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RESULTS OF GRAPHITE-POLYIMIDE ISOGRID PANEL TESTING
 

By
 

M.W. Hyer' and Dale 0. Douglas2
 

1.0 INTRODUCTION
 

Polyimide resins offer the potential of using fiber-reinforced
 

composites in structures required to operate at elevated tempera­

tures. McDonnell-Douglas, under contract with-NASA Langley
 

Research Center, conducted a program to develop a procedure for
 

fabricating short-fiber HTS graphite and NR150B2 polyimide resin
 

into an isogrid configuration. The program involved molding tool
 

development, molding cycle development, testing samples for material
 

properties, and fabricating several panels. Two of the panels were
 

open isogrid panels while a third panel was reinforced with a
 
T300/NRI5OB2 polyimide skin. After fabrication, the panels were
 

given to the Langley Research Center for structural analysis and
 

testing. The testing program is the subject of this report.
 

Details of the fabrication are given in reference 1.
 

2.0 DESCRIPTION OF THE PANELS
 

Figures 1 and 2 show open isogrid panels 7 and 8,
 

respectively. The two open isogrid panels are identical except
 

for minor imperfections. These are circled in the figures.
 

Initially, McDonnell-Douglas had problems with resin starving
 

1 Assistant Professor, Department of Mechanical Engineering and 
Mechanics, Old Dominion University, Norfolk, Virginia 23508. 

2 Research Assistant, Department of Mechanical Engineering and 
Mechanics, Old Dominion University, Norfolk, Virginia 23508. 



during the fabrication process and six panels were fabricated
 

before a satisfactory panel resulted. However, no panel was
 

completely free of resin starving but on the test panels there
 

were only a few isolated areas.
 

The imperfections in panel 7 did not penetrate the legs in
 

the grid work as deeply as the imperfections in panel 8 and were
 

most obvious from the back. Figure 3 shows a detail of the back
 

of panel 7 in the area of the imperfections. Figures 4 and 5
 

show details of the front and back sides, respectively, of panel
 

8 in the area of the imperfections.
 

Figure 6 shows the geometry of the panel. In order to enhance
 

the release of the panel from the mold, there was a slight taper in
 

the width of the members in the thickness direction.
 

Figures 7 and 8 show the isogrid panel with skin. The skin
 

was 1.016 mm thick and was bonded to the-grid work with American
 

Cyanamide's FM34 adhesive.
 

3.0 ANALYSIS
 

The panels were to be loaded in compression with a uniform
 

in-plane loading across the top-and bottom end of the panel and
 

supported on all four sides. An equivalent plate theory was
 

developed by McDonnell-Douglas to predict the in-plane load­

deflection behavior, buckling load and proportion of load carried
 

by the central lattice and longitudinal side edges. The
 

equivalent plate method of analysis was done by determining
 
"smeared out" stiffnesses and thicknesses so the panels could
 

be considered as a solid, continuous sheet of material with
 

appropriate geometric and elastic properties. Classical plate
 

eqations (see for example ref. 2) could then be used to predict
 

the behavior.
 

The precedure for determining the equivalent continuous
 

panel is based on first principles from theory of elasticity and
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Kirchhoff plate theory. The procedure is quite straightforward,
 

but it is not necessary to go through this procedure for each panel
 

because, as a result of the analysis, simple relations exist between
 

the parameters of the isogrid panel, such as triangle height,
 

rib width, rib thickness, Young's Modulus, etc., and the parameters
 

for an equivalent, solid, continuous plate. The formulas are
 

repeated here for convenience. The number in parenthesis after
 

the various formulas are the values used here in comparisons
 

between experiment and theory.
 

The equivalent Young's Modulus, E* , for an open isogrid 

panel is given by 

(i)E* E b 

where
 

E = Young's Modulus of the material (105 x 109 N/m2) 

b = rib width (3.33 mm) 

h = height of one isogrid triangle (41 mm) 

For the skin stiffened panel E* is given by
 

E* = E (1 + a)2
 
-E(2)
 

bd
 - t (.304)
 

t = skin thickness (1.016 mm) 

d = rib thickness (3.81 mm) 
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= [3a(1 + 5)2 + (1 + a) (1 + U62)]A (5.24) 

-d6- (3.75)
t 

and the equivalent panel thickness, t* , is given by 

t* = t (3)

