOCATION	0207	
J	00020.	F OFFSET, INCHES FROM RP	0226	
J	00027	F SCALE, PER INCH	0227	

G0610 or G0614 - GENERAL FORCE DATA PLOTS

APPENDIX
DESCRIPTION AND CALIBRATION OF THE LANGLEY 2C-INCH
MACH 6 TUNNEL*
By James C. Emery
Langley Research Center
SIMBOLS

Subscripts:
a
p
\mathbf{r}
t total or stagnation
1 condition in set.ling chamber
2
Mach number pressure, MN/ mi^{2} (psia)

see fig. A4), cm (in)
viscosity, $N \mathrm{sec} / \mathrm{m}^{2}\left(10 \mathrm{sec} / \mathrm{ft}^{2}\right)$
rake angle: norizontal, 0°; vertictal, 90°

P fixed probe (see fig. A4)
5 rake probe
condition behind normal shock
difference between Mach number of rake and fixed probe, $M_{r}-M_{p}$
distance measured along longituinal axis of tunnel from centerline of upstream window (positive in upstream direction,
a averag: (always calcuiated witrin the core given in table AII)
"Appendix from NASA IN D-6280, 1971. Revised 5/7"' by J. Wayne Keyes.

APPENDIX

Facility Description

The Langley 20-Inch lach 6 tunnel is a blowdown type with air es the test medium. Figure Al schematically shows the general arrangement of this facility ir which heat transfer, pressure, and force tests are condiujed. The test Mach number is achieved with a fixed-geometry two-dimensicnal contoured nozzle (side walls are parallel) forming a throat section of 0.86 by 50.80 cm (0.339 by 20.0 in) and a test section of 52.00 by $50.8 \mathrm{~cm}(20.5 \mathrm{by} 20.0 \mathrm{in})$. The nozzle length from the throat to the tunnel window centerline measures 2.27 m (89.37 in).

Models can be m wred "ther in a fixed position on the tunnel floor or on injection system: 't top and bottom of the tunnei test section. The opening in the bottom of tre test section measures approximately 132 by 40 cm (52.4 by 15.7 in) for ae 1 wer ingection system which includes a remote controlled sting , upport system capable of moving the model (up to 122 cm (48 in) long) during wind-on operation, through an angle-of-attack lange Eron -5° to 55° and a sideslip-angle range from 0° to -10°. For heat-transfer tests, the lower injeciion system traverses the last 25 cm (9.8 in) in approximately 0.3 sec with a maximun acceleration of $6 \mathrm{~g}\left(1 \mathrm{~g}=9.807 \mathrm{~m} / \mathrm{sec}^{2}\right.$ or $\left.32.2 \mathrm{ft} / \mathrm{sec}^{2}\right)$. For corce tests, the model can also be injected to reduce starting and unstarting loads. For this type of tert the injection time for the last $25 \mathrm{~cm}{ }^{\prime} 3.8$ in) is adjusted to about 0.9 sec with a maximum 2 g accelerction. Detajls of the lower model + ection system including sting support and mounting pad are shown in f jure . The top injection system, i.th a sable opening of 50 by 36 cm
-7 ly 14.2 in) and a similer injecti, $\mathrm{r} \mathrm{m}^{+}$e, is used primarily for heat-
nsfer tests since the mcdel attitude cannot be changed during wind-on O_{1} sration. The top injectinn-system opening and mounting plate are shown in figure A3. A reference Mach number is obtained from a fixed pitot probe mounted in the upper wall of the test section as shown in figure A4.

The tunnel has a movable second minimum and exhausts either into the atmusphere with the aid of an annuiar air ejector or into a 18.3 m (60 ft) dia vacuun sphere or this sphere plus a 12.5 m (41 ft) dia sphere. The tunnel can exhsust to ine vacuum spheres and through the ejector simultaneously. This mode of operation $1 s$ frequently use : Whth force tests to reduce starting and unstarting loads. Tunnel operas,ing conditions are as follows:
Stagnation pressure $0.21 \mathrm{MN} / \mathrm{m}^{2}$ to $3.6 \mathrm{c} \mathrm{MN} / \mathrm{m}^{2}$ (30 to 525 psia)
Stagnation venperature 450 K to $560 \mathrm{~K}\left(810\right.$ to $1018^{\circ} \mathrm{R}$)
Reynolds number........................... $2.3 \times 10^{6} / \mathrm{m}$ to $29.5 \times 10^{6} / \mathrm{m}$
$\left(0.7 \times 10^{6} / \mathrm{st}\right.$ to $\left.9.0 \times 10^{6} / \mathrm{ft}\right)$
Dynamic pressure......................... $3.35 \mathrm{kN} / \mathrm{m}^{2}$ to $57.8 \mathrm{kN} / \mathrm{m}^{2}(0.8$ tc 8.7 fsia)

Running time (maximum):

With 1 sphere....................... $1 \min (18.3 \mathrm{~m}(60 \mathrm{ft}) \mathrm{dia})$

Witi 2 spheres $1.5 \mathrm{~min}(18.3 \mathrm{~m}$ and $12.5 \mathrm{~m}(60 \mathrm{ft}$ and $41 \mathrm{ft})$ dia)

With ejector....................... . 20 min
Tunnel mass flow (maximum)............. $27 \mathrm{~kg} / \mathrm{sec}(60 \mathrm{lbm} / \mathrm{sec}$)
Ejector mass flow......................... 60 to $80 \mathrm{~kg} / \mathrm{sec}$ (133 to $177 \mathrm{lbm} / \mathrm{sec}$)
Tunnel air, heated by an electrical resistance heater, is supplied from a $4.1 \mathrm{MN} / \mathrm{m}^{2}(600 \mathrm{psia})$ reservoir with a storage capacity of $1195 \mathrm{~m}^{3}(58,500 \mathrm{~kg})$ ($42,200 \mathrm{ft}^{3}$ ($129,000 \mathrm{lbm}$)). Air for this reservoir is transferred from a $21.0 \mathrm{NN} / \mathrm{m}^{2}\left(3000\right.$ psia) tank field and/or $a_{3} 34.9 \mathrm{MN} / \mathrm{m}^{2}$ (5000 psia) tank field with a combined stcrage capacity of $8920 \mathrm{~m}^{3}(297,000 \mathrm{~kg})\left(31,500 \mathrm{ft}^{3}(655,000\right.$ lbm)). This combination can supply air to the tunnel and ejector at a maximum combined rate of $127 \mathrm{~kg} / \mathrm{sec}(280 \mathrm{Ibm} / \mathrm{sec})$. An activated alumina dryer provides a dewpoint temperature at $233 \mathrm{~K}\left(419^{\circ} \mathrm{R}\right)$ at a pressure of $4.1 \mathrm{MN} / \mathrm{m}^{2}(600 \mathrm{psia})$. One hundred analog channels and seven digital channels of data can be recorded on a central data recording complex.

Mach Number Calibration

This facility was calibrated by using a l9-tube rake with tubes spaced $2.54 \mathrm{~cm}(1.0 \mathrm{in})$ apart, placed at four stations along the test-section axis. Calibrations were made for both vertical and horizontal positions at each station for four stagnation pressures ranging from $0.5 \mathrm{MN} / \mathrm{m}^{2}$ to $3.0 \mathrm{MN} / \mathrm{n}^{2}$ (72.5 to 435.0 psia).

Previous tunnel calibrations had shown that the Mach number varied with time (time during each run, the time becween runs, and total elapsed time) probably as a result of temperature effects on the boundary layer and nozzle. This phenomenon makes it extremely difficult to obtain an exact caljbration curve of Mach number, since all rake positions could not be take. simultaneously; therefore, the variation in test-section Mach number ΔM is presented as the difference between the Mach numbers calculated from the rake pitot pressures and the fixed-probe pitot pressures. In addition, to further minimize temperature differences between runs, the interior walls of the test section were preheated to $325 \mathrm{~K}\left(585^{\circ} \mathrm{R}\right) \mathrm{p}:$ ior to each survey. Desired test conditions were then established and data were teken at varicus pressures within a time interval of 3 to 5 min .