1+a
 

These equivalent values can be substituted into the equation
 

for critical buckling load, assumed by McDonnell-Douglas to be
 

3
N 3.29 Et (4)
-r 1 2 w
cr ­

where 

N = buckling load 

E'= Young's Modulus
 

t = panel thickness
 

w = loaded width
 

= Poisson's ratio = .3 (ref. 1, p. 30) 

Equation (4) assumes a square plate simply supported on four
 

sides. This formula is conservative in that a rectangular plate.,
 

which is the case of the isogrid panels, can support higher loads,
 

depending on aspect ratio. Using the outside dimensions, the
 

aspect ratio for the isogrid panels is 1.39. Using this, the
 

equation for the critical buckling load is
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N - ___=_4 _ Et3 3 (5)
1 - V 2 w


The proportion -of the in-plane load carried by the grid and
 

longitudinal sides was determined by assuming the applied load
 

causes an in-plane deflection which is uniform across the ends
 

and by assuming the grid acts as a whole and each side individually,
 

resulting in three components resisting inr-plane compression.
 

With the in-plane deflection being uniform across the ends, each
 

component is subject to the same strain and with the in-plane
 

E of the grid, the E of the side pieces and the respective
 

areas, the load in each component can be determined. The results
 

are
 

P2 22Ih
 
(6)
T- b92 

where
 

P1 
f = load carried by one longitudinal side 

P 2 = load carried by grid 

P1 + P2 = total load carried by panel
 

ZI = width of side piece (6.6 mm)
 

tZ = width of grid area (170.7 mm)
 

h = height of one isogrid triangle (41 mm)
 

b = rib width (3.33 mm)
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Note, the proportioning of load is independent of E . Underlying 

this is the assumption that E doesn't vary from position to 

position on the panel. As noted previously, the value of E 

actually used in the calculations was taken to be 105 x 109 N/m2 

a value provided by McDonnell-Douglas (ref. 1, p. i). 

4.0 PANEL TESTING
 

4.1 Testing of Isogrid Panel 7
 

Open isogrid panel number 7 was tested with the testing fix­

ture supplied by McDonnell-Douglas. The fixtures were designed
 

to simulate simple supports on all four sides. The top and bottom
 

ends of the panel were potted in fittings shown in figure 9 using
 

HYSOL TC-5467/HD-0111. The fittings were partially sawed through
 

so that when the panel started to buckle the material in the cut
 

region would yield, forming a plastic hinge which would produce
 

little resistance to rotation but would restrict out-of-plane
 

displacement. The longitudinal edges of the panel were restricted
 

from out-cf-plane displacement by the knife edges shown in figure
 

10. The slots in the knife edge supports allowed the knife edges
 

to be clamped tightly enough along the longitudinal edges so the
 

knife edges did not need additional support. However, as a
 

precaution, the bottom end of the knife edges were resting on
 

compressible rubber pads. Since the upper and lower ends of the
 

panel could not displace out-of-plane and the knife edges did not
 

allow curvature to develop, the displacement of the panel was zero
 

along the longitudinal edges. However, due to expected in-plane
 

shortening of the panel, due to the compressive in-plane load, the
 

knife edges were shorter than the distances between the end fittings.
 

When mounted in the test fixture, there was about .20 mm length of
 

unsupported longitadinal edge at the top end of the knife edge.
 

The panel response was measured with strain gages and direct­

current displacement transducers (DCDT). Figure 11 shows the
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locations of the measurements. Strain gages 1, 16, 33, and 48 meas­

ured the uniformity and magnitude of the loading through the longi­

tudinal sides, and gages 25 through 32 and 34 through 47 measured
 

the load supported by the grid. Due to the small size of the panel
 

and the lack of symmetry, it was felt that perhaps a representative
 

leg did not exist so all legs were gaged. The out-of-plane dis­

placement of each node was measured with a DCDT. In addition, the
 

in-plane shortening of the panel was measured with a DCDT. The
 

panel was mounted in the loading machine so the observer would nor­

mally view the panel with an orientation shown in figure 11 and with
 

the narrower widths of the mold-release tapered legs closest to the
 

observer. Note that in figures 1 to 5, the orientations of the panels
 

vary from the orientation shown in figures 6 and 11. All subsequent
 

discussions refer to the orientation in figure 11.
 