The Mach number distributions determined from the measured pressures on the rake and fixed position probe are presented for each axial station and test conditi~n in table AI. The variation in test-section Mach number ΔM obtained from these data is presented in figure A5 along with the Mach number for the fixed probe.

For convenience in determining the practical size of models to be tested in this facility, the variation in the test core size with pressure and axial station is shown in figure A6. These cores were obtained from the data of table AI or figure A5 and represent the region where the maximum Mach number variation was approximately ± 0.02 in the horizontal and vertical planes. The average values of ΔM within each core are given in figure AT and table AII. Figure AT suggests a possible fairing of these averages. The average Mach number at any station may be determined by adding $\Delta M_{\text {a }}$ to the measured prove Mach number. This method assumes the same effect of temperature on Mach number at each point in the test section. Figure A8 illustrates how the Mach number differential for two repeat runs decreases when the rake Mach numbers are referred to the fixed probe.

The Reynuids number for various temperatures and pressures is presented in figure A9. Also shown are the values of the pressuies and temperatures for liquefaction obtained from reference l and the viscosity relationship from reference 2.

REFERENCES

1. Buhler, R. D.; and Nagamatsu, H. T.: Condensation of Air Components in Hypersonic Wind Tunnels - Theoretical Calculations and Comparison With kiperiment. GALCIT Men. No. 13 (Contract No. DA-04-495-0rd-19), Dec. l, 1952.
2. Bertram, Mitchel H.: Comment on "Viscosity of Air." J. Spacecraft Rockets, vol. 4, no. 2, Feb. 1967, p. 287.

TABLE AI. - MACH NUMBER CALCULATED FROM $p_{t, 2} \backslash p_{t, 1}$
(a) $\mathrm{p}_{\mathrm{t}, 1}=0.52 \mathrm{MN} / \mathrm{m}^{2}$
(75.4 psia); $\quad \mathrm{T}_{\mathrm{t}, 1}=478 \mathrm{~K}\left(860^{\circ} \mathrm{R}\right)$

$\mathrm{cm}^{\mathrm{s}^{\prime}}(\mathrm{in} .)$	M for -							
	$\mathrm{x}^{1}=21.59 \mathrm{~cm}(8.5 \mathrm{in}$.		$\mathrm{x}^{\prime}=1.59 \mathrm{cms}$ (0.6 in.)		$x^{\prime}=-25.40 \mathrm{~cm}(-10.0 \mathrm{in}$.		$\mathrm{x}^{\prime}=-55.88 \mathrm{~cm}(-22.0 \mathrm{in}$.	
	$\phi=0^{\circ}$	$\phi=90^{\circ}$	$\phi=0^{\circ}$	$\phi=90^{\circ}$,$=0$,	$\phi=90^{\circ}$	$\bigcirc=0^{\circ}$	$\Delta=90^{\circ}$
22.86 (9.0)	8.24	7.57	8.72	7.54	----	7.48	----	7.44
20.32 (8.0)	6.15	6.26	6.57	6.29	6.98	6.07	7.73	6.28
17.78 (7.0)	5.96	6.00	5.78	5.98	5.89	5.86	6.06	5.97
15.24 (6.0)	5.94	5.98	5.92	5.97	5.87	5.86	5.92	6.00
12.70 (5.0)	5.92	5.97	5.93	5.93	5.91	5.88	5.94	5.75
10.16 (4.0)	5.91	5.95	5.94	5.91	5.90	5.89	5.92	5.96
7.62 (3.0)	5.91	5.93	5.94	5.91	5.89	5.89	5.96	5.97
5.08 (2.0)	5.91	5.90	5.93	5.92	5.91	5.90	5.98	5.89
2.54 (1.0)	5.88	5.90	5.92	5.91	5.91	5.90	5.97	5.98
0	5.88	5.91	5.91	5.92	5.91	5.90	5.97	5.99
-2.54 (-1.0)	5.88	5.90	5.92	5.91	5.91	5.89	5.98	5.98
-5.08 (-2.0)	5.91	5.91	5.93	5.91	5.90	5.90	5.97	5.98
-7.62 (-3.0)	5.91	5.93	5.95	5.9:	5.90	5.89	5.94	5.97
-10.16 (-4.0)	5.92	5.96	5.94	5.91	5.90	5.89	5.94	5.93
-12.72 (-5.0)	5.92	5.98	5.93	5.91	5.92	5.87	5.95	5.94
-15.24 (-6.0)	5.97	5.99	5.91	5.93	5.89	5.83	5.94	5.97
-17.78 (-7.0)	5.97	3.01	5.95	5.97	5.99	5.86	6.37	5.95
-20.32 (-8.0)	6.83	----	7.26	6.31	7.78	6.17	8.30	6.25
-22.00 (-9.0)	836	7.58		7.54	----	7.28	----	7.29
M_{p}	5.912	5.944	5.941	5.944	5.905	5.890	5.953	5.960

(b) $\mathrm{p}_{\mathrm{t}, 1}=1.14 \mathrm{MN} / \mathrm{m}^{2}(165.3 \mathrm{psia}) ; \quad \mathrm{T}_{\mathrm{t}, 1}=478 \mathrm{~K}\left(860^{\circ} \mathrm{R}\right)$

$\mathrm{cm}^{\mathrm{s}^{\prime},(\mathrm{n} .)}$	M for -							
	$\mathrm{x}^{\prime}=21.59 \mathrm{~cm}(8.5 \mathrm{in}$.		$\mathrm{x}^{\prime}=1.59 \mathrm{~cm}(0.8 \mathrm{~mm}$.		$x^{\prime}=-95.40 \mathrm{cms}(-10.0 \mathrm{in}$.		$\left.\mathrm{x}^{\prime}=-55.88 \mathrm{~cm} \mathrm{f} 2.2 .0 \mathrm{im}.\right)-$	
	$\phi=0^{\circ}$	$\phi=90^{\circ}$	$\phi=0^{\circ}$	$\phi=90^{\circ}$	$\phi=0^{\circ}$	$\phi=90^{\circ}$	$\phi=0^{\circ}$	$\phi=90^{\circ}$
22.86 (9.0)	8.09	7.27	8.46	7.26	8.94	7.26	--.--	7.00
20.32 (8.0)	6.05	6.06	6.20	6.10	6.65	6.01	7.33	5.97
17.78 (7.0)	6.02	6.02	5.95	5.99	5.96	5.94	5.98	8.06
15.24 (6.0)	6.00	6.c!	5.95	5.98	5.97	5.94	5.98	5.93
12.70 (5.0)	5.99	4.53	5.95	5.94	5.98	5.95	5.99	5.96
10.16 (4.0)	5.98	\% 98	3.95	5.92	5.97	5.96	5.99	6.00
7.62 (3.0)	5.98	5.96	5.96	5.92	5.97	5.97	6.02	6.00
5.08 (2.0)	5.97	5.93	5.94	5.92	5.97	5.96	6.03	5.97
2.54 (1.0)	5.95	5.93	5.93	5.92	5.99	5.97	6.04	6.01
0	5.95	5.95	5.93	5.92	5.98	5.97	6.04	6.01
-2.54 (-1.0)	5.96	5.93	5.93	5.92	5.98	5.96	6.04	6.01
-5.08 (-2.0)	5.98	5.95	5.93	5.9:	5.98	5.97	6.03	6.01
-7.62 (-3.0)	5.98	5.97	5.96	5.9?	5.98	5.97	6.02	6.00
-10.16 (-4.0)	5.98	5.99	5.96	5.93	5.97	5.96	6.00	5.97
-12.72 (-5.0)	5.98	6.00	5.95	5.95	5.99	5.95	6.00	5.97
-15.24 (-6.0)	6.03	6.01	593	5.99	5.96	5.93	6.01	5.99
-17.78 (-7.0)	6.03	6.02	5.99	6.00	5.98	5.84	6.09	6.00
-20.32 (-8.0)	6.47	-...-	6.88	6.08	7.50	6.09	8.02	6.04
-22.86 (-9.0)	8.86	7.36	---	7.26		7.19		7.01
Mp	5.986	5.974	5.947	5.962	5.973	5.965	5.994	5.982