After several low level loadings to check instrumentation and
 

to check for any unexpected eccentricities, the panel was loaded to
 

failure. As the load was increased from zero the panel began to
 

bow. In general, the out-of-plane deflections varied linearly
 

with load up to about 6200 N and reached 0.1 mm at the center of
 

the panel. After that level, the out-of-plane deflections began
 

to increase more rapidly with load. Initially, the bottom row
 

of nodes moved out-of-plane in a direction opposite to the
 

movement of the other rows. As the load increased, the bottom
 

row reversed direction, and all nodes moved in the same direction
 

(away from the observer when referring to fig. 11). Figure 12
 

shows the in-plane load-deflection behavior and figure 13 shows
 

the out-of-plane deflection at node 6, a representative node.
 

After 8800 N the exact sequence of events is uncertain; however,
 

at about 8800 N, a plastic hinge formed at the partial cut in the
 

top end piece and the piece began to.rotate. Referring to figure
 

13, it is evident that the out-of-plane deflections, and thus
 

the rotation of the.pfastic hinge, continued to increase
 

substantially. The rotation of the hinge was limited by the
 

width of the saw cut, a gap of .508 mm. However, accompanying
 

the rotation of the end piece was a bending failure of the
 

longitudinal edge pieces above the knife edges, in the gap left
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for in-plane shortening. The failure above the knife edge was
 

unexpected, but as soon as the plastic hinge formed and allowed
 

rotation, the only place the longitudinal edge pieces could
 

develop curvature was in the region not supported by the knife
 

edge. The leveling off in load at the end of the in-plane
 

load-deflection history, figure 12, is attributable to this
 

bending failure.
 

It is impossible to determine what the load capacity of the
 

panel would have been had the longitudinal sides not failed in
 

bending. However, in-plane stiffnesses (in-plane E ) and
 

proportion of total load through the ribs and longitudinal sides
 

could be calculated.
 

Using the slope of the in-plane load-deflection curve (fig.
 

12), in-plane Young's Modulus is determined to be
 

Ein-plane = 7.2 x 109 N/m 2
 

Using equation (1), the theoretically predicted value of the
 

in-plane Young's Modulus is
 

2
Ein-plane = 8.45 x 109 N/m 

The proportioning of the total load was determined using strain
 
data from the gaged ribs and longitudinal side pieces. For a
 

total load of 1808 N,
 

P2
 
- .72
 

For a total load of 6142 N
 

P2
 
- .70
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P2
 

This compares with .95 from equation (6) which, of course,
 

is load-independent.
 

Figures 14, 15, and 16 show, respectively, the nodal deflec­

tions at three load levels: a low load, 1808 N, and two higher
 
loads, 6142 N and 12751 N. Generally, small imperfections would
 
determine the deflection behavior at low load levels while the
 

buckling mode shape would determine the deflections at higher
 

loads.- On the other hand, large imperfections would dominate the
 
deflections at all load levels. Thus a comparison of out-of-plane
 

displacements at high and low load levels would indicate the degree
 

to which imperfections dominate the buckling behavior. However,
 

since bending of the longitudinal sides above the knife edges
 
dominated the deflections at high load levels, it is not certain
 

that the comparison is meaningful in this case. Since, as seen
 
in figures 14, 15, and 16, the lower row of nodes moved in a
 
direction opposite of the other nodes and node 15 remained
 

stationary, as the load was increased, local imperfections somewhat
 
governed the behavior. At the high load level, the top end out­

of-plane deflections would necessarily be larger because the
 

bending of the longitudinal sides at that end deflected the top
 
backwards. During the loading process, local failures were
 

observed at some of the nodes causing discontinuities in slope and
 
no doubt contributing to the behavior of neighboring nodes.
 

As a matter of interest, another measure of imperfection was 
calculated. It is based on the following argument. Referring to 
figure 17, a column with an initial eccentricity of e and a ­

deflection d , measured from the unloaded position, induced by 

load F will have an internal moment, M , given by 

M = F (e + d)
 

Writing this as
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M = Fe (1 + d) = Fd (1 +
 

dd
 

it is obvious for small , i.e., when the load is small, the 

slope of the moment-force curve is 1. while for small 2 , i.e.,
e1 

when the load is large, the slope is . Figure 18 shows a plot 

of M across the gaged portion of the panel versus applied load. 