TABLE AI. - MACH NUMBER CALCUATED FROM $p_{t, 2} \backslash p_{t, 1}$ - Concluded
(c) $p_{t, 1}=2.17 \mathrm{MN} / \mathrm{m}^{2}(314.7 \mathrm{psia}) ; \mathrm{T}_{\mathrm{t}, 1}=478 \mathrm{~K}\left(860^{\circ} \mathrm{R}\right)$

$\operatorname{cm}^{s^{\prime}}(\mathrm{in} .)$	M for -							
	$\mathrm{x}^{\prime}=21.59 \mathrm{~cm}(8.5 \mathrm{in}$.		$\mathrm{x}^{*}=1.59 \mathrm{c} \cdot(0.6 \mathrm{ir}$.		$x^{\prime}=-25.40 \mathrm{~cm}(-10.0 \mathrm{~m}$.		$\mathrm{x}^{\prime}=-5588 \mathrm{~cm} \mathrm{(-22.0} \mathrm{in)}$.	
	$\phi=0^{\circ}$	$\phi=90^{\circ}$	$b=0^{\circ}$	$\phi=90^{\circ}$	$\phi=0^{\circ}$	$\phi=90^{\circ}$	$\phi=0^{\circ}$	$\phi=90^{\circ}$
22.86 (9.0)	7.71	7.03	8.11	6.94	8.69	7.00	----	6.81
20.32 (8.0)	6.04	6.02	6.06	6.05	6.39	6.02	6.99	5.99
17.78 (7.0)	6.04	6.04	5.98	6.01	5.98	5.97	5.98	6.12
15.24 (6.0)	6.03	6.03	5.98	6.01	6.00	5.97	6.00	5.71
12.70 (5.0)	6.02	6.02	5.98	5.97	6.00	5.98	6.00	5.99
10.16 (4.0)	6.01	6.01	5.99	5.95	6.00	5.99	$6 .{ }^{\circ}$	6.03
7.62 (2.0)	6.00	5.99	5.98	5.95	5.99	5.99	6.	6.03
5.08 (2.0)	5.99	5.96	5.96	5.96	6.00	5.99	6.03	6.92
2.54 (1.0)	5.98	5.95	5.96	5.96	6.02	5.99	6.04	6.04
0	5.98	5.98	5.95	5.96	6.01	6.00	6.04	6.04
-2.54 (-1.0)	5.99	5.97	5.96	5.96	6.01	5.99	6.05	6.03
-5.08 (-2.0)	6.00	5.87	5.96	5.96	6.00	3.00	6.03	6.04
-7.62 (-3.0)	6.00	5.98	5.99	5.95	6.0 r.	0.00	6.03	8.03
-10.16 (-4.0)	6.02	6.01	5.98	5.96	6.00	5.99	6.01	6.02
-12.72 (-5.0)	6.01	6.02	5.98	5.98	6.02	5.98	6.01	6.01
-15.24 (-6.0)	6.05	6.03	5.97	6.01	5.99	5.98	6.03	6.03
-17.78 (-7.0)	6.04	6.04	5.99	6.03	6.00	5.96	6.02	6.04
-20.32 (-8.0)	6.01	6.04	6.54	6.02	7.16	6.04	7.68	6.03
-22.86 (-9.0)	8.52	7.12	8.82	7.04	----	6.39	----	6.86
M_{p}	5.997	5.993	5.965	5.980	5.990	5.981	6.011	6.002

(d) $\mathrm{p}_{\mathrm{t}, 1}=3.03 \mathrm{MN} / \mathrm{m}^{2}(439.5 \mathrm{psia}) ; \quad \mathrm{T}_{\mathrm{t}, 1}=478 \therefore\left(860^{\circ} \mathrm{R}\right)$