The moment was calculated using strains from the back-to-back gages 

on the grid legs. Since the longitudinal sides have no curvature 

at that point on the panel, they do not enter into the calcula­

tions for M . The plot indicates an initial eccentricity Of 

0.043 mm, not a large number considering the panel is 3.81 mm
 

thick. However, this is an equivalent eccentricity and the result
 

of effects which could, overall, cancel each other but locally
 

have a strong effect; For example, the slight taper on the legs
 

for mold release purposes shifts the neutral axis toward the
 

rear of the panel. In addition,. inspection of the panel before
 

plotting indicated initial curvature in both directions. Based on
 

the behavior of the nodes during loading, there were local effects
 

which did not show up in this global eccentricity calculation.
 

Figure 19 indicates the strain in gages 1, 16, 33, and 48.
 

It is evident that each leg carried approximately the same load
 

and the load was uniform along its length.
 

4.2 Testing of Isogrid Panel 8
 

In order to avoid problems with the plastic hinge rotation
 

and localized bending at the ends of the knife edges, the test fix­

tures were modified for the second open isogrid panel test. The
 

simply supported end concept was replaced by fixedend pieces.
 

Longer knife edges, 262 mm in length, were fabricated and the end
 

pieces designed so the knife edges could extend beyond the upper
 

and lower ends of the panel but still allowing plane shortening
 

of the panel. The modified end fittings are shown in figure 20.
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Instead of having the potting channel extend across the entire
 

width of the panel, the channel is shorter and cantilever exten­

sions, approximately the same thickness as the panel, transmit
 
the load to the longitudinal side pieces. This allows the knife
 

edges to extend the entire length of the panel. The cantilever
 

extensions are actually narrower than the panel thickness to
 

insure that the knife edges contact the entire longitudinal
 

side. The only concern was that the less stiff extensions
 

might allow the longitudinal sides to unload slightly and trans­

fer more load to the grid. The strain gage and DCDT layout was
 

similar to the layout at the first isogrid panel and is shown
 

in figure 21. Several of the legs in the gridwork were gaged
 

for in-plane bending measurements. Back-to-back gages 19-20,
 

21-22, and 23-24 were for these measurements. Figure 22 shows
 

panel number 8 in the test fixture, with one knife edge removed
 

and without the DCDT's in position, and illustrates the arrangement
 

with the end fittings and the longer knife edges. The knife edges
 

are resting on rubber support pads.
 

Panel number 8 supported a considerably higher load than
 

panel 7 but sustained a serious local out-of-plane buckling
 

failure near node 72. Figure 23 shows the in-plane load­

deflection characteristics and there is no evidence of this
 

local failure, which occurred around 16500 N. However, the
 

failure propagated rapidly to the surrounding nodes and rather
 
than completely collapse the specimen, the test was terminated
 

so the initial failure could be examined.
 

As the load was applied, the lower three rows of nodes moved
 
backwards and continued in this direction as the load increased.
 
However, the top row moved backward, then forward, with increas­

ing load while the second row from the top reversed direction
 

several times before finally moving forward. This behavior
 

indicates that local imperfections influenced the behavior
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of the displacements. At the higher load levels, the top two
 

rows of nodes moved in a direction opposite the bottom three,
 

indicating a tendency to buckle in a full sine-wave type shape.
 

The nodal displacements at four load levels, 1860 N, 6212 N,
 
13065 N, and 18766 N are shown in figures 24, 25, 26, and 27,
 

respectively. The local buckling, involving nodes 69 and 72,
 

is evident in figure 27 by the larger out-of-plane deflection
 

of these nodes..
 

Figure 28 shows the strains from the back-to-back gage
 
pairs measuring the in-plane bending of selected legs. It is
 

obvious there is very little in-plane bending in these three
 

legs. Pairs 19-20 and 23-24 are well behaved while pair 21-22
 

is a bit erratic-, presumably because it is near the edge of the
 

grid where the load is being transferred from the longitudinal
 

sides. Figure 29 shows back-to-back pairs on the longitudinal
 

sides. The two sides appear to have been equally loaded, and
 

there was a tendency, at least with the segments gaged, for the
 

longitudinal sides to bend inward. The back-to-back pairs 3-4
 

through 15-16 indicated out-of-plane bending from no-load to the
 

end of the test.
 

From figure 23, the in-plane Young's Modulus was computed
 

to be
 

z
Ein-pane = 7.8 x 109 N/m


This figure is comparable with the number obtained from panel
 

number 7.
 