$\mathrm{cm}^{\mathrm{s}^{\prime}}(\mathrm{in} .)$	M for -							
	$\mathrm{x}^{\prime}=21.59 \mathrm{~cm}(8.5 \mathrm{in}$.		$x^{\prime}=1.59 \mathrm{~cm}$ (0.6 in.)		$\mathrm{x}^{\prime}=-25.40 \mathrm{~cm}(-10.0 \mathrm{in}$.		$\mathrm{x}^{\prime}=-55.88 \mathrm{~cm}(-22.0 \mathrm{in}$.	
	$\phi=0^{\circ}$	$\phi=90^{\circ}$	$0=0{ }^{\circ}$	$\phi=90^{\circ}$	$\phi=0^{\circ}$	$\phi=50^{\circ}$	$\phi=0^{\circ}$	$\phi=90^{\circ}$
22.86 (9.0)	7.48	6.95	7.90	6.89	8.49	6.94	8.92	6.77
20.32 (8.0)	6.04	6.02	6.03	6.05	6.26	6.03	6.79	6.02
17.78 (7.0)	6.05	6.05	5.99	6.02	5.98	5.97	5.99	6.11
15.24 (6.0)	6.03	6.03	5.98	6.01	6.01	5.97	5.01	5.91
12.70 (5.0)	6.02	6.02	5.97	5.99	6.00	5.98	6.00	5.99
10.16 (4.0)	6.00	6.02	5.98	5. 36	6.00	5.99	6.01	6.02
7.62 (3.0)	6.00	5.99	5.98	$5 . 〔 6$	5.99	5.99	6.03	6.03
5.08 (2.0)	5.99	5.97	5.96	5.97	6.00	5.99	6.03	6.03
2.54 (1.0)	5.98	5.96	5.96	5.96	6.01	5.99	6.04	6.04
0	5.99	5.98	5.95	5.96	6.01	5.99	6.04	6.04
-2.54 (-1.0)	5.99	5.97	5.96	5.97	6.0 :	5.98	6.04	6.03
-5.08 (-2.0)	5.99	5.98	5.95	5.96	6.00	5.99	6.03	6.04
-7.62 (-3.0)	6.00	6.00	5.98	5.96	6.00	6.00	6.03	6.02
-10.16 (-4.0)	6.02	6.02	5.98	5.97	5.99	5.99	6.01	6.02
-12.72 (-5.0)	6.01	6.03	5.98	5.99	6.02	5.98	6.02	6.00
-15.24 (-6.0)	6.05	6.04	5.96	6.02	5.98	5.98	6.03	6.03
-17.78(-7.0)	6.05	6.04	5.99	6.03	6.00	5.97	6.01	6.04
-20.32 (-8.0)	6.15	6.03	6.39	6.02	6.99	6.05	7.48	6.05
-22.86 (-9.0)	8.34	7.06	8.65	6.98	----	6.95	---	6.79
M_{p}	5.997	5.995	5.984	5,982	5.995	5.981	6.012	6.006