The proportioning of total load through the gridwork and
 
longitudinal sides was computed at several loads a-nd is indicated
 

as follows:
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Pa 

In-plane Load P, 

1860 N .72 

6212 N .74 

13065.N .74 

18766 N .59 

Examination of the panel indicated the loc&l failure near node 72
 

occurred in one of the legs that had a resin-starved imperfection.
 

In figure 2 this is the imperfection in the upper right.
 

4.3 Testing of Isogrid Panel 9
 

The skin-stiffened isogrid panel was tested with the longer
 

knife edges and the same type end fittings used for panel 8. The
 

potting channels in the end fittings (see figure 20) were widened to
 

accommodate the additional thickness of the skin. Rather than use
 

a DCDT at each node, the shadow Moire technique was used to deter­

mine behavior of the panel. The flat surface of the skinned side
 

of the panel provided a good opportunity to use this method.
 

Although Moire can be used to obtain quantitative information
 

regarding displacement, it was used here only to obtain qualitative
 

information. The shadow Moire technique measures the partial
 

derivative of the out-of-plane displacement with respect to the
 

direction perpendicular to the grid lines. Thus a fringe on a
 

Moire pattern represents the locus at points which have the same
 

partial derivative. For the case at hand, the grid master lines
 

were aligned vertically so the locus of points on a particular
 

fringe represented points where the partial derivative of the out­

of-plane displacement with respect to the horizontal direction was
 

a constant.
 

Strain gages and DCDTs were used at selected points to further
 

monitor the behavior of the panel. Figure 30 shows the strain
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gage and DCDT locations. Rosettes 7-8-9, 16-17-18, and 25-26-27
 

were used to measure the shear strain in the skin at various
 

locations. The other strain gages made up back-to-back pairs on
 

various grid legs at several locations on the panel.
 

Basically the panel failed at a load of about 40050 N, due
 

to separation of the skin from the isogrid backing over the lower
 

1/2 of the panel. This can be seen clearly in figure 31. In
 

the failed configuration, the gridwork was bowed substantially
 

backward while the skin was bowed forward slightly. The
 

debonding appeared to start in the lower left hand corner at the
 

panel (when viewed from the front).
 

Figures 32, 33, and 34 show the Moire fringe patterns at
 

3 load levels. Figure 32 shows the fringe pattern with no load.
 

Theoretically there should be no fringe pattern with no load but
 

surface irregularities of the panel skin and lack of parallelism
 

between the grid master plate and the panel result in initial
 

fringe patterns. Apparent also in this photograph, to the right
 

of the panel, is the DCDT used to measure in-plane shortening of
 

the panels. The DCDT actually measures the change in distance
 

between the lower and upper heads of the loading machine. This
 

set-up was similar on all three panel tests. Figure 33 shows the
 

fringe pattern at an intermediate load level. The dark, wide ver­

tical line on the left of the panel is the shadow from the knife
 

edge support. Recalling that the fringes measure displacement
 

slopes across the panel, it is evident that the out-of-plane
 

deflections are quite symmetric across the panel. However, there
 

is a dissymmetry in the slopes from top to bottom, with the center
 

of the concentric fringe pattern being closer to the bottom. At
 

lower load levels the dissymmetry was more pronounced. Figure 34
 

shows the fringe pattern after debonding occurred.
 

The character of the displacement pattern from top to bottom
 

was further illustrated by displacement measurements from the
 

selected nodes. Nodes 67, 68, 69, 71, and 72 basically all moved
 

backwards while 73 moved forward. This is indicative of either
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local effects or the tendency to buckle into a full sine-wave
 

type pattern. Although it is felt the skin would have a tendency
 

to spread out local effects, this movement in opposite directions
 

was confined to the top node and should be classified as a local
 

effect.
 

The in-plane load-deflection behavior was not as well behaved
 

as that of the other two panels. Referring to figure 35, the
 

in-plane stiffness seemed to increase after a load of 8900 N
 

and remained fairly constant until debonding occurred. Using the
 

slope of the curve in figure 35 between 8900 N and 40050 N
 

Ein-plane 17 x 109 N/m2
 

The predicted value, using equation (2) is
 

E inplane= 34 x 109 N/m2 

The strain gage data showed there were reversals in curvature
 

as the load was applied, but that in general the panel bowed
 

backwards. The shear strain in rosettes 7-8-9 and 16-17-18
 

were approximately an order of magnitude less than the axial
 

compressive strain in the rosette. Gage 25 malfunctioned so the
 

shear strain could not be computed for rosette 25-26-27.
 