TABLE AII. - TUNNEL FLOW PARAMETERS

${ }_{\mathrm{cm}}{ }^{\prime \prime}(\mathrm{in} .)$	$\begin{gathered} \mathrm{p}_{\mathrm{t}, 2^{\prime}} \\ \mathrm{MN} / \mathrm{m}^{2}(\mathrm{psia}) \end{gathered}$	$\underset{d y}{\phi_{y}}$	M_{p}	$\Delta \mathrm{M}$	ΔM_{a}	Core size cm (in.)
21.59 (8.5)	0.52 (75.4)	0	5.912	-0.007	-0.018	25 (9.8)
21.59 (8.5)	. 52 (75.4)	90	5.944	-. 032		16 (6.3)
1.59 (0.6)	0.52 (75.4)	0	5.941	-0.011	-0.020	33 (13.0)
1.59 (.6)	. 52 (75.4)	90	5.944	-. 029		28 (11.0)
-25.40 (-10.0)	0.52 (75.4)	0	5.905	-0.004	-0.004	33 (13.0)
-25.40 (-10.0)	. 52 (75.4)	90	5.890	-. 004		31 (12.2)
-55.88 (-22.0)	0.52 (75.4)	0	5.953	-0.001	+0.002	31 (12.2)
-65.88 (-22.0)	. 52 (75.4)	90	5.960	+. 004		28 (11.0)
21.59 (8.5)	1.14 (165.3)	0	5.986	-0.013	-0.018	26 (10.2)
21.59 (8.5)	1.14 (165.3)	90	5.974	-. 024		18 (7.1)
1.59 (0.6)	1.14 (165.3)	0	5.947	-0.002	-0.016	33 (13.0)
1.59 (.6)	1.14 (165.3)	90	5.962	-. 030		28 (11.0)
-25.40 (-10.0)	1.14 (165.3)	0	5.973	+0.005	-0.002	36 (14.2)
-25.40 (-10.0)	1.14 (165.3)	90	5.965	-. 010		36 (14.2)
-55.88 (-22.0)	1.14 (165.3)	0	5.994	+0.023	+0.017	31 (12.2)
-55.88 (-22.0)	1.14 (165.3)	90	5.982	+. 012		28 (11.0)
21.59 (8.5)	2.17 (314.7)	0	5.997	+0.001	-0.009	23 (9.1)
21.59 (8.5)	2.17 (314.7)	¢0	5.993	-. 020		16 (6.3)
1.59 (0.6)	2.17 (314.7)	0	5.965	+0.009	-0.006	36 (14.2)
1.59 (.6)	2.17 (314.7)	90	5.980	-. 022		26 (10.2)
-25.40 (-10.0)	2.17 (314.7)	0	5.990	+0.014	+0.009	36 (14.2)
-25.40 (-10.0)	2.17 (314.7)	90	5.981	+. 005		36 (14.2)
-55.88 (-22.0)	2.17 (314.7)	0	6.011	+0.016	+0.020	33 (13.0)
-55.88 (-22.0)	2.17 (314.7)	90	6.002	+. 025		28 (11.0)
21.59 (8.5)	3.03 (439.5)	0	5.997	+0.002	-0.007	26 (10.2)
21.59 (8.5)	3.03 (439.5)	90	5.995	-. 016		18 (7.1)
1.59 (0.6)	3.03 (439.5)	0	5.964	+0.006	-ก.003	33 (13.0)
1.59 (.6)	3.03 (439.5)	90	5.982	-. 013		$2 €(10.2)$
-25.40 (-10.0)	3.03 (439.5)	0	5.995	+0.008	+0.005	36 (14.2)
-25.40 (-10.0)	3.03 (439.5)	90	5.981	+. 003		36 (14.2)
-55.88 (-22.0)	3.03 (439.7)	0	6.012	+0.009	+0.013	36 (14.2)
-55.88 (-22.0)	3.03 (439.5)	90	6.006	+. 018		28 (11.0)

*See Table 3 of text for stret hand head locations and dimenions.
(a) Overall view

Flgure A2. - Lower model intection-systen for the langley po-inch :ach 6 tunnel. All aimensions are in cm (in.)

Figure A2. - Concluded.
Figure A3. - Tno injection - system opening for Langley 20 -inch Mach 6 tunnel. All dimensions are in cm (in.)

Figure AT.- Variation of ΔM_{a} with x^{\prime}.

(a) Rake Macin number distribution with no adjustment.

(b) Differential Mach number distribution.

ORIGINAL PAGE IS OF POOR QUALITY
$\begin{aligned} & \text { Figure AB. }- \text { Mach number variation with time. } x^{\prime}=1.59 \mathrm{~cm}(0.6 \mathrm{in} .) \text {; } \\ & \phi=90^{\circ} ; p_{t, 1}=3.03 \mathrm{mv} / \mathrm{m}^{2}(439.5 \mathrm{paia}) .\end{aligned}$