5.0 CONCLUSIONS
 

Local imperfections seemed to dominate the buckling behavior
 

of the three isogrid panels. It may not be completely valid to
 

draw this conclusion about the first panel since its failure was
 

due to the support fixture. However, the node in the lower
 

right-hand corner actually reversed directions while loading and
 

thus represents some sort of local imperfection. The other two,
 

however, failed due to local imperfections and in particular,
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local material imperfections, the one being due to resin-starving
 

and the other most likely due to adhesive failure.
 

As far as in-plane response is concerned, the open panels
 

behaved pretty much as expected. The in-plane stiffness was less
 

than predicted and the load carried by the grid, as opposed to
 

the longitudinal sides, was less than expected for both open panels
 

at all load levels. However, in-plane bending of the individual
 

legs was not expected to be important and from the strain data,
 

it apparently was not. The predicted in-plane stiffness for the
 

skin-stiffened panel was high by a factor of two.-


One possible explanation of the deviations between expecta­

tions and actual results is the size of the panel. It is reason­

able to assume that the repetitive behavior of the gridwork did
 

not begin until 1 or 2 nodes in from the longitudinal edges. The
 

stiffening effects of the longitudinal edges penetrate the grid­

work and for the individual triangles to act like an isotropic
 

medium, there probably needs to be a certain number across the
 

width. These panels had only 4 nodes across the width and thus
 

perhaps the isogrid effect was never developed. In future work,
 

larger panels could be constructed to overcome this problem. In
 

addition, in future testing, it would be interesting to actually
 

eliminate a leg (by cutting it out) to determine the effects of
 

local imperfections or to determine how many legs can be removed
 

before the panel is seriously affected.
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Figure 1. Isogrid panel 7.
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Figure 2. 
Isogrid panel 8.
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Figure 3. Imperfections in panel 7, back side.
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Figure 4. Imperfection in panel 8, front side.
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Figure 5. Imperfection in panel 8, back side.
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Figure 7. Skin-stiffened panel 9, back view.
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Figure 8. Skin-stiffened panel 9, front view.
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Figure 9. Top and bottom end fittings. 
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Figure 10. Knife edges for longitudinal side support. 26
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FROM BACK SIDE 

DCDT 55 MEASURED IN-PLANE SHORTENING OF PANEL. 
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Figure 11. Strain gage and DCDT location, panel 7.
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Figure 12-. In-plane load-deflection behavior, panel 7.
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Figure 13. Out-of-plane deflection of node 6, panel 7.
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Figure 14. Out-of-plane nodal deflections, panel 7, load = 1808 N.
 



Figure 15. Out-of-plane nodal deflections, panel 7, load = 6142 N. 
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Figure 16. Out-of-plane nodal deflections, panel 7, load = 12751 N. 
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Figure 17. Effect of initial imperfection on force versus moment for a beam-column.
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Figure 18. 	 Force versus moment across gaged section
 
of panel 7.
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Figure 19. Strain versus force for gages 1, 16, 
and 48 on panel 7. 
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Figure 20. Modified end fittings for panel 8.
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Figure 21. Strain gage and DCDT location, panel 8.
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Figure 22. Panel 8 in test fixture.
 c 
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Figure 23. In-plane load-deflection behavior of panel 8.
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Figure 24. Out-of-plane nodal deflections, panel 8, load =1860 N.
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Figure 25. Out-of-plane nodal deflections, panel 8, ioad = 6212 N. 



Figure 26. Out-of-plane nodal deflections, panel 8, load = 13065 N. 
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Figure 27. Out-of-plane nodal deflections, panel 8, load = 18766 N. 
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Figure 28. 	 Strain versus load for back-to-back gage
 
pairs 19-20, 21-22, and 23-24.
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Figure 29. 	 Strain versus load for back-to-back gage
 
pairs 1-2 and 17-18.
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. Figure 30. Strain gage and DCDT locations, panel 9.
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Figure 31. Separation of skin and framework on skin-stiffened
 
panel.
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Figure 32. Moire fringe pattern on panel 9 at no-load condition.
 

48 



Figure 33. 
 Moire fringe pattern on panel 9 at intermediate 
load level. PAGE 

OF POoR QUALY 



ORIGINA PA
 

Figure 34. Moire fringe pattern on panel 9 at panel failure.
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Figure 35. In-plane load-deflection behavior for panel 9.
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